001

CORRIGENDUM TO "THE GROMOV NORM OF THE KAEHLER CLASS AND THE MASLOV INDEX", ASIAN J. MATH., VOL. 7, NO. 2, 269–296, 2003*

JEAN-LOUIS CLERC[†] AND BENT ØRSTED[‡]

The proof of Theorem 3.1, as presented in the article needs more explanation and does require a little more work.

Before coming to the reformulation of the proof, we need some auxiliary results. Recall first the properties of the *Poisson-Szegö kernel* $P(z,\sigma)$ for the domain \mathcal{D} (see [F-K], XIII, p. 270 for tube-type domains, but the results are valid more generally). It is a smooth positive real-valued function on $\mathcal{D} \times S$, which reproduces the functions which are continuous on $\overline{\mathcal{D}}$ and holomorphic in \mathcal{D} . If f is such a function, then

(1)
$$\forall z \in \mathcal{D} \qquad f(z) = \int_{S} P(z, \sigma) f(\sigma) d\sigma \quad ,$$

where $d\sigma$ is the probability measure on S invariant under the action of U. In particular,

$$\forall z \in \mathcal{D}$$
 $\int_{S} P(z, \sigma) d\sigma = 1$.

The following result is a refined version of the maximum principle. The proof of Theorem 3.1 will use a variation of this result (see below).

LEMMA 1. Let f be a holomorphic on \mathcal{D} , and assume that $\Re f$ is bounded on \mathcal{D} . Assume further that there is a mesurable function $\phi: S \to \mathbb{R}$ with $|\phi(\sigma)| \leq m$ almost everywhere in S and such that

$$\Re f(r\sigma) \longrightarrow \phi(\sigma)$$

as $r \longrightarrow 1$, for all σ in a set of full measure in S. Then

$$\forall z \in \mathcal{D} \qquad |\Re f(z)| \leq m$$
.

Proof. For any r, 0 < r < 1, the function $z \longrightarrow f(rz)$ is continuous on $\overline{\mathcal{D}}$ and holomorphic in \mathcal{D} . Hence, using (1), we get for all $z \in \mathcal{D}$

$$f(rz) = \int_{S} P(z,\sigma) f(r\sigma) d\sigma$$
.

^{*}Received February 10, 2004; accepted for publication March 12, 2004.

[†]Institut Elie Cartan, U.M.R. 7502, Université Henri Poincaré B.P. 239, 54506 Vandœuvre-lès-Nancy Cedex, France (clerc@iecn.u-nancy.fr).

[‡]Institut for Matematik og Datalogi, Odense Universitet, DK-5230 Odense M Danemark (orsted@imada.ou.dk).

As the Poisson-Szegö kernel is real-valued, we may take the real part of both sides to get, for all $z \in \mathcal{D}$

$$\Re f(rz) = \int_{S} P(z,\sigma) \, \Re f(r\sigma) d\sigma$$
.

By assumption, there exists a constant M such that $|\Re f(rz)| \leq M$ for all $z \in \mathcal{D}$ and r, 0 < r < 1. Moreover,

$$\lim_{r \to 1} \Re f(r\sigma) = \phi(\sigma) \quad a.e.$$

Hence we may apply Lebesgue's dominated convergence theorem, to conclude that for all $z \in \mathcal{D}$,

$$\Re f(z) = \int_{S} P(z,\sigma)\phi(\sigma)d\sigma,$$

and hence

$$|\Re f(z)| \leq \ m \int_S |P(z,\sigma)| d\sigma = m \ .$$

The next ingredient is an a priori uniform bound (but not the sharp one) for the symplectic area of a geodesic triangle in a tube-type domain \mathcal{D} . We now use the tube realization of \mathcal{D} . Let $T_{\Omega} = J + i\Omega \subset \mathbb{J}$. It is holomorphically equivalent under the Cayley transform to the domain \mathcal{D} . The (normalized) Bergman kernel is (up to a positive constant)

$$k(z, w) = \left(\det\left(\frac{z - \overline{w}}{2i}\right)\right)^{-2}$$

(confer [F-K] prop. X.1.3), and a formula for the symplectic area of geodesic triangles in T_{Ω} also holds.

LEMMA 2. Let $\Delta = (w_1, w_2, w_3)$ be an (oriented) geodesic triangle in T_{Ω} . Then

(2)
$$\int_{\Delta} \omega = -\left(\arg k(w_1, w_2) + \arg k(w_2, w_3) + \arg k(w_3, w_1)\right)$$

where $\arg k(z,w)$ is the unique continous determination of the argument such that $\arg k(z,z) = 0$ for any $z \in T_{\Omega}$.

It is easily deduced from the formula for geodesic triangles in \mathcal{D} (Theorem 2.1) after performing the Cayley transform.

LEMMA 3. Let Δ be an (oriented) geodesic triangle in T_{Ω} . Then

(3)
$$\left| \int_{\Delta} \omega \right| \leq 3 r \pi .$$

Proof. Observe that for $z, w \in T_{\Omega}$, the element $\frac{z - \overline{w}}{2i}$ belongs to the right halfplane $\Omega + iJ$ (denoted by R in section 4). From Lemma 4.9 (the proof of which is independent of any prior result in the paper), we conclude that

$$\left| \arg \det \left(\frac{z - \overline{w}}{2i} \right) \right| \le r \frac{\pi}{2} .$$

The formula (2) shows that the symplectic area of a triangle is a sum of three terms of this type, and hence the estimate (3) follows.

Needless to say the same bound yields for the symplectic area of the geodesic triangles in \mathcal{D} .

With these results, we may now give the proof of Theorem 3.1, which we reset for convenience.

Theorem 3.1. For any geodesic triangle Δ in \mathcal{D}

$$|\int_{\Lambda} \omega| < r\pi$$
.

Step 1 (reduction to tube-type case) remains as stated originally, and we introduce as in step 2 the function φ and φ_t for 0 < t < 1. If we freeze two of the variables (say z_1 and z_2), then, as a function of z_3 , $\varphi_t(z_1, z_2, ...)$ is the real part of a holomorphic function in \mathcal{D} . Hence, we get for all $z_1, z_2, z_3 \in \mathcal{D}^3$

$$\varphi_t(z_1, z_2, z_3) = \int_S P(z_3, \sigma_3) \, \varphi_t(z_1, z_2, \sigma_3) \, d\sigma_3$$
.

Repeting twice this argument, we get for all $z_1, z_2, z_3 \in \mathcal{D}^3$

(4)
$$\varphi_t(z_1, z_2, z_3) = \int_S \int_S \int_S P(z_1, \sigma_1) P(z_2, \sigma_2) P(z_3, \sigma_3) \varphi_t(\sigma_1, \sigma_2, \sigma_3) d\sigma_1 d\sigma_2 d\sigma_3$$

Lemma 3 shows that φ is a bounded function in $\mathcal{D} \times \mathcal{D} \times \mathcal{D}$. Now the main result of $[C-\emptyset]$ says that for $(\sigma_1, \sigma_2, \sigma_3) \in S^3_{\pm}$

$$\frac{1}{\pi}\varphi_t(\sigma_1,\sigma_2,\sigma_3)\longrightarrow\iota(\sigma_1,\sigma_2,\sigma_3)$$

where $\iota(\sigma_1, \sigma_2, \sigma_3)$ is the *Maslov index* of the triple $(\sigma_1, \sigma_2, \sigma_3)$. As the transversality condition is given by a polynomial condition, S^3_{\perp} is of full measure in S^3 .

Now, in the spirit of Lemma 1, we let t tend to 1 in (4), using, as we may, Lebesgue dominated convergence theorem to get for all $z_1, z_2, z_3 \in \mathcal{D}^3$

$$\varphi(z_1, z_2, z_3) = \pi \int_{S_+^3} P(z_1, \sigma_1) P(z_2, \sigma_2) P(z_3, \sigma_3) \iota(\sigma_1, \sigma_2, \sigma_3) d\sigma_1 d\sigma_2 d\sigma_3 ,$$

and then estimate this integral, using the fact that the Maslov index belongs to the interval [-r, r]. This gives the estimate of Theorem 3.1, except for the strict inequality, for which the original argument is still valid.