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MOD p VANISHING THEOREM OF SEIBERG-WITTEN

INVARIANTS FOR 4-MANIFOLDS WITH Zp-ACTIONS
∗

NOBUHIRO NAKAMURA
†

Abstract. We give an alternative proof of the mod p vanishing theorem by F. Fang of Seiberg-

Witten invariants under a cyclic group action of prime order, and generalize it to the case when

b1 ≥ 1. Although we also use the finite dimensional approximation of the monopole map as well as

Fang, our method is rather geometric. Furthermore, non-trivial examples of mod p vanishing are

given.
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1. Introduction. In this paper, we investigate Seiberg-Witten invariants under

a cyclic group action of prime order. The Seiberg-Witten gauge theory with group

actions has been studied by many authors [21, 7, 9, 10, 16, 15, 8, 5, 18] etc. Among

these, we pay attention to a work by F. Fang [10].

In the paper [10], Fang proves that the Seiberg-Witten invariant of a smooth

4-manifold X of b1 = 0 and b+ ≥ 2 under an action of cyclic group Zp of prime

order p, vanishes modulo p if some inequality about the Zp-index of Dirac operator

and b+ is satisfied, where bi is the i-th Betti number of X and b+ is the rank of a

maximal positive definite subspace H+(X ; R) of H2(X ; R). His strategy for proof is

to use the finite dimensional approximation introduced by M. Furuta [12] and appeal

to equivariant K-theoretic devices such as the Adams ψ-operations. This method

requires concrete informations about equivariant K groups.

On the other hand, in this paper, we give an alternative proof of Fang’s theorem

by a completely different method which is rather geometric. Then we are able to

extend it to the case when b1 ≥ 1 by this geometric method.

To state the result, we need some preliminaries.

Let G be the cyclic group of prime order p, and X be a G-manifold. When p = 2,

we assume that the G-action is orientation-preserving. (Note that, when p is odd,

every G-action is orientation-preserving.) Fixing a G-invariant metric on X , we have

a G-action on the frame bundle PSO. According to [10], we say that a Spinc-structure

c is G-equivariant if the G-action on PSO lifts to a G-action on the Spinc(4)-bundle

PSpin
c of c.

Suppose that a G-equivariant Spinc-structure c is given. Fix a G-invariant

connection A0 on the determinant line bundle L of c. Then the Dirac operator

DA0
associated to A0 is G-equivariant, and the G-index of DA0

can be written

as indGDA0
=
∑p−1

j=0
kjCj ∈ R(G) ∼= Z[t]/(tp − 1), where Cj is the complex 1-

dimensional weight j representation of G and R(G) is the representation ring of G.

For any G-space V , let V G be the fixed point set of the G-action. Let bG• =

dimH•(X ; R)G, where • = 1, 2,+. The Euler number of X is denoted by χ(X), and

the signature of X by Sign(X).

In such a situation, F. Fang [10] proves the following theorem.
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Theorem 1.1 ([10]). Let G be the cyclic group of prime order p, and X be a

smooth closed oriented 4-dimensional G-manifold with b1 = 0 and b+ ≥ 2. Let c be a

G-equivariant Spinc-structure. Suppose G acts on H+(X ; R) trivially. If 2kj ≤ b+−1

for j = 0, 1, . . . , p− 1, then the Seiberg-Witten invariant SWX(c) for c satisfies

SWX(c) ≡ 0 mod p.

We will generalize Theorem 1.1 to the case when b1 ≥ 1. When b1 ≥ 1, the

whole theory can be viewed as a family on the Jacobian torus J . We consider the

Jacobian torus J as the set of equivalence classes of framed U(1)-connections on L
whose curvatures are equal to that of the fixed G-invariant connection A0. More

concretely, J is given as follows: Suppose that XG 6= ∅, and choose a base point

x0 ∈ XG. Let G0 be the group of gauge transformations which are the identity at

the base point x0. Then the Jacobian J is given as J = (A0 + i kerd)/G0, where

ker d is the space of closed 1-forms. Note that G acts on J , and J is isomorphic to

H1(X ; R)/H1(X ; Z) G-equivariantly.

Since J as above gives a well-defined family of connections, we can also consider

the family of Dirac operators {DA}[A]∈J . Then its G-index indG{DA}[A]∈J is an

element of the G-equivariant K-group KG(J) over J .

Let JG = J0 ∪ J1 ∪ · · · ∪ JK be the decomposition of the fixed point set JG

into connected components. Choose a point tl in each Jl. For convenience, we as-

sume that J0 is the component including the origin which is represented by the fixed

G-invariant connection A0, and t0 is the origin [A0]. By restriction, we have ho-

momorphisms rl : KG(J) → KG(tl). Since each KG(tl) is just the representation

ring R(G) ∼= Z[t]/(tp − 1), the image of α = indG{DA}[A]∈J by rl is written as

rl(α) =
∑p−1

j=0
kl

jCj . (When XG = ∅, a well-defined G-equivariant family of connec-

tions can not be constructed in general. However coefficients kl
j can be defined ad hoc

for our purpose. See §3.4.) Now we state our main result which is a generalization of

Theorem 1.1.

Theorem 1.2. Let G be the cyclic group of prime order p, and X be a smooth

closed oriented 4-dimensional G-manifold with b+ ≥ 2 and bG
+

≥ 1. Let c be a G-

equivariant Spinc-structure, and L be the determinant line bundle of c. Suppose d(c) =
1

4
(c1(L)2−Sign(X))−(1−b1+b+) is non-negative and even. If there exists a partition

(d0, d1, . . . , dp−1) of d(c)/2 such that d0 + d1 + · · · + dp−1 = d(c)/2, and each dj is a

non-negative integer and

(1.3) 2kl
j < 2dj + 1 − bG

1
+ bG

+
(for j = 0, 1, . . . , p− 1 and any l),

then the Seiberg-Witten invariant SWX(c) for c satisfies

SWX(c) ≡ 0 mod p.

Remark 1.4. The number d(c) is the virtual dimension of the Seiberg-Witten

moduli space Mc of c, and SWX(c) denotes the Seiberg-Witten invariant which is

defined by the formula SWX(c) = 〈U
d(c)

2 , [Mc]〉, where U is the cohomology class

which comes from the U(1)-action. (See Definition 2.5 below.)

When b1 > 0, we can evaluate the fundamental class [Mc] by cohomology classes

which originate in the Jacobian torus J and define corresponding invariants. Under
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our setting, there are some relations among these invariants which hold modulo p.
This issue is treated separately in §4.

Remark 1.5. It can be easily seen that Theorem 1.2 implies Theorem 1.1. By

the assumption of Theorem 1.1, bG
+

= b+ ≥ 2 and b1 = bG
1

= 0. If d(c) is odd or

negative, then SWX(c) = 0 by definition. Note that d(c) is odd if and only if b+ is

even. Therefore we can assume d(c) is non-negative and b+ is odd. If the condition

2kj ≤ b+ − 1 for any j is satisfied, then (1.3) is satisfied for any partition of d(c)/2.

Therefore we obtain Theorem 1.1.

Remark 1.6. Theorem 1.2 can be rewritten in the following simpler form: Let

X and c be as in Theorem 1.2. Let ej (for j = 0, . . . , p− 1) be integers defined by,

ej = max
l

{(kl
j −B), 0},

where the constant B is given as

B =











1

2
(1 − bG

1
+ bG

+
− 1), when 1 − bG

1
+ bG

+
is odd,

1

2
(1 − bG

1
+ bG

+
− 2), when 1 − bG

1
+ bG

+
is even.

If
∑p−1

j=0
ej ≤ d(c)/2, then SWX(c) ≡ 0 mod p.

Let us consider more precisely about lifts of the G-action to a Spinc-structure.

For a Spinc-structure c, we have a bundle map PSpin
c → PSO×X P

U(1)
, where P

U(1)
is

the U(1) bundle for the determinant line bundle. This bundle map is a 2-fold covering.

Suppose that P
U(1)

is G-equivariant. If the action of a generator of G on PSO×XPU(1)

lifts to PSpin
c , then all of such lifts form an action on PSpin

c of an extension group Ĝ
of Z2 by G:

(1.7) 1 → Z2 → Ĝ→ G→ 1.

When G is an odd order cyclic group, (1.7) splits. Therefore, if Ĝ-lifts exists,

then we can always take a G-lift on PSpin
c . This is the case that c is G-equivariant.

However, when G = Z2, (1.7) does not necessarily split. The non-split case is

when Ĝ = Z4. In such a case, we say that the Z2-action is of odd type with respect to

c. On the other hand, when c is Z2-equivariant, we say that the Z2-action is of even

type with respect to c.
Now suppose that the Z2-action is of odd type with respect to c. For a Z2-

connection A on L, the Dirac operator DA is Z4-equivariant, and the Z4-index is of

the form ind
Z4
DA = k1C1 + k3C3. (This is because the Z4-lift of the generator of Z2

acts on spinors as multiplication by ±
√
−1.)

In this case, we also have a result similar to Theorem 1.2. (Compare with Theorem

2 in [10].)

Theorem 1.8. Let G = Z2, and X be a smooth closed oriented 4-dimensional

G-manifold with b+ ≥ 2 and bG
+

≥ 1. Suppose that the G-action is of odd type with

respect to a Spinc-structure c. For such (X, c), Theorem 1.2 holds as follows. If there

exists a partition (d1, d3) of d(c)/2 such that d1 + d3 = d(c)/2, and each dj is a

non-negative integer and

(1.9) 2kl
j < 2dj + 1 − bG

1
+ bG

+
(for j = 1, 3 and any l),
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then the Seiberg-Witten invariant SWX(c) for c satisfies

SWX(c) ≡ 0 mod 2.

Let us explain the outline of proofs of Theorem 1.2 and Theorem 1.8.

We also use a finite dimensional approximation f . We carry out the G-equivariant

perturbation of f to achieve the transversality, and then, under the assumption of

(1.3), we see that the zero set of f has no fixed point of the G-action by the dimensional

reason concerning fixed point sets. Thus G acts on the moduli space freely. Hence,

if the dimension of moduli space is zero, then the number of elements in the moduli

space is a multiple of p. From this, we can see that the Seiberg-Witten invariant is

also a multiple of p. When the dimension of the moduli space is larger than 0, it

suffices to cut down the moduli space.

To conclude the introduction, let us give a remark. At present, we did not find an

application of Theorem 1.2 in the case when b1 ≥ 1. However, in the case of the K3

surface whose b1 is 0, the author and X. Liu proved the existence of a locally linear

action which can not be realized by a smooth action by using the mod p vanishing

theorem [14]. Therefore, we could use Theorem 1.2 or Theorem 1.8 to find such an

action on a manifold with b1 ≥ 1. This problem is left to the future research.

The paper is organized as follows: §2 gives a brief review on the finite dimen-

sional approximation of the monopole map and Seiberg-Witten invariants in the G-

equivariant setting. §3 proves Theorem 1.2 and Theorem 1.8. §4 deals with Seiberg-

Witten invariants obtained from tori in the Jacobian. §5 gives some examples.

Acknowledgements. The author would like to express his deep gratitude to

M. Furuta for invaluable discussions and continuous encouragements for years. It is

also a pleasure to thank Y. Kametani for helpful discussions.

2. The G-equivariant finite dimensional approximation. The purpose of

this section is to give a brief review on the finite dimensional approximation of the

monopole map and Seiberg-Witten invariants in the G-equivariant setting.

2.1. The monopole map. Let G = Zp, where p is prime, and X be a smooth

closed oriented 4-dimensional G-manifold with b+ ≥ 2 and bG
+

≥ 1. Suppose that

XG 6= ∅.
Fix a G-invariant metric on X . Suppose a Spinc-structure c is G-equivariant.

We write S+ and S− for the positive and negative spinor bundle of c. Let L be the

determinant line bundle: L = detS+.

The Seiberg-Witten equations are a system of equations for a U(1)-connection A
on L and a positive spinor φ ∈ Γ(S+),

(2.1)

{

DAφ = 0,

F+

A = q(φ),

where DA denotes the Dirac operator, F+

A denotes the self-dual part of the curvature

FA, and q(φ) is the trace free part of the endomorphism φ ⊗ φ∗ of S+ and this

endomorphism is identified with an imaginary-valued self-dual 2-form via the Clifford

multiplication.

The action of the gauge transformation group G = Map(X ; U(1)) is given as

follows: for u ∈ G, u(A, φ) = (A− 2u−1du, uφ). Let Mc denotes the moduli space of

solutions,

Mc = {solutions to (2.1)}/G.
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Fix a G-invariant connection A0 on L. Choose a base point x0 in XG, and let

G0 = {u ∈ G|u(x0) = 1}. Then G acts on G0. The Jacobian torus J is given as

J = (A0 + iKerd)/G0, where Ker d is the space of closed 1-forms.

Let us define infinite dimensional bundles V and W over J by

V = (A0 + iKer d) ×G0
(Γ(S+) ⊕ Ω1(X)),

W = (A0 + iKer d) ×G0
(Γ(S−) ⊕ Ω+(X) ⊕H1(X ; R) ⊕ Ω0(X)/R),

where R is the space of constant functions and G0-actions on spaces of forms and

H1(X ; R) are trivial. Note that V decomposes into V = V
C
⊕ V

R
, where V

C
is a

complex bundle come from the component Γ(S+) on which U(1) acts by weight 1,

and V
R

is a real bundle come from Ω1(X) on which U(1) acts trivially. The bundle

W decomposes similarly as W = W
C
⊕W

R
.

To carry out appropriate analysis, we have to complete these spaces with suitable

Sobolev norms. Fix an integer k > 4, and take the fiberwise L2

k-completion of V and

the fiberwise L2

k−1
-completion of W . For simplicity, we use the same notation for

completed spaces.

Now we define the monopole map Ψ: V → W by

Ψ(A, φ, a) = (A,DA+iaφ, F
+

A+ia − q(φ), h(a), d∗a),

where h(a) denotes the harmonic part of the 1-form a. In our setting, Ψ is a U(1)×G-

equivariant bundle map. Note that the moduli space Mc exactly coincides with

Ψ−1(0)/U(1).

2.2. Finite dimensional approximation. In this subsection, we describe the

finite dimensional approximation of the monopole map according to [13]. (See also

[6].)

Decompose the monopole map Ψ into the sum of linear part D and quadratic

part Q, i.e., Ψ = D + Q, where D : V → W is given by

D(A, φ, a) = (A,DAφ, d
+a, h(a), d∗a),

and Q is the rest.

Let Wλ (resp. Vλ) be the subspace of W (resp. V) spanned by eigenspaces of

DD∗ (resp. D∗D) with eigenvalues less than or equal to λ. Let pλ : W → Wλ be

the orthogonal projection. As in [12], we would like to consider D + pλQ as a finite

dimensional approximation of D + Q. However Wλ and pλ do not vary continuously

with respect to parameters in J . It is necessary to modify these.

Let β : (−1, 0) → [0,∞) be a compact-supported smooth non-negative cut-off

function whose integral over (−1, 0) is 1. For each λ > 1, let us define the smoothing

of the projection p̃λ : W →Wλ by

∫

0

−1

β(t)pλ+tdt.

Let ιλ : Wλ → W be the inclusion. Then the composition ιλp̃λ varies continuously.

For a fixed λ, we replace Wλ with a vector bundle Wf in the following lemma.

Lemma 2.2 (See [13]). There is a U(1) × G-equivariant finite-rank vector bun-

dle Wf over J and U(1) × G-equivariant bundle homomorphisms χ : Wf → W and

s : W →Wf which have the following properties.
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(1) The composition χs on Wλ is the identity. In particular, the image of χ
contains Wλ.

(2) There is a U(1)×G-equivariant isomorphism from Wf to the product bundle

J × F
C
⊕ F

R
, where F

C
and F

R
are complex and real representations of G

respectively.

The proof of Lemma 2.2 is given by modifying the proof of Lemma 3.2 in [13]

G-equivariantly.

Let us consider the map D+χ : V⊕Wf → W . Then we can show from Lemma 2.2

that this map is always surjective. Therefore Vf := Ker(D + χ) becomes a U(1)×G-

equivariant finite-rank vector bundle.

Now we can replace the family of linear maps D : Vλ →Wλ with

Df : Vf → Wf , (v, e) 7→ e,

which depends continuously on the parameter space J . Note that the formal difference

[Vf ] − [Wf ] gives the index of family D : Vλ → Wλ. In fact, it is easy to see that

kerD ∼= kerDf and cokerD ∼= cokerDf .

For the non-linear part Q, we define a continuous family Qf : Vf →Wf by

Qf (v, e) = −sιλp̃λQ(v).

Then the map Ψf := Df + Qf gives a finite dimensional approximation of Ψ =

D + Q when we take sufficiently large λ. This is a U(1) × G-equivariant and proper

map. In particular, the inverse image of zero is compact.

Remark 2.3. The formulation in [6] is simpler than that of this section or

[13]. However we need to use this formulation because the method in [6] requires a

trivialization of W . In the non-equivariant setting, W can be always trivialized by

Kuiper’s theorem. However, in the G-equivariant setting, we do not know whether

W can be trivialized G-equivariantly, or not.

2.3. Seiberg-Witten invariants. Let f0 = Ψf : V → W be a finite dimen-

sional approximation. The space V decomposes into the sum of a complex vector

bundle V
C

and a real vector bundle V
R
, V = V

C
⊕ V

R
, according to the splitting

V = V
C
⊕ V

R
. Similarly W = W

C
⊕W

R
. Note that [V

C
] − [W

C
] gives the G-index

of the family of Dirac operators {DA}[A]∈J . Note also that V
R

is a trivial bundle

F = J × F , where F is a real representation of G, and W
R

= F ⊕ H+, where

H+ = J ×H+(X ; R).

To obtain the Seiberg-Witten invariant, we need to perturb f0 in general. For our

purpose, we need to carry out the perturbation G-equivariantly. First, note that the

moduli space Mc = f−1

0
(0)/U(1) may have U(1)-quotient singularities. (They are

called reducibles. Strictly speaking, f−1

0
(0)/U(1) does not coincide with the genuine

moduli space of solutions in general. However, after perturbation, the fundamental

class of f−1

0
(0)/U(1) is equal to that of the perturbed moduli space. Therefore we

abuse the term “moduli space” and the notation Mc for f−1

0
(0)/U(1).) Let us con-

sider the restriction of f0 to the U(1)-invariant part of V . The U(1)-invariant parts

of V and W are V U(1) = V
R

= F , and WU(1) = W
R

= F ⊕H+, respectively. Since

the restriction f0|V U(1) is a fiberwise linear proper map, this is just a fiberwise linear

inclusion. Therefore, by fixing a non-zero vector v ∈ H+(X ; R)G\{0}, and perturbing

f0 to f = f0 + v, we can avoid reducibles, that is, f−1(0)U(1) = ∅. (Note that this

perturbation is U(1) ×G-equivariant.)
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Let V̄ = ((V
C
\ {0})×J VR

)/U(1), and define a vector bundle Ē → V̄ by

Ē = ((V
C
\ {0})×J VR

×J W )/U(1).

Since f is U(1)-equivariant, f induces a section f̄ : V̄ → Ē. Now, the moduli space

Mc is the zero locus of f̄ . Suppose f̄ is transverse to the zero section of Ē. (In

general, we need a second perturbation. Furthermore, in our case, the perturbation

should be G-equivariant. This is a task in §3.) Then the moduli space Mc = f̄−1(0)

becomes a compact manifold whose dimension d(c) is

(2.4) d(c) =
1

4
(c1(L)2 − Sign(X)) − (1 − b1 + b+).

We can determine the orientation of Mc from an orientation ofH1(X ; R)⊕H+(X ; R).

Let us introduce a complex line bundle L → V̄ by L = ((V
C
\{0})×J VR

)×
U(1)

C,

where U(1) action on C is multiplication. Let U = c1(L). Note that H∗(V̄ ; Z) is

isomorphic to Z[U ]/(UD − 1) ⊗H∗(J ; Z) for some D as an additive group.

Now we give the definition of the Seiberg-Witten invariants.

Definition 2.5. The Seiberg-Witten invariant for a Spinc-structure c is given

as a map,

SWX,c : Z[U ] ⊗H∗(J ; Z) → Z,

which is defined by SWX,c(U
d ⊗ ξ) = 〈Ud ∪ ξ, [Mc]〉.

Note that an element ξ in H∗(J ; Z) can be written as a linear combination of

Poincare duals of homology classes represented by subtori in J .

Let T be a subtorus in J , and its dimension be dT . Suppose d(c)−dT is even and

non-negative. Put d′ = (d(c)−dT )/2. Then the Seiberg-Witten invariant SWX,c(U
d′

⊗
P.D.[T ]) can be represented geometrically as follows: Let L1,L2, . . . ,Ld′ be d′ copies

of L and si : V̄ → Li (i = 1, 2, . . . , d′) be arbitrary sections. Consider a section f̄C of

the vector bundle Ē⊕L1⊕· · ·⊕Ld′ given by f̄C = (f̄ , s1, . . . , sd′). Now restrict f̄C to

V̄ |T . If f̄C |¯V |T
is transverse to the zero section, then SWX,c(U

d′

⊗ P.D.[T ]) is equal

to the signed count of zeros of f̄C |¯V |T
according to their orientations. (This method

is called cutting down the moduli space.)

In this paper, we use the notation

SWX(c) = SWX,c(U
d(c)

2 ),

when d(c) is non-negative and even.

3. G-equivariant perturbation of f̄ . In this section, we carry out the G-

equivariant perturbation of f̄ , and finally prove Theorem 1.2 and Theorem 1.8.

Up to this point, we obtained a G-equivariant section f̄ : V̄ → Ē which have no

U(1)-quotient singularity in the zero locus. That is, the moduli space contains no

reducible. In order to go further, we need to identify G-fixed point sets V̄ G and ĒG.

3.1. Fixed point sets V̄ G
and ĒG

. Let us summarize the notation so far. The

(perturbed) finite dimensional approximation is

f : V = V
C
⊕ F →W = W

C
⊕ F ⊕H+.

The induced section is

f̄ : V̄ = (V
C
\ {0})/U(1) ×J F → Ē = ((V

C
\ {0})×J WC

)/U(1) ×J (F ⊕ F ⊕H+).
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Let us identify the fixed point set V̄ G = ((V
C
\ {0})/U(1) ×J F )G. Note that

V̄ G → JG is a fiber bundle. Recall that [V
C
] − [W

C
] = indG{DA}[A]∈J . Then, for a

fixed point tl ∈ Jl ⊂ JG, fibers of V
C

and W
C

over tl are written as

V
C
|tl

=

p−1
∑

j=0

kl+
j Cj , W

C
|tl

=

p−1
∑

j=0

kl−
j Cj ,

and the relation kl
j = kl+

j − kl−
j holds. Therefore the fiber of V̄ G over tl is

V̄ G|tl
= ((

∑p−1

j=0
kl+

j Cj \ {0})/U(1))G × F0, where F0 is the G-invariant part of the

real representation F .

Lemma 3.1. There is a homeomorphism









p−1
∑

j=0

kl+
j Cj \ {0}





/

U(1)





G

∼=

p−1
∐

j=0

P (kl+
j Cj) × R+,

where P (kl+
j Cj) is the projective space of kl+

j Cj, and R+ is the set of positive real

numbers.

Proof. Note that there is a G-equivariant homeomorphism





p−1
∑

j=0

kl+
j Cj \ {0}





/

U(1) ∼= P (

p−1
∑

j=0

kl+
j Cj) × R+.

A point v in P (
∑p−1

j=0
kl+

j Cj) is represented by a vector (v0, . . . , vp−1) where vj ∈

kl+
j Cj . Let ζ = exp(2π

√
−1/p). A point v is fixed by the G-action if and only if there

exists λ ∈ C \ {0} which satisfies λvj = ζjvj for all j. Therefore there is a unique j
such that vj 6= 0, and we have λ = ζj and vj′ = 0 for all j′ 6= j. Thus the lemma

holds.

By Lemma 3.1, we see that V̄ G|tl
∼=
∐p−1

j=0
P (kl+

j Cj) × R+ × F0. Therefore the

dimension of the component V̄ G
l,j of V̄ G is given by

(3.2) dim V̄ G
l,j = 2kl+

j − 1 + a+ bG
1
,

where V̄ G
l,j denotes the j-th component over Jl ⊂ JG, and a = rankF0. (Note that bG

1

is the dimension of the base space Jl.)

Let us identify the fixed point set ĒG similarly. Note that

Ē = ((V
C
\ {0})×J WC

)/U(1) ×J (F ⊕ F ⊕H+)

is an open submanifold of

Ē′ := ((V
C
⊕W

C
) \ {0})/U(1) ×J (F ⊕ F ⊕H+).

By the method similar to Lemma 3.1, we see that Ē′G|tl
∼=
∐p−1

j=0
P ((kl+

j + kl−
j )Cj)×

R+ × (F0 ⊕ F0 ⊕ (H+)G). Therefore the dimension of the component ĒG
l,j of ĒG is

given by

dim ĒG
l,j = 2(kl+

j + kl−
j ) − 1 + 2a+ bG

+
+ bG

1
,
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where ĒG
l,j denotes the j-th component over Jl ⊂ JG.

Note that ĒG → V̄ G is the disjoint union of vector bundles ĒG
l,j → V̄ G

l,j . The rank

of ĒG
l,j is given by

(3.3) rank
R
ĒG

l,j = dim ĒG
l,j − dim V̄ G

l,j = 2kl−
j + a+ bG

+
.

3.2. Proof of Theorem 1.2 in the case when d(c) = 0. Suppose now that

d(c) = 0. Under the assumption (1.3), formulae (3.2) and (3.3) imply that

dim V̄ G
l,j < rank

R
ĒG

l,j .

Therefore, we can perturb the section f̄ : V̄ → Ē on a small neighborhood of the fixed

point set V̄ G G-equivariantly so that f̄ has no zero on V̄ G. Then it is easy to carry

out a G-equivariant perturbation outside the G-fixed point sets so that f̄ is transverse

to the zero section. (For instance, consider on quotient spaces V̄ /G and Ē/G, and

then pull back to original spaces.)

Note that the moduli space Mc = f̄−1(0) no longer contains any G-fixed point.

Hence G acts freely on Mc. Thus we have SWX(c) ≡ 0 mod p.

3.3. Proof of Theorem 1.2 in the case when d(c) is positive and even.

Let us introduce G-equivariant complex line bundles Lj over V̄ (j = 0, . . . , p− 1) by

Lj = ((V
C
\ {0})×J VR

) ×
U(1)

Cj ,

and fix G-equivariant sections sj : V̄ → Lj . (It is easy to make aG-equivariant section.

Choose an arbitrary non-G-equivariant section, and average it by the G-action.) We

will cut down the moduli space by these (Lj , sj).

Fix a partition (d0, d1, . . . , dp−1) of d(c)/2 such that dj ≥ 0 and d0 + d1 + · · · +
dp−1 = d(c)/2. Instead of the section f̄ : V̄ → Ē, we consider

f̄C : V̄ → Ē ⊕ d0L0 ⊕ · · · ⊕ dp−1Lp−1 =: ĒC

which is defined by

f̄C = (f̄ , s0, . . . , s0, s1, . . . , sp−1).

Hereafter, we argue in analogous way to that of §3.1. We write (ĒC)G
l,j for the com-

ponent of the fixed point set (ĒC)G over V̄ G
l,j . Then the rank of the vector bundle

(ĒC)G
l,j → V̄l,j is given by

(3.4) rank
R
(ĒC)G

l,j = 2(kl−
j + dj) + a+ bG

+
.

An argument similar to that of the case when d(c) = 0 in §3.2 completes the proof of

Theorem 1.2 when XG 6= ∅.

3.4. The case when XG = ∅. The base point x0 ∈ XG is used for the well-

defined G-equivariant family of connections over the Jacobian J . When b1 = 0, we do

not need the base point to construct a finite dimensional approximation. Therefore,

the argument in this section also works in the case when b1 = 0 and XG = ∅. On

the other hand, in the case when b1 ≥ 1 and XG = ∅, we can define coefficients kl
j

ad hoc for our purpose, although we do not have a well-defined G-equivariant family

of connections. Consider the Jacobian J as J = (A0 + i kerd)/G, where G is the
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full gauge transformation group. Decompose the G-fixed point set JG into connected

components: JG = J0 ∪ · · · ∪ JK . Choose a point tl in each component Jl and a

connection Al in each class tl. We assume that J0 is the component of [A0] and

t0 = [A0], where A0 is the fixed G-equivariant connection. Then, for each Al, we can

redefine the G-action on the Spinc-structure c such that Al is fixed by the redefined

G-action. (This is proved as in Lemma 5.4.) Then the Dirac operator DAl
is G-

equivariant, and the G-index indGDAl
is written as indGDAl

=
∑p−1

j=0
kl

jCj . In such

a situation, we can prove the following.

Lemma 3.5. Suppose that d(c) in (2.4) is nonnegative and even. If XG = ∅, then

there is no partition (d0, d1, . . . , dp−1) of d(c)/2 which satisfies (1.3).

Proof. Coefficients kl
j are calculated by the G-index theorem. (See §5.1.) In fact,

we can show that

kl
0

= kl
1

= · · · = kl
p−1

=
1

p
indDA0

=
1

8p
(c1(L)2 − Sign(X)),

for any l. Note that 1 − b1 + b+ = p(1 − bG
1

+ bG
+
) when XG = ∅. (This follows

from the formulae χ(X) = pχ(X/G) and Sign(X) = p Sign(X/G).) Therefore (1.3) is

equivalent to 1

pd(c) < 2dj for j = 0, 1, . . . , p − 1. Summing up these equations from

j = 0 to p− 1 implies a contradiction.

Therefore, the assumption XG 6= ∅ can be omitted logically.

3.5. Proof of Theorem 1.8. Let G = K = Z2 and Ĝ = Z4, and consider the

short exact sequence,

0 → K → Ĝ→ G→ 0.

If the G-action is of odd type with respect to a Spinc-structure c, then Ĝ acts on the

whole theory. In this case also, as in §2, we obtain the U(1) × Ĝ-equivariant finite

dimensional approximation

f : V = V
C
⊕ F →W = W

C
⊕ F ⊕H+.

Note that the Ĝ-action on J , F and H+ factors through the surjection Ĝ → G, and

hence the actions of the subgroup K ⊂ Ĝ on J , F and H+ are trivial.

We need to identify K-fixed point sets as well as Ĝ-fixed point sets. Note that

K-actions on V
C

and W
C

are given as multiplication by −1 on each fiber, which are

absorbed by U(1)-actions. Therefore K-actions on V̄ and Ē are trivial.

Thus we see that the Ĝ-action on the section f̄ : V̄ → Ē is reduced to an action

of G = Ĝ/K. Then, an argument analogous to §3.1, §3.2, §3.3 and §3.4 proves

Theorem 1.8.

4. Cutting down the moduli by tori in J. This section deals with Seiberg-

Witten invariants obtained from tori in J . In this section, let G = Zp where p is prime,

and suppose thatX is a closed oriented 4-dimensionalG-manifold with b+ ≥ 2, bG
+
≥ 1

and b1 ≥ 1, and XG 6= ∅. Let c be a G-equivariant Spinc-structure.

First, we suppose that a subtorus T in J is G-invariant, i.e., T = gT for g ∈
G. Let dT = dimT . Suppose that d(c) − dT is non-negative and even, and put

d′ = 1

2
(d(c) − dT ). For a partition (d0, d1, . . . , dp−1) of d′, consider f̄C : V̄ → ĒC =

Ē ⊕ d0L0 ⊕ · · · ⊕ dp−1Lp−1 as in §3.3. Then consider the restriction f̄C |¯V |T
of f̄C to

V̄ |T . By perturbing f̄C |¯V |T
G-equivariantly in the way similar to that of §3, we can

prove the following.
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Theorem 4.1. Let dG
T = dimTG. Suppose that XG 6= ∅ and that d(c)−dT is non-

negative and even. Put d′ = 1

2
(d(c) − dT ). If there exist a partition (d0, d1, . . . , dp−1)

of d′ such that d0 + d1 + · · · + dp−1 = d′, and each dj is a non-negative integer and

2kl
j < 2dj + 1 − dG

T + bG
+

(for j = 0, 1, . . . , p− 1 and any l),

then

SWX,c(U
d′

⊗ P.D.[T ]) ≡ 0 mod p,

where kl
j are defined similarly from indG{DA}[A]∈T ∈ KG(T ).

On the other hand, when T is not G-invariant, the following holds.

Theorem 4.2. Let dG
T = dimTG. Suppose that XG 6= ∅ and that d(c)−dT is non-

negative and even. Put d′ = 1

2
(d(c) − dT ). If there exist a partition (d0, d1, . . . , dp−1)

of d′ such that d0 + d1 + · · · + dp−1 = d′, and each dj is a non-negative integer and

2kl
j < 2dj + 1 − dG

T + bG
+

(for j = 1, 2, . . . , p− 1 and any l),

then

p−1
∑

i=0

SWX,c(U
d′

⊗ P.D.[giT ]) ≡ 0 mod p.

Proof. Let us consider T̃ = T ∪gT∪g2T∪· · ·∪gp−1T for g ∈ G, and the restriction

f̄C |¯V |T̃
of fC to V̄ | ˜T . Note that T̃ is not necessarily a manifold. Let Tk be the set of

t ∈ T̃ such that the number of giT (i = 0, 1, . . . , p− 1) which contains t is lager than

or equal to k, that is,

Tk = {t ∈ T̃ |#{i | t ∈ giT } ≥ k}.

Note that T1 = T̃ and Tp =
⋂p−1

i=0
giT . Then T̃ = T1 ⊃ T2 ⊃ · · · ⊃ Tp gives a strat-

ification. Note that dim T̃ = dimT1 > dimT2. Note also that Tp is G-invariant and

contains all fixed points. By perturbing f̄C |¯V |Tp
G-equivariantly in the way similar to

§3, f̄C |¯V |Tp
comes to have no zero. (This is due to a dimensional reason.) Next per-

turb f̄C on V̄ |Tp−1\Tp
G-equivariantly so that f̄C |¯V |Tp−1\Tp

has no zero. Successively

perturb f̄C on V̄ |Tk\Tk+1
for k > 1 G-equivariantly so that f̄C |¯V |Tk\Tk+1

has no zero.

Finally, carry out a G-equivariant perturbation of f̄C |¯V |T̃
outside VT2

to achieve the

transversality with the zero-section. Since all zeros are on V̄ | ˜T\T2
, and G acts freely

on the set of zeros, the conclusion holds.

5. Examples. The purpose of this section is to give several examples. In order

to apply Theorem 1.2 and Theorem 1.8 to concrete examples, we need to calculate

coefficients kl
j . Therefore we first discuss how to calculate coefficients kl

j .

5.1. How to calculate kl
j . Recall that we decomposed the fixed point set JG

of the Jacobian torus into connected components: JG = J0 ∪ · · · ∪ JK , and chose

a point tl in each Jl. Fix a generator g ∈ G, and write ĝ for the action of g on

the Spinc-structure c. For the origin t0 = [A0], by definition, it holds that ĝA0 =

A0. Therefore, we can calculate k0

j by the G-index formula such as indg DA0
=
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(contributions from fixed points). First we briefly review the G-index formula. (See

[3, 4, 2, 1].)

Let XG = X0 ∪ X1 ∪ · · · ∪XN be the decomposition of the fixed point set XG

into connected components, where X0 is assumed to be the component of the base

point x0. Then, the G-index formula for t0 = [A0] ∈ JG is written as

indg DA0
=

p−1
∑

j=0

ζjk0

j =

N
∑

n=0

F0

n(g),

where ζ = exp(2π
√
−1/p) and each F0

n(g) is a complex number associated to the

component Xn which is given as follows.

Let Ln be the restriction of the determinant line bundle L to Xn. Then g acts

on each fiber of Ln as the multiplication with a complex number νn of absolute value

1. (In our case, νn is a p-th root of 1.)

There are two cases with respect to the dimension of Xn. Since we assume the

G-action is orientation-preserving, the dimensions of Xn are even.

If Xn is just a point xn, the tangent space over xn is written as

Txn
X = N(ω1) ⊕N(ω2),

where N(ωj) is the complex 1-dimensional representation on which g acts by multi-

plication with ωj . (In our case, ωj is a p-th root of 1.)

Then the number F0

n(g) is given by,

(5.1) F0

n(g) = ν
1

2

n
1

ω
1/2

1
− ω

−1/2

1

1

ω
1/2

2
− ω

−1/2

2

.

The right hand side is only defined up to sign. To determine the sign precisely, we

need to see the g-action on the Spinc-structure c. When G is the cyclic group of

odd order p and the Spinc-structure c is G-equivariant, signs of ω
1/2

i and ν
1/2

n are

determined by the rule that

(5.2)
(

ω
1/2

i

)p

=
(

ν1/2

n

)p

= 1.

(See [2, p.20].) On the other hand, when p = 2, it is somewhat subtle problem to

determine the sign precisely. (See [1].)

If Xn is a 2-dimensional surface Σn, the restriction of the tangent bundle of X to

Σn is written as

TX |Σn
= TΣn ⊕N(ω),

where N(ω) is the normal bundle of Σn in X , and g acts on the fiber of N(ω) as

multiplication with ω.

In this case, F0

n(g) is given as,

(5.3) F0

n(g) = −ν
1

2
n ·

1

2

ω1/2 + ω−1/2

(ω1/2 − ω−1/2)2
[Σn]2,

where [Σn]2 denotes the self intersection number of Σn. When p is odd, (5.3) is valid

with the sign if square roots are given by the rule (5.2).

In order to calculate kl
j for other l, we note the following lemma.
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Lemma 5.4. Let g ∈ G, and the action of g on the Spinc-structure c be denoted

by ĝ. For a connection A on L, if there exists u ∈ G0 which satisfies ĝA = uA, i.e.,

[A] ∈ JG, then we can define another action ĝ′ of g on c so that ĝ′A = A.

Proof. Consider the action (u−1◦ ĝ). Then (u−1 ◦ ĝ)A = A. In particular, we have

(u−1 ◦ ĝ)pA = A. Note that (u−1 ◦ ĝ)p is an element of G0. Therefore (u−1 ◦ ĝ)p = 1

Thus ĝ′ := (u)−1 ◦ ĝ is a required action.

Thus, for any tl = [Al] ∈ JG, we can redefine the G-action on c so that Al is

G-invariant. Hence, kl
j are also calculated by the G-index formula. However, the

contributions from fixed points for the redefined action are different from the original

ones as

(5.5) indg DAl
=

p−1
∑

j=0

ζjkl
j =

∑

n

F l
n(g),

where F l
n(g) are calculated as in (5.1) and (5.3) for the redefined g action on c.

For different l0 and l1, the difference between F l0
n (g) and F l1

n (g) is given as follows.

We can consider that a representation of tl ∈ JG is given as a triplet (S+

l , φl, Al) of

a G-spinor bundle S+

l , a trivialization φl at x0, and a G-invariant connection Al

on the determinant line bundle Ll = detS+

l . For l0 and l1, the difference between

(S+

l0
, φl0 , Al0) and (S+

l1
, φl1 , Al1) is given as a flat G-line bundle Ll1l0 :

(S+

l1
, φl1 , Al1) = Ll1l0 ⊗ (S+

l0
, φl0 , Al0).

For each component Xn ⊂ XG, the weight of g-action on the fiber of Ll1l0 at xn ∈ Xn

is given as a complex number λl1l0
n , which is a p-th root of 1. Then the relation

between F l0
n (g) and F l1

n (g) is given as

(5.6) F l1
n (g) = λl1l0

n F l0
n (g).

Before ending this subsection, we give a useful lemma for lifts of the G-action to

a Spinc-structure.

Lemma 5.7. Let G = Zp, and X be a closed oriented G-manifold which has no

2-torsion in H1(X ; Z). If the determinant line bundle of a Spinc-structure c on X is

G-equivariant, then the G-action lifts to c, that is, c is G-equivariant or G-action is

of even or odd type with respect to c when p = 2.

Proof. If there is no 2-torsion inH1(X ; Z), then there is a bijective correspondence

between the set of equivalence classes of Spinc-structures and the set of equivalence

classes of determinant line bundles. For g ∈ G, let ḡ be the action of g on PSO×XPU(1)
.

Consider the 2-fold covering PSpin
c → PSO ×X P

U(1)
. Since ḡ∗PSpin

c is isomorphic

to PSpin
c , we can lift ḡ to PSpin

c . Therefore the G-action on PSO ×X P
U(1)

lifts to a

Ĝ-action on PSpin
c .

5.2. An example of application in the case when G = Z2. The next propo-

sition which is an application of Theorem 1.8 is also a generalization of Fang’s result.

(Compare with Corollary 4 of [10].) However, this is not a “new result”, for this can

be proved by the adjunction inequality. (See Example 5.9.) Nevertheless, we state

this as an example of application.

Proposition 5.8. Let G = Z2, and X be a closed oriented 4-dimensional G-

manifold with b+ ≥ 2 and bG
+

≥ 1, and suppose that H1(X ; Z) has no 2-torsion.
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Suppose that there is a Spinc-structure c whose determinant line bundle is trivial, and

SWX(c) 6≡ 0 mod 2. Let d(c) be as in (2.4). If the G-action has no isolated fixed

point, then the following inequality holds:

1 − b1 + b+ ≥ 2(1 − bG
1

+ bG
+

), when d(c) ≡ 0 mod 4,

1 − b1 + b+ ≥ 2(−bG
1

+ bG
+
), when d(c) ≡ 2 mod 4.

Proof. Note that c is the Spinc-structure which is determined by a Spin-structure.

Since the determinant line bundle L is trivial, we can define a G-action on L which is

the product of the G-action on X and trivial action on fiber. Therefore the G-action

lifts to c by Lemma 5.7. The lifted action may be of odd or even type with respect

to c. We take the trivial flat connection A0 on L as the origin of the Jacobian torus

J . As is known widely, a G-action is of even type if and only if the fixed point set is

isolated. On the other hand, a G-action is of odd type if and only if the fixed point

set is 2-dimensional. (See e.g. [1].) Therefore, if the G-action is of even type, then it

must be free by the assumption.

Suppose that the G-action is of odd type. By the G-index formula (put ω = −1

and νn = 1 in (5.3)), we have F0

n(g) = 0 for any component Xn of XG. The relation

(5.6) implies F l
n(g) = 0 for any l and n.

Therefore, we have kl
1

= kl
3

= 1

2
indDA0

for any l. By Theorem 1.8 with the

assumption of mod 2 non-vanishing of SWX(c), it holds that, for any partition (d1, d3)

of d(c)/2, there exist l and j which satisfy

2kl
j ≥ 2dj + 1 − bG

1
+ bG

+
.

Therefore we have

indDA0
≥
d(c)

2
+ 1 − bG

1
+ bG

+
, when d(c) ≡ 0 mod 4,

indDA0
≥

(

d(c)

2
− 1

)

+ 1 − bG
1

+ bG
+
, when d(c) ≡ 2 mod 4.

On the other hand, from the formula of the dimension of the moduli (2.4), we have

indDA0
=

1

2
(d(c) + 1 − b1 + b+).

This formula with above two inequality implies the proposition.

In the even case, the G-action should be free. In the free case, the theorem is

obvious from the Lefschetz formula and the G-signature formula.

Example 5.9. Concrete examples of G = Z2-actions are given as follows. Let X
be the K3 surface of Fermat type, X = {[z0, z1, z2, z3] ∈ CP3 |z4

0
+ z4

1
+ z4

2
+ z4

3
= 0}.

Let G act on X by the permutation of two coordinates. Then the fixed point set is a

complex curve C whose genus is 3 and self-intersection number is 4.

Another example of b1 > 0 is 4-torus. Let X be the direct product of two copies

of 2-torus. Let G act on the first 2-torus by multiplication by −1, and on the second

trivially. The fixed point set consists of four 2-tori whose self-intersection number are

0.

Let us verify Proposition 5.8 for these examples. It is well-known that SWX(c0) =

±1 for the K3 surface and the 4-torus [19]. Note that, for a (V-)manifold Y , it holds

that

1 − b1(Y ) + b+(Y ) =
1

2
(χ(Y ) + Sign(Y )).
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Therefore, by using the Lefschetz formula and the G-signature theorem, we have

1 − bG
1

+ bG
+

=
1

2
(χ(X/G) + Sign(X/G))

=
1

2

{

1

2
(χ(X) + χ(C)) +

1

2
(Sign(X) + [C]2)

}

=
1

2

{

1

2
(χ(X) + Sign(X))

}

=
1

2
(1 − b1 + b+).

We use the adjunction formula at the third equality. From this calculation, we see

that the adjunction inequality χ(C) + [C]2 ≤ 0 proves Proposition 5.8.

Remark 5.10. We can construct similar G-actions on homology 4-tori obtained

by the ’knot surgery’ construction according to [17] and [11]. (See also Example 5.11.)

5.3. Examples of the case when G = Z3. This subsection treats with the case

when G = Z3. In the following, we assume that the G-action is pseudofree, that is,

the G-action has only isolated fixed points. In such a case, fixed points are classified

into two types of representations:

• The type (+): (1, 2) = (2, 1).

• The type (−): (1, 1) = (2, 2).

Let m+ be the number of fixed points of the type (+), and m− be that of the type

(−).

We give examples of pseudofree G-actions which imply the mod-3 vanishing of

Seiberg-Witten invariants.

Example 5.11. Let X be the direct product of a 2-torus and a Riemann surface

of genus 3h (h ≥ 1). We construct a G-action on X as follows. Let us consider the

lattice Z⊕ ζZ ⊂ C, where ζ = exp(2π
√
−1/3), and let T1 be the 2-torus C1/(Z⊕ ζZ)

with a G-action, where the G-action is given by the multiplication by ζ. Next consider

a 2-sphere, and let G act on the 2-sphere by 2π/3-rotation. Taking a free point q on

the 2-sphere, and glueing 3 copies of a Riemann surface of genus h to the 2-sphere at

three points q, gq, g2q, we obtain a Riemann surface Σ3h of genus 3h with a G-action.

Let X be T1 × Σ3h with the diagonal G-action.

Now let us examine Theorem 1.2. First note that the fixed point set of T1 consists

of three points p0, p1 and p2, and all of them have same type of representation:

T (T1)pn
∼= C1. On the other hand, Σ3h have two fixed points q+ and q−, and they

have opposite representations each other. (We assume that q+ is the fixed point such

that T (Σ3h)q+

∼= C2. ) Therefore, X has six fixed points, and three of them are of

the type (+), and the other three are of the type (−).

Note that χ(X) = Sign(X) = 0 and X is spin. We take the Spinc-structure

c0 which is determined by a Spin-structure. Note that d(c0) = 0. We consider the

G-action on c0 which induces the G-action on the determinant line bundle L which

is the product of the G-action on X and the trivial action on fiber. Take the trivial

flat connection A0 on L as the origin of the Jacobian torus JX .

The Jacobian JX is of the form JX = JT1
×JΣ3h

. For a fixed point t = (a, b) ∈ JG
X ,

the corresponding flat G-bundle Lt is written as Lt = π∗
1
La ⊗ π∗

2
Lb, where π1 (resp.

π2) is the projection to T1 (resp. Σ3h), and La is the flat G-bundle on T1 associated

to a ∈ JG
T1

and Lb is similar.
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Now let us attempt to classify flat G-bundles on a Riemann surface. Temporarily,

we consider more general situation that Gp = Zp acts pseudofreely on a Riemann

surface Σg of genus g. Let {pn} be the fixed point set. Consider a divisor D on

Σg: D =
∑

n dnpn. Then we can construct a Gp-line bundle LD on Σg which satisfy

LD|pn
∼= (TΣg|pn

)⊗dn . Note that c1(LD) =
∑

dn. In this situation, we can prove the

following.

Proposition 5.12. Let L be a Gp-line bundle on Σ which satisfy L|pn
∼=

(TΣg|pn
)⊗dn . Then c1(L) ≡ c1(LD) mod p.

Proof. Let us consider the line bundle L ⊗ L−1

D . Then there is a line bundle L̄
on Σg/Gp which satisfies π∗L̄ ∼= L ⊗ L−1

D , where π : Σg → Σg/Gp is the quotient

map. Noting that c1(L ⊗ L−1

D ) = π∗c1(L̄), and π∗ : H2(Σg/Gp; Z) → H2(Σg; Z) is

multiplication by p, we have the proposition.

Let us apply Proposition 5.12 to Σ3h with the G-action. Since the fixed point set

is {q+, q−}, the divisor D is of the form D = d+q+ + d−q−. Since Lb is trivial, we

have 0 = c1(Lb) ≡ d+ + d− mod 3. Therefore, the following holds.

Lemma 5.13. For any b ∈ JG
Σ3h

, Lb is isomorphic to LD such that D = 0 or

q+ − q− or 2q+ − 2q−.

For b ∈ JG
Σ3h

, let us denote the weight of the G-action on the fiber of Lb at q+
(resp. q−) by λb

+
(resp. λb

−). Similarly, for a ∈ JG
T1

, denote the weight of La at

pi ∈ TG
1

by λa
i . Note that F

(0,0)
(pi,q±)

(g) for the origin (0, 0) ∈ JG
X at (pi, q±) ∈ XG

is given by F
(0,0)
(pi,q±)

(g) = ± 1

3
. (See (5.1).) Therefore F

(a,b)
(pi,q±)

(g) for (a, b) ∈ JG
X at

(pi, q±) is written as

F
(a,b)
(pi,q±)

(g) = ±
1

3
λa

i λ
b
±.

By Lemma 5.13, we have λb
+

= λb
−.Hence we obtain

(5.14)
∑

x∈XG

F (a,b)
x (g) =

1

3

(

2
∑

i=0

λa
i

)

(λb
+
− λb

−) = 0.

Similarly we obtain

(5.15)
∑

x∈XG

F (a,b)
x (g2) = 0,

for any (a, b) ∈ JG
X .

By (5.14) and (5.15), the G-index formula for the Dirac operator of tl = [Al] ∈ JG

is given as

indg DAl
= kl

0
+ ζkl

1
+ ζ2kl

2
= 0,

indg2 DAl
= kl

0
+ ζ2kl

1
+ ζkl

2
= 0,

ind1DAl
= kl

0
+ kl

1
+ kl

2
= −

1

8
Sign(X) = 0.

Solving these equations, we obtain

kl
0

= kl
1

= kl
2

= 0.
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Now let us check that inequalities (1.3) are satisfied. First let us compute 1 −
bG
1

+ bG
+
. The Lefschetz formula implies that

(5.16) χ(X/G) =
1

3
(χ(X) + 2(m+ +m−)).

On the other hand, the G-signature theorem (Cf.[1]) implies that

Sign(g,X) = Sign(g2, X) =
1

3
(m+ −m−),(5.17)

Sign(X/G) =
1

3

{

Sign(X) +
2

3
(m+ −m−)

}

.(5.18)

Since χ(X) = Sign(X) = 0, we have,

(5.19) 1 − bG
1

+ bG
+

=
1

2
(χ(X/G) + Sign(X/G)) =

1

9
(4m+ + 2m−) = 2.

Since the dimension of the moduli d(c0) is 0, all dj in (1.3) should be 0. Therefore

inequalities (1.3) are satisfied as,

2kl
j = 0 < 2 = 1 − bG

1
+ bG

+
,

for any j, l, and hence Theorem 1.2 implies that SWX(c0) ≡ 0 mod 3.

On the other hand, we can calculate the Seiberg-Witten invariants of Xg = T 2 ×
Σg. The answer is given as follows: for the Spinc-structure c0 which is determined by

a Spin-structure,

(5.20) SWXg
(c0) = ±

(

2g − 2

g − 1

)

.

It is easy to see that this is divisible by 3 if g = 3h. Thus, Theorem 1.2 holds.

There are several methods to prove (5.20). One method is Witten’s calculation

[22, pp.786–792]. The canonical divisor of Xg is written as c1(K) = (2g− 2)P.D.[T ×
pt]. For a generic choice of η ∈ H0(Xg,K), a Seiberg-Witten solution corresponds to

a factorization η = αβ, where α and β are holomorphic sections of K1/2⊗L±1. Since

L of our case is trivial, the number of possibilities of factorizations η = αβ coincides

with the right hand side of (5.20). Furthermore, we can see that all solutions have

same sign also by [22].

An alternative way to prove (5.20) is as follows. First consider Xg as S1 ×M ,

where M = S1 × Σg. Next determine the Seiberg-Witten invariants of M by, for

instance, Turaev torsion of M . Then use the formula SWS1×M (c̃) = SWM (c) where c̃
is the pull-back of c. When g ≥ 2, Turaev torsion of S1×Σg is written as ±(t−1)2g−2,

where t is the homology class represented by S1, and c0 corresponds to the term of

order g − 1. (See [20, pp.93–96].)

Remark 5.21. Similar examples can be constructed via the ’knot surgery’

construction of Fintushel and Stern [11]. Remove three copies of T 2 × D2 from

X = T 2 × Σ3h which are mapped to each other by the G-action, and denote the

resulting manifold by X ′. According to [11], let K be a knot in S3, and EK be the

exterior. Then glueing S1 × EK to each boundary of X ′ gives an example. This

manipulation changes the Seiberg-Witten invariant by a multiple of 3 [11].
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Remark 5.22. We can construct an example of G-action such that the Seiberg-

Witten invariant does not vanish modulo 3 and there exists l for which (1.3) does not

hold. Let Ti be the 2-torus Ci/(Z⊕ ζZ) with the G-action given by the multiplication

by ζi (i = 1, 2). Remove a small G-invariant neighborhood of a fixed point of each

Ti. Since fixed points of T1 and T2 have opposite representations, we can glue their

boundaries G-equivariantly, and the resulting manifold is a Riemann surface Σ2 of

genus 2 with a G-action whose fixed point set consists of four points. Now consider

the 4-manifold T1 ×Σ2 with the diagonal G-action. Then we can prove that this is a

required example.

REFERENCES

[1] M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes II Applica-

tions, Ann. Math., 88 (1968), pp. 451–491.

[2] M. F. Atiyah and F. Hirzebruch, Spin-manifolds and group actions, Essays on topology and

related topics, Memoires dédié à George de Rham (ed. A. Haefliger and R. Narashimhan),

Springer-Verlag (1970), pp. 18–28.

[3] M. F. Atiyah and G. B. Segal, The index of elliptic operators: II, Ann. Math., 87 (1968),

pp. 531–545.

[4] M. F. Atiyah and I. M. Singer, The index of elliptic operators: III, Ann. Math., 87 (1968),

pp. 546–604.

[5] S. Baldridge, Seiberg-Witten vanishing theorem for S1-manifolds with fixed points, Pacific J.

Math., 217 (2004), pp. 1–10.

[6] S. Bauer and M. Furuta, A stable cohomotopy refinement of Seiberg-Witten invariants: I,

Invent. Math., 155 (2004), pp. 1–19.

[7] J. Bryan, Seiberg-Witten theory and Z/2
p actions on spin 4-manifolds, Math. Res. Lett., 5

(1998), pp. 165–183.

[8] Y. S. Cho and Y. H. Hong, Seiberg-Witten invariants and (anti-)symplectic involutions,

Glasgow Math. J., 45 (2003), pp. 401–413.

[9] F. Fang, Smooth group actions on 4-manifolds and the Seiberg-Witten theory,

Diff. Geom. Appl., 14 (2001), pp. 1–14.

[10] F. Fang, Smooth group actions on 4-manifolds and Seiberg-Witten invariants, International

J. Math., 9:8 (1998), pp. 957–973.

[11] R. Fintushel and R. Stern, Knots, links, and 4-manifolds, Invent. Math., 134 (1998), pp. 363–

400.

[12] M. Furuta, Monopole equation and the 11
8

-conjecture, Math. Res. Lett., 8 (2001), pp. 279–291.

[13] M. Furuta, Stable homotopy version of Seiberg-Witten invariant, preprint, the Max-Planck-

Institut für Mathematik (http://www.mpim-bonn.mpg.de/), MPIM1997-110.

[14] X. Liu and N. Nakamura, Pseudofree Z/3-actions on K3 surfaces, preprint.

[15] N. Nakamura, A free Zp-action and the Seiberg-Witten invariants, J. Korean Math. Soc., 39:1

(2002), pp. 103–117.

[16] Y. Ruan and S. Wang, Seiberg-Witten invariants and double covers of 4-manifolds, Comm.

Anal. Geom., 8:3 (2000), pp. 477–515.

[17] D. Ruberman and S. Strle, Mod 2 Seiberg-Witten invariants of homology tori, Math. Res.

Lett., 7 (2000), pp. 789–799.

[18] M. Szymik, Bauer-Furuta invariants and Galois symmetries, preprint.

[19] C. Taubes, The Seiberg-Witten invariants and symplectic forms, Math. Res. Lett., 1 (1994),

pp. 769–796.

[20] V. Turaev, Torsions of 3-dimensional manifolds, Progress in Mathematics, vol. 208,

Birkhäuser.
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