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EXOTIC STRUCTURES AND THE LIMITATIONS OF CERTAIN
ANALYTIC METHODS IN GEOMETRY∗

F. T. FARRELL†
AND P. ONTANEDA‡

In this survey we review some results concerning negatively curved exotic struc-
tures (DIFF and PL) and its (unexpected) implications on the limitations of some
analytic methods in geometry. Among these methods are the harmonic map method
and the Ricci flow method.

First in section 1 we mention certain results about the rigidity of negatively curved
manifolds. In section 2 and 3 we survey some results concerning the limitations of
the harmonic map technique and the natural map technique for negatively curved
manifolds. Finally, in section 4, we mention some limitations of the Ricci flow method
for pinched negatively curved manifolds.

We are grateful to J-F. Lafont and R. Spatzier for the useful information they
provided to us and to E. Gasparim for suggesting some improvements in the text. We
are also grateful to the referee for pointing out certain inaccuracies.

1. Negative curvature and rigidity. We begin with a basic question in geom-
etry and topology:

When are two homotopy equivalent manifolds diffeomorphic, PL homeomorphic
or homeomorphic?

If both manifolds are closed, hyperbolic and of dimension greater than 2, Mostow’s
Rigidity Theorem [35] says that they are isometric, in particular diffeomorphic. When
both manifolds have strictly negative curvature, results of Eells and Sampson [10],
Hartman [22] and Al’ber [1] show that if f : M1 → M2 is a homotopy equivalence then
it is homotopic to a unique harmonic map (see also next section). Lawson and Yau
conjectured that this harmonic map is always a diffeomorphism (see problem 12 of a
list of problems presented by Yau in [48]). Farrell and Jones [12] gave counterexamples
to this conjecture by proving the following.

Theorem 1. [12] If M is a real hyperbolic manifold and Σ is an exotic sphere,
then given ǫ > 0, M has a finite covering M̃ such that the connected sum M̃#Σ is not
diffeomorphic to M̃ and admits a Riemannian metric with all sectional curvatures in
the interval (−1 − ǫ,−1 + ǫ).

Since there are no exotic spheres in dimensions < 7 this does not give coun-
terexamples to Lawson-Yau conjecture in dimensions less than 7. (Also note that,
for example, there are no exotic 12-dimensional spheres.) Moreover, since the DIFF
category is equivalent to the PL category in dimensions less than 7, changing the dif-
ferentiable structure is equivalent to changing the PL structure. The Theorem above
was generalized by Ontaneda in [37] to dimension 6, by changing the PL structure,
and this result was extended in [15] to all dimensions greater that five:
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Theorem 2. [15] For every n > 5, there are closed real hyperbolic n-manifolds
M such that the following holds. Given ǫ > 0, M has a finite cover M̃ that supports
an exotic smoothable PL structure that admits a Riemannian metric with sectional
curvatures in the interval (−1 − ǫ,−1 + ǫ).

This result gives counterexamples to the Lawson-Yau conjecture in all dimensions
> 5 since Whitehead showed that a smooth manifold has a unique PL structure.
(Recall that two smooth manifolds are PL equivalent if and only if there is a simplicial
complex which smoothly triangulates both manifolds.)

The hyperbolic manifolds mentioned in the Theorem above are obtained using
methods of Millson and Raghunathan [33], which were based on a earlier work of
Millson [32]. These methods provide a large class of examples of hyperbolic manifolds
with many non-vanishing cohomology classes.

2. Negative curvature and harmonic maps. Let M and N be two compact
Riemannian manifolds. Recall that the energy of a map f : M → N is defined to be
1

2

∫

M
|df |2. A harmonic map is a map which is a critical point of this functional. It

satisfies the equation τ(f) = 0, where τ(f) is the tension field of f , (see for example
[9], p.14.)

Part of the interest in harmonic maps comes from the fact that they are very
successful in proving rigidity (and superrigidity) results for non-positively curved Rie-
mannian manifolds. We can mention for example results of Siu [40], Sampson [39],
Hernández [24], Corlette [6], Gromov and Schoen [20], Jost and Yau [27], and Mok,
Sui and Yeung [34]. All of which are based on the pioneering existence Theorem
of Eells and Sampson [10] and the uniqueness Theorem of Hartman [22] and Al’ber
[1]. Eells and Sampson proved that given any smooth map k0 : M → N between
Riemannian manifolds, the heat flow equation, that is, the PDE initial value problem

∂kt

∂t
= τ(kt), kt

∣

∣

t=0
= k0 (1)

has a unique solution kt (for all t ≥ 0) and that limt→∞ kt = k; cf.[9], pp. 22-24. Here
N is assumed to have non-positive curvature. Note that kt is a homotopy between k0

and k and that k is a harmonic map. Also, if in addition, M has negative curvature
the results of Eells and Sampson together with the results of Hartman [22] and Al’ber
[1] show that there is a unique harmonic map homotopic to k0.

2.1. Lawson-Yau conjecture. Let f : M → N be a homotopy equivalence
between negatively curved manifolds. As already mentioned in section 1, Lawson and
Yau conjectured that the unique harmonic map φ : M → N homotopic to f is a
diffeomorphism. Theorems 1 and 2 proved that this conjecture is false in dimensions
> 5. That is, for every dimension > 5 there are harmonic homotopy equivalences
f : M → N which are not diffeomorphisms. Theorems 1 and 2 already place some
limitations to the harmonic maps technique. But there remained the question whether
a “topological” Lawson-Yau conjecture could hold:

(*) Let φ : M → N be a harmonic homotopy equivalence between closed negatively
curved manifolds. Is φ a homeomorphism?.

A positive answer to this conjecture would give an analytic proof of “Borel’s
Conjecture” for closed negatively curved manifolds:
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Borel’s Conjecture. Let M and N be homotopy equivalent closed aspherical
manifolds. Then M and N are homeomorphic.

Borel’s conjecture has been verified in [13] when one of the manifolds is non-
positively curved and dimensions 6= 3,4. The proof uses sophisticated topological
methods. On the other hand, a negative answer to (*), would imply that this last
result (the proof of Borel’s conjecture for closed non-positively curved manifolds in
[13]) cannot be obtained, at least directly, using the harmonic maps technique.

Remark. Conjecture (*) was studied in [14] and some partial (negative) results
were given.

But the topological Lawson-Yau conjecture (*) is also false:

Theorem 3. [16] In every dimension n ≥ 6, there is a pair of closed negatively
curved manifolds Mn and Nn and a harmonic homotopy equivalence φ : Mn → Nn,
which is not one-to-one.

Actually, we can prove a little more:

Theorem 4. [16] In every dimension n ≥ 6, there is a pair of closed negatively
curved manifolds Mn and Nn such that the following holds. For any homotopy equiv-
alence f : Mn → Nn, the unique harmonic map φ : Mn → Nn homotopic to f is not
one-to-one.

This Theorem can be directly deduced from Theorem 2 and the C∞− Hauptver-
mutung of Scharlemann and Siebenmann [41]. We reproduce this short deduction
here since it shows, unexpectedly, how the theory of PL manifolds interweaves with
the theory of harmonic maps.

Proof. By Theorem 2 we have

(2.1.1) In every dimension n ≥ 6, there is a pair of non-PL-equivalent closed nega-
tively curved manifolds Mn and Nn with π1(M

n) isomorphic to π1(N
n).

Let Mn and Nn be a pair of manifolds satisfying (2.1.1), and let φ : Mn → Nn

be the unique harmonic map realizing the isomorphism π1(M
n) → π1(N

n) induced by
the homotopy equivalence f . The Theorem now follows by just applying the following
result of M. Scharlemann and L. Siebenmann [41]

(2.1.2) Smoothly homeomorphic closed manifolds of dimension ≥ 6 are PL-
homeomorphic.

Remark. Smooth homeomorphisms are not necessarily diffeomorphisms. A sim-
ple example is given by the smooth homeomorphism f : R → R, f(x) = x3.

Thus, the harmonic map φ cannot be a homeomorphism because Mn and Nn

satisfy (2.1.1). This proves the Theorem.

Recall that Poincaré Conjecture in low dimensional topology asserts that the
only simply connected closed 3-dimensional manifold is the 3-sphere (up to homeo-
morphism), or, equivalently, that every homotopy 3-sphere is homeomorphic to S3.
Now, by using another result of M. Scharlemann (and assuming Poincare’s conjecture)
we can get a little more:

Theorem 5. [16] Assume that every homotopy 3-sphere is homeomorphic to S3.
Then in every dimension n ≥ 6, there is a pair of closed negatively curved manifolds
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Mn and Nn and a harmonic homotopy equivalence φ : Mn → Nn, which is not
cellular

See [7] for a discussion of cellular maps (which are called cell like maps in that
article). Siebenmann [45] showed that a continuous map f : X → Y between a
pair of closed manifolds of dimension ≥ 5 is cellular if and only if it is the limit of
homeomorphisms.

As with Theorem 3, Theorem 5 is a direct consequence of little more general one:

Theorem 6. [16] Assume that every homotopy 3-sphere is homeomorphic to
S3. Then in every dimension n ≥ 6, there is a pair of closed negatively curved
manifolds Mn and Nn such that the following holds. For any homotopy equivalence
f : Mn → Nn, the unique harmonic map φ : Mn → Nn homotopic to f is not
cellular, i.e. it is not the uniform limit of homeomorphisms.

Consequently the maps kt and lt in the heat flow of f = k0 to k = k∞ and of
g = l0 to l = l∞ are not one-to-one for all t sufficiently large. Here g is a homotopy
inverse to f .

The proof is the same as the one in Theorem 4, but now we use (2.1.2) together
with (see [42]):

Assume that every homotopy 3-sphere is homeomorphic to S3. Then any smooth
cellular map φ : Mn → Nn of smooth closed n-manifolds (where n ≥ 6) is smoothly
homotopic, through cellular maps, to a smooth homeomorphism.

Remark. In all the Theorems of this subsection we can assume that one of the
manifolds is hyperbolic. This follows from Theorem 2.

2.2. Yau’s problem 111. Let f : M1 → M2 be a homotopy equivalence be-
tween negatively curved manifolds and let h : M1 → M2 be the unique harmonic map
homotopic to f . In the examples provided by the Theorems above, the main obstruc-
tion to h being a diffeomorphism or a homeomorphism is that M1 and M2 are not
PL equivalent, even though they are homotopy equivalent (in fact homeomorphic).
We may ask then what happens if this obstruction vanishes, that is, if M1 and M2

are diffeomorphic. Can the harmonic map technique be applied in this context to
obtain diffeomorphisms or, at least, homeomorphisms? Or, equivalently, if we flow
a diffeomorphism (using the heat flow), will the limit be also a diffeomorphism or a
homeomorphism? This is considered in Problem 111 of the list compiled by S.-T. Yau
in [48]. Here is a restatement of this problem.

Problem 111 of [48]. Let f : M1 → M2 be a diffeomorphism between two
compact manifolds with negative curvature. If h : M1 → M2 is the unique harmonic
map which is homotopic to f , is h a homeomorphism?, or equivalently, is h one-to-one?

(This problem had been reposed in [46] as Grand Challenge Problem 3.6.) The
answer to the problem was proved to be yes when dimM1 = 2 by Schoen-Yau [43] and
Sampson [38]. But it was proved by Farrell, Ontaneda and Raghunathan [17] that
the answer to this question is negative.

Theorem 7. [17] For every integer n ≥ 6, there is a diffeomorphism f : M1 →
M2 between a pair of closed negatively curved n-dimensional Riemannian manifolds
such that the unique harmonic map h : M1 → M2 homotopic to f is not one-to-one.
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Addendum. In the Main Theorem, either M1 or M2 can be chosen to be a
real hyperbolic manifold and the other chosen to have its sectional curvatures pinched
within ε of −1; where ε is any preassigned positive number.

Hence the negative answer given by this Theorem to Problem 111 places more
limits to the applicability of the harmonic map technique to rigidity questions.

Theorem 7 evolves from Theorems 1-6 above and follows from Theorem 8 below.

Theorem 8. [17] Given an integer n ≥ 6 and a positive real number ε, there
exists a n-dimensional closed connected orientable (real) hyperbolic manifold M and
a homeomorphism g : M → M with the following properties:

1. M is a negatively curved Riemannian manifold whose sectional curvatures
are all in the interval (−1 − ε,−1 + ε).

2. M and M are not PL homeomorphic.
3. There is a connected 2-sheeted covering space M̃ → M such that g̃ : M̃ → M̃

is homotopic to a diffeomorphism.

Remark. In property 3, M̃ → M denotes the pullback of the covering space
M̃ → M via g, and g̃ is the induced homeomorphism making the diagram

M̃
g̃
→ M̃

↓ ↓

M
g
→ M

into a Cartesian square. Also, M̃ and M̃ are given the differential structure and
Riemannian metric induced by M̃ → M and M̃ → M, respectively.

The key ingredient in the proof of Theorem 8 is the existence of closed real
hyperbolic manifolds with interesting cup product properties. Such manifolds are
constructed in section 2 of [17].

Proof of Theorem 7 assuming Theorem 8. Let g : M → M be the homeomorphism
given by Theorem 8 relative to n and ε. Set M1 = M̃, M2 = M̃ and let f : M1 → M2

be a diffeomorphism homotopic to g̃ : M̃ → M̃ which exists by property 3 of Theorem
8. Let k : M → M be the unique harmonic map homotopic to g given by the
fundamental existence result of Eells and Sampson [10] and uniqueness by Hartmann
[22] and Al’ber [1]. Lifting this homotopy to the covering spaces M̃, M̃ gives a smooth
map

k̃ : M̃ → M̃

covering k and homotopic to g̃. Note that k̃ is also a harmonic map as is easily
deduced from [8], 2.20 and 2.32. Consequently, k̃ is the harmonic map h : M1 → M2

mentioned in the statement of Theorem 7. Also note that if k̃ is univalent, then so is
k. Hence it suffices to show that k is not univalent. Since k is smooth, k univalent
would mean that

k : M → M

is a C∞-homeomorphism and hence M and M are PL-homeomorphic by the C∞-
Hauptvermutung proved by Scharlemann and Siebenmann [41]. And this would con-
tradict property 2 of Theorem 8; consequently, k and hence also h are not univalent.
This proves the Theorem 7 and the part of the Addendum where M2 is real hyperbolic.
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To do the case where M1 is real hyperbolic; set M1 = M̃, M2 = M̃ and let f
be a diffeomorphism homotopic to g̃−1. The rest of the argument is a before. This
concludes the deduction of Theorem 7 from Theorem 8.

Note that, as in Theorems 3-6, crucial use is made here of the Scharlemann-
Siebenmann C∞-Hauptvermutung [41].

Hence the idea of the proof of Theorem 7 can be paraphrased in the following
few words. Take a homotopy equivalence f : M1 → M2 between homeomorphic
negatively curved manifolds, with M1 not PL-homeomorphic to M2. Theorem 2
grants the existence of such objects in every dimension > 5. Then, as shown in
Theorem 4, the unique harmonic map h : M1 → M2 homotopic to f cannot be
one-to-one. Suppose that after taking some finite cover f̃ : M̃1 → M̃2 f̃ becomes
homotopic to a diffeomorphism. Let k be the unique harmonic map homotopic to f̃ .
Then k is homotopic to a diffeomorphism but k is not one-to-one since (even though
the PL obstruction now vanishes) the damage is already done: k = h̃. The existence
of manifolds admitting such finite covers (in fact double covers) is granted by Theorem
8.

2.3. Cellular harmonic maps. Since a harmonic map (between closed nega-
tively curved manifolds) homotopic to a diffeomorphism is not necessarily a homeo-
morphism we can ask a deeper question: suppose now that the harmonic map can be
approximated by homeomorphisms (or even diffeomorphisms), that is, the harmonic
map is cellular. Does this imply that the harmonic map is a diffeomorphism? The
following Theorem shows that the answer to this question is also negative, showing
even more limitations to the harmonic map technique:

Theorem 9. [18] For every integer m > 10, there is a harmonic cellular map
h : M1 → M2, between a pair of closed negatively curved m-dimensional Riemannian
manifolds, which is not a diffeomorphism.

Addendum. The map h in Theorem 9 can be approximated by diffeomorphisms.
Also, either M1 or M2 can be chosen to be a real hyperbolic manifold and the other
chosen to have its sectional curvatures pinched within ǫ of -1; where ǫ is any preas-
signed positive number.

We conjecture that this can be improved to all dimensions ≥ 6. We do not
know whether the harmonic map h in the statement of Theorem 9 can ever be a
homeomorphism.

Theorem 9 follows from the next Theorem, which is of independent interest:

Theorem 10. [18] For every integer m > 10, and ǫ > 0, there are an m-
dimensional closed orientable smooth manifold M, and a C∞ family of Riemannian
metrics µs, on M, s ∈ [0, 1], such that:

(i) µ1 is hyperbolic.
(ii) The sectional curvatures of µs, s ∈ [0, 1], are all in interval (−1− ǫ,−1+ ǫ).
(iii) The maps k and l are both not univalent (i.e. not one-to-one) where k :

(M, µ0) → (M, µ1) and l : (M, µ1) → (M, µ0) are the unique harmonic
maps homotopic to idM.

The derivation of Theorem 9 from Theorem 10 uses the continuous dependence
(in the C∞-topology) of the harmonic map homotopic to a homotopy equivalence
f : (M, µM ) → (N, µN ) on the negatively curved Riemannian metrics µM and µN .
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This dependence was proved by Sampson [38], Schoen and Yau [43], and Eells and
Lemaire [9]. To derive Theorem 9 from Theorem 10 let kt : (M, µ0) → (M, µt) be
the unique harmonic map homotopic to id. Then k0 =id and k1 = k, which is not
one-to-one. Since the space of diffeomorphisms is open in the Ck topology (k ≥ 1) it
follows that there is a minimal t0 > 0 such that kt0 is not a diffeomorphism and kt0

can be approximated by the diffeomorphisms kt, t < t0.

Likewise, as with Theorems 3 and 4, Scharlemann’s result [42] also implies another
curious relationship between Poincaré Conjecture in low dimensional topology and the
existence of a certain type of harmonic map k : M → N between high dimensional (i.e.
dim M > 10) closed negatively curved Riemannian manifolds. If Poincaré Conjecture
holds, then there exists a harmonic map k which is homotopic to a diffeomorphism but
cannot be approximated by homeomorphisms; i.e. is not a cellular map. Explicitly,
we have the following addendum to Theorem 10:

Addendum to Theorem 10. Assuming that the Poincaré Conjecture is true,
then the harmonic maps k and l (of Theorem 10) are not cellular. And consequently
the maps kt and lt in the heat flow of id = k0 to k = k∞ and of id = l0 to l = l∞ are
not univalent for all t sufficiently large.

The key to the proof of Theorem 10 is the following important result, which is
also used in the proofs of the results of section 4 that show some limitations of the
Ricci flow method:

Theorem 11 [18]. Given an integer m > 10 and a positive number ǫ, there exist
a m-dimensional closed orientable real hyperbolic manifold M and a smooth manifold
M with the following properties:

(i) M is homeomorphic to M.
(ii) M is not PL homeomorphic to M.
(iii) M admits a Riemannian metric µ, whose sectional curvatures are all in the

interval (−1 − ǫ,−1 + ǫ).
(iv) There is a finite sheeted cover p : M̄ → M and a one-parameter C∞ family

of Riemannian metrics µs, on M̄, s ∈ [0, 1], such that µ0 = p∗µ and µ1 is
hyperbolic. The sectional curvatures of µs, s ∈ [0, 1], are all in the interval
(−1 − ǫ,−1 + ǫ).

The proof of Theorem 10 assuming Theorem 11 resembles the proof of Theo-
rem 7 (assuming Theorem 8) given before. Again, crucial use is made of the C∞-
Hauptvermutung of Scharlemann-Siebenmann [41].

We outline the proof of Theorem 11. By Theorem 8 there is a pair of homeomor-
phic but not PL homeomorphic closed negatively curved Riemannian manifolds M
and M satisfying:

1. M is real hyperbolic.
2. M has a 2-sheeted cover q : M̂ → M where M̂ admits a real hyperbolic

metric ν.
Let µ be a given negatively curved Riemannian metric on M and q∗(µ) be the induced
Riemannian metric on M̂. We would like to find a 1-parameter family of negatively
curved Riemannian metrics connecting q∗(µ) to ν. But we don’t know how to do
this. In fact this is in general an open problem [5, Question 7.1]. However by passing
to a large finite sheeted cover r : M̄ → M̂, we are able to connect (q ◦ r)∗(µ)
to the real hyperbolic metric r∗(ν) by a 1-parameter family of negatively curved
Riemannian metrics; this is essentially the content of Theorem 11 in which p = q◦r. To
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accomplish this, several results about smooth pseudo-isotopies are used; in particular,
the main result of [11] concerning the space of stable topological pseudo-isotopies of
real hyperbolic manifolds together with the comparison between the spaces of stable
smooth and stable topological pseudo-isotopies contained in [4] and [23]. And finally
we need Igusa’s fundamental result [26] comparing the spaces of pseudo-isotopies and
stable pseudo-isotopies. We need that dim M > 10 in order to invoke Igusa’s result.

3. Natural maps and negative curvature. It was pointed out to us by M.
Varisco [47] that the limitations of the harmonic map technique obtained by the results
of section 2 can also be applied to the natural maps defined by G. Besson, G. Courtois
and S. Gallot [3].

Given a homotopy equivalence f : M → N between closed negatively curved
manifolds G. Besson, G. Courtois and S. Gallot [3] defined the natural map f∗ :
M → N associated to f . The map f∗ has many interesting geometric and dynamic
properties. Like harmonic maps they are also useful for proving rigidity results. For
example Mostow’s Rigidity Theorem for hyperbolic manifolds [35] follows from the
following Theorem:

Theorem. [3] Let f : M → N be a homotopy equivalence between closed nega-
tively curved locally symmetric spaces of dimension ≥ 3. Then (possibly after rescal-
ing) the natural map f∗ : M → N is an isometry.

But we are interested in the following properties of natural maps:

1. f∗ is at least C1 ([3], p. 635).
2. f∗ is homotopic to f ([3], p.634).
3. If f is homotopic to g then f∗ = g∗.
4. If f̄ : M̄ → N̄ is a finite cover of f : M → N then (f̄)∗ = f∗.

Property 3 holds because ∂f̃ = ∂g̃ : ∂M̃ → ∂Ñ (see [3], pp.633-634). Property 4
follows directly from the definition of natural maps.

It may be argued that natural maps are, in some sense, better than harmonic
maps. But, as observed by M. Varisco, property 2 above implies that Theorem 4
(with its addendum) also holds for natural maps:

Theorem 12. In every dimension n ≥ 6, there is a pair of closed negatively
curved manifolds Mn and Nn such that the following holds. For any homotopy equiv-
alence f : Mn → Nn, the the natural map f∗ : Mn → Nn is not one-to-one.

Also, a version of Theorem 6 holds for natural maps. Note also that properties
1,2,3,4 imply a version of Theorem 7 for natural maps:

Theorem 13. For every integer n ≥ 6, there is a diffeomorphism f : M1 → M2

between a pair of closed negatively curved n-dimensional Riemannian manifolds such
that the natural map f∗ : M1 → M2 is not one-to-one.

(It is the first time that the statements of Theorems 12 and 13 appear in print.
The proofs are similar to the proofs of Theorems 4 and 6, respectively.)

Remark. We do not know whether versions of Theorems 9 and 10 hold for
natural maps. In particular, we do not know if there are natural maps that can be
approximated by diffeomorphisms but are not diffeomorphisms. This is an interesting
question. To have versions of Theorems 9 and 10 hold for natural maps we would need
to show that f∗ depends continuously on the metrics of M and N , where we consider
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f∗ varying in the C1 topology and the metrics varying in the C2 topology. (In fact,
in our examples the metrics vary in the C∞ topology.) One way one may try to verify
this continuous dependence would be to use the fact that the natural map is defined
implicitly by the equation G(F (y), y) = 0 in p.636 of [3] (F is the natural map in this
equation). The entropy of one of the metrics and the Busemann functions appear in
the definition of the function G. Note that the perturbations of the entropy (with
respect to the metric) have some regularity (see [28]). We could not find a reference
for the regularity of the perturbations of the Busemann functions (with respect to
the metric) but the proof of the smoothness of the Busemann functions (for universal
covers of closed smooth negatively curved manifolds) that appears in [44] might be
useful.

All this can be generalized. The following definition tries to formalize any process
(analytic or otherwise) that assigns to every continuous map between closed negatively
curved manifolds a special map. For manifolds M, N , we denote the space of contin-
uous maps M → N by C(M, N).

Definitions. A special correspondence Ψ for closed negatively curved manifolds
is just a family of maps ΨM,N : C(M, N) → C(M, N), for each pair of closed negatively
curved manifolds M, N . Note that ΨM,N depends on the metrics of M and N . For
f : M → N , we say that Ψf is the Ψ-special map associated to f . We say that Ψ is
Ck if Ψf is Ck, for every f . We say that Ψ is a homotopy special correspondence if
Ψf is homotopic to f , for every f , and Ψf = Ψ g for every f homotopic to g. If Ψ
is C1 we say that Ψ is continuous if ΨM,Nf depends continuously on the metrics of
M and N , for every pair M , N (here we consider Ψf varying in the C1 topology and
the metrics varying in the C2 topology).

Ψ is cover-invariant if Ψ f̄ = Ψf for every finite cover f̄ : M̄ → N̄ of any f : M →
N . Then we have:

a. If Ψ is C1, then versions of Theorems 3 - 6 hold for Ψ-special maps.
b. If Ψ is a C1, cover-invariant homotopy special correspondence, then versions

of Theorems 3 - 7 hold for Ψ-special maps.
c. If, in addition, Ψ is continuous, then versions of Theorems 3 - 10 hold for

Ψ-special maps.

4. Ricci flow and pinched negative curvature. Until now we have dealt
with processes that produce some special type of map, e.g harmonic maps or natural
maps. Now we discuss some processes that produce a special type of metrics: Einstein
metrics, that is, metrics of constant Ricci curvature. As argued in the introduction
of Besse’s book “Einstein Manifolds” [2], Einstein metrics are ideal in the sense that
they are not as general as metrics of constant scalar curvature, and they are not
as restrictive as metrics of constant sectional curvatures. Note that every metric
of constant sectional curvature is an Einstein metric. In particular every hyperbolic
manifold is an Einstein manifold (i.e a Riemannian manifold with a complete Einstein
metric). In dimension three “constant Ricci curvature” is equivalent to “constant
sectional curvature”; hence every 3-dimensional Einstein manifold is a space-form.

The most well known method for obtaining Einstein metrics is the Ricci flow
method introduced by Hamilton in his seminal paper [21]. Starting with an arbitrary
smooth Riemannian metric h on a closed smooth n-dimensional manifold Mn, he
considered the evolution equation

∂

∂t
h =

2

n
r h − Ric



648 F. T. FARRELL AND P. ONTANEDA

where r =
∫

R dµ/
∫

dµ is the average scalar curvature (R is the scalar curvature) and
Ric is the Ricci curvature tensor of h. Hamilton then spectacularly illustrated the
success of this method by proving, when n = 3, that if the initial Riemannian metric
has strictly positive Ricci curvature it evolves through time to a positively curved
Einstein metric h∞ on M3. And, because n = 3, (M3, h∞) is a spherical space-form;
i.e. its universal cover is the round sphere. Following Hamilton’s approach G. Huisken
[25], C. Margerin [30] and S. Nishikawa [36] proved that, for every n, Riemannian n-
manifolds whose sectional curvatures are pinched close to +1 (the pinching constant
depending only on the dimension) can be deformed, through the Ricci flow, to a
spherical-space form.

Ten years after Hamilton’s results appeared, R. Ye [50] studied the Ricci flow
when the initial Riemannian metric h is negatively curved and proved that a nega-
tively curved Einstein metric is strongly stable; that is, the Ricci flow starting near
such a Riemannian metric h converges (in the C∞ topology) to a Riemannian metric
isometric to h, up to scaling. (We introduce the notation h ≡ h′ for two Riemannian
metrics that are isometric up to scaling.) In [50] R. Ye also proved that sufficiently
pinched to -1 manifolds can be deformed, through the Ricci flow, to hyperbolic man-
ifolds, but the pinching constant in his Theorem depends on other quantities (e.g the
diameter or the volume). Ye’s paper was motivated by the problem on whether the
Ricci flow can be used to deform every sufficiently pinched to -1 Riemannian metric
to an Einstein metric (the pinching constant depending only on the dimension). His
paper partially implements a scheme proposed by Min-Oo [31].

We say the the Ricci flow for a negatively curved Riemannian metric h converges
smoothly if the Ricci flow, starting at h, is defined for all t and converges (in the C∞

topology) to a well defined negatively curved (Einstein) metric. The next Theorem
shows the existence of pinched negatively curved metrics for which the Ricci flow does
not converge smoothly.

Theorem 14. [19] Given n > 10 and ǫ > 0 there is a closed smooth n-
dimensional manifold N such that

(i) N admits a hyperbolic metric
(ii) N admits a Riemannian metric h with sectional curvatures in [−1− ǫ,−1+ ǫ]

for which the Ricci flow does not converge smoothly.

The key ingredients in the proof of Theorem 14 is Theorem 11 and the fact that
the Ricci flow satisfies the following properties:

1. Hyperbolic metrics are fixed by the Ricci flow.
2. The Ricci flow preserves isometries.
3. The limit of the Ricci flow (in case it exists) is cover invariant.
4. The Ricci flow depends continuously on initial data.

Remarks. 1. By “cover invariant” we mean the following: let g be a metric on
M and p : M̄ → M a cover. If gt is the Ricci flow starting at g and converging to g∞,
then the Ricci flow starting at p∗g converges to p∗g∞.
2. Property 4 does not state that the limit of the Ricci flow is continuous on initial
data.

As we did in section 3, this can also be generalized. Before we give a definition
trying to formalize a general process for obtaining Einstein metrics on ǫ-pinched to -1
Riemannian manifolds, we establish some notation. MP will denote the space of all
Riemannian metrics on a smooth manifold P . For ǫ > 0, let Mǫ

P denote the space of
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ǫ-pinched to -1 Riemannian metrics on P . Also, EP ⊂ MP will denote the space of
negatively curved Einstein metrics on P . Recall that EP / ≡ is discrete, see [2], p.357.

Definition. Let ǫ > 0 and n be a positive integer. An Einstein correspondence
Φ : Mǫ → E for n-dimensional manifolds is a family of maps ΦP : Mǫ

P → EP , for
every n-dimensional manifold P for which Mǫ

P is not empty. We say that Φ is cover-
invariant if Φ(p∗g) = p∗(Φ(g)) for every finite cover p : P → Q and g ∈ Mǫ

Q, for
which ΦQ is defined.

We say that Φ is continuous if each ΦP : Mǫ
P → EP is continuous. Here we

consider Mǫ
P with the C∞ topology and EP with the C2 topology.

Let h, h′ ∈ MP . Write h ≡0 h′ provided (P, h) is isometric to (P, h′), up to
scaling, via an isometry homotopic to idP . Notice that the fibers of EP / ≡0 → EP / ≡
are discrete; and hence EP / ≡0 is also discrete.

Theorem 15. [19] Suppose that there are ǫ > 0 and n > 10 for which there exists
a cover-invariant Einstein correspondence Φ. Then there is a closed n-dimensional
Riemannian manifold N , with metric h ∈ Mǫ

N , for which the Einstein metric Φ(h)
is unreachable by the Ricci flow starting at h.

The proof of Theorem 15 is similar to the proof of Theorem 14, see [19].

Theorem 16. [19] Suppose that there are ǫ > 0 and n ≥ 6 for which there exists
an Einstein correspondence Φ. Then there is a closed n-dimensional manifold N that
admits, at least, two non-isometric (even after scaling) negatively curved Einstein
metrics. Moreover, one metric can be chosen to be hyperbolic.

This Theorem is easily deduced from Theorem 8. We reproduce the proof:

Proof. From Theorem 8 we have the following.

There are closed connected smooth manifolds M0, M1, N , of dimension n, Rie-
mannian metrics g0, g1 on M0 and M1, respectively, and smooth two-sheeted covers
p0 : N → M0, p1 : N → M1 such that:

(1) M0 and M1 are homeomorphic but not PL-homeomorphic.
(2) g0 is hyperbolic
(3) g1 has sectional curvatures in [−1 − ǫ,−1 + ǫ].

Now, note that the metrics g1 and Φ(g1) are not hyperbolic, otherwise, by
Mostow’s Rigidity Theorem, M0 would be diffeomorphic to M1, which contradicts (1)
above. Hence p∗1(Φ(g1)) is not hyperbolic either, while p∗0(g0) is hyperbolic. Then the
two non-isometric negatively curved Einstein metrics on N are p∗0(g0) and p∗1(Φ(g1)).
This proves Theorem 16.

The general form of the following Theorem was suggested to us by Rugang Ye.

Theorem 17. [19] A cover-invariant Einstein correspondence cannot be contin-
uous.

Remark. Note that we are not assuming that Φ fixes hyperbolic metrics. If we
assumed that Φ(hyperbolic metric) = (hyperbolic metric), the Theorem then would
be easily deduced as before.

Since Ricci flow and elliptic deformation are cover-invariant continuous (analytic)
processes, it follows from Theorem 17 that they cannot be used, at least directly, to
find Einstein metrics on ǫ-pinched to -1 Riemannian manifolds.
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Dedication. This article is respectfully dedicated to the memory of Armand
Borel whose conjecture that a closed aspherical manifold is determined (up to home-
omorphism) by its fundamental group was one motivation for the research surveyed
here.
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