MOD p VANISHING THEOREM OF SEIBERG-WITTEN INVARIANTS FOR 4-MANIFOLDS WITH \mathbb{Z}_p -ACTIONS*

NOBUHIRO NAKAMURA†

Abstract. We give an alternative proof of the mod p vanishing theorem by F. Fang of Seiberg-Witten invariants under a cyclic group action of prime order, and generalize it to the case when $b_1 \geq 1$. Although we also use the finite dimensional approximation of the monopole map as well as Fang, our method is rather geometric. Furthermore, non-trivial examples of mod p vanishing are given.

Key words. 4-manifolds, Seiberg-Witten invariants, group actions.

AMS subject classifications. Primary: 57R57, 57S17. Secondary: 57M60.

1. Introduction. In this paper, we investigate Seiberg-Witten invariants under a cyclic group action of prime order. The Seiberg-Witten gauge theory with group actions has been studied by many authors [21, 7, 9, 10, 16, 15, 8, 5, 18] etc. Among these, we pay attention to a work by F. Fang [10].

In the paper [10], Fang proves that the Seiberg-Witten invariant of a smooth 4-manifold X of $b_1=0$ and $b_+\geq 2$ under an action of cyclic group \mathbb{Z}_p of prime order p, vanishes modulo p if some inequality about the \mathbb{Z}_p -index of Dirac operator and b_+ is satisfied, where b_i is the i-th Betti number of X and b_+ is the rank of a maximal positive definite subspace $H_+(X;\mathbb{R})$ of $H_2(X;\mathbb{R})$. His strategy for proof is to use the finite dimensional approximation introduced by M. Furuta [12] and appeal to equivariant K-theoretic devices such as the Adams ψ -operations. This method requires concrete informations about equivariant K groups.

On the other hand, in this paper, we give an alternative proof of Fang's theorem by a completely different method which is rather geometric. Then we are able to extend it to the case when $b_1 \geq 1$ by this geometric method.

To state the result, we need some preliminaries.

Let G be the cyclic group of prime order p, and X be a G-manifold. When p=2, we assume that the G-action is orientation-preserving. (Note that, when p is odd, every G-action is orientation-preserving.) Fixing a G-invariant metric on X, we have a G-action on the frame bundle P_{SO} . According to [10], we say that a Spin^c -structure c is G-equivariant if the G-action on P_{SO} lifts to a G-action on the $\operatorname{Spin}^c(4)$ -bundle $P_{\operatorname{Spin}^c}$ of c.

Suppose that a G-equivariant Spin c -structure c is given. Fix a G-invariant connection A_0 on the determinant line bundle L of c. Then the Dirac operator D_{A_0} associated to A_0 is G-equivariant, and the G-index of D_{A_0} can be written as $\operatorname{ind}_G D_{A_0} = \sum_{j=0}^{p-1} k_j \mathbb{C}_j \in R(G) \cong \mathbb{Z}[t]/(t^p-1)$, where \mathbb{C}_j is the complex 1-dimensional weight j representation of G and R(G) is the representation ring of G.

For any G-space V, let V^G be the fixed point set of the G-action. Let $b_{\bullet}^G = \dim H_{\bullet}(X;\mathbb{R})^G$, where $\bullet = 1,2,+$. The Euler number of X is denoted by $\chi(X)$, and the signature of X by $\mathrm{Sign}(X)$.

In such a situation, F. Fang [10] proves the following theorem.

^{*}Received September 13, 2005; accepted for publication February 23, 2006.

[†]Research Institute for Mathematical Sciences, Kyoto university, Kyoto, 606-8502, Japan (nakamura@kurims.kyoto-u.ac.jp).

THEOREM 1.1 ([10]). Let G be the cyclic group of prime order p, and X be a smooth closed oriented 4-dimensional G-manifold with $b_1 = 0$ and $b_+ \ge 2$. Let c be a G-equivariant Spin^c -structure. Suppose G acts on $H_+(X;\mathbb{R})$ trivially. If $2k_j \le b_+ - 1$ for $j = 0, 1, \ldots, p-1$, then the Seiberg-Witten invariant $\operatorname{SW}_X(c)$ for c satisfies

$$SW_X(c) \equiv 0 \mod p$$
.

We will generalize Theorem 1.1 to the case when $b_1 \geq 1$. When $b_1 \geq 1$, the whole theory can be viewed as a family on the Jacobian torus J. We consider the Jacobian torus J as the set of equivalence classes of framed U(1)-connections on L whose curvatures are equal to that of the fixed G-invariant connection A_0 . More concretely, J is given as follows: Suppose that $X^G \neq \emptyset$, and choose a base point $x_0 \in X^G$. Let \mathcal{G}_0 be the group of gauge transformations which are the identity at the base point x_0 . Then the Jacobian J is given as $J = (A_0 + i \ker d)/\mathcal{G}_0$, where $\ker d$ is the space of closed 1-forms. Note that G acts on J, and J is isomorphic to $H^1(X;\mathbb{R})/H^1(X;\mathbb{Z})$ G-equivariantly.

Since J as above gives a well-defined family of connections, we can also consider the family of Dirac operators $\{D_A\}_{[A]\in J}$. Then its G-index $\operatorname{ind}_G\{D_A\}_{[A]\in J}$ is an element of the G-equivariant K-group $K_G(J)$ over J.

Let $J^G = J_0 \cup J_1 \cup \cdots \cup J_K$ be the decomposition of the fixed point set J^G into connected components. Choose a point t_l in each J_l . For convenience, we assume that J_0 is the component including the origin which is represented by the fixed G-invariant connection A_0 , and t_0 is the origin $[A_0]$. By restriction, we have homomorphisms $r_l \colon K_G(J) \to K_G(t_l)$. Since each $K_G(t_l)$ is just the representation ring $R(G) \cong \mathbb{Z}[t]/(t^p-1)$, the image of $\alpha = \operatorname{ind}_G\{D_A\}_{[A]\in J}$ by r_l is written as $r_l(\alpha) = \sum_{j=0}^{p-1} k_j^l \mathbb{C}_j$. (When $X^G = \emptyset$, a well-defined G-equivariant family of connections can not be constructed in general. However coefficients k_j^l can be defined ad hoc for our purpose. See §3.4.) Now we state our main result which is a generalization of Theorem 1.1.

Theorem 1.2. Let G be the cyclic group of prime order p, and X be a smooth closed oriented 4-dimensional G-manifold with $b_+ \geq 2$ and $b_+^G \geq 1$. Let c be a G-equivariant Spin^c -structure, and L be the determinant line bundle of c. Suppose $d(c) = \frac{1}{4}(c_1(L)^2 - \operatorname{Sign}(X)) - (1 - b_1 + b_+)$ is non-negative and even. If there exists a partition $(d_0, d_1, \ldots, d_{p-1})$ of d(c)/2 such that $d_0 + d_1 + \cdots + d_{p-1} = d(c)/2$, and each d_j is a non-negative integer and

$$(1.3) 2k_j^l < 2d_j + 1 - b_1^G + b_+^G (for j = 0, 1, ..., p - 1 and any l),$$

then the Seiberg-Witten invariant $SW_X(c)$ for c satisfies

$$SW_X(c) \equiv 0 \mod p$$
.

REMARK 1.4. The number d(c) is the virtual dimension of the Seiberg-Witten moduli space \mathcal{M}_c of c, and $\mathrm{SW}_X(c)$ denotes the Seiberg-Witten invariant which is defined by the formula $\mathrm{SW}_X(c) = \langle U^{\frac{d(c)}{2}}, [\mathcal{M}_c] \rangle$, where U is the cohomology class which comes from the U(1)-action. (See Definition 2.5 below.)

When $b_1 > 0$, we can evaluate the fundamental class $[\mathcal{M}_c]$ by cohomology classes which originate in the Jacobian torus J and define corresponding invariants. Under

our setting, there are some relations among these invariants which hold modulo p. This issue is treated separately in $\S 4$.

REMARK 1.5. It can be easily seen that Theorem 1.2 implies Theorem 1.1. By the assumption of Theorem 1.1, $b_+^G = b_+ \ge 2$ and $b_1 = b_1^G = 0$. If d(c) is odd or negative, then $SW_X(c) = 0$ by definition. Note that d(c) is odd if and only if b_+ is even. Therefore we can assume d(c) is non-negative and b_+ is odd. If the condition $2k_j \le b_+ - 1$ for any j is satisfied, then (1.3) is satisfied for any partition of d(c)/2. Therefore we obtain Theorem 1.1.

REMARK 1.6. Theorem 1.2 can be rewritten in the following simpler form: Let X and c be as in Theorem 1.2. Let e_j (for j = 0, ..., p - 1) be integers defined by,

$$e_j = \max_{l} \{ (k_j^l - B), 0 \},$$

where the constant B is given as

$$B = \begin{cases} \frac{1}{2}(1 - b_1^G + b_+^G - 1), & \text{when } 1 - b_1^G + b_+^G \text{ is odd,} \\ \frac{1}{2}(1 - b_1^G + b_+^G - 2), & \text{when } 1 - b_1^G + b_+^G \text{ is even.} \end{cases}$$

If
$$\sum_{j=0}^{p-1} e_j \leq d(c)/2$$
, then $SW_X(c) \equiv 0 \mod p$.

Let us consider more precisely about lifts of the G-action to a Spin^c -structure. For a Spin^c -structure c, we have a bundle map $P_{\operatorname{Spin}^c} \to P_{\operatorname{SO}} \times_X P_{\operatorname{U}(1)}$, where $P_{\operatorname{U}(1)}$ is the U(1) bundle for the determinant line bundle. This bundle map is a 2-fold covering. Suppose that $P_{\operatorname{U}(1)}$ is G-equivariant. If the action of a generator of G on $P_{\operatorname{SO}} \times_X P_{\operatorname{U}(1)}$ lifts to $P_{\operatorname{Spin}^c}$, then all of such lifts form an action on $P_{\operatorname{Spin}^c}$ of an extension group \hat{G} of \mathbb{Z}_2 by G:

$$(1.7) 1 \to \mathbb{Z}_2 \to \hat{G} \to G \to 1.$$

When G is an odd order cyclic group, (1.7) splits. Therefore, if \hat{G} -lifts exists, then we can always take a G-lift on P_{Spin^c} . This is the case that c is G-equivariant.

However, when $G = \mathbb{Z}_2$, (1.7) does not necessarily split. The non-split case is when $\hat{G} = \mathbb{Z}_4$. In such a case, we say that the \mathbb{Z}_2 -action is of *odd type* with respect to c. On the other hand, when c is \mathbb{Z}_2 -equivariant, we say that the \mathbb{Z}_2 -action is of *even type* with respect to c.

Now suppose that the \mathbb{Z}_2 -action is of *odd type* with respect to c. For a \mathbb{Z}_2 -connection A on L, the Dirac operator D_A is \mathbb{Z}_4 -equivariant, and the \mathbb{Z}_4 -index is of the form $\operatorname{ind}_{\mathbb{Z}_4} D_A = k_1 \mathbb{C}_1 + k_3 \mathbb{C}_3$. (This is because the \mathbb{Z}_4 -lift of the generator of \mathbb{Z}_2 acts on spinors as multiplication by $\pm \sqrt{-1}$.)

In this case, we also have a result similar to Theorem 1.2. (Compare with Theorem 2 in [10].)

THEOREM 1.8. Let $G = \mathbb{Z}_2$, and X be a smooth closed oriented 4-dimensional G-manifold with $b_+ \geq 2$ and $b_+^G \geq 1$. Suppose that the G-action is of odd type with respect to a Spin^c -structure c. For such (X,c), Theorem 1.2 holds as follows. If there exists a partition (d_1,d_3) of d(c)/2 such that $d_1 + d_3 = d(c)/2$, and each d_j is a non-negative integer and

(1.9)
$$2k_j^l < 2d_j + 1 - b_1^G + b_+^G \quad (for \ j = 1, 3 \ and \ any \ l),$$

then the Seiberg-Witten invariant $SW_X(c)$ for c satisfies

$$SW_X(c) \equiv 0 \mod 2.$$

Let us explain the outline of proofs of Theorem 1.2 and Theorem 1.8.

We also use a finite dimensional approximation f. We carry out the G-equivariant perturbation of f to achieve the transversality, and then, under the assumption of (1.3), we see that the zero set of f has no fixed point of the G-action by the dimensional reason concerning fixed point sets. Thus G acts on the moduli space freely. Hence, if the dimension of moduli space is zero, then the number of elements in the moduli space is a multiple of p. From this, we can see that the Seiberg-Witten invariant is also a multiple of p. When the dimension of the moduli space is larger than 0, it suffices to cut down the moduli space.

To conclude the introduction, let us give a remark. At present, we did not find an application of Theorem 1.2 in the case when $b_1 \geq 1$. However, in the case of the K3 surface whose b_1 is 0, the author and X. Liu proved the existence of a locally linear action which can not be realized by a smooth action by using the mod p vanishing theorem [14]. Therefore, we could use Theorem 1.2 or Theorem 1.8 to find such an action on a manifold with $b_1 \geq 1$. This problem is left to the future research.

The paper is organized as follows: $\S 2$ gives a brief review on the finite dimensional approximation of the monopole map and Seiberg-Witten invariants in the G-equivariant setting. $\S 3$ proves Theorem 1.2 and Theorem 1.8. $\S 4$ deals with Seiberg-Witten invariants obtained from tori in the Jacobian. $\S 5$ gives some examples.

Acknowledgements. The author would like to express his deep gratitude to M. Furuta for invaluable discussions and continuous encouragements for years. It is also a pleasure to thank Y. Kametani for helpful discussions.

- **2.** The *G*-equivariant finite dimensional approximation. The purpose of this section is to give a brief review on the finite dimensional approximation of the monopole map and Seiberg-Witten invariants in the *G*-equivariant setting.
- **2.1. The monopole map.** Let $G = \mathbb{Z}_p$, where p is prime, and X be a smooth closed oriented 4-dimensional G-manifold with $b_+ \geq 2$ and $b_+^G \geq 1$. Suppose that $X^G \neq \emptyset$.

Fix a G-invariant metric on X. Suppose a Spin^c -structure c is G-equivariant. We write S^+ and S^- for the positive and negative spinor bundle of c. Let L be the determinant line bundle: $L = \det S^+$.

The Seiberg-Witten equations are a system of equations for a U(1)-connection A on L and a positive spinor $\phi \in \Gamma(S^+)$,

(2.1)
$$\begin{cases} D_A \phi = 0, \\ F_A^+ = q(\phi), \end{cases}$$

where D_A denotes the Dirac operator, F_A^+ denotes the self-dual part of the curvature F_A , and $q(\phi)$ is the trace free part of the endomorphism $\phi \otimes \phi^*$ of S^+ and this endomorphism is identified with an imaginary-valued self-dual 2-form via the Clifford multiplication.

The action of the gauge transformation group $\mathcal{G} = \operatorname{Map}(X; \operatorname{U}(1))$ is given as follows: for $u \in \mathcal{G}$, $u(A, \phi) = (A - 2u^{-1}du, u\phi)$. Let \mathcal{M}_c denotes the moduli space of solutions,

$$\mathcal{M}_c = \{\text{solutions to } (2.1)\}/\mathcal{G}.$$

Fix a G-invariant connection A_0 on L. Choose a base point x_0 in X^G , and let $\mathcal{G}_0 = \{u \in \mathcal{G} | u(x_0) = 1\}$. Then G acts on \mathcal{G}_0 . The Jacobian torus J is given as $J = (A_0 + i \operatorname{Ker} d)/\mathcal{G}_0$, where $\operatorname{Ker} d$ is the space of closed 1-forms.

Let us define infinite dimensional bundles V and W over J by

$$\mathcal{V} = (A_0 + i \operatorname{Ker} d) \times_{\mathcal{G}_0} (\Gamma(S^+) \oplus \Omega^1(X)),$$

$$\mathcal{W} = (A_0 + i \operatorname{Ker} d) \times_{\mathcal{G}_0} (\Gamma(S^-) \oplus \Omega^+(X) \oplus H^1(X; \mathbb{R}) \oplus \Omega^0(X)/\mathbb{R}),$$

where \mathbb{R} is the space of constant functions and \mathcal{G}_0 -actions on spaces of forms and $H^1(X;\mathbb{R})$ are trivial. Note that \mathcal{V} decomposes into $\mathcal{V} = \mathcal{V}_{\mathbb{C}} \oplus \mathcal{V}_{\mathbb{R}}$, where $\mathcal{V}_{\mathbb{C}}$ is a complex bundle come from the component $\Gamma(S^+)$ on which U(1) acts by weight 1, and $\mathcal{V}_{\mathbb{R}}$ is a real bundle come from $\Omega^1(X)$ on which U(1) acts trivially. The bundle \mathcal{W} decomposes similarly as $\mathcal{W} = \mathcal{W}_{\mathbb{C}} \oplus \mathcal{W}_{\mathbb{R}}$.

To carry out appropriate analysis, we have to complete these spaces with suitable Sobolev norms. Fix an integer k > 4, and take the fiberwise L_k^2 -completion of \mathcal{V} and the fiberwise L_{k-1}^2 -completion of \mathcal{W} . For simplicity, we use the same notation for completed spaces.

Now we define the monopole map $\Psi \colon \mathcal{V} \to \mathcal{W}$ by

$$\Psi(A, \phi, a) = (A, D_{A+ia}\phi, F_{A+ia}^{+} - q(\phi), h(a), d^*a),$$

where h(a) denotes the harmonic part of the 1-form a. In our setting, Ψ is a $U(1) \times G$ equivariant bundle map. Note that the moduli space \mathcal{M}_c exactly coincides with $\Psi^{-1}(0)/U(1)$.

2.2. Finite dimensional approximation. In this subsection, we describe the finite dimensional approximation of the monopole map according to [13]. (See also [6].)

Decompose the monopole map Ψ into the sum of linear part \mathcal{D} and quadratic part \mathcal{Q} , i.e., $\Psi = \mathcal{D} + \mathcal{Q}$, where $\mathcal{D} \colon \mathcal{V} \to \mathcal{W}$ is given by

$$\mathcal{D}(A, \phi, a) = (A, D_A \phi, d^+ a, h(a), d^* a),$$

and Q is the rest.

Let W_{λ} (resp. V_{λ}) be the subspace of \mathcal{W} (resp. \mathcal{V}) spanned by eigenspaces of \mathcal{DD}^* (resp. $\mathcal{D}^*\mathcal{D}$) with eigenvalues less than or equal to λ . Let $p_{\lambda} \colon \mathcal{W} \to W_{\lambda}$ be the orthogonal projection. As in [12], we would like to consider $\mathcal{D} + p_{\lambda}\mathcal{Q}$ as a finite dimensional approximation of $D + \mathcal{Q}$. However W_{λ} and p_{λ} do not vary continuously with respect to parameters in J. It is necessary to modify these.

Let $\beta \colon (-1,0) \to [0,\infty)$ be a compact-supported smooth non-negative cut-off function whose integral over (-1,0) is 1. For each $\lambda > 1$, let us define the smoothing of the projection $\tilde{p}_{\lambda} \colon \mathcal{W} \to W_{\lambda}$ by

$$\int_{-1}^{0} \beta(t) p_{\lambda+t} dt.$$

Let $\iota_{\lambda} \colon W_{\lambda} \to \mathcal{W}$ be the inclusion. Then the composition $\iota_{\lambda} \tilde{p}_{\lambda}$ varies continuously. For a fixed λ , we replace W_{λ} with a vector bundle W_f in the following lemma.

LEMMA 2.2 (See [13]). There is a U(1) \times G-equivariant finite-rank vector bundle W_f over J and U(1) \times G-equivariant bundle homomorphisms $\chi \colon W_f \to \mathcal{W}$ and $s \colon \mathcal{W} \to W_f$ which have the following properties.

- (1) The composition χs on W_{λ} is the identity. In particular, the image of χ contains W_{λ} .
- (2) There is a U(1) × G-equivariant isomorphism from W_f to the product bundle $J \times F_{\mathbb{C}} \oplus F_{\mathbb{R}}$, where $F_{\mathbb{C}}$ and $F_{\mathbb{R}}$ are complex and real representations of G respectively.

The proof of Lemma 2.2 is given by modifying the proof of Lemma 3.2 in [13] G-equivariantly.

Let us consider the map $\mathcal{D} + \chi \colon \mathcal{V} \oplus W_f \to \mathcal{W}$. Then we can show from Lemma 2.2 that this map is always surjective. Therefore $V_f := \text{Ker}(\mathcal{D} + \chi)$ becomes a U(1) × G-equivariant finite-rank vector bundle.

Now we can replace the family of linear maps $\mathcal{D}: V_{\lambda} \to W_{\lambda}$ with

$$\mathcal{D}_f \colon V_f \to W_f, \quad (v, e) \mapsto e,$$

which depends continuously on the parameter space J. Note that the formal difference $[V_f] - [W_f]$ gives the index of family $\mathcal{D} \colon V_{\lambda} \to W_{\lambda}$. In fact, it is easy to see that $\ker \mathcal{D} \cong \ker \mathcal{D}_f$ and $\operatorname{coker} \mathcal{D} \cong \operatorname{coker} \mathcal{D}_f$.

For the non-linear part \mathcal{Q} , we define a continuous family $\mathcal{Q}_f \colon V_f \to W_f$ by

$$Q_f(v,e) = -s\iota_{\lambda}\tilde{p}_{\lambda}Q(v).$$

Then the map $\Psi_f := \mathcal{D}_f + \mathcal{Q}_f$ gives a finite dimensional approximation of $\Psi = \mathcal{D} + \mathcal{Q}$ when we take sufficiently large λ . This is a U(1) × G-equivariant and proper map. In particular, the inverse image of zero is compact.

REMARK 2.3. The formulation in [6] is simpler than that of this section or [13]. However we need to use this formulation because the method in [6] requires a trivialization of W. In the non-equivariant setting, W can be always trivialized by Kuiper's theorem. However, in the G-equivariant setting, we do not know whether W can be trivialized G-equivariantly, or not.

2.3. Seiberg-Witten invariants. Let $f_0 = \Psi_f \colon V \to W$ be a finite dimensional approximation. The space V decomposes into the sum of a complex vector bundle $V_{\mathbb{C}}$ and a real vector bundle $V_{\mathbb{R}}$, $V = V_{\mathbb{C}} \oplus V_{\mathbb{R}}$, according to the splitting $\mathcal{V} = \mathcal{V}_{\mathbb{C}} \oplus \mathcal{V}_{\mathbb{R}}$. Similarly $W = W_{\mathbb{C}} \oplus W_{\mathbb{R}}$. Note that $[V_{\mathbb{C}}] - [W_{\mathbb{C}}]$ gives the G-index of the family of Dirac operators $\{D_A\}_{[A] \in J}$. Note also that $V_{\mathbb{R}}$ is a trivial bundle $\underline{F} = J \times F$, where F is a real representation of G, and $W_{\mathbb{R}} = \underline{F} \oplus \underline{H}^+$, where $\underline{H}^+ = J \times H^+(X; \mathbb{R})$.

To obtain the Seiberg-Witten invariant, we need to perturb f_0 in general. For our purpose, we need to carry out the perturbation G-equivariantly. First, note that the moduli space $\mathcal{M}_c = f_0^{-1}(0)/\operatorname{U}(1)$ may have $\operatorname{U}(1)$ -quotient singularities. (They are called reducibles. Strictly speaking, $f_0^{-1}(0)/\operatorname{U}(1)$ does not coincide with the genuine moduli space of solutions in general. However, after perturbation, the fundamental class of $f_0^{-1}(0)/\operatorname{U}(1)$ is equal to that of the perturbed moduli space. Therefore we abuse the term "moduli space" and the notation \mathcal{M}_c for $f_0^{-1}(0)/\operatorname{U}(1)$.) Let us consider the restriction of f_0 to the $\operatorname{U}(1)$ -invariant part of V. The $\operatorname{U}(1)$ -invariant parts of V and W are $V^{\operatorname{U}(1)} = V_{\mathbb{R}} = \underline{F}$, and $W^{\operatorname{U}(1)} = W_{\mathbb{R}} = \underline{F} \oplus \underline{H}^+$, respectively. Since the restriction $f_0|_{V^{\operatorname{U}(1)}}$ is a fiberwise linear proper map, this is just a fiberwise linear inclusion. Therefore, by fixing a non-zero vector $v \in H^+(X;\mathbb{R})^G \setminus \{0\}$, and perturbing f_0 to $f = f_0 + v$, we can avoid reducibles, that is, $f^{-1}(0)^{\operatorname{U}(1)} = \emptyset$. (Note that this perturbation is $\operatorname{U}(1) \times G$ -equivariant.)

Let $\bar{V} = ((V_{\mathbb{C}} \setminus \{0\}) \times_J V_{\mathbb{R}}) / U(1)$, and define a vector bundle $\bar{E} \to \bar{V}$ by

$$\bar{E} = ((V_{\mathbb{C}} \setminus \{0\}) \times_J V_{\mathbb{R}} \times_J W) / U(1).$$

Since f is U(1)-equivariant, f induces a section $\bar{f}: \bar{V} \to \bar{E}$. Now, the moduli space \mathcal{M}_c is the zero locus of \bar{f} . Suppose \bar{f} is transverse to the zero section of \bar{E} . (In general, we need a second perturbation. Furthermore, in our case, the perturbation should be G-equivariant. This is a task in §3.) Then the moduli space $\mathcal{M}_c = \bar{f}^{-1}(0)$ becomes a compact manifold whose dimension d(c) is

(2.4)
$$d(c) = \frac{1}{4}(c_1(L)^2 - \operatorname{Sign}(X)) - (1 - b_1 + b_+).$$

We can determine the orientation of \mathcal{M}_c from an orientation of $H^1(X;\mathbb{R}) \oplus H^+(X;\mathbb{R})$. Let us introduce a complex line bundle $\mathcal{L} \to \bar{V}$ by $\mathcal{L} = ((V_{\mathbb{C}} \setminus \{0\}) \times_J V_{\mathbb{R}}) \times_{\mathrm{U}(1)} \mathbb{C}$, where U(1) action on \mathbb{C} is multiplication. Let $U = c_1(\mathcal{L})$. Note that $H^*(\bar{V};\mathbb{Z})$ is isomorphic to $\mathbb{Z}[U]/(U^D - 1) \otimes H^*(J;\mathbb{Z})$ for some D as an additive group.

Now we give the definition of the Seiberg-Witten invariants.

DEFINITION 2.5. The Seiberg-Witten invariant for a $Spin^c$ -structure c is given as a map,

$$SW_{X,c} \colon \mathbb{Z}[U] \otimes H^*(J;\mathbb{Z}) \to \mathbb{Z},$$

which is defined by $SW_{X,c}(U^d \otimes \xi) = \langle U^d \cup \xi, [\mathcal{M}_c] \rangle$.

Note that an element ξ in $H^*(J;\mathbb{Z})$ can be written as a linear combination of Poincare duals of homology classes represented by subtori in J.

Let T be a subtorus in J, and its dimension be d_T . Suppose $d(c)-d_T$ is even and non-negative. Put $d'=(d(c)-d_T)/2$. Then the Seiberg-Witten invariant $\mathrm{SW}_{X,c}(U^{d'}\otimes P.D.[T])$ can be represented geometrically as follows: Let $\mathcal{L}_1,\mathcal{L}_2,\ldots,\mathcal{L}_{d'}$ be d' copies of \mathcal{L} and $s_i\colon \bar{V}\to\mathcal{L}_i$ $(i=1,2,\ldots,d')$ be arbitrary sections. Consider a section \bar{f}_C of the vector bundle $\bar{E}\oplus\mathcal{L}_1\oplus\cdots\oplus\mathcal{L}_{d'}$ given by $\bar{f}_C=(\bar{f},s_1,\ldots,s_{d'})$. Now restrict \bar{f}_C to $\bar{V}|_T$. If $\bar{f}_C|_{\bar{V}|_T}$ is transverse to the zero section, then $\mathrm{SW}_{X,c}(U^{d'}\otimes P.D.[T])$ is equal to the signed count of zeros of $\bar{f}_C|_{\bar{V}|_T}$ according to their orientations. (This method is called $cutting\ down$ the moduli space.)

In this paper, we use the notation

$$SW_X(c) = SW_{X,c}(U^{\frac{d(c)}{2}}),$$

when d(c) is non-negative and even.

3. G-equivariant perturbation of \bar{f} . In this section, we carry out the G-equivariant perturbation of \bar{f} , and finally prove Theorem 1.2 and Theorem 1.8.

Up to this point, we obtained a G-equivariant section $\bar{f} \colon \bar{V} \to \bar{E}$ which have no U(1)-quotient singularity in the zero locus. That is, the moduli space contains no reducible. In order to go further, we need to identify G-fixed point sets \bar{V}^G and \bar{E}^G .

3.1. Fixed point sets \bar{V}^G and \bar{E}^G . Let us summarize the notation so far. The (perturbed) finite dimensional approximation is

$$f \colon V = V_{\mathbb{C}} \oplus \underline{F} \to W = W_{\mathbb{C}} \oplus \underline{F} \oplus \underline{H}^+.$$

The induced section is

$$\bar{f} \colon \bar{V} = (V_{\mathbb{C}} \setminus \{0\}) / \operatorname{U}(1) \times_J \underline{F} \to \bar{E} = ((V_{\mathbb{C}} \setminus \{0\}) \times_J W_{\mathbb{C}}) / \operatorname{U}(1) \times_J (\underline{F} \oplus \underline{F} \oplus \underline{H}^+).$$

Let us identify the fixed point set $\bar{V}^G = ((V_{\mathbb{C}} \setminus \{0\})/U(1) \times_J \underline{F})^G$. Note that $\bar{V}^G \to J^G$ is a fiber bundle. Recall that $[V_{\mathbb{C}}] - [W_{\mathbb{C}}] = \operatorname{ind}_G \{D_A\}_{[A] \in J}$. Then, for a fixed point $t_l \in J_l \subset J^G$, fibers of $V_{\mathbb{C}}$ and $W_{\mathbb{C}}$ over t_l are written as

$$V_{\mathbb{C}}|_{t_l} = \sum_{j=0}^{p-1} k_j^{l+} \mathbb{C}_j, \quad W_{\mathbb{C}}|_{t_l} = \sum_{j=0}^{p-1} k_j^{l-} \mathbb{C}_j,$$

and the relation $k_j^l = k_j^{l+} - k_j^{l-}$ holds. Therefore the fiber of \bar{V}^G over t_l is $\bar{V}^G|_{t_l} = ((\sum_{j=0}^{p-1} k_j^{l+} \mathbb{C}_j \setminus \{0\}) / \mathrm{U}(1))^G \times F_0$, where F_0 is the G-invariant part of the real representation F.

Lemma 3.1. There is a homeomorphism

$$\left(\left(\sum_{j=0}^{p-1} k_j^{l+} \mathbb{C}_j \setminus \{0\} \right) \middle/ \mathrm{U}(1) \right)^G \cong \coprod_{j=0}^{p-1} P(k_j^{l+} \mathbb{C}_j) \times \mathbb{R}_+,$$

where $P(k_j^{l+}\mathbb{C}_j)$ is the projective space of $k_j^{l+}\mathbb{C}_j$, and \mathbb{R}_+ is the set of positive real numbers.

Proof. Note that there is a G-equivariant homeomorphism

$$\left(\sum_{j=0}^{p-1} k_j^{l+} \mathbb{C}_j \setminus \{0\}\right) / \mathrm{U}(1) \cong P(\sum_{j=0}^{p-1} k_j^{l+} \mathbb{C}_j) \times \mathbb{R}_+.$$

A point v in $P(\sum_{j=0}^{p-1} k_j^{l+} \mathbb{C}_j)$ is represented by a vector (v_0, \ldots, v_{p-1}) where $v_j \in k_j^{l+} \mathbb{C}_j$. Let $\zeta = \exp(2\pi \sqrt{-1}/p)$. A point v is fixed by the G-action if and only if there exists $\lambda \in \mathbb{C} \setminus \{0\}$ which satisfies $\lambda v_j = \zeta^j v_j$ for all j. Therefore there is a unique j such that $v_j \neq 0$, and we have $\lambda = \zeta^j$ and $v_{j'} = 0$ for all $j' \neq j$. Thus the lemma holds. \square

By Lemma 3.1, we see that $\bar{V}^G|_{t_l} \cong \coprod_{j=0}^{p-1} P(k_j^{l+}\mathbb{C}_j) \times \mathbb{R}_+ \times F_0$. Therefore the dimension of the component $\bar{V}_{l,j}^G$ of \bar{V}^G is given by

(3.2)
$$\dim \bar{V}_{l,j}^G = 2k_j^{l+} - 1 + a + b_1^G,$$

where $\bar{V}_{l,j}^G$ denotes the j-th component over $J_l \subset J^G$, and $a = \operatorname{rank} F_0$. (Note that b_1^G is the dimension of the base space J_l .)

Let us identify the fixed point set \bar{E}^G similarly. Note that

$$\bar{E} = ((V_{\mathbb{C}} \setminus \{0\}) \times_J W_{\mathbb{C}}) / \mathrm{U}(1) \times_J (\underline{F} \oplus \underline{F} \oplus \underline{H}^+)$$

is an open submanifold of

$$\bar{E}' := ((V_{\mathbb{C}} \oplus W_{\mathbb{C}}) \setminus \{0\}) / \mathrm{U}(1) \times_J (\underline{F} \oplus \underline{F} \oplus \underline{H}^+).$$

By the method similar to Lemma 3.1, we see that $\bar{E}'^G|_{t_l} \cong \coprod_{j=0}^{p-1} P((k_j^{l+} + k_j^{l-})\mathbb{C}_j) \times \mathbb{R}_+ \times (F_0 \oplus F_0 \oplus (H^+)^G)$. Therefore the dimension of the component $\bar{E}^G_{l,j}$ of \bar{E}^G is given by

$$\dim \bar{E}_{l,j}^G = 2(k_j^{l+} + k_j^{l-}) - 1 + 2a + b_+^G + b_1^G,$$

where $\bar{E}_{l,j}^G$ denotes the j-th component over $J_l \subset J^G$. Note that $\bar{E}^G \to \bar{V}^G$ is the disjoint union of vector bundles $\bar{E}_{l,j}^G \to \bar{V}_{l,j}^G$. The rank of $\bar{E}_{l,j}^G$ is given by

(3.3)
$$\operatorname{rank}_{\mathbb{R}} \bar{E}_{l,j}^{G} = \dim \bar{E}_{l,j}^{G} - \dim \bar{V}_{l,j}^{G} = 2k_{j}^{l-} + a + b_{+}^{G}.$$

3.2. Proof of Theorem 1.2 in the case when d(c) = 0. Suppose now that d(c) = 0. Under the assumption (1.3), formulae (3.2) and (3.3) imply that

$$\dim \bar{V}_{l,j}^G < \operatorname{rank}_{\mathbb{R}} \bar{E}_{l,j}^G.$$

Therefore, we can perturb the section $\bar{f} \colon \bar{V} \to \bar{E}$ on a small neighborhood of the fixed point set \bar{V}^G G-equivariantly so that \bar{f} has no zero on \bar{V}^G . Then it is easy to carry out a G-equivariant perturbation outside the G-fixed point sets so that \bar{f} is transverse to the zero section. (For instance, consider on quotient spaces \bar{V}/G and \bar{E}/G , and then pull back to original spaces.)

Note that the moduli space $\mathcal{M}_c = \bar{f}^{-1}(0)$ no longer contains any G-fixed point. Hence G acts freely on \mathcal{M}_c . Thus we have $SW_X(c) \equiv 0 \mod p$.

3.3. Proof of Theorem 1.2 in the case when d(c) is positive and even. Let us introduce G-equivariant complex line bundles \mathcal{L}_j over V $(j=0,\ldots,p-1)$ by

$$\mathcal{L}_j = ((V_{\mathbb{C}} \setminus \{0\}) \times_J V_{\mathbb{R}}) \times_{\mathrm{U}(1)} \mathbb{C}_j,$$

and fix G-equivariant sections $s_i : \bar{V} \to \mathcal{L}_i$. (It is easy to make a G-equivariant section. Choose an arbitrary non-G-equivariant section, and average it by the G-action.) We will cut down the moduli space by these (\mathcal{L}_i, s_i) .

Fix a partition $(d_0, d_1, \ldots, d_{p-1})$ of $\underline{d}(c)/2$ such that $d_j \geq 0$ and $d_0 + d_1 + \cdots + d_p = 0$ $d_{p-1} = d(c)/2$. Instead of the section $\bar{f} : \bar{V} \to \bar{E}$, we consider

$$\bar{f}_C \colon \bar{V} \to \bar{E} \oplus d_0 \mathcal{L}_0 \oplus \cdots \oplus d_{p-1} \mathcal{L}_{p-1} = : \bar{E}_C$$

which is defined by

$$\bar{f}_C = (\bar{f}, s_0, \dots, s_0, s_1, \dots, s_{p-1}).$$

Hereafter, we argue in analogous way to that of §3.1. We write $(\bar{E}_C)_{l,j}^G$ for the component of the fixed point set $(\bar{E}_C)^G$ over $\bar{V}_{l,j}^G$. Then the rank of the vector bundle $(\bar{E}_C)_{l,j}^G \to \bar{V}_{l,j}$ is given by

(3.4)
$$\operatorname{rank}_{\mathbb{R}}(\bar{E}_C)_{l,j}^G = 2(k_j^{l-} + d_j) + a + b_+^G.$$

An argument similar to that of the case when d(c) = 0 in §3.2 completes the proof of Theorem 1.2 when $X^G \neq \emptyset$.

3.4. The case when $X^G = \emptyset$. The base point $x_0 \in X^G$ is used for the welldefined G-equivariant family of connections over the Jacobian J. When $b_1 = 0$, we do not need the base point to construct a finite dimensional approximation. Therefore, the argument in this section also works in the case when $b_1 = 0$ and $X^G = \emptyset$. On the other hand, in the case when $b_1 \geq 1$ and $X^G = \emptyset$, we can define coefficients k_i^l ad hoc for our purpose, although we do not have a well-defined G-equivariant family of connections. Consider the Jacobian J as $J = (A_0 + i \ker d)/\mathcal{G}$, where \mathcal{G} is the full gauge transformation group. Decompose the G-fixed point set J^G into connected components: $J^G = J_0 \cup \cdots \cup J_K$. Choose a point t_l in each component J_l and a connection A_l in each class t_l . We assume that J_0 is the component of $[A_0]$ and $t_0 = [A_0]$, where A_0 is the fixed G-equivariant connection. Then, for each A_l , we can redefine the G-action on the Spin^c-structure c such that A_l is fixed by the redefined G-action. (This is proved as in Lemma 5.4.) Then the Dirac operator D_{A_l} is G-equivariant, and the G-index ind $_G D_{A_l}$ is written as ind $_G D_{A_l} = \sum_{j=0}^{p-1} k_j^l \mathbb{C}_j$. In such a situation, we can prove the following.

LEMMA 3.5. Suppose that d(c) in (2.4) is nonnegative and even. If $X^G = \emptyset$, then there is no partition $(d_0, d_1, \ldots, d_{p-1})$ of d(c)/2 which satisfies (1.3).

Proof. Coefficients k_j^l are calculated by the G-index theorem. (See §5.1.) In fact, we can show that

$$k_0^l = k_1^l = \dots = k_{p-1}^l = \frac{1}{p} \operatorname{ind} D_{A_0} = \frac{1}{8p} (c_1(L)^2 - \operatorname{Sign}(X)),$$

for any l. Note that $1-b_1+b_+=p(1-b_1^G+b_+^G)$ when $X^G=\emptyset$. (This follows from the formulae $\chi(X)=p\chi(X/G)$ and $\mathrm{Sign}(X)=p\,\mathrm{Sign}(X/G)$.) Therefore (1.3) is equivalent to $\frac{1}{p}d(c)<2d_j$ for $j=0,1,\ldots,p-1$. Summing up these equations from j=0 to p-1 implies a contradiction. \square

Therefore, the assumption $X^G \neq \emptyset$ can be omitted logically.

3.5. Proof of Theorem 1.8. Let $G = K = \mathbb{Z}_2$ and $\hat{G} = \mathbb{Z}_4$, and consider the short exact sequence,

$$0 \to K \to \hat{G} \to G \to 0$$
.

If the G-action is of odd type with respect to a Spin^c-structure c, then \hat{G} acts on the whole theory. In this case also, as in §2, we obtain the U(1) × \hat{G} -equivariant finite dimensional approximation

$$f \colon V = V_{\mathbb{C}} \oplus \underline{F} \to W = W_{\mathbb{C}} \oplus \underline{F} \oplus \underline{H}^+.$$

Note that the \hat{G} -action on J, \underline{F} and \underline{H}^+ factors through the surjection $\hat{G} \to G$, and hence the actions of the subgroup $K \subset \hat{G}$ on J, \underline{F} and \underline{H}^+ are trivial.

We need to identify K-fixed point sets as well as \hat{G} -fixed point sets. Note that K-actions on $V_{\mathbb{C}}$ and $W_{\mathbb{C}}$ are given as multiplication by -1 on each fiber, which are absorbed by U(1)-actions. Therefore K-actions on \bar{V} and \bar{E} are trivial.

Thus we see that the \hat{G} -action on the section $\bar{f}: \bar{V} \to \bar{E}$ is reduced to an action of $G = \hat{G}/K$. Then, an argument analogous to §3.1, §3.2, §3.3 and §3.4 proves Theorem 1.8.

4. Cutting down the moduli by tori in J. This section deals with Seiberg-Witten invariants obtained from tori in J. In this section, let $G = \mathbb{Z}_p$ where p is prime, and suppose that X is a closed oriented 4-dimensional G-manifold with $b_+ \geq 2$, $b_+^G \geq 1$ and $b_1 \geq 1$, and $X^G \neq \emptyset$. Let c be a G-equivariant Spin^c-structure.

First, we suppose that a subtorus T in J is G-invariant, i.e., T=gT for $g\in G$. Let $d_T=\dim T$. Suppose that $d(c)-d_T$ is non-negative and even, and put $d'=\frac{1}{2}(d(c)-d_T)$. For a partition (d_0,d_1,\ldots,d_{p-1}) of d', consider $\bar{f}_C\colon \bar{V}\to \bar{E}_C=\bar{E}\oplus d_0\mathcal{L}_0\oplus\cdots\oplus d_{p-1}\mathcal{L}_{p-1}$ as in §3.3. Then consider the restriction $\bar{f}_C|_{\bar{V}|_T}$ of \bar{f}_C to $\bar{V}|_T$. By perturbing $\bar{f}_C|_{\bar{V}|_T}$ G-equivariantly in the way similar to that of §3, we can prove the following.

THEOREM 4.1. Let $d_T^G = \dim T^G$. Suppose that $X^G \neq \emptyset$ and that $d(c) - d_T$ is non-negative and even. Put $d' = \frac{1}{2}(d(c) - d_T)$. If there exist a partition $(d_0, d_1, \ldots, d_{p-1})$ of d' such that $d_0 + d_1 + \cdots + d_{p-1} = d'$, and each d_j is a non-negative integer and

$$2k_j^l < 2d_j + 1 - d_T^G + b_+^G$$
 (for $j = 0, 1, ..., p - 1$ and any l),

then

$$SW_{X,c}(U^{d'} \otimes P.D.[T]) \equiv 0 \mod p,$$

where k_j^l are defined similarly from $\operatorname{ind}_G\{D_A\}_{[A]\in T}\in K_G(T)$.

On the other hand, when T is not G-invariant, the following holds.

THEOREM 4.2. Let $d_T^G = \dim T^G$. Suppose that $X^G \neq \emptyset$ and that $d(c) - d_T$ is non-negative and even. Put $d' = \frac{1}{2}(d(c) - d_T)$. If there exist a partition $(d_0, d_1, \ldots, d_{p-1})$ of d' such that $d_0 + d_1 + \cdots + d_{p-1} = d'$, and each d_j is a non-negative integer and

$$2k_j^l < 2d_j + 1 - d_T^G + b_+^G \quad (\textit{for } j = 1, 2, \dots, p-1 \ \textit{and any } l),$$

then

$$\sum_{i=0}^{p-1} \mathrm{SW}_{X,c}(U^{d'} \otimes P.D.[g^i T]) \equiv 0 \mod p.$$

Proof. Let us consider $\tilde{T} = T \cup gT \cup g^2T \cup \cdots \cup g^{p-1}T$ for $g \in G$, and the restriction $\bar{f}_C|_{\bar{V}|_{\bar{T}}}$ of f_C to $\bar{V}|_{\tilde{T}}$. Note that \tilde{T} is not necessarily a manifold. Let T_k be the set of $t \in \tilde{T}$ such that the number of g^iT $(i = 0, 1, \ldots, p-1)$ which contains t is larger than or equal to k, that is,

$$T_k = \{ t \in \tilde{T} \mid \#\{i \mid t \in g^i T\} \ge k \}.$$

Note that $T_1 = \tilde{T}$ and $T_p = \bigcap_{i=0}^{p-1} g^i T$. Then $\tilde{T} = T_1 \supset T_2 \supset \cdots \supset T_p$ gives a stratification. Note that $\dim \tilde{T} = \dim T_1 > \dim T_2$. Note also that T_p is G-invariant and contains all fixed points. By perturbing $\bar{f}_C|_{\bar{V}|_{T_p}}G$ -equivariantly in the way similar to §3, $\bar{f}_C|_{\bar{V}|_{T_p}}$ comes to have no zero. (This is due to a dimensional reason.) Next perturb \bar{f}_C on $\bar{V}|_{T_{p-1}\setminus T_p}G$ -equivariantly so that $\bar{f}_C|_{\bar{V}|_{T_{p-1}\setminus T_p}}$ has no zero. Successively perturb \bar{f}_C on $\bar{V}|_{T_k\setminus T_{k+1}}$ for k>1 G-equivariantly so that $\bar{f}_C|_{\bar{V}|_{T_k}\setminus T_{k+1}}$ has no zero. Finally, carry out a G-equivariant perturbation of $\bar{f}_C|_{\bar{V}|_{\bar{T}}}$ outside V_{T_2} to achieve the transversality with the zero-section. Since all zeros are on $\bar{V}|_{\tilde{T}\setminus T_2}$, and G acts freely on the set of zeros, the conclusion holds. \square

- 5. Examples. The purpose of this section is to give several examples. In order to apply Theorem 1.2 and Theorem 1.8 to concrete examples, we need to calculate coefficients k_j^l . Therefore we first discuss how to calculate coefficients k_j^l .
- **5.1.** How to calculate k_j^l . Recall that we decomposed the fixed point set J^G of the Jacobian torus into connected components: $J^G = J_0 \cup \cdots \cup J_K$, and chose a point t_l in each J_l . Fix a generator $g \in G$, and write \hat{g} for the action of g on the Spin^c-structure c. For the origin $t_0 = [A_0]$, by definition, it holds that $\hat{g}A_0 = A_0$. Therefore, we can calculate k_j^0 by the G-index formula such as $\operatorname{ind}_g D_{A_0} = A_0$.

(contributions from fixed points). First we briefly review the G-index formula. (See [3, 4, 2, 1].)

Let $X^G = X_0 \cup X_1 \cup \cdots \cup X_N$ be the decomposition of the fixed point set X^G into connected components, where X_0 is assumed to be the component of the base point x_0 . Then, the G-index formula for $t_0 = [A_0] \in J^G$ is written as

$$\operatorname{ind}_{g} D_{A_{0}} = \sum_{j=0}^{p-1} \zeta^{j} k_{j}^{0} = \sum_{n=0}^{N} \mathcal{F}_{n}^{0}(g),$$

where $\zeta = \exp(2\pi\sqrt{-1}/p)$ and each $\mathcal{F}_n^0(g)$ is a complex number associated to the component X_n which is given as follows.

Let L_n be the restriction of the determinant line bundle L to X_n . Then g acts on each fiber of L_n as the multiplication with a complex number ν_n of absolute value 1. (In our case, ν_n is a p-th root of 1.)

There are two cases with respect to the dimension of X_n . Since we assume the G-action is orientation-preserving, the dimensions of X_n are even.

If X_n is just a point x_n , the tangent space over x_n is written as

$$T_{x_n}X = N(\omega_1) \oplus N(\omega_2),$$

where $N(\omega_j)$ is the complex 1-dimensional representation on which g acts by multiplication with ω_j . (In our case, ω_j is a p-th root of 1.)

Then the number $\mathcal{F}_n^0(g)$ is given by,

(5.1)
$$\mathcal{F}_n^0(g) = \nu_n^{\frac{1}{2}} \frac{1}{\omega_1^{1/2} - \omega_1^{-1/2}} \frac{1}{\omega_2^{1/2} - \omega_2^{-1/2}}.$$

The right hand side is only defined up to sign. To determine the sign precisely, we need to see the g-action on the Spin^c-structure c. When G is the cyclic group of odd order p and the Spin^c-structure c is G-equivariant, signs of $\omega_i^{1/2}$ and $\nu_n^{1/2}$ are determined by the rule that

$$\left(\omega_i^{1/2}\right)^p = \left(\nu_n^{1/2}\right)^p = 1.$$

(See [2, p.20].) On the other hand, when p=2, it is somewhat subtle problem to determine the sign precisely. (See [1].)

If X_n is a 2-dimensional surface Σ_n , the restriction of the tangent bundle of X to Σ_n is written as

$$TX|_{\Sigma_n} = T\Sigma_n \oplus N(\omega),$$

where $N(\omega)$ is the normal bundle of Σ_n in X, and g acts on the fiber of $N(\omega)$ as multiplication with ω .

In this case, $\mathcal{F}_n^0(g)$ is given as,

(5.3)
$$\mathcal{F}_n^0(g) = -\nu_n^{\frac{1}{2}} \cdot \frac{1}{2} \frac{\omega^{1/2} + \omega^{-1/2}}{(\omega^{1/2} - \omega^{-1/2})^2} [\Sigma_n]^2,$$

where $[\Sigma_n]^2$ denotes the self intersection number of Σ_n . When p is odd, (5.3) is valid with the sign if square roots are given by the rule (5.2).

In order to calculate k_i^l for other l, we note the following lemma.

LEMMA 5.4. Let $g \in G$, and the action of g on the $Spin^c$ -structure c be denoted by \hat{g} . For a connection A on L, if there exists $u \in \mathcal{G}_0$ which satisfies $\hat{g}A = uA$, i.e., $[A] \in J^G$, then we can define another action \hat{g}' of g on c so that $\hat{g}'A = A$.

Proof. Consider the action $(u^{-1} \circ \hat{g})$. Then $(u^{-1} \circ \hat{g})A = A$. In particular, we have $(u^{-1} \circ \hat{g})^p A = A$. Note that $(u^{-1} \circ \hat{g})^p$ is an element of \mathcal{G}_0 . Therefore $(u^{-1} \circ \hat{g})^p = 1$ Thus $\hat{g}' := (u)^{-1} \circ \hat{g}$ is a required action. \square

Thus, for any $t_l = [A_l] \in J^G$, we can redefine the G-action on c so that A_l is G-invariant. Hence, k_j^l are also calculated by the G-index formula. However, the contributions from fixed points for the redefined action are different from the original ones as

(5.5)
$$\operatorname{ind}_{g} D_{A_{l}} = \sum_{j=0}^{p-1} \zeta^{j} k_{j}^{l} = \sum_{n} \mathcal{F}_{n}^{l}(g),$$

where $\mathcal{F}_n^l(g)$ are calculated as in (5.1) and (5.3) for the redefined g action on c.

For different l_0 and l_1 , the difference between $\mathcal{F}_n^{l_0}(g)$ and $\mathcal{F}_n^{l_1}(g)$ is given as follows. We can consider that a representation of $t_l \in J^G$ is given as a triplet (S_l^+, ϕ_l, A_l) of a G-spinor bundle S_l^+ , a trivialization ϕ_l at x_0 , and a G-invariant connection A_l on the determinant line bundle $L_l = \det S_l^+$. For l_0 and l_1 , the difference between $(S_{l_0}^+, \phi_{l_0}, A_{l_0})$ and $(S_{l_1}^+, \phi_{l_1}, A_{l_1})$ is given as a flat G-line bundle $\mathcal{L}_{l_1 l_0}$:

$$(S_{l_1}^+, \phi_{l_1}, A_{l_1}) = \mathcal{L}_{l_1 l_0} \otimes (S_{l_0}^+, \phi_{l_0}, A_{l_0}).$$

For each component $X_n \subset X^G$, the weight of g-action on the fiber of $\mathcal{L}_{l_1 l_0}$ at $x_n \in X_n$ is given as a complex number $\lambda_n^{l_1 l_0}$, which is a p-th root of 1. Then the relation between $\mathcal{F}_n^{l_0}(g)$ and $\mathcal{F}_n^{l_1}(g)$ is given as

$$\mathcal{F}_n^{l_1}(g) = \lambda_n^{l_1 l_0} \mathcal{F}_n^{l_0}(g).$$

Before ending this subsection, we give a useful lemma for lifts of the G-action to a Spin^c -structure.

LEMMA 5.7. Let $G = \mathbb{Z}_p$, and X be a closed oriented G-manifold which has no 2-torsion in $H_1(X;\mathbb{Z})$. If the determinant line bundle of a Spin^c -structure c on X is G-equivariant, then the G-action lifts to c, that is, c is G-equivariant or G-action is of even or odd type with respect to c when p = 2.

Proof. If there is no 2-torsion in $H_1(X;\mathbb{Z})$, then there is a bijective correspondence between the set of equivalence classes of Spin^c-structures and the set of equivalence classes of determinant line bundles. For $g \in G$, let \bar{g} be the action of g on $P_{\mathrm{SO}} \times_X P_{\mathrm{U}(1)}$. Consider the 2-fold covering $P_{\mathrm{Spin^c}} \to P_{\mathrm{SO}} \times_X P_{\mathrm{U}(1)}$. Since $\bar{g}^* P_{\mathrm{Spin^c}}$ is isomorphic to $P_{\mathrm{Spin^c}}$, we can lift \bar{g} to $P_{\mathrm{Spin^c}}$. Therefore the G-action on $P_{\mathrm{SO}} \times_X P_{\mathrm{U}(1)}$ lifts to a \hat{G} -action on $P_{\mathrm{Spin^c}}$. \square

5.2. An example of application in the case when $G = \mathbb{Z}_2$. The next proposition which is an application of Theorem 1.8 is also a generalization of Fang's result. (Compare with Corollary 4 of [10].) However, this is not a "new result", for this can be proved by the adjunction inequality. (See Example 5.9.) Nevertheless, we state this as an example of application.

Proposition 5.8. Let $G = \mathbb{Z}_2$, and X be a closed oriented 4-dimensional G-manifold with $b_+ \geq 2$ and $b_+^G \geq 1$, and suppose that $H_1(X;\mathbb{Z})$ has no 2-torsion.

Suppose that there is a Spin^c -structure c whose determinant line bundle is trivial, and $\operatorname{SW}_X(c) \not\equiv 0 \mod 2$. Let d(c) be as in (2.4). If the G-action has no isolated fixed point, then the following inequality holds:

$$1 - b_1 + b_+ \ge 2(1 - b_1^G + b_+^G), \text{ when } d(c) \equiv 0 \mod 4,$$

 $1 - b_1 + b_+ \ge 2(-b_1^G + b_+^G), \text{ when } d(c) \equiv 2 \mod 4.$

Proof. Note that c is the Spin^c -structure which is determined by a Spin -structure. Since the determinant line bundle L is trivial, we can define a G-action on L which is the product of the G-action on X and trivial action on fiber. Therefore the G-action lifts to c by Lemma 5.7. The lifted action may be of odd or even type with respect to c. We take the trivial flat connection A_0 on L as the origin of the Jacobian torus J. As is known widely, a G-action is of even type if and only if the fixed point set is isolated. On the other hand, a G-action is of odd type if and only if the fixed point set is 2-dimensional. (See e.g. [1].) Therefore, if the G-action is of even type, then it must be free by the assumption.

Suppose that the G-action is of odd type. By the G-index formula (put $\omega = -1$ and $\nu_n = 1$ in (5.3)), we have $\mathcal{F}_n^0(g) = 0$ for any component X_n of X^G . The relation (5.6) implies $\mathcal{F}_n^l(g) = 0$ for any l and n.

Therefore, we have $k_1^l = k_3^l = \frac{1}{2} \operatorname{ind} D_{A_0}$ for any l. By Theorem 1.8 with the assumption of mod 2 non-vanishing of $\operatorname{SW}_X(c)$, it holds that, for any partition (d_1, d_3) of d(c)/2, there exist l and j which satisfy

$$2k_j^l \ge 2d_j + 1 - b_1^G + b_+^G.$$

Therefore we have

ind
$$D_{A_0} \ge \frac{d(c)}{2} + 1 - b_1^G + b_+^G$$
, when $d(c) \equiv 0 \mod 4$, ind $D_{A_0} \ge \left(\frac{d(c)}{2} - 1\right) + 1 - b_1^G + b_+^G$, when $d(c) \equiv 2 \mod 4$.

On the other hand, from the formula of the dimension of the moduli (2.4), we have

ind
$$D_{A_0} = \frac{1}{2}(d(c) + 1 - b_1 + b_+).$$

This formula with above two inequality implies the proposition.

In the even case, the G-action should be free. In the free case, the theorem is obvious from the Lefschetz formula and the G-signature formula. \square

EXAMPLE 5.9. Concrete examples of $G = \mathbb{Z}_2$ -actions are given as follows. Let X be the K3 surface of Fermat type, $X = \{[z_0, z_1, z_2, z_3] \in \mathbb{CP}^3 | z_0^4 + z_1^4 + z_2^4 + z_3^4 = 0\}$. Let G act on X by the permutation of two coordinates. Then the fixed point set is a complex curve C whose genus is 3 and self-intersection number is 4.

Another example of $b_1 > 0$ is 4-torus. Let X be the direct product of two copies of 2-torus. Let G act on the first 2-torus by multiplication by -1, and on the second trivially. The fixed point set consists of four 2-tori whose self-intersection number are 0

Let us verify Proposition 5.8 for these examples. It is well-known that $SW_X(c_0) = \pm 1$ for the K3 surface and the 4-torus [19]. Note that, for a (V-)manifold Y, it holds that

$$1 - b_1(Y) + b_+(Y) = \frac{1}{2}(\chi(Y) + \text{Sign}(Y)).$$

Therefore, by using the Lefschetz formula and the G-signature theorem, we have

$$1 - b_1^G + b_+^G = \frac{1}{2} (\chi(X/G) + \operatorname{Sign}(X/G))$$

$$= \frac{1}{2} \left\{ \frac{1}{2} (\chi(X) + \chi(C)) + \frac{1}{2} (\operatorname{Sign}(X) + [C]^2) \right\}$$

$$= \frac{1}{2} \left\{ \frac{1}{2} (\chi(X) + \operatorname{Sign}(X)) \right\}$$

$$= \frac{1}{2} (1 - b_1 + b_+).$$

We use the adjunction formula at the third equality. From this calculation, we see that the adjunction inequality $\chi(C) + [C]^2 \leq 0$ proves Proposition 5.8.

REMARK 5.10. We can construct similar G-actions on homology 4-tori obtained by the 'knot surgery' construction according to [17] and [11]. (See also Example 5.11.)

- **5.3. Examples of the case when** $G = \mathbb{Z}_3$. This subsection treats with the case when $G = \mathbb{Z}_3$. In the following, we assume that the G-action is *pseudofree*, that is, the G-action has only isolated fixed points. In such a case, fixed points are classified into two types of representations:
 - The type (+): (1,2) = (2,1).
 - The type (-): (1,1) = (2,2).

Let m_+ be the number of fixed points of the type (+), and m_- be that of the type (-).

We give examples of pseudofree G-actions which imply the mod-3 vanishing of Seiberg-Witten invariants.

EXAMPLE 5.11. Let X be the direct product of a 2-torus and a Riemann surface of genus 3h $(h \ge 1)$. We construct a G-action on X as follows. Let us consider the lattice $\mathbb{Z} \oplus \zeta \mathbb{Z} \subset \mathbb{C}$, where $\zeta = \exp(2\pi \sqrt{-1}/3)$, and let T_1 be the 2-torus $\mathbb{C}_1/(\mathbb{Z} \oplus \zeta \mathbb{Z})$ with a G-action, where the G-action is given by the multiplication by ζ . Next consider a 2-sphere, and let G act on the 2-sphere by $2\pi/3$ -rotation. Taking a free point q on the 2-sphere, and glueing 3 copies of a Riemann surface of genus h to the 2-sphere at three points q, gq, g^2q , we obtain a Riemann surface Σ_{3h} of genus 3h with a G-action. Let X be $T_1 \times \Sigma_{3h}$ with the diagonal G-action.

Now let us examine Theorem 1.2. First note that the fixed point set of T_1 consists of three points p_0 , p_1 and p_2 , and all of them have same type of representation: $T(T_1)_{p_n} \cong \mathbb{C}_1$. On the other hand, Σ_{3h} have two fixed points q_+ and q_- , and they have opposite representations each other. (We assume that q_+ is the fixed point such that $T(\Sigma_{3h})_{q_+} \cong \mathbb{C}_2$.) Therefore, X has six fixed points, and three of them are of the type (+), and the other three are of the type (-).

Note that $\chi(X) = \operatorname{Sign}(X) = 0$ and X is spin. We take the Spin^c -structure c_0 which is determined by a Spin-structure. Note that $d(c_0) = 0$. We consider the G-action on c_0 which induces the G-action on the determinant line bundle L which is the product of the G-action on X and the trivial action on fiber. Take the trivial flat connection A_0 on L as the origin of the Jacobian torus J_X .

The Jacobian J_X is of the form $J_X = J_{T_1} \times J_{\Sigma_{3h}}$. For a fixed point $t = (a, b) \in J_X^G$, the corresponding flat G-bundle \mathcal{L}_t is written as $\mathcal{L}_t = \pi_1^* \mathcal{L}_a \otimes \pi_2^* \mathcal{L}_b$, where π_1 (resp. π_2) is the projection to T_1 (resp. Σ_{3h}), and \mathcal{L}_a is the flat G-bundle on T_1 associated to $a \in J_{T_1}^G$ and \mathcal{L}_b is similar.

Now let us attempt to classify flat G-bundles on a Riemann surface. Temporarily, we consider more general situation that $G_p = \mathbb{Z}_p$ acts pseudofreely on a Riemann surface Σ_g of genus g. Let $\{p_n\}$ be the fixed point set. Consider a divisor D on Σ_g : $D = \sum_n d_n p_n$. Then we can construct a G_p -line bundle \mathcal{L}_D on Σ_g which satisfy $\mathcal{L}_D|_{p_n} \cong (T\Sigma_g|_{p_n})^{\otimes d_n}$. Note that $c_1(\mathcal{L}_D) = \sum d_n$. In this situation, we can prove the following.

PROPOSITION 5.12. Let \mathcal{L} be a G_p -line bundle on Σ which satisfy $\mathcal{L}|_{p_n} \cong (T\Sigma_g|_{p_n})^{\otimes d_n}$. Then $c_1(\mathcal{L}) \equiv c_1(\mathcal{L}_D) \mod p$.

Proof. Let us consider the line bundle $\mathcal{L} \otimes \mathcal{L}_D^{-1}$. Then there is a line bundle $\bar{\mathcal{L}}$ on Σ_g/G_p which satisfies $\pi^*\bar{\mathcal{L}} \cong \mathcal{L} \otimes \mathcal{L}_D^{-1}$, where $\pi \colon \Sigma_g \to \Sigma_g/G_p$ is the quotient map. Noting that $c_1(\mathcal{L} \otimes \mathcal{L}_D^{-1}) = \pi^*c_1(\bar{\mathcal{L}})$, and $\pi^* \colon H^2(\Sigma_g/G_p; \mathbb{Z}) \to H^2(\Sigma_g; \mathbb{Z})$ is multiplication by p, we have the proposition. \square

Let us apply Proposition 5.12 to Σ_{3h} with the G-action. Since the fixed point set is $\{q_+, q_-\}$, the divisor D is of the form $D = d_+q_+ + d_-q_-$. Since \mathcal{L}_b is trivial, we have $0 = c_1(\mathcal{L}_b) \equiv d_+ + d_- \mod 3$. Therefore, the following holds.

LEMMA 5.13. For any $b \in J_{\Sigma_{3h}}^G$, \mathcal{L}_b is isomorphic to \mathcal{L}_D such that D = 0 or $q_+ - q_-$ or $2q_+ - 2q_-$.

For $b \in J_{\Sigma_{3h}}^G$, let us denote the weight of the G-action on the fiber of \mathcal{L}_b at q_+ (resp. q_-) by λ_+^b (resp. λ_-^b). Similarly, for $a \in J_{T_1}^G$, denote the weight of \mathcal{L}_a at $p_i \in T_1^G$ by λ_i^a . Note that $\mathcal{F}_{(p_i,q_\pm)}^{(0,0)}(g)$ for the origin $(0,0) \in J_X^G$ at $(p_i,q_\pm) \in X^G$ is given by $\mathcal{F}_{(p_i,q_\pm)}^{(0,0)}(g) = \pm \frac{1}{3}$. (See (5.1).) Therefore $\mathcal{F}_{(p_i,q_\pm)}^{(a,b)}(g)$ for $(a,b) \in J_X^G$ at (p_i,q_\pm) is written as

$$\mathcal{F}^{(a,b)}_{(p_i,q_\pm)}(g) = \pm \frac{1}{3} \lambda_i^a \lambda_\pm^b.$$

By Lemma 5.13, we have $\lambda_{+}^{b} = \lambda_{-}^{b}$. Hence we obtain

(5.14)
$$\sum_{x \in Y_a} \mathcal{F}_x^{(a,b)}(g) = \frac{1}{3} \left(\sum_{i=0}^2 \lambda_i^a \right) (\lambda_+^b - \lambda_-^b) = 0.$$

Similarly we obtain

(5.15)
$$\sum_{x \in X^G} \mathcal{F}_x^{(a,b)}(g^2) = 0,$$

for any $(a,b) \in J_X^G$.

By (5.14) and (5.15), the G-index formula for the Dirac operator of $t_l = [A_l] \in J^G$ is given as

$$\operatorname{ind}_{g} D_{A_{l}} = k_{0}^{l} + \zeta k_{1}^{l} + \zeta^{2} k_{2}^{l} = 0,$$

$$\operatorname{ind}_{g^{2}} D_{A_{l}} = k_{0}^{l} + \zeta^{2} k_{1}^{l} + \zeta k_{2}^{l} = 0,$$

$$\operatorname{ind}_{1} D_{A_{l}} = k_{0}^{l} + k_{1}^{l} + k_{2}^{l} = -\frac{1}{8} \operatorname{Sign}(X) = 0.$$

Solving these equations, we obtain

$$k_0^l = k_1^l = k_2^l = 0.$$

Now let us check that inequalities (1.3) are satisfied. First let us compute $1 - b_1^G + b_+^G$. The Lefschetz formula implies that

(5.16)
$$\chi(X/G) = \frac{1}{3}(\chi(X) + 2(m_+ + m_-)).$$

On the other hand, the G-signature theorem (Cf.[1]) implies that

(5.17)
$$\operatorname{Sign}(g, X) = \operatorname{Sign}(g^2, X) = \frac{1}{3}(m_+ - m_-),$$

(5.18)
$$\operatorname{Sign}(X/G) = \frac{1}{3} \left\{ \operatorname{Sign}(X) + \frac{2}{3} (m_{+} - m_{-}) \right\}.$$

Since $\chi(X) = \operatorname{Sign}(X) = 0$, we have,

(5.19)
$$1 - b_1^G + b_+^G = \frac{1}{2}(\chi(X/G) + \operatorname{Sign}(X/G)) = \frac{1}{9}(4m_+ + 2m_-) = 2.$$

Since the dimension of the moduli $d(c_0)$ is 0, all d_j in (1.3) should be 0. Therefore inequalities (1.3) are satisfied as,

$$2k_i^l = 0 < 2 = 1 - b_1^G + b_+^G$$

for any j, l, and hence Theorem 1.2 implies that $SW_X(c_0) \equiv 0 \mod 3$.

On the other hand, we can calculate the Seiberg-Witten invariants of $X_g = T^2 \times \Sigma_g$. The answer is given as follows: for the Spin^c-structure c_0 which is determined by a Spin-structure,

(5.20)
$$SW_{X_g}(c_0) = \pm \begin{pmatrix} 2g - 2 \\ g - 1 \end{pmatrix}.$$

It is easy to see that this is divisible by 3 if g = 3h. Thus, Theorem 1.2 holds.

There are several methods to prove (5.20). One method is Witten's calculation [22, pp.786–792]. The canonical divisor of X_g is written as $c_1(K) = (2g-2)P.D.[T \times pt]$. For a generic choice of $\eta \in H^0(X_g, K)$, a Seiberg-Witten solution corresponds to a factorization $\eta = \alpha \beta$, where α and β are holomorphic sections of $K^{1/2} \otimes L^{\pm 1}$. Since L of our case is trivial, the number of possibilities of factorizations $\eta = \alpha \beta$ coincides with the right hand side of (5.20). Furthermore, we can see that all solutions have same sign also by [22].

An alternative way to prove (5.20) is as follows. First consider X_g as $S^1 \times M$, where $M = S^1 \times \Sigma_g$. Next determine the Seiberg-Witten invariants of M by, for instance, Turaev torsion of M. Then use the formula $\mathrm{SW}_{S^1 \times M}(\tilde{c}) = \mathrm{SW}_M(c)$ where \tilde{c} is the pull-back of c. When $g \geq 2$, Turaev torsion of $S^1 \times \Sigma_g$ is written as $\pm (t-1)^{2g-2}$, where t is the homology class represented by S^1 , and c_0 corresponds to the term of order g-1. (See [20, pp.93–96].)

REMARK 5.21. Similar examples can be constructed via the 'knot surgery' construction of Fintushel and Stern [11]. Remove three copies of $T^2 \times D^2$ from $X = T^2 \times \Sigma_{3h}$ which are mapped to each other by the G-action, and denote the resulting manifold by X'. According to [11], let K be a knot in S^3 , and E_K be the exterior. Then glueing $S^1 \times E_K$ to each boundary of X' gives an example. This manipulation changes the Seiberg-Witten invariant by a multiple of 3 [11].

Remark 5.22. We can construct an example of G-action such that the Seiberg-Witten invariant does not vanish modulo 3 and there exists l for which (1.3) does not hold. Let T_i be the 2-torus $\mathbb{C}_i/(\mathbb{Z} \oplus \zeta \mathbb{Z})$ with the G-action given by the multiplication by ζ^i (i=1,2). Remove a small G-invariant neighborhood of a fixed point of each T_i . Since fixed points of T_1 and T_2 have opposite representations, we can glue their boundaries G-equivariantly, and the resulting manifold is a Riemann surface Σ_2 of genus 2 with a G-action whose fixed point set consists of four points. Now consider the 4-manifold $T_1 \times \Sigma_2$ with the diagonal G-action. Then we can prove that this is a required example.

REFERENCES

- [1] M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes II Applications, Ann. Math., 88 (1968), pp. 451-491.
- [2] M. F. Atiyah and F. Hirzebruch, Spin-manifolds and group actions, Essays on topology and related topics, Memoires dédié à George de Rham (ed. A. Haefliger and R. Narashimhan), Springer-Verlag (1970), pp. 18-28.
- [3] M. F. Atiyah and G. B. Segal, The index of elliptic operators: II, Ann. Math., 87 (1968), pp. 531-545.
- [4] M. F. Atiyah and I. M. Singer, The index of elliptic operators: III, Ann. Math., 87 (1968), pp. 546–604.
- [5] S. Baldridge, Seiberg-Witten vanishing theorem for S¹-manifolds with fixed points, Pacific J. Math., 217 (2004), pp. 1-10.
- [6] S. Bauer and M. Furuta, A stable cohomotopy refinement of Seiberg-Witten invariants: I, Invent. Math., 155 (2004), pp. 1–19.
- [7] J. Bryan, Seiberg-Witten theory and $\mathbb{Z}/2^p$ actions on spin 4-manifolds, Math. Res. Lett., 5 (1998), pp. 165–183.
- [8] Y. S. Cho and Y. H. Hong, Seiberg-Witten invariants and (anti-)symplectic involutions, Glasgow Math. J., 45 (2003), pp. 401-413.
- [9] F. FANG, Smooth group actions on 4-manifolds and the Seiberg-Witten theory, Diff. Geom. Appl., 14 (2001), pp. 1-14.
- [10] F. FANG, Smooth group actions on 4-manifolds and Seiberg-Witten invariants, International J. Math., 9:8 (1998), pp. 957-973.
- [11] R. FINTUSHEL AND R. STERN, Knots, links, and 4-manifolds, Invent. Math., 134 (1998), pp. 363-
- [12] M. Furuta, Monopole equation and the $\frac{11}{8}$ -conjecture, Math. Res. Lett., 8 (2001), pp. 279–291. [13] M. Furuta, Stable homotopy version of Seiberg-Witten invariant, preprint, the Max-Planck-Institut für Mathematik (http://www.mpim-bonn.mpg.de/), MPIM1997-110.
- [14] X. LIU AND N. NAKAMURA, Pseudofree Z/3-actions on K3 surfaces, preprint.
- [15] N. NAKAMURA, A free \mathbb{Z}_p -action and the Seiberg-Witten invariants, J. Korean Math. Soc., 39:1 (2002), pp. 103-117.
- [16] Y. Ruan and S. Wang, Seiberg-Witten invariants and double covers of 4-manifolds, Comm. Anal. Geom., 8:3 (2000), pp. 477-515.
- [17] D. RUBERMAN AND S. STRLE, Mod 2 Seiberg-Witten invariants of homology tori, Math. Res. Lett., 7 (2000), pp. 789-799.
- [18] M. SZYMIK, Bauer-Furuta invariants and Galois symmetries, preprint.
- [19] C. Taubes, The Seiberg-Witten invariants and symplectic forms, Math. Res. Lett., 1 (1994), pp. 769-796.
- [20] V. Turaev, Torsions of 3-dimensional manifolds, Progress in Mathematics, vol. 208, Birkhäuser.
- [21] S. Wang, A vanishing theorem for Seiberg-Witten invariants, Math. Res. Lett., 2 (1995), pp. 305-310.
- [22] E. WITTEN, Monopoles and four-manifolds, Math. Res. Lett., 1 (1994), pp. 769-796.