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Abstract. Rwanda is the country whose economy relies on agriculture. Therefore,
forecast in agriculture sector is very important in Rwanda for future plan. In our
study, secondary annual data from the agricultural ministry (MINAGRI), spanning
from 1960 to 2014 have been used. In the analysis, appropriate model is selected
based on the appearance of ACF and PACF of the transformed data. In addition to
that, we use the fitted model to provide a four year forecasts of maize production
from 2015 to 2018. Through Box–Jenkins methodology, the appropriate model is
ARIMA (1,2,1) and fit the data at 91%. From the results and forecast, it is seen that
the production of maize in Rwanda will have an increasing trend in the future. To
strengthen the model, we also use the MCMC algorithm as an alternative method
in parameters estimation. Diagnostics prove the chains’ convergence which is the
sign of an accurate model.
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Résumé (French) Le Rwanda est le pays dont l’économie repose sur l’agriculture.
Par conséquent, les prévisions dans le secteur agricole sont très importantes
son futur. Dans notre étude, les données annuelles secondaires du ministère de
l’agriculure (MINAGRI), couvrant la période allant de 1960 à 2014, ont été utilisées.
Dans notre analyse, un modèle approprié est sélectionné en fonction des allures
des graphes ACF et PACF des données transformées. En plus de cela, nous utilisons
le modèle ajusté pour fournir prévisions sur quatre ans de la production de maïs
de 2015 à 2018. À travers la méthodologie Box - Jenkins, le modèle approprié est
ARIMA(1,2,1) et s’ajuste aux données à 91%. D’après les résultats et les prévisions,
il est établi que la production de maïs au Rwanda aura une tendance à la hausse à
l’avenir. Pour renforcer le modèle, nous utilisons également l’algorithme MCMC
comme méthode alternative pour l’estimation des paramètres. Les diagnostics
prouvent la convergence des chaînes, ce qui montre l’efficacité de notre modèle.

1. Introduction

Maize also called corn is the third largest planted crop after wheat and rice all
over the world and is one of the oldest human domesticated plants, in 7000 years
ago maize was found in central Mexico and maize has been transformed into a
better source by native Americans (Abdolreza, 2006; Ranum et al., 2014). All over
the world in many countries after some years, maize has been spread out and
become an major food crop grown in different zones and farming systems, and
food consumption.

In Rwanda, maize was introduced in 1960 and has been considered as a priority
stable crop by the government of Rwanda within the context of the national crop
intensification program. Furthermore, Rwanda is exporting the maize production
with high export market potential to Burundi and Eastern DRC.
Actually, time series is statistical methodology that can be applied to forecast the
future values of the given series based on the current and past values of that
series. Moreover, time series analysis can be applied in different field to solve any
related problem which may arise. For Instance, time series is most applied in the
field of economics to understand or to forecast the future values of one price per
trading day or one price for crop per season. For different applications of time
series refer to (Shumway and Stoffer, 2010; Brockwell and Davis, 2006; Miller and
Hickman, 1973; Hamilton, 1994; Box et al., 2015; McCleary et al., 1980; Ahmed
and Cook, 1979) among others.

Forecasting has long been in existence and continues to receive extensive attention
in the literature. Different authors such as (M.A.Sarika and Chattopadhyay, 2011;
Irfan et al., 2011; Boken, 2000) among others provide the definition of forecasting
in the literature based on the environment in which it is applied. Forecasting has
been evolving over the years and saw many methods being established and some
being developed.
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Researchers have used methods of forecasting with time series data in different
areas. For instance, M.A.Sarika and Chattopadhyay (2011) used ARIMA
(Autoregressive Integreted Moving Average model) to model and forecast time
series data of pigeonpia production in India from 1969 to 2007. In their study
they used Root mean square, Akaike Information Criterion and Bayesian Criterion
to identify the best model. As result they found that ARIMA (2,1,0) model was
the best among other models of ARIMA family, for modeling as well as forecasting
purpose (M.A.Sarika and Chattopadhyay, 2011).
Irfan et al. (2011), conducted a research where their main objective was to develop
a suitable model and then forecast the yield rice in the four provinces of Pakistan
during the period from 1947 to 1948 and from 2008 to 2009 using ARCH family
models. They only discussed the ARMA methodology rather than the ARCH family
models. As a result, on the basis of two criteria AIC (Akaike information criteria)
and SIC (Schwartz information criteria), the GARCH model was selected for all
provinces and the forecasting was also perfect (Irfan et al., 2011).

Amin et al. (2014) developed a quite number of time series models and suggested
the best to forecast the future value of the wheat production of Pakistan in the
coming years. Secondary data from 1902 to 2005 have been used for analysis. They
have fitted different time series models to the data using JMP and Statgraphics
statistical software for analysis. Based on different criteria and model adequacy,
ARIMA(1, 2, 2) was selected to be the best (Amin et al., 2014).

Boken (2000) used time series techniques on the past yield data to forecast the
future data for wheat yield estimation applied weather data over the growing
season. In his paper, a few relevant techniques are tested to model the average
spring wheat yield series for Saskatchewan, Canada. Using spring wheat series
(1975−1993, 1975−1994 and 1975−1995) the series were forecasted for 1994, 1995 and
1996, respectively. More discussion have been made to provide the improvement of
the forecasting by dividing the heterogeneous cropping region of Saskatchewan
into rather yield-based homogeneous region by using spatial analysis tool of
geographic information system software (Boken, 2000).

Based on the fact that maize is the main agriculture crop in Rwanda which
plays a remarkable role in food security for both urban and rural population, an
appropriate model to be used by decision makers for forecasting and planning
is crucial. Therefore, the aim is to build such time series model to be used in
forecasting maize production in Rwanda. Moreover, we refer to the Box-Jenkins
methodology to identify, to estimate parameters and to forecast future production.
Secondary data to be used are collected from Ministry of Agriculture and Animal
resources. For model identification, ACF and PACF plots for available series of
maize production in Rwanda are used to choose the appropriate model after data
transformation (Adhikari and Agrawal, 2013). Finally, the identified unknown
parameters are used to forecast the future values of maize production which
may help the Rwandan decision makers to keep or increase its production in
the future. To strengthen the accuracy of the model, we use the Markov chain
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Monte carlo method in parameters estimation and test the convergence diagnostics.

The Bayesian inference philosophy is to regard the model parameters as random
variables while the object of interest is to focus on the posterior distribution
of the parameters given the data. In addition, the unobservable parameters are
handled probabilistically, while the observed data are considered deterministically
(Ndanguza, 2015).
The posterior density p(θ|y), where θ is the unknown parameter to be estimated,
y the measurements or observations is defined through Bayes’ formula as the
normalised product of the prior density and the likelihood. The Bayes’ formula
is defined as follows (Ndanguza, 2015)

p(θ|y) =
p(y|θ)p(θ)
p(y)

, (1)

where p(y|θ) is the likelihood function, p(θ) is the prior distribution and p(y) is
the normalizing constant. Normally, the prior distribution encloses all knowledge
about the parameter values vacant to the researcher before the consideration of
data. Usually, researchers use non-informative parameters so that the amount
of prior knowledge incorporated in the analysis is small (O’Neill, 2002). The
normalizing constant is defined as

p(y) =

∫
θ

p(y|θ)p(θ)dθ. (2)

When models are complex or multidimensional, it is challenging to compute
the posterior distribution since solving analytically (2) is tough (Gelman et al.,
1996). If this occurs, one of the ways to handle it is to use Markov chain Monte
Carlo. MCMC method is a general method established to draw values of θ from
approximate distributions and then correcting those draws to better approximate
target posterior distribution, p(θ|y) (Ndanguza, 2015).
Normally, the posterior distribution is used while computing many statistics like
mean, moments and quantiles (Robert and Casella, 2004). To illustrate, given the
function p(θ), the posterior expectation of p(θ) is

E[p(θ|y)] =

∫
p(θ)p(y|θ)p(θ)dθ∫
p(y|θ)p(θ)dθ

. (3)

The MCMC method has been widely used by (Geyer, 1992; Brooks, 1998;
Ndanguza, 2015) among many others.
The rest of the paper is as follows: Section 2, is the Box-Jenkins methodology,
followed by Section 3, which is the estimation of parameters using MCMC method
and convergence testing. The last Section is the conclusion.
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2. Box–Jenkins methodology

2.1. Model Selection

We select an appropriate Box and Jerkins model to forecast the Rwanda maize
production. The first step in developing a Box and Jerkins model is to determine if
the series is stationary and this is done by using time plot of the available series.
To capture the main features of the graph, we check in particular whether there
is a trend, a seasonal component, any apparent sharp changes in behavior, any
outlying observations. To achieve stationarity of series, difference transformation
have been used to remove the trend. Once stationarity has been addressed, the
next step is to identify the order of the Autoregressive (AR) and Moving Average
(MA) terms corresponding to order of p and q. The primary tools for doing this is
ACF and PACF plot.
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Fig. 1: Time plot of original data of
Rwanda maize production.
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Fig. 2: Time plot of transformed data of
Rwanda maize production.

Figure 1 shows that data are not stationary in mean and in variance. The series
shows an increasing trend. Therefore, to make the series of data stationary,
difference of order two have been carried out and series became stationary with
respect to mean and variance as shown by Figure 2.
To identify the order of the model, ACF and PACF plots are used. The order of AR
is 1 since there is one significant spike compared to others which are out of the
boundaries on the ACF plot. The same procedure is followed to identify the order
of MA and the Partial Auto correlation has one significant spike indicating that the
order of Autoregressive in the model is 1.
We therefore suggest two combined models namely AR (1) and MA (1). Thus, since
the order of difference is 2, the potential model for the transformed data is ARIMA
(1, 2, 1) and the model is suggested to be

yt = µ+ ρyt−1 + ψεt−1 + εt, (4)

where µ is the constant, ρ the AR coefficient at lag 1, ψ, the MA coefficient at lag
1, εt−1, the forecast error that was made at period t − 1 and εt, errors at time t.
Parameters to be estimated are µ, ρ and ψ.
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2.2. Estimation of parameters using Least square method

Parameters described in Equation (4) are estimated using data captured in Figure
1 by least-squares fit. This consists of minimizing the likelihood function which is
the residual sum of squares (RSS).

RSS =

n∑
i=1

(Yi − f(Yi, θ))
2,

where Yi are data, f(Yi, θ) stands for the model and θ the parameters to be
estimated.
Estimated parameters are explained in Table 1.

Table 1: LSQ estimates of fitted Model

Parameters Estimate Standard Error t. value sig.
Constant (µ) 3.88 .001 -.734 .047
AR lag 1 (ρ) 1.03 .150 1.951 .037
Difference 2

MA lag1 (ψ) -0.106 .308 3.211 .002

Based on the estimated coefficients and constant for AR and MA terms found in
Table 1, the actual fitted model is written as follows

Ŷt = 3.88 + 1.03yt−1 − 0.106εt−1 + εt (5)

2.3. Model checking

From Table 1, the SE (standard error) shows that there is no big difference between
estimates and true values meaning that Equation (5) can be used. In addition to
this, the table shows the tests value for coefficients estimates which are t-test and
significance values in column 4 and 5 respectively. By using significance values,
we can say that all coefficients are significant since their significance values are
less than 0.05 p–value. Now, this model can be used to predict the quantity of maize
that will be produced in the future. Usually, before using the model to predict, it is
important to test whether the model is adequate or not. To test this, we use forecast
errors by plotting its time plot, histogram and ACF and finally we use the multiple
plot of actual values, predicted values, upper and lower limit.
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Fig. 3: Time plot of forecast error of Rwanda maize production.

The plot given in Figure 3 helps to investigate the behavior of errors and indicates
whether the forecast errors have a regular pattern or not. From this plot,
the forecast errors fluctuate around approximately constant mean with roughly
constant variance and there is no obvious pattern in their curve.
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Fig. 4: Autocorrelation function of forecast errors of Rwanda maize production.

From the Auto Correlogram Function of forecast errors shown in Figure 4, all
sample autocorrelation lie within confidence limits, so there is no evidence against
the null hypothesis of zero auto correlation at lags 1 to 16.
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Fig. 5: Histogram of errors of Rwanda maize production.
From the histogram of errors shown in the Figure 5, we can easily see that errors
are approximately normally distributed with mean−0.00029 and standard deviation
0.049.
Even if the model fits the generated data, the coefficient of determination is
computed to ascertain the level as below

R2 = 1−
∑

(Yi − f(Yi, θ̂))
2∑

(Yi − Ȳi)2
,

where θ̂ and Ȳi are estimated parameters and mean of data respectively.
Table 2: Model Statistics

Model Fits statistics Ljung Box Q(18)
R square statistics DF Sig. Number of outliers

.910 15.847 16 .046 0

The fitness of the model is captured in Figure 6 and it is clear that the model fits

the data.
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Fig. 6: The estimated model vs real data for fitness checking.

2.4. Forecasting

From the table 2, showing model statistics, it is seen that R2 for the fitted model
is 0.910 and this means that our model explains the data at 91% and it can be
said that the fitted model is good and can be used to predict maize production in
Rwanda.
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Fig. 7: Multiple plot of Rwanda maize production.

From the Figure 7, we can easily see that the period in which data are available,
means, from 1960 up to 2014, the prediction intervals for the 1 step ahead forecasts
are quite narrow. After this period, the forecasts are increasingly uncertain. This
is due to the fact that the prediction intervals become wide as the time increases.
From all those information, the ARIMA(1, 2, 1) model seems to be adequate and
can be used to predict for a short period of time.

Table 3: Predicted Values, Upper and Lower confidence interval for Maize
Production in Rwanda from 2015 to 2018
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Model 2015 2016 2017 2018
production model 1 forecast 696.23 726.52 758.23 791.15

UCL 771.05 858.55 943.84 1028.92
LCL 627.01 610.37 601.51 597.28

Table 3 reveals that maize production will increase as time increase with 696.23
(1000 MT) in the 2015 and 791.15 (1000 MT) in the 2018. Since our results show the
reality on the ground, we go a little bite far to test the model by including bias
in it and produce the chain of posteriors. Chains will be produced by the MCMC
algorithms.

3. Markov chain Monte Carlo method

Markov chain Monte Carlo (MCMC) methods are numerical methods for computing
multidimensional integrals of the above form by using Monte Carlo. The objective
is to draw samples θ(1),θ(2), . . . ,θ(N) from the posterior distribution p(θ |y1, . . . ,yM )
and approximate the expectation as the sample average

E[g(θ) |y1, . . . ,yM ] ≈ 1

N

N∑
i=1

g(θ(i)). (6)

The construction of the Markov chain depends upon choosing a density q(., .),
considered as proposal density, with objective to suggest the next possible element
of the chain. A suggested sample is either accepted to be an element of the chain or
not and this is performed by the Metropolis-Hastings algorithm (Ndanguza, 2015).
The objective function (likelihood function) p(θ|y) is computed as sum of squares
of residuals and therefore, used in MCMC method (Ndanguza, 2015). We estimate
the posteriors and results are found in Table 4.

Table 4: MCMC results for parameters estimation

Parameters Initial value Mean Posteriors Median Posteriors Standard deviation
µ 3.88 3.888 3.7442 0.26401
ρ 1.04 1.0319 1.0526 0.0008
ψ -0.15 -0.15869 -0.17221 0.0152

After the computation of chain of posteriors, it is necessary to assess through some
diagnostics whether the Markov chain has converged to its stationary distribution
(Brooks and Roberts, 1998). We use the plot method for anMCMC object to produce
a trace plot and a density plot for each parameter.
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Fig. 8: Trace plot representing MCMC chains of parameters which displays the
values the parameters have taken during the runtime of the chain.

Figure 8 shows that there is an almost perfect mixing because samples move from
one region to another in 1 step. This is one of the most used ways to conclude
that the stationarity has achieved. One can simply visualize the state of the chain
through "time" (iterations, sometimes called generations). It is illustrative to plot
each posterior as a function of iteration number to obtain a time series plot (Brooks
and Roberts, 1998).
Figure 9 visualizes the marginal posterior distributions or some times called
marginal density plot. To smooth the distribution it is recommended to use a kernel
density estimate of the posterior (Gelman et al., 1996).
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−0.25 −0.2 −0.15 −0.1 −0.05
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Fig. 9: Kernel density plots of the parameters (µ, ρ and ψ).
Generally, the trace-plot of the values of the parameter in the chain is changed into
the (smoothed) histogram. We also compute the marginal densities which are an
average a parameter takes with all other marginalized parameters. From Figure 9,
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all the distributions are gaussian which is a sign of a positive test of stationarity
and convergence.

3.1. Pairs of posteriors

The purpose is to check whether there is a strong correlation among the scattered
ones. We have a collection of points displaying the data in two variables. One
variable is determining the x-axis and the other variable value determining the
y-axis. We also call his kind of plot a scatter chart, scattergram, scatter diagram,
or scatter graph. We sketch the two plots in Figure 10, where the scatter of two
by two parameters is shown. The purpose is to check whether there is a strong
correlation among the scattered ones.
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Fig. 10: 2D scatter plots of estimated parameters.

Since the poor mixing corresponds with a high correlation, there is a need of larger
sample size for a suitable comparison of variance. From Figure 10, parameters are
not correlated each other. As long as this happens, we conclude that there is a
good mixing.

3.2. Posterior histogram plots

We plot the density of data in form of histograms captured in Figure 11 and we
estimate the probability density function of the underlying parameter.
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We normalize to 1 the total area of a histogram used for probability density. The
judgement is based on the length of the intervals on the x-axis whether they are
all 1. If yes, the histogram is equivalent to a relative frequency plot. Figure 11
highlights that all the parameters’ distributions are almost gaussian, which is the
evidence of good mixing.

3.3. Diagnostic using autocorrelation plot

Usually, the expectation is that the nth lag autocorrelation has to be smaller as n
increases (our 2nd and 40th draws have to be less correlated than our 2nd and 5th

draws) (Ndanguza, 2015). This is justified by Figure 12.
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Fig. 12: The autocorrelation functions of estimated parameters with 20 lags.

From Figure 12, it is visible that the autocorrelation coefficients located on x-axis
downfall near zero. After reaching zero, they stabilize as soon as the number of
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lags located on y-axis increases. This behaviour ascertains a good mixing and also
proves the stationarity of sampled chains.

4. Conclusion

This paper aims at providing a time series model and forecasting the maize
production of Rwanda. Using the Box–Jenkins methodology, we found that the
appropriate model is
ARIMA(1, 2, 1) with fitted equation of Ŷt = 3.88 + 1.03yt−1− 0.106εt−1 + εt. The model
has been assessed and diagnosed using the MCMC method. The model forecast
proves that Rwanda maize production will increase over time in the coming years.
Furthermore, the estimates got by least square method are in agreement with those
obtained by MCMC method. We can definitely argue that the model is accurate and
can be applied by any organization in decision making. The model fits the data at
a high percentage of coefficient of determination of 91% which is the sign of model
accuracy.
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