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Full Abstract. In this study, we (i) assessed the performance of 5 fit statistics
(AIC, BIC, HQIC, CAIC and AICC) to determine the cor-rect within-subject
covariance structure (WSCS) in longitudinal data analysis and (ii) investigated
the consequence of misspecification of WSCS. Firstly, a simulation study was
achieved in 192 cases taking into account six characteristics of the data sample
(sample size, measurement periods, magnitude of growth parameter, size of G
matrices, covariance structure and distribution of the within-subject error). For
each combination of these parameters, 500 replications were generated using
Monte Carlo procedure and the hit rate of each of the 5 search statistics is
computed and help to compare their performance. At a second step, based on
32 restricted simulation conditions, the effect of misspecification in WSCS was
assessed by computing the mean relative bias and mean relative errors of the
coefficients of fixed effects and random components. Results showed an overall best
performance of the HQIC, BIC and CAIC for searching first order auto-regressive
[AR(1)] and first order moving average [MA(1)] covariance structures.

Résumé. Dans la présente étude, (i) la performance de 5 critères d’information
statistique (AIC, BIC, HQIC, CAIC et AICC) dans la détermination de la matrice
de covariance entre mesures répétées dans l’analyse des données longitudinales
et (ii) les conséquences d’une mauvaise spécification de la matrice de covariance
entre mesures répétées ont été évaluées. Premièrement, une simulation a été
réalisée dans 192 situations déterminées par les caractéristiques de l’échantillon
de données (taille de l’échantillon, nombre de mesures répétées, paramètre
de croissance, taille de la matrice G, matrice de covariance entre mesures
répétées et la distribution des erreurs entre mesures répétées). Pour chaque
combinaison de ces paramètres, le taux de succès de chaque critère d’information
statistique est calculé dans le but de comparer les performances des 5 critères
d’information statistique. Deuxièmement, sur la base de 32 situations restreintes
déterminées par les caractéristiques de l’échantillon de données, l’effet d’une
mauvaise spécification de la matrice de covariance entre mesures répétées a été
évalué par la détermination des écarts et biais relatifs moyens des effets fixes et
aléatoires estimés. Les résultats obtenus de la simulation montrent de meilleures
performances globales pour HQIC, BIC and CAIC dans l’identification des matrices
de covariance autoregressive de premier ordre [AR(1)] et de moyenne mobile de
premier ordre [MA(1)]. Concernant la matrice de covariance autoregressive à
moyenne mobile de premier ordre [ARMA(1,1)], les critères AIC, AICC et HQIC
présentent les meilleures performances globales. Les résultats obtenus montrent
également que, quelle que soit la situation de simulation considérée, les effets fixes
étaient bien estimés avec cependant, une tendance au biais lorsque le paramètre de
croissance tend à devenir petit. Par contre, les effets aléatoires étaient mal estimés
au regard du biais relatif. Pour une bonne estimation des effets aléatoires, une
attention particulière doit être accordée à la recherche de la matrice de covariance
entre mesures répétées optimale dans l’analyse des données longitudinales.
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1. Introduction

Longitudinal data (LD) constitutes a hierarchical struc-ture, with repeated
observations over time nested within individuals (Steele (2008)). Because
standard statistical models fail to recognize hierarchical structure, they become
inappropriate methods to deal with these types of data (Snijders and Bosker
(1999), Maas and Hox (2004)). Con-trary to standard statistical models, linear
mixed effects models (LMEM) recognize the existence of such data hierarchies by
allowing for residual components at each level in the hierarchy. Therefore, LMEM
have widely been used to analyze LD where the measurement occasions are nested
within cases (e.g. individual or subject) (Brandon (2013), AL-Marshadi (2014)).

In LD, observations are made at multiple time points on each subject. Thus,
measures on the same subject at dif-ferent times tend to be correlated (McCulloch
(2006)). Moreover, measures taken close together in time are more highly correlated
than measures taken far apart in time (Hedeker and Gibbons (2006), Gibbons
et al. (1979)). Hence, taking this dependency into account by specifying right
covariance structure for observations within each subject becomes an important
issue (Brandon (2013), AL-Marshadi (2014)). Specifically in longitudinal data
analysis (LDA), information about change in the response variable over time is
reflected only in the covariance matrix of the with-in-subject residuals (Hedeker
and Gibbons (2006)). Some fit statistics are used to assess the adequacy of the
covariance matrix structure considered according to the observed data (Yanosky
II (2007), AL-Marshadi (2014)). These are Akaike Information Criterion (AIC),
Bayesian Information Criterion (BIC), Hannan and Quin Infor-mation Criterion
(HQIC), Consistent Akaike Information Criterion (CAIC) and Akaike Information
Criterion - Cor-rected (AICC) [Yanosky II (2007)]. Choosing an accurate criterion
among those cited above constitutes an important issue for users of LMEM in LDA
due to misleading results from covariance matrix misspeci-fication in statistical
modeling ( AL-Marshadi (2014)).

Moreover, although the LMEM allows for flexible mod-eling of LD, the simulation
research literature is not nearly as extensive as standard methods. Few research
works (Brandon (2013)) to date started exploring effect of mis-specification of
within-subject error covariance. Unfortu-nately, apart from Brandon (2013),
these studies were im-plemented under perfect model conditions (i.e. normally
distributed random effects and residuals). However, it is known that real world
data are rarely normally distributed and can deviate quite substantially from a
Normal distribu-tion (Micceri (1989)). Therefore, this study aims to (i) assess the
performance of 5 fit statistics in identifying the correct within-subject covariance
structure in LDA and (ii) investi-gate the consequence of misspecification of
within-subject covariance structure in LDA.
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2. Methods

2.1. Model specification

Let us consider a simple linear growth model (here, a two-level growth model),
written in matrix form as:

y = Xβ + Zu+ ε (1)
where u and ε are assumed to be independently and identically distributed
(multivariate normally distributed) with

E
[
u
ε

]
= 0 and V ar

[
u
ε

]
=

[
G 0
0 R

]
(2)

In equation (1), y is a column vector of repeated measures outcome, X is the
known design matrix of fixed effects, β is a column vector of unknown fixed effect
parameter estimates, Z is the known design matrix of the random effect, u is a
column vector of unknown random effect parameter estimates and ε is the column
vector of error associated with the measurement outcome. With longitudinal data,
R and G correspond to the within-subject and between-subject error structures,
respectively. Equation (1) can be rewritten in multilevel form as:

Level1 : yti = β0i + β1iTime+ εti; εti ∼ N(0, R) (3)

Level2 : β0i = γ00 + u0i;β1i = γ10 + u1i (4)
with [

u0i
u1i

]
∼ N

[[
0
0

]
, G =

[
τ00 τ01
τ10 τ11

]]
(5)

In (3), yti represents the individual trajectory of change; it is a function of time
in level one with i standing for individual and t indicates time points index. The
level two outcome variables β0i and β1i are the growth parameters in the model
(see equation 4). β0i and β1i are multivariate normally distributed and vary around
their grand means (γ00 and γ10, respectively) with variances τ00 and τ11 respectively
and covariance τ01. The G matrix considered in (5) is called unstructured matrix.

2.2. Covariance structures and sit statistics considered

Four structures of the R matrix are considered in this study: the Independence
structure, ID, the first order autoregres-sive structure, AR(1), the first order moving
average struc-ture, MA(1) and the first order autoregressive moving av-erage model,
ARMA(1,1). The simplest covariance matrix for R is the diagonal structure, known
as independence structure. For 4 time points, we have:

R = σ2I =


σ2 0 0 0
0 σ2 0 0
0 0 σ2 0
0 0 0 σ2

 (6)

where σ2 is the constant variance (within subject error) at each time point.
The covariance matrix for AR(1) with four time points can be expressed as follow:
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R = σ2


1 ϕ1 ϕ2

1 ϕ3
1

ϕ1 1 ϕ1 ϕ2
1

ϕ2
1 ϕ1 1 ϕ1

ϕ3
1 ϕ2

1 ϕ1 1

 (7)

where ϕ1 represents the correlation between two time points separated by a lag of
one and σ2, defined as above.
The form of covariance matrix for MA(1) with four time points can be expressed as
follow:

R = σ2


1 θ1 θ1 0
θ1 1 θ1 θ1
θ1 θ1 1 θ1
0 θ1 θ1 1

 (8)

where θ1 represents the correlation between two time points separated by a lag of
one and σ2, defined as above.
The covariance matrix for ARMA(1,1) is as follow:

R = σ2


1 ϕ1θ

0
1 ϕ1θ

1
1 ϕ1θ

2
1

ϕ1θ
0
1 1 ϕ1θ

0
1 ϕ1θ

1
1

ϕ1θ
1
1 ϕ1θ

0
1 1 ϕ1θ

0
1

ϕ1θ
2
1 ϕ1θ

1
1 ϕ1θ

0
1 1

 (9)

where σ2, ϕ1 and θ1 are defined as above. If θ1 = ϕ1, the structure becomes the one
of ARMA(1,0) or just simply AR(1) defined above.

The fit statistics compared in the study are summarized in Table 1.

Table 1. Fits Statistics Considered and their Formula (L= likelihood of the model
adjusted, p=number of parameters esti-mates, n=sample size and ln= natural logarithm.)

Fit statistics Formula Source
AIC 2p–2ln(L) Akaike (1974)
BIC pln(n)–2ln(L) Schwarz (1978)
CAIC p(ln(n)+1)–2ln(L) Bozdogan (1987)
HQIC 2p(ln(ln(n)))–2ln(L) Hannan nd Quinn (1979)
AICC AIC+2np/(n–p–1) Hurvich and Tsai (1989)

2.3. Simulation design and performance

2.3.1. Assessment of performance of the 5 fit statistics

Factors considered for the simulation are the sample size (50, 100, 150 and 200),
the measurement periods (5 and 8), the magnitude of growth parameter (i.e. the
mean of the individual slopes) so that β1 = 0.05 and β1 = 0.16, the size of G matrix
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(small [τ00 = 0.1 and τ11 = 0.05] and medium [τ00 = 0.2 and τ11 = 0.1]) and the
covariance structure (true R matrix) for generating the data [AR(1), MA(1) and
ARMA(1,1)]. The sixth factor taken into account is the distribution of the within-
subject error: Normal or Chi-square with 1 degree of freedom. Thus, a total of 192
combinations of factors have been considered. To avoid finding a single extreme
data condition, five hundred replications were generated for each combination
of factors using Monte Carlo procedure. Each dataset was then analyzed using
four separate specifications of the R matrix (ID, AR(1), MA(1) and AR-MA(1,1)).
Coefficient β0 i.e. β00 was fixed to 0.10 for all combinations of factors. Three
parameters were necessary to specify the three chosen error covariance structures:
σ2 (variance of the within subject errors), θ1 (i.e., moving aver-age coefficient) and
ϕ1 (i.e., autoregressive correlation coefficient). The variance σ2 was set as 2 and
coefficients θ1 and ϕ1 were fixed to 0.50 and 0.8 (respectively).
The hit rate of each search statistics was used as the major criterion. A correct
hit in model selection was represented by an event that the smallest fit index
value for the hypothesized covariance structure matches the true covariance
structure. Fit index hit rate for all investigated conditions and within-subject
covariance structures was computed respectively. Moreover, the convergence rate
of the analyses when specifying different R matrices regardless of the true R matrix
was also computed. It is defined by an event that a model with a given R matrix
specification converges.

2.3.2. Investigation of the consequence of misspecification in within-subject
variance-covariance structure

The simulation used a total of 4 sample sizes (50, 100, 150 and 200) × 2
measurement occasions (5 and 8) × 2 (magnitude of growth parameter β1: 0.05
or 0.16) × 2 size of G matrix (small [τ00=0.1 and τ11=0.05] and medium [τ00=0.2
and τ11=0.1]) with R matrix specified as AR(1) structure. This gave a total of
32 simulated data conditions. Five hundred replications were generated for each
simulat-ed data condition, resulting in 32×500 = 16,000 total da-tasets. These
datasets were then analyzed for examining effect of under, over and generally
misspecification in within subject variance-covariance structure (R). The other
simulated data conditions (i.e. β0, σ2 and ϕ1) were specified as previously.
Two criteria were used to examine the effects of mis-specification of the within
subject covariance structure: (i) relative bias (RB) and relative error (RE) of the
estimates of the fixed effects (i.e., intercept β0 and slope β1) and the random
components (i.e., variances: τ00, τ11 and σ2ε and covariance: τ01). Parameters RB
and RE were calculated as follow:

RB =
γ̂ − γ
γ

and RE =
| γ̂ − γ |

γ
(10)

In (10), γ is the true parameter value (i.e., β0, β1, τ00, τ11, σ2ε and τ01) and γ̂ is
the corresponding sample estimate. The mean relative bias (MRB) and the mean
relative error (MRE) related to each estimator were computed for each of the 32

Journal home page: www.jafristatap.net



A. Amagnide, M. Gbeha and R. Glèlè Kakaı̈, African Journal of Applied Statistics, Vol. 5
(2), 2018, pages 489 – 502.
Fitting an optimal variance-covariance structure for longitudinal data under Linear Mixed
Effects Models framework: simulation based analysis. 495

combinations of the factors.

The effect of design factors on MRB and MRE of the model parameters under
different specifications of R matrix regardless of the true R matrix was assessed
using an ANOVA and and statistical significance was set up at 0.1 % due to the
large sample size and statistical power.

The MRE of the fixed effects and random components from the fitted models related
to each combination of the factors are replaced by ranks. For a given combination of
the factors, the ranks of the MRE are determined, the lowest MRE having the rank
1. The median ranks of the MRE are determined for some factor levels as well as for
some groups of the factor levels based on the sample size and the measurement
periods. The median rank of each of the 4 covariance structures) for all the 32
combinations of the factors is also computed.

3. Results

3.1. Performance of information statistics on searching for the correct within-subject
covariance structure

3.1.1. Convergence rate

The average convergence rate (CR) of the estimation algorithm by the gen-erated
and fitted covariance structures tended to be low ranging from a 25 % to 100 %
(Table 2). Low CR tended to occur when the covariance structure was overspecified
(e.g. ARMA(1,1) structure fit to an AR(1) structure) or when a generally misspecified
covariance structure was fitted (e.g. MA(1) structure fit to a ARMA(1,1) structure
or AR(1) structure fit to MA(1) structure). In general, the AR(1) and ARMA(1,1)
fitted structures had the worst CR compared to the other fitted structures and
the independent (ID) struc-ture had the best convergence rate, which was not
surprising as no additional terms need to be estimated with an inde-pendent
structure contrasting with MA(1) structure.

Table 2. Convergence rates (%) by generated and fitted covariance structure: mean
and standard deviation (SD)

Generated Statistics Fitted covariance structure
covariance structure ID AR(1) MA(1) ARMA(1,1)
AR(1) Mean 100.00 93.68 99.86 38.39

SD 0.00 9.23 0.28 7.70
MA(1) Mean 85.06 24.96 33.79 31.52

SD 20.15 11.89 16.55 14.52
ARMA(1,1) Mean 100.00 90.56 99.98 35.99

SD 0.00 13.39 0.08 6.94
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A. Amagnide, M. Gbeha and R. Glèlè Kakaı̈, African Journal of Applied Statistics, Vol. 5
(2), 2018, pages 489 – 502.
Fitting an optimal variance-covariance structure for longitudinal data under Linear Mixed
Effects Models framework: simulation based analysis. 496

3.1.2. Information Statistics Performance

For AR(1) covariance structure, the results of ANOVA conducted on fit statistics
hit rates to investigate the impact of design factors reveal that all fit statistics hit
rates were significantly affected by measurement periods and G matrix, except
HQIC for which, only G matrix has significant effects (not presented). Moreover,
the interaction between both factors were significant, meaning that the observed
difference between measurement periods depend on G ma-trix and vice-versa.
From the mean values of fit statistics performance (Table 3), the lowest values
of BIC, CAIC and HQIC hit rate were found for 5 measurement periods while the
lowest values of AIC and AICC hit rate were found for 8 measurement periods.
Regarding the G matrix, the highest values for all hit rates were found for small
size of G matrix. When the normality of distribution of within subject errors was
not assumed, the fit statistics hit rate decreased of 2 points as average.

Table 3. Hit rate of fit statistics for searching covariance structures (A: AR(1)
structure, M: MA(1) structure, N: ARMA(1,1) structure): Mean Values (%)

Simulation AIC BIC CAIC HQIC AICC
conditions A M N A M N A M N A M N A M N
N with 50 subjects and 5 time points 40 75 6 22 57 0 16 56 0 30 69 0 39 75 5
N with 50 subjects and 8 time points 16 58 82 55 56 18 56 56 10 37 58 53 17 58 81
N with 100 subjects and 5 time points 51 81 22 24 85 0 21 84 0 44 87 8 50 82 21
N with 100 subjects and 8 time points 26 89 78 51 91 24 52 88 17 38 89 58 27 89 78
N with 150 subjects and 5 time points 25 82 40 13 78 1 10 72 1 20 85 9 25 82 37
N with 150 subjects and 8 time points 7 78 92 26 85 43 27 82 36 15 95 69 7 78 92
N with 200 subjects and 5 time points 36 63 6 24 84 0 20 81 0 31 78 2 36 63 6
N with 200 subjects and 8 time points 29 42 64 47 88 15 47 92 11 44 68 40 29 45 64
C with 50 subjects and 5 time points 31 66 7 15 56 0 12 51 0 24 65 1 30 66 5
C with 50 subjects and 8 time points 19 62 76 47 57 20 49 55 10 37 60 45 21 62 75
C with 100 subjects and 5 time points 46 86 18 24 81 0 19 78 0 42 87 5 46 86 17
C with 100 subjects and 8 time points 27 85 68 42 80 18 44 76 12 37 87 42 27 85 67
C with 150 subjects and 5 time points 26 77 28 13 74 2 13 69 2 21 82 9 26 77 27
C with 150 subjects and 8 time points 9 65 88 28 72 35 29 69 25 15 76 62 9 65 88
C with 200 subjects and 5 time points 28 58 11 16 81 0 14 78 0 24 78 5 29 58 11
C with 200 subjects and 8 time points 37 38 54 52 89 14 50 92 10 45 67 32 37 39 54
Growth parameter (β1=0.05) 28 69 46 31 76 12 30 74 8 32 77 27 28 70 46
Growth parameter (β1=0.16) 28 69 46 31 76 12 30 74 8 31 77 27 28 69 45
G matrix (τ00=0.1 and τ11=0.05) 40 78 48 53 90 15 52 90 12 49 87 30 40 78 47
G matrix (τ00=0.2 and τ11=0.10) 17 60 45 10 62 9 8 57 5 14 67 25 17 61 44

N: normal distribution of within subject error, C: Chi square (1) distribution of within subject
error. The standard deviation of hit rate of fit statistics for searching AR(1), MA(1) and
ARMA(1,1) structures ranged respectively from 2.37 to 42.09 %, 0.39 to 34.22 % and 0.00
to 37.23 %.
About MA(1) covariance structure, it appears from the results of ANOVA that only the G
matrix significantly affected all hit rates (not presented). Moreover, BIC and CAIC was
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moderated by the sample size. From the mean values of fit statistics performance (Table
3), BIC and CAIC were able to correctly classify the covariance structure 57 % and 54 %
of the time (lowest values) with 50 in-dividuals respectively and 86 % and 85 % of the
time (highest value) with 200 individuals respectively. With reregards to AIC and AICC, the
lowest hit rates were found for 200 individuals and the highest hit rates were found for 150
individuals. 63 % (50 individuals) was the lowest HQIC hit rate and 88 % (100 individuals)
was the highest HQIC hit rate. Regarding the G matrix, the highest values for all hit rates
were found for small size of G matrix. When the normality of within subject errors was not
assumed, the fit statistics hit rate decreased of 4 points as average.

When ARMA(1,1) covariance structure is considered, the results of ANOVA applied on fit
statistics hit rates to inves-tigate the effect of design factors indicate that only meas-urement
periods moderated the fit statistics hit rate (not presented). The inspection of mean values
of fit statistics performance according to the measurement periods (Table 3) reveals that the
highest values for all hit rates were found for 8 measurement periods (76 % of the time for
AIC, 23 % of the time for BIC, 16 % of the time for CAIC, 50 % of the time for HQIC and 75
% of the time for AICC). When the normality of distribution of within subject errors was not
assumed, the fit statistics hit rate decreased of 4 points as average.

3.2. Consequence of misspecification in within-subject variance-covariance
structure

3.2.1. Relative bias

Summary statistics for the mean relative bias (MRB) of the fixed effects are putted in Table
4. It shows that the mean and median for β0 and β1=0.16 were very close to zero whereas the
second slope term (i.e. β1=0.05) had much more variation. These terms also have a few small
relative bias statistics shown by the small minimum and maximum values. Therefore, on
average, the relative bias was kept under control for all of the fixed effects, but can become
a problem for the slope term β1=0.05. On average, the random components tended to be
biased and there was large variation in the RB statistics for each term.

Table 4. Summary Statistics for Relative Bias of Fixed Effects and Random
Components

Term Mean Var Med Min Max
β0 -0.0055 0.0020 -0.0031 -0.1481 0.1239
β1=0.05 0.1324 0.8734 0.4356 -2.3555 1.8066
β1=0.16 -0.0238 0.1832 -0.0063 -0.7660 1.0912
τ00=0.10 11.1703 15.6449 11.6894 2.3226 16.9867
τ00=0.20 4.3273 2.7114 4.2420 -0.2352 7.3008
τ11=0.05 0.5041 0.4394 0.3903 -0.5610 2.0901
τ11=0.10 -0.1931 0.1993 -0.3513 -0.7406 0.8798
τ01 -4.5152 6.3786 -4.0672 -10.9275 -0.9738
σ2ε -0.3336 0.0188 -0.3521 -0.5904 -0.0348

Var: variance, Med: median, Min: minimum, Max: maximum.

To better explore the variability shown in Table 4, boxplots of the fixed effects and random
components are shown in Figure 1. It reveals a large amount of variability in β1=0.05
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compared to others fixed effects. Moreover, we notice a large amount of variability in τ00
and τ01. The interquartile range, depicted by the box in the boxplots, was much larger for
these terms indicating that the RB has a wider range of plausible values.

Fig. 1. Boxplots showing the relative bias of the fixed effects and random
components

3.2.2. Relative Error

Whichever the fixed effect considered, on average the relative error was kept under control
without important difference between covariance structures (Table 5). The perfomance of
covariance structures was the same among the considered factors for model intercept
variance (τ00), covariance between β0 and β1 (τ01) and variance of within subject errors
(σ2ε), except for the model slope (τ11). Indeed, ARMA(1,1) covariance structure records the
best performance followed by AR(1) covariance structure. Regarding the model slope (τ11),
the performance of the fitted covariance structures depends on the characteristics of the
considered sample.
Boxplots of the MRE of the fitted covariance structures (Figure 2) shows almost the same
performance of the fitted covariance structures for the fixed effects. Regarding the random
components, the performance of fitted covariance structures becomes greatly different.
ARMA(1,1) covariance structure followed by AR(1) covariance structure, with however,
important gap between both covariance structures presented the best performance for the
model intercept variance, covariance between the model intercept and the model slope and
variance of within subject errors. On the contrary, the lowest performances occurred when
the covariance structure was underspecified i.e. ID structure fit to an AR(1) structure.
Moreover, the dispersions of the MRE confirm the previous observations.
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Table 5. Median ranks of the relative error of random components according to
the considered factors (I: independence structure, A: AR(1) structure, M: MA(1)
structure, N: ARMA(1,1) structure)

Simulation τ00=0.10 τ00=0.20 τ11=0.05 τ11=0.10 τ01 σ2ε

conditions I A M N I A M N I A M N I A M N I A M N I A M N
Overall 4 2 3 1 4 2 3 1 3.5 2 2 2.5 1.5 3 2 4 4 2 3 1 4 2 3 1
50 subjects and 5 time points 4 2 3 1 4 2 3 1 4 2 3 1 3 2 1.5 3.5 4 2 3 1 4 2 3 1
50 subjects and 8 time points 4 2 3 1 4 2 3 1 3 2 1 4 1 3 2 4 4 2 3 1 4 2 3 1
100 subjects and 5 time points 4 2 3 1 4 2 3 1 4 2 3 1 3 1.5 1.5 4 4 2 3 1 4 2 3 1
100 subjects and 8 time points 4 2 3 1 4 2 3 1 2 3 1 4 1 3 2 4 4 2 3 1 4 2 3 1
150 subjects and 5 time points 4 2 3 1 4 2 3 1 4 2 3 1 3 2 1.5 3.5 4 2 3 1 4 2 3 1
150 subjects and 8 time points 4 2 3 1 4 2 3 1 3 2 1 4 1 3 2 4 4 2 3 1 4 2 3 1
200 subjects and 5 time points 4 2 3 1 4 2 3 1 4 2 3 1 3 1.5 1.5 4 4 2 3 1 4 2 3 1
200 subjects and 8 time points 4 2 3 1 4 2 3 1 2 3 1 4 1 3 2 4 4 2 3 1 4 2 3 1
Growth parameter (β1=0.05) 4 2 3 1 4 2 3 1 3.5 2 2 2.5 2 2 2 4 4 2 3 1 4 2 3 1
Growth parameter (β1=0.16) 4 2 3 1 4 2 3 1 3.5 2 2 2.5 1.5 3 1.5 4 4 2 3 1 4 2 3 1
G matrix (τ00=0.1 and τ11=0.05) - - - - - - - - - - - - - - - - 4 2 3 1 4 2 3 1
G matrix (τ00=0.2 and τ11=0.10) - - - - - - - - - - - - - - - - 4 2 3 1 4 2 3 1

4. Discussion

This study was firstly intended to assess the performance of five fit statistics on searching
for the correct within-subject covariance structure in longitudinal data analysis, and
then to examine the effect of misspecification in the within-subject variance covariance
structure on the model estimations considering some characteristics of the sample study
namely the sample size, the measurement periods, the magnitude of growth parameter, the
size of G matrices, the covariance structure of the within-subject error and the distribution
of the within-subject error.

The results suggested that the individual average performance ranked HQIC, BIC and
CAIC for searching AR(1) and MA(1) covariance structures as the top three fit statistics. In
particular, the AIC and AICC correct identification for ARMA(1,1) outperformed all the other
fit statistics classification for ARMA(1,1). AIC and AICC hit rates were higher than HQIC hit
rate, BIC hit rate or CAIC hit rate. It is known that the more parameters there are in the
model, the better the fit (Crawley (2013)). However, despite of AIC penalizes complex model
due to many parameters being estimated and promotes parsimonious models (Crawley
(2013), Lee (2010)), it had the best hit rate for ARMA(1,1) covariance structure. The

obtained performance of fit statistics in this study contrasts with those found by Ferron et
al. (2002) which were overall higher ranging from 66 % for BIC to 79 % for AIC and by Lee
(2010) [66 % for BIC and 62 % for AIC].
As pointing out in previous studies (Keselman et al. (1998), Wolfinger (1993)), some fit
index did not perform well on searching for the optimal covariance structure under the
general mixed model framework. Indeed, according to Keselman et al. (1998), AIC and
BIC performance ranged from 47 % to 35 % respectively. It has also been revealed that
measurement periods (Lee (2010)) current study) and the size of G matrix (current study)
played a major role in the variability of the hit rate in these fit statistics. For these fit
statistics, small time points and high size of G matrix had implied lowest performance.
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ID: independence structure, AR: AR(1) structure, MA: MA(1) structure, AM: ARMA(1,1)
structure

Fig. 2. Boxplots of the mean relative error per random components and fitted
covariance structure

Moreover, the sample size moderated BIC and CAIC hit rate for searching MA(1) covariance
structure.

The study also examined the effect of misspecification in the within-subject variance
covariance structure on the model estimations. Our findings suggested that across all
models, the estimates for the fixed effects mainly for β0 and β1=0.16 were almost unbiased
(relative bias < 0.05). This finding was consistent with previous research when the within-
subject error structure is misspecified (Ferron et al. (2002); Brandon (2013)). On the
contrary, the random components were clearly biased with misspecification of the model.
The most biased parameters were the variance of model intercept and the covariance
between the model intercept and the model slope. Indeed, the aim of using linear mixed
effects models to analyse longitudinal data is to carry out the difference between repeated
measures within individuals and the difference between subjects. In spite of knowing that
the variations among individuals in the interested variable over time is reflected in the
covariance matrix of the within-subject residuals, (Hedeker and Gibbons (2006)), the
random effects are those that summarize the between subjects difference. Therefore, the
misspecification of covariance structure implies that LMEM fails to well model the between
subjects difference. Moreover, the same conclusions were drawn from the relative errors
showing the worst performance of model misspecification, mainly the under-specification or
generally misspecification in the covariance structure of within subject errors. The largest
amounts of errors were found when the fitted structure was underspecified as independent
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(ID).

5. Conclusion

This study firstly examined the performance of five fit statistics in selecting the more suitable
within-subject variance covariance matrix in longitudinal data analysis under linear mixed
effects models framework. The averaged overall hit rates for AIC, BIC, CAIC, HQIC and AICC
were below 50 %. The worst concern as to these fit statistics was that their stability in
searching for the optimal covariance structure aggravated as the target covariance structure
became more complex. Based on the overall and steady performance of HQIC and BIC
for generated variance covariance matrix, we concluded these criteria had better ability in
assessing of optimal within-subject covariance structure. The study results also showed that
the fixed effects on average were unbiased and the size of G matrix, the covariance structure
and the measurement periods were the design factors that explain the variations in the
mean relative bias for the fixed effects. However, there was evidence of bias in the random
components and some simulation conditions, namely measurement periods and covariance
structure did explain significant variation in the average relative bias. Regarding the relative
errors, the random components tend to be overestimated when covariance structure is
underspecified.
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