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JEAN-LOUIS CLERC† AND BENT ØRSTED‡

The proof of Theorem 3.1, as presented in the article needs more explanation and
does require a little more work.

Before coming to the reformulation of the proof, we need some auxiliary results.
Recall first the properties of the Poisson-Szegö kernel P (z, σ) for the domain D (see
[F-K], XIII, p. 270 for tube-type domains, but the results are valid more generally).
It is a smooth positive real-valued function on D× S, which reproduces the functions
which are continuous on D and holomorphic in D. If f is such a function, then

(1) ∀z ∈ D f(z) =
∫

S

P (z, σ)f(σ)dσ ,

where dσ is the probability measure on S invariant under the action of U . In particular,

∀z ∈ D
∫

S

P (z, σ)dσ = 1 .

The following result is a refined version of the maximum principle. The proof of
Theorem 3.1 will use a variation of this result (see below).

Lemma 1. Let f be a holomorphic on D, and assume that �f is bounded on D.
Assume further that there is a mesurable function φ : S → R with |φ(σ)| ≤ m almost
everywhere in S and such that

�f(rσ) −→ φ(σ)

as r −→ 1, for all σ in a set of full measure in S. Then

∀z ∈ D |�f(z)| ≤ m .

Proof. For any r, 0 < r < 1, the function z −→ f(rz) is continuous on D and
holomorphic in D. Hence, using (1), we get for all z ∈ D

f(rz) =
∫

S

P (z, σ)f(rσ)dσ .
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As the Poisson-Szegö kernel is real-valued, we may take the real part of both sides to
get, for all z ∈ D

�f(rz) =
∫

S

P (z, σ) �f(rσ)dσ .

By assumption, there exists a constant M such that |�f(rz)| ≤ M for all z ∈ D and
r, 0 < r < 1. Moreover,

lim
r→1

�f(rσ) = φ(σ) a.e.

Hence we may apply Lebesgue’s dominated convergence theorem, to conclude that for
all z ∈ D,

�f(z) =
∫

S

P (z, σ)φ(σ)dσ,

and hence
|�f(z)| ≤ m

∫
S

|P (z, σ)|dσ = m .

The next ingredient is an a priori uniform bound (but not the sharp one) for
the symplectic area of a geodesic triangle in a tube-type domain D. We now use the
tube realization of D. Let TΩ = J + iΩ ⊂ J. It is holomorphically equivalent under
the Cayley transform to the domain D. The (normalized) Bergman kernel is (up to a
positive constant)

k(z, w) =
(
det(

z − w

2i
)
)−2

(confer [F-K] prop. X.1.3), and a formula for the symplectic area of geodesic triangles
in TΩ also holds.

Lemma 2. Let ∆ = (w1, w2, w3) be an (oriented) geodesic triangle in TΩ. Then

(2)
∫

∆

ω = −(
arg k(w1, w2) + arg k(w2, w3) + arg k(w3, w1)

)

where arg k(z, w) is the unique continous determination of the argument such that
arg k(z, z) = 0 for any z ∈ TΩ.
It is easily deduced from the formula for geodesic triangles in D ( Theorem 2.1)

after performing the Cayley transform.

Lemma 3. Let ∆ be an (oriented) geodesic triangle in TΩ. Then

(3)
∣∣∣∣

∫
∆

ω

∣∣∣∣ ≤ 3 rπ .

Proof. Observe that for z, w ∈ TΩ, the element
z − w

2i
belongs to the right half-

plane Ω + iJ (denoted by R in section 4). From Lemma 4.9 (the proof of which is
independant of any prior result in the paper), we conclude that

∣∣∣∣arg det (
z − w

2i
)
∣∣∣∣ ≤ r

π

2
.

The formula (2) shows that the symplectic area of a triangle is a sum of three terms
of this type, and hence the estimate (3) follows.
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Needless to say the same bound yields for the symplectic area of the geodesic
triangles in D.

With these results, we may now give the proof of Theorem 3.1, which we reset
for convenience.

Theorem 3.1. For any geodesic triangle ∆ in D

|
∫

∆

ω |< rπ .

Step 1 (reduction to tube-type case) remains as stated originally, and we introduce
as in step 2 the function ϕ and ϕt for 0 < t < 1. If we freeze two of the variables (say
z1 and z2), then, as a function of z3, ϕt(z1, z2, . ) is the real part of a holomorphic
function in D. Hence, we get for all z1, z2, z3 ∈ D3

ϕt(z1, z2, z3) =
∫

S

P (z3, σ3)ϕt(z1, z2, σ3) dσ3 .

Repeting twice this argument, we get for all z1, z2, z3 ∈ D3

(4) ϕt(z1, z2, z3) =
∫

S

∫
S

∫
S

P (z1, σ1)P (z2, σ2)P (z3, σ3)ϕt(σ1, σ2, σ3) dσ1 dσ2 dσ3

Lemma 3 shows that ϕ is a bounded function in D×D×D. Now the main result
of [C-Ø] says that for (σ1, σ2, σ3) ∈ S3

�

1
π

ϕt(σ1, σ2, σ3) −→ ι(σ1, σ2, σ3)

where ι(σ1, σ2, σ3) is the Maslov index of the triple (σ1, σ2, σ3). As the transversality
condition is given by a polynomial condition, S3

� is of full measure in S3.

Now, in the spirit of Lemma 1, we let t tend to 1 in (4), using, as we may, Lebesgue
dominated convergence theorem to get for all z1, z2, z3 ∈ D3

ϕ(z1, z2, z3) = π

∫
S3
�

P (z1, σ1)P (z2, σ2)P (z3, σ3) ι(σ1, σ2, σ3) dσ1 dσ2 dσ3 ,

and then estimate this integral, using the fact that the Maslov index belongs to the
interval [−r, r]. This gives the estimate of Theorem 3.1, except for the strict inequality,
for which the original argument is still valid.
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