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Bayesian inference. In this context, we propose a simple method to estimate that
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Based on real data, the obtained results that the estimated parameters are not af-
fected, but the log-likelihood and information criterion are very sensitive. On this,
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Résumé. La détermination du nombre et de la longueur des intervalles de la
fonction de risque de base λ0(t), est un problème important dans les modèles
exponentiels constant par morceaux (ECM) et les modèles à risque proportionnels
(PH); notamment, lorsque nous utilisons l’inférence bayésienne. Dans ce con-
texte, nous proposons une méthode simple permettant d’estimer le nombre et la
longueur des intervalles afin de construire un modèle bayésien de Cox PH. Sur
la base des données réelles, les résultats obtenus montrent que les paramètres
d’estimation n’ont pas été affectés, mais que les critères de log-vraisemblance et
d’information sont très sensible. Sur cette base, le problème de la sélection du
modèle est considéré pour évaluer l’influence sur la prise de décision.

1. Introduction

An important issue in any Bayesian analysis is the specification of a prior dis-
tribution. This is especially true in survival analysis when one wishes to assess
the importance of certain prognostic factors such as age, gender, or a certain
treatment in predicting survival outcomes, Seonget al. (1986). One of the major
problems of the Piecewise-Constant Exponential (PCE) models Friedman (1982),
is to determine the number of time intervals (classes) to use. The number of time
intervals must be determined by the analyst, although one can choose a certain
number of periods. At the level of statistical modeling, it is important to recognize
that there is always a compromise to be made. If a large number of periods is
chosen, a better approximation of the unknown base risk will be obtained, but a
larger number of coefficients will have to be estimated, which may cause problems.
Alternatively, if a small number of periods is chosen, there will be fewer estimation
problems, but the baseline risk approximation will be worse.

Demarquiet al. (2008) assume that the time grid needed to fit the Piece-wise
Exponential Model(PME) is a random quantity and propose a flexible class of prior
distributions for modeling jointly the time grid and its corresponding failure rates.
Although PEM has been widely used in the literature, the time grid t = t0, t1, ..., tj
has been chosen arbitrarily in most of these works. In their book, Kalbfleisch and
Prentice (2011) suggest that the selection of the time grid t = t0, t1, ..., tj and the
data should be independent, but does not provide any procedure or method for
doing this. Breslow (1974) proposes to define the endpoints tj of intervals as all
observed failure times. More details and discussions concerning adequate choices
for the time grid of the EP can be found in Gamerman (1991), Sahu et al. (1997)
and Qiou et al (1999).

The main objectives of this article is to construct a bayesian Cox PH model,Cox
(1972, 1975), under a piecewise constant function for baseline hazard λ0(t) with
a gamma process as prior of cumulative hazard function, another objective is to
review the methods and techniques used to determine the number and lengths of
intervals in such piecewise function.
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The important question we are trying to answer is the following: does the change
in the number of intervals affect the parameters estimation and its standard
deviations? what is the ideal number of intervals J? what would be the effect
of the number of intervals on statistical tests based on the likelihood function
like: Bayes Factor (see Raftery et al (1995)), Likelihood ratio test(LR) (see Wilks
(1938)), and even on the information criteria (BIC, DIC, AIC) (see Schwarz (1978)).
We propose a method to determine the number of intervals by using the index of
Huntsberger Cauvin et al (1987) and a k-means algorithm Ganet al (2007), to
determine the lengths of theses intervals. By using two real data sets, we illustrate
the estimation process via the R software.

This article is organized as follows: the Bayesian estimation process of Cox PH
model is introduced in Section (2). The methodologies used to determine the
number of intervals is discussed in Section (3). The Estimation of Cox PH model is
illustrated with the analysis of a real data sets, and a discussion about the results
are drawn in Section (4).

2. Bayesian Estimation of Cox Proportional hazard model

Suppose we have N subjects. Let Ti = min(Yi, Ci) be the observed time for the
ith subject, with Yi is the potential failure time and Ci is the potential censoring
time. Let δi be the survival indicator, with δi = 1 if Ti = Yi and δi = 0 otherwise.
Elementary, the data set can be denoted as pairs (ti, δi)), i = 1, 2, ..., N .

A standard formula of a proportional hazard model (PH) is given by :

λ(t \ x, β) = λ0(t)J (β, xi) (1)

where λ0(t) is the baseline hazard function when xi takes value x0
i such that

J (β, x0i ) = 1 , J (.) is a positive function. In the Cox model (see Cox (1972)), J (.) is
an exponential function. Using the survival functions , the likelihood function of
the model is proportional to :

L(X,β, λ0) =

n∏
i=1

f(t \ xi, β)δi S(t \ xi, β)(1−δi)

=

n∏
i=1

[λ(t \ xi, β)S(t \ xi, β)]δiS(t \ xi, β)(1−δi)

=

n∏
i=1

λ(t \ xi, β)δi S(t \ xi, β)

=

n∏
i=1

[
exp[β,Xi] λ0(t)

]δi[
S0(t)

]exp[β,Xi]

(2)
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By dividing and multiplying the equation (2), by :
∑
j∈R(ti)

exp[β,Xj ], we find :

L(X,β, λ0) =

n∏
i=1

[ [ exp[β,Xi] λ0(t)
]∑

j∈R(ti)
exp[β,Xj ]

]δi[
S0(t)

]exp[β,Xi]

×
[ ∑
j∈R(ti)

exp[β,Xj ]
]δi
, (3)

where R(ti) is a set of subjects at risk on ti, which gives.

L(X,β, λ0) =

n∏
i=1

[ exp[β,Xi]∑
j∈R(ti)

exp[β,Xj ]

]δi
(4)

We can see L(X,β, λ0) as a conditional Likelihood. Under the condition of uncen-
sored data and explanatory Xi variables that do not depend on time, Kalbfleisch
(1978) have shown that the Eq.(4) is a marginal likelihood function of times T(i).

For more details about survival analysis and estimation methods, the references
Collet (2014),Cox and Oakes (1984),Fleming and Harrington (2011) are of real
interest.

2.1. Baselien Hazard Models

As explained in the section 1, Cox (1972, 1975) considers λ0(t) as a nuisance pa-
rameter when formulating the likelihood function. In Bayesian analysis, we must
model this function. Several methods have been proposed for modeling the baseline
hazard function λ0(t):
(a) - Parametric method: We could model the λ0(t) as a parametric hazard function,
(e.g): Weibull, Gamma,.etc. For instance, for the Weibull, λ0(t) is defined as:

λ0(t α, γ) = γ α tα−1,

where the parameter α is a shape parameter and γ is a scale parameter.

(b) - Piecewise Exponential function : We assume that the hazard of occurrence
of an event is piecewise constant value exp(λj) on the disjoint intervals of 0 < t1 <
t2 < . . . < tJ < t∗ , with t∗ = max(tj), j = 0, ...,K and that we observe a survival time
ti in one of these intervals (tj−1, tj ].

λ0(t) =

K∑
j=0

λj I[tj ,tj+1[ (t). (5)

The survival function implied by this hazard and the corresponding likelihood is:

S(t) = exp
[
− exiβ

k−1∑
j=1

eλj (tj − tj−1)− (t− t∗)
]
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Fig. 1. An example of a piecewise function for baseline hazard

for t ∈ (t1, t
∗], and the xi’s and β are the covariates and the regression parameters

respectively.

2.2. Bayesian formulation of Cox PH model

One of the major problems of the Piecewise-Constant Exponential (PCE) models
is to determine the number of time intervals (classes) to use. The number of time
intervals must be determined by the analyst. First, let us begin by constructing
the likelihood of the model illustrated in Eq.(2), by using the piecewise constant
method cited above, in Eq.(5). So, the ith term of the Eq.(2) is :

Li(X,β, λ0(t)) =
[

exp[β,Xi] λ0(t)
]δi[

S0(t)
]exp[β,Xi]

=
[

exp[β,Xi] λ0(t)
]δi [

exp(−Λ0(ti))
]exp[β,Xi]

=
[

exp[β,Xi] λ0(t)
]δi

exp
[
− exp[β,Xi] Λ0(ti)

]
(6)

Now, we now integrate the equation 5 in this likelihood to get

[
exp[β,Xi] λz

]δi
exp

[
− exp[β,Xi]

z∑
j=1

φ[i, j]λj
]
, (7)

with,

φ[i, j] =


tj+1 − tj si ti ≥ tj+1

ti − tj si ti ∈ [tj , tj+1[

0 si ti < tj .
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And z : is the maximum index of sub-survival interval (or tracking) of the individual
i. Then, an indicator function is constructed, denoted ψ(i, j), which identifies the
sub-interval occurring at the event of interest from the individual general i,

ψ[i, j] =

{
1 if ti ∈ [tj , tj+1[, and δi = 1.

0 if else .

For a particular individual i, ψ[i, z] = 1 indicates the occurrence of this event, (i.e),
ψ[i, j] = 0, if j 6= z, and the individual i is censored. Returning to the Eq.(7), the
form of the likelihood function of i becomes:

Li(X,β, λ) =

z∏
j=1

[
exp[β,Xi] λj

]ψ[i,j]
exp

[
− exp[β,Xi] φ[i, j]λj

]
. (8)

As final step of reformulation, we write Υ[i, j] = exp
[
−exp[β,Xi] φ[i, j]λj

]
, a condition

of proportionality between this quantity and
[

exp[β,Xi] λj
]
. replacing Υ[i, j] in the

likelihood, we obtain:

Li(X,β, λ) ∝
z∏
j=1

(
Υ[i, j]

)ψ[i,j]
exp

(
−Υ[i, j]). (9)

We can clearly see that this likelihood is that of the variable ψ[i, j] which follows
a Poisson distribution, ψ[i, j]  P(Υ[i, j]), j = 1, ..., z. Finally, the likelihood for all
individuals is defined by:

L(X,β, λ) ∝
n∏
i=1

Li(X,β, λ) =

n∏
i=1

z∏
j=1

(
Υ[i, j]

)ψ[i,j]
exp

(
−Υ[i, j]

)
. (10)

For a more detailed introduction to the use of counting processes in survival mod-
els, the author is directed to Fleming and Harrington (2011) and to Ibrahim et al.
(2001), the later being a main reference for Bayesian inference of survival mod-
els. An interesting study was conducted by Chen, et al (2014), in which another
reformulation of the likelihood of the Cox model is proposed.

2.3. Priors for βi and baseline hazard λj(t)

Priors for βi : Generally, and in the context of the Bayesian estimation of survival
models (see Ronald et al. (2011),Achcoret al. (1989)), we take a reference prior, for
βj (i.e):

βj ind−−→ N (β0j , σ
2
βj

)

The choice of this type could be considered as an initial a priori distribution, of
which a sensitivity analysis is recommended (see Ibrahim et al. (2001)).

Prior for baseline hazard λj : A useful parametric probability distribution, as a
prior distribution for the baseline hazard λj is the gamma distribution (see Arjas
and Gasbarra (1994)):
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λj ∼ G(αzj , zj),

with a gamma probability density,

f(λj) = (zj)
αzj

1

Γ(αzj)
λ
αzj−1
j e−(zj)λj , αzj , zj > 0, λj ≥ 0 (11)

Ronald et al. (2011) proposes to integrate the length of subintervals of tracking
[tj , tj+1[ when constructing the prior distribution (i.e),

λj ∼ G
(
(tj+1 − tj)αzj , (tj+1 − tj)zj

)
.

From the likelihood function, in Eq(9), and the prior of the parameters βi of the
explanatory variables X, from Formula (2.3), and from the basic random function
λ0(t), in Eq.(11), the form of the likelihood function a posteriori of the Cox model
is defined by:

π(β, λj \ xi, ti) ∝ L(ti, xi, β, λ)π(β)π(λj).

which leads to

π(β, λj \ xi, ti) ∝

∝
( n∏
i=1

z∏
j=1

(
Υ[i, j]

)ψ[i,j]
exp

(
−Υ[i, j]

)
× exp

(−1

2
(β − β0)Σ−10 (β − β0)

)
× λ

αzj−1
j e−(zj)λj

)
(12)

The estimation of the parameters and the posterior laws and the underlying sur-
vival functions is carried out by MCMC methods using the Gibbs algorithm (see
Geman and Geman (1984)). For more details of compilation and construction of
such algorithms, we refer the reader to Robert (2006),Jayanta et al (2006) and
Bolstad (2004) to name a few.

3. Partition of time axis (grid)

Discretizing a quantitative variable consists in mathematically transforming a
vector of real numbers into a vector of integers named class indices. That is why
doing this transformation is said in common language to make a division into
classes. In statistics, discretising in achieved in a mathematical transformations
leading to classes, in naming and justifying the grouping into classes.

Barry and Hartigan (2008) use product partition models, which assume that
the probability of any partition is proportional to a product of prior cohesions,
one for each block in the partition. That procedure is based on the fact that the
blocks the parameters in different blocks have independent prior distributions.

Journal home page: www.jafristatap.net



C. Fatih and B. Naima, African Journal of Applied Statistics, Vol. 6 (1), 2019, pages 551 -
563. Bayesian Estimation of Cox Proportional Hazard model under a Piecewise Constant
Baseline Hazard Function and the problem of Survival Time Axis Grid 558

In a Gastric cancer study, Gamerman (1991) defines a grid using 77 distinct
failure times, in which he suggested a grid, namely a J = 30 knot grid with
a = 0, 20, 40, 60, ..., 200, 250, 300, ..., 600, 700, ..., 1800, where the grid is defined either
by observed dead time or by a more aggregated partition, ideally such that each
interval includes a balance of events among intervals. Gustafsonet al (2003)
propose a method of choosing nodes tj located at

(
(j − 1)/K

)
quantiles of the

observed failure times.

Here, we propose a method based on Cauvin et al (1987)’s index, to determine
the optimal number of intervals to achieve and for length intervals on Clustering
analysis, by using the K-means algorithm ,Kaufman and Rousseeuw (1987),Ganet
al (2007). The number of optimum classes to perform in a partition is always
a function of the number of individuals observed (N ). The Cauvin et al (1987)’s
index allows to know the number of ideal classes for a distribution. It should be
considered only as an indication. It is defined as below :

J = 1 + 3.32 log10(N),

with N = number of observations , J number of intervals.

In order to incorporate interval lengths, we used a k-means method which is a
classical partitioning technique of clustering that clusters the data set of N objects
into k classes (intervals, clusters) known a priori :

Dm =
( k∑
j=1

N∑
i=1

wi
∥∥tji − t̄j∥∥p) 1

p

. (13)

where the weights 0 ≤ wi ≤ 1 can be equal to 1 in the case of unweighed distances,
or not in the case of weighted distances. This algorithm attempts to minimize the
distance Dm between labeled points to be in a cluster k and a point designated
as the center of that cluster t̄j. The parameter p is assumed is a positive integer.
If p = 1, the distance is also known as the Manhattan norm. and if p = 2 , the
distance is also known as the Euclidean distance (Carugo (2010)). we use the later
distance in our applications.

The steps of this algorithm are :

1. Clusters the data set (here survival time ti into k groups where k is predefined.
2. Select k points at random as cluster centers.
3. Assign objects to their closest cluster center t̄j according to the Euclidean dis-

tance function.
4. Calculate the centroid or mean of all objects in each cluster j.
5. Finally, Repeat steps (2), (3) and 4 until the same points ti are assigned to each

cluster j, in consecutive rounds.
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4. Numerical Ilustrations and Discussion

Example 1:Gastric Cancer The data set used here is relative of a Gastric cancer
, Stablein et al (1981), of survival times of patients with locally advanced, non
respectable gastric carcinoma. The patients were either treated with chemotherapy
plus radiation or chemotherapy alone.

Example 2: Lung Cancer : Survival in patients with advanced lung cancer from
the North Central Cancer Treatment Group. Performance scores rate how well the
patient can perform usual daily activities. Loprinziet al (1994). The data set com-
ponents are : inst : Institution code . time: Survival time in day status: censoring
status 1=censored, 2=dead age: Age in years sex:Male=1 Female=2 ph.ecog:E COG
performance score (0=good 5=dead) ph.karno: Karnofsky performance score (bad=0-
good=100) rated by physician pat.karno: Karnofsky performance score as rated by
patient meal.cal: Calories consumed at meals wt.loss: Weight loss in last six months.

Table 1. Estimation result of Cox model with changing of intervals number for
Gastric cancer data set. J

J : Number of intervals β̂ σ̂β Logliklihood DIC
1 0.101 0.225 -144.8 287.8
5 0.111 0.225 -209.6 437.8

10 0.113 0.225 -261.3 563.1
15 0.113 0.225 -266.3 592.3
20 0.112 0.225 -293.5 665.1
25 0.113 0.225 -301.5 712.3
30 0.111 0.225 -316.5 772.5
50 0.112 0.225 -311.5 786.3
70 0.112 0.225 -312.5 836.5
90 0.112 0.225 -316.2 885.5

It is shown that the log likelihood decreases when number of intervals J or cen-
sored sample size k increases for all the considered values. Unlikely, we have see a
positive relationship with the Deviance information criterion (DIC). It is observable
that no effect was found on the parameter β̂ and its standard deviation σ̂β̂. For the
parameters of the explanatory variables, our interest is focused on the variation of
the estimates and not on the statistical significance or the epidemiological inter-
pretation (see 5). The point in blue corresponds to a number J = 30 of intervals. It
is the same number used by Gamerman (1991) which coincides with the minimum
of the log likelihood as in Table (1). By using our method, the estimated number of
intervals, is J ' 8, which corresponds to a LogLiklihood = −241.7 and aDIC = 509.3.
If we want to integrate the length of intervals in the prior distribution of baseline
function λj(t), the K-means method in Eq.(13) gives the following partition of time
axis :

[1; 315[, [315; 675[, [675; 1174[, [1174; 1366[, [1366; 1551[, [1551; 1690[, [1690; 1736[, [1736; 1736].
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The point in green is an weighted average of Log-Likelihood, with the number of
intervals as weights. it is correspond on a J .
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Fig. 2. Relation between the number of intervals J of piecewise function and
marginal logliklihood function for (1) - Gastric cancer data. (2) - Lung Data

As a first remark, the number of intervals J has no effect on the results of the
estimated parameters. Instead the variation of that number does logically have
an impact on the likelihood function estimated models. This result, that is the
variations of the log likelihood function conditioned by the number of intervals,
is an important trait of a choice of the number of intervals on the statistical tests
based on the likelihood function, both in frequentist and the Bayesian approaches
: see Raftery et al (1995)) for the Bayes Factor, Wilks (1938) for the likelihood ratio
test(LR) and Schwarz (1978) for the criteria of statistical information. The described
impact could more serious in the context of Model Selection and hypothesis testing.

Illustrative Example: For Bayesian, model selection and model criticism are ex-
tremely important inference problems. Sometimes these tend to become much
more complicated than estimation problems. Without loss of generality, we may
focus on two models from which we want to select the best one by using the DIC
criterion. The idea is that models with smaller DIC should be preferred to models
with larger DIC.

{
H0 : data set (t0, t1, ..., tn) ∼ Bayesian Weibull Survival model ,W(α, γ).

H1 : data set (t0, t1, ..., tn) ∼ Cox PH model under PEM as baseline hazard function (5) .

We have noticed that the volatility of log-likelihood LL values and the DIC crite-
rion, depending on the number of intervals J chosen for the piecewise function. For
example if the value DIC in the Weibull model is 2500, and that for the same mod-
elling structure (linear predictor); therefore, (implicitly) and if we make an arbitrary
choice of the number of intervals J , we can accept and reject the PEM model.

(1)
1 An advantage of DIC over other criteria in the case of Bayesian model selection is that

the DIC is easily calculated from the samples generated by a Markov chain Monte Carlo
simulation.
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Table 2. Estimation result of Cox model with according to the number of intervals
J , for Lung cancer data set.

N intercept age sex ph.ecog ph.karno pat.karno LL (,) DIC
1 -5.35 0.011 -1.01 1.31 0.02 -0.012 -1664 3229
5 -4.75 0.002 -0.956 0.914 0.005 -0.013 -1674 3255

10 -3.91 0.001 -0.988 0.914 0.005 -0.013 -1537 2988
15 -4.21 0.001 -0.991 0.914 0.005 -0.012 -1435 2791
20 -4.27 0.001 -0.992 0.991 0.005 -0.012 -1343 2619
30 -4.53 0.001 -0.996 0.907 0.005 -0.012 -1237 2425
40 -4.58 0.001 -0.991 0.912 0.005 -0.014 -1141 2255
50 -4.73 0.001 -0.994 0.912 0.005 -0.012 -1085 2159
70 -4.86 0.001 -0.991 0.912 0.005 -0.013 -974 1979
90 -4.99 0.001 -0.992 0.916 0.005 -0.013 -895 1836

200 -5.34 0.001 -0.993 0.915 0.005 -0.012 -648 1434

Noting that despite the variety of methods proposed for estimating the number
intervals and their lengths of time grid, the used methods remain just an indica-
tive tool in the in the Cox PH models or Piecewise Constant Exponential Models
(PEM). Because the nature of the considered phenomena in survival analysis are
are heterogeneous, in the clinical field, in Biological studies, in Actuarial Sciences,
in Reliability, etc. Some phenomena are characterized by a high risk rate λ0(t) at
the beginning of follow-up which became stable afterwards. The opposite happens
for others. This behaviour is not easy to control and to mathematically analyse.
Therefore, it is highly recommend to appeal to a statistician, a specialist of area,
to determine the limit number of intervals and even the underlying lengths is nec-
essary. We have seen that an arbitrary choice of this number could lead to a poor
modeling. In that context, the case of Gamerman (1991) was well identified in our
study, see the line 8 in Table 1.
So for this reason, when trying to get a good fit for the hazard function λ(t \ xi, δi),
we should fix the number of split points to some reasonable number and let the
locations and heights on each interval to vary. This number has to be a compromise
between an adequately modelling the shape of the hazard and ensuring that there
is enough data in each interval to get a proper fit. This issue has been one of the
biggest challenges of working, particularly with the EMP.
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Fig. 3. Posterior baseline hazard function and its posterior precision for Gastric
cancer data.
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Fig. 4. Variations of estimates parameters according to the Number of intervals, in
Lung cancer data set.
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