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Résumé. On considère dans cette étude le problème de confusion entre la non
stationnarité et la longue mémoire. Plusieurs auteurs ont signalé, de façon
empirique, l’existence d’un comportement de longue mémoire dans des séries
économiques et financières, à travers des processus supposés stationnaires avec
courte mémoire (voir Mikosch and Stáricá (2004) and Lobato and Savin (1998)).
Son existence a été démontrée comme étant la conséquence de la non stationnarité,
c’est à dire la non constance de la variance inconditionnelle ou les changements
dans la moyenne de ces séries. L’objectif de cet article est de trouver un modèle
capable de prendre en compte à la fois la nonstationnarité et la longue mémoire.

1. Introduction

The phenomena of nonstationarity and long memory observed on the financial
series, of the exchange rate for example, constitute a subject which draws
the attention of several researchers, Lobato and Savin (1998), Granger and
Hyung (2000), Breidt and Hsu (2002), Bisaglia and Gerolimetto (2009) etc.
In the statistical modeling of the financial series, we often have difficulty in
distinguishing what is a matter of the nonstationarity and what is a matter of the
long memory.

These two behaviors can be confidentially connected. Studies showed the existence
of dependence long memory on the series submitted to structural changes. By
consulting Lobato and Savin (1998) several possible sources of presence of long
memory, in financial series presenting structural changes, were quoted: it is about
the nonstationarity, the aggregation of series, the seasonal component of long
memory, the distortion in size, the non-existence of higher order moments. Among
articles that highlight such sources, we can particularly cited that of Breidt and
Hsu (2002) with the distortion in size, that of Lamoureux and Lastrapes (1990)
with the nonstationarity engendered by the changes of regime at the level of
unconditional volatility,that of, Mikosch and Stáricá (2004) which, by proceeding
to a concatenation of samples, outcomes of various stationaries models, showed
that the resultant series, besides nonstationary, presents a long memory if we
consider squares or absolute values of this values. So the questions that we ask
ourselves are: what type of long memory have we got? Have we got a long memory
resulting from a non stationarity: change in the unconditional variance or in
the average? Or is it about the long memory which supposes that the events
going back up of a distant past have an effect on the dynamics of the series? In
the sequel we shall suppose only the first case. Indeed, with regard to this case
Ding and al. (1993) have concluded that the nonstationarity can be a plausible
explanation of the presence of long memory in series assumed stationaries.

In this work we are interested in a joint modeling of the nonstationarity and
the long memory observed frequently in a empirical way on financial series (or
their transformation adequate) supposed stationaries with short memory with
structural changes. The object of this article is to look for the most adequate
model to describe the nonstationarity and the long memory at the same time.
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Because of path dependence of the conditional variances (the conditional variance
depends on the whole past history of the state variables), maximum likelihood
estimation is infeasible. By enlarging the parameter space to include the state
variables, Markov chain Monte Carlo (MCMC) is feasible.

The article is organized as follows: the Section 2 introduce RS-ARFIMA-GARCH
model. In this section, we recall the notion of long memory and the definitions of
ARFIMA model and of regime switching Markov model. In Section 3, we explain
how the model can be estimated in the MCMC framework. Section 4 is devoted to
the simulation study. In Section 5, we apply our approach to a long time series of
returns of exchange rate of the US Dollar (USD) towards the Euro (EURO).

2. The model

As it is henceforth widely allowed, the short memory stationary processes with
structural changes can possess a long memory property. That is why, to work
with the unconditional volatility while considering the long memory as of false
nature, it is natural to use a regime switching or jump model. But, if we work
with the structural changes in the variance and the long memory, we can consider
an approach which takes into account both phenomena, in the sense where we
introduce the long memory into type regime switching model to take into account
the slow decay of the sample autocorrelation function as for example in the case
of the absolute returns of the S&P500: the model RS-ARFIMA-GARCH for example.

2.1. Long memory and ARFIMA model

The processes with long memory, appeared in the years 1895 from the observations
of the astronomer Newcomb then of the chemist Student (1927), were initially
reserved for very specific domains (hydrology, turbulence). The applications of such
models multiplied in the years 1990, under the influence of several pioneers works
showing the presence of the phenomena to long memory in the economic and
financial series, for example on series of exchange rate (Cheung (1993b), Ferrara
and Guégan (2000a)), on the asset prices quoted in stock exchange (Willinger and
al. (1999)), on the electricity spot price (Diongue and al. (2003)), on London Stock
Exchange index (FTSE) (Yanlin and Kin-Yip (2014)). Let us consider a price process
(Xt)t∈Z with autocorrelation function, noted ρX , define, for all k ∈ Z, by

ρ(k) =
γX(k)

γX(0)
(1)

where γX(.) is the autocovariance function associated to the process Xt. In the
literature several definitions of long memory exist, we can cite, in particular,
the long memory in the covariance sense, the long memory in the sense of
the spectral density, the long memory in the Allan variance sense and the long
memory which based on the concept of mixture which allows to make the data
asymptotically independent, see Rosenblatt (1956). The last two definitions are
however respectively little useful and very difficult to use in the practice. But the
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first two definitions resting on the covariance and on the spectral density are most
used in the practice. So from these two tools, we have the following definitions:

Definition 1.
In the temporal domain, a stationary process (Xt)t∈Z is said long memory process
if its autocorrelation function ρ is not absolutely summable, that is

∞∑
j=−∞

|ρ(k)| =∞

An example of such a process is given by the fractional processes. The fractional
process (Xt)t∈Z the simplest is the one under the form

(1−B)dXt = εt

where εt is white noise with mean 0 and variance σ2, written εt ∼ WN(0, σ2) and
(1−B)d the difference operator.
For 0 < d < 1

2 and a constant, c > 0, we show that

ρ(k) ∼ ck2d−1 when k →∞ (2)
This equation with long memory are characterized by an autocorrelation function
decreasing in an hyperbolic way towards zero.

Definition 2.
In the frequency domain, a process (Xt)t∈Z possesses the long memory property
if its spectral density f increases without limit when the frequency aims towards
zero, i.e.

f(λ) =∞, when λ→ 0+

Particularly, (Xt)t∈Z fractional process is said to have long memory if 0 < d < 1
2 and

verifies
f(λ) ∼ c′|λ|−2d (3)

where f(λ) is the spectral density of the process (Xt)t∈Z at the frequency λ and c′

a positive constant.

To take into account the presence of a long memory, we use the Autoregressive
Fractionally Integrated Moving Average (ARFIMA) process which with the fractional
gaussian noise (Mandelbrot and Van Ness (1968)), are the examples the most often
evoked by long memory process. The ARFIMA(p, d, q) model is define by:

Φ(B)(I −B)d(Xt − µ) = Θ(B)εt, (4)
where d is a fractional number, µ is the mean of the process (Xt)t∈Z, the polynomials
Φ(B) = 1 − φ1B − φ2B2 − .... − φpBp and Θ(B) = 1 − θ1B − θ2B2 − .... − θqBq have
no common zeroes and have their zeroes outside the unit circle. Here, the process
(εt)t∈Z is a white noise withmean 0 and variance σ2

ε andB a backward shift operator
BXt = Xt−1. This model which was proposed by Granger and Joyeux (1980) and
Hosking (1981) to model a behavior of persistent long memory, is a generalization
of the models ARIMA of Box and Jenkins (1976). It allows to take into account in
a modeling at the same time the short-term behavior through the autoregressive
and the moving average parameters and the long term behavior by means of the
parameter of fractional integration.
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2.2. Regime switching Markov model

This model was introduced into the literature by Hamilton in 1989 to take into
account the existence of structural changes not visible to the naked eye in the
studied financial and economic series.
Let us consider a financial asset A; let Xt be its price model expressing as follows:

Xt = mt + εt (5)

where mt is the mean of the process and εt a strong white noise.

Let us suppose that the variable mt follows several behavior over the period
analyzed [0, T ], we thus obtain a change of state on the level of the asset price.
Let us suppose that there are two regimes governed by an economic variable, for
example a regime of high volatility and a regime of low volatility. Thus mt depends
on the regime on which the process is. Let st ∈ {1, 2} the economic variable,
representing the regimes at time t. In that case the average of the price is mst .
The equation (5) becomes,

Xt = mst + εt, (6)
and

mst = (1− st)m0 + stm1,

where probably m0 ≤ m1, and where εt is a gaussian white noise of zero mean and
finite variance σ2 (εt

iid∼ N (0, σ2
ε)), and where st and εt are independent for all t.

It often happens that the variable st is not observable in practice. Consequently,
the model (6) cannot be estimated because the current regime st depends on the
previous regime st−1. To remedy this situation, we use the probability of passage
from a regime to the other one (it is about a joint probability). The problem is
completely defined if the transition probabilities between the various regimes are
known. Let p be a probability associated to the changes of state,

P (st|st−1) =


p00 if st = st−1 = 0

1− p00 if st = 1, st−1 = 0
p11 if st = st−1 = 1

1− p11 if st = 0, st−1 = 1,

(7)

where P (st|st−1) represent the probability to be in the regime st at time t
conditionally to the previous regime. Let M be the transition matrix of the chain st
which characterizes the variable mst , M is defined by:

M =

(
p00 1− p00

1− p11 p11

)
.

So, we find Hamilton regime switching model (1989) extended afterward to the
Markov regime switching model. In the sequel we suppose that p00 = p11, that is to
say the regimes have the same probability to occur. The autocorrelation function of
the Markov regime switching process (6) decreases exponentially fast toward zero,
identical to that of a GARCH (Timmermann (2000)). This autocorrelation function
was studied by Guegan and Rioublanc (2005) and is given by :

Γ(h) =
(m0 −m1)2(1− p00)(1− p11)ρh

(2− p00 − p11)2[π1m2
0 + π2m2

1 + 1− (π1m0 + π2m1)2]
, ∀ h > 0 (8)
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where
ρ = −1 + p00 + p11,

π1 = P (st = 0) =
1− p11

2− p00 − p11
et π2 = P (st = 1) =

1− p00
2− p00 − p11

,

are the non conditional probabilities.
The autocorrelation function Γ(h), can be rewritten as :

Γ(h) = Cµi,piiρ
h , i = 1, 2,

with
Cµi,pii =

(m0 −m1)2(1− p00)(1− p11)

(2− p00 − p11)2[π1m2
0 + π2m2

1 + 1− (π1m0 + π2m1)2]
, i = 1, 2,

2.3. Regime switching ARFIMA-GARCH model

Let εt be a white noise of mean 0 and conditional variance σ2
t define as following:

σ2
t = α0st +

p2∑
i=1

αistε
2
t−i +

q2∑
j=1

βjstσ
2
t−j

Let Φst(B) and Θst(B) the pth1 and qth1 degree autoregressive and moving average
polynomials respectively with real coefficients dependant to the chaine st.
A process (Xt)t∈Z is called regime switching fractional integrated Garch process,
noted
RS-ARFIMA(p1,d,q1)-GARCH(p2, q2), if the following equation is satisfied

Φst(B)(1−B)d(Xt −mst) = Θst(B)εt (9)

where
mst = (1− st)m0 + stm1,

Φst(B) = 1−
p∑
i=1

φi,stB
i, Θst(B) = 1−

q∑
j=1

θj,stB
j

εt
iid∼ WN(0, σt)

and where

– the long memory parameters d is fractional, B is the backward operator
– m0 ≤ m1,
– st and εt are independents for all t.
– the unconditional variance of every subperiod correspond in every homogeneity
intervals of the series is given by

α0j

1−
∑p2
i=1 αij −

∑q2
i=1 βij

, j = 1, 2..., N , N :

number of homogeneity intervals.
– αij et βij are coefficients of the process σ2

t .

We remind that the variance σ2
t is conditional with regard to all the past of the noise

ετ and the trajectory of the regime s̃τ−1 = (sτ−1, sτ−2, ...) which is not observed, for
τ < t, that is to say the conditional variance is defined as follows : σ2

t = V (εt|Ft−1),

Journal home page: http://www.jafristatap.net



S. Fofana, A. Diop and O. Ouagnina, Afrika Statistika, Vol. 5 (2), 2018, pages 469 – 487.
Modeling of nonstationarity and long memory with RS-ARFIMA-GARCH model. 475

where
Ft−1 = σ(ετ1 , s̃τ2 , τ1 < t, τ2 ≤ t).

Notice that this model is a direct generalization of the ARFIMA model of Granger
and Joyeux (1980), it contains several particular cases :

– The model of constant mean and unconditional variance, which can be
formalized as following :

Xt = m+ εt (10)
with

εt
iid∼ WN(0, σ2)

when d = 0, p1 = q1 = 0 et p2 = q2 = 0.
– The regime switching Markov which is formalized in the following way :

Xt = mst + εt (11)
with

mst = (1− st)m0 + stm1, εt
iid∼ WN(0, σ2)

when d = 0, p1 = q1 = 0 et p2 = q2 = 0.
– The Markov-Garch(1,1) model, which we can call also regime switching GARCH
(RS-GARCH(1,1)) :

Xt = mst + σtεt (12)
with

mst = (1− st)m0 + stm1,

εt
iid∼ WN(0, 1)

σ2
t = α0st + α1stX

2
t−1 + β1stσ

2
t−1

and the unconditional variance of every subperiod of the series given by
α0j

1−
∑p2
i=1 αij −

∑q2
i=1 βij

, j = 1, 2, p1 = q1 = 0 and p2 = q2 = 1

– The regime switching-ARIMA model which is formalized as following:

Φst(B)(1−B)d(Xt −mst) = Θst(B)εt (13)
with

mst = (1− st)m0 + stm1 and εt
iid∼ WN(0, σ2)

σ2 corresponding at unconditional variance of Xt, d an integer and p2 = q2 = 0.

– The regime switching ARFIMA model which is formalized as following:

Φst(B)(1−B)d(Xt −mst) = Θst(B)εt (14)
with

mst = (1− st)m0 + stm1 and εt
iid∼ WN(0, σ2)

σ2 corresponding at unconditional variance of Xt, d a fractional number and
p2 = q2 = 0.
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In the present paper, we focus our attention on time series models with p2 = q2 = 1
given by

Φst(B)(1−B)d(Xt −mst) = Θst(B)εt (15)

with
mst = (1− st)m0 + stm1,

εt
iid∼ WN(0, σt)

σ2
t = α0st + α1stX

2
t−1 + β1stσ

2
t−1. (16)

The short memory parameters found in Φst(B) and Θst(B) could be modeled as
functions of st. Since these parameters only affect the short-run dynamics of
the process and our main interest is to study the estimation of the long memory
parameters, thus we can set the short memory parameters to be zero, that’s mean
p1 = q1 = 0 and we obtain

(1−B)d(Xt −mst) = εt. (17)

The polynomial (I −B)d admits the following development :

(I −B)d =
∑
k≥0

bk(d)Bk

where
bk(d) =

Γ(k − d)

Γ(k + 1)Γ(−d)
.

with the function Γ define as following :

Γ(a) =
∫∞
0
xa−1e−xdx, for all real a > 0,

= a−1Γ(a+ 1), for a < 0.

According to Hosking (1981), one can easily show that

bk(d) =
k − 1− d

k
bk−1(d), b0(d) = 1 (18)

Under the condition of stationarity : d < 1
2 , it exists then a unique stationary

solution to the equation (15), and in the case of a fractionally integrated process
(Φst(B) = Θst(B) = 1), the process (Xt)t∈Z define by (17) can be written under its
form moving average infinite form :

Xt = mst + (1−B)−dεt

= mst +
∑
k≥0

bk(d)εt−k (19)

where bk(d) and b0(d) are defined in (18).
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3. Estimation

3.1. Identification of intervals of homogeneity

The estimation of the parameters being made on subperiods, it is beforehand
necessary to identify the intervals of homogeneity. For it we use the spectral test
of Starica and Granger (2005). We consider the following linear process

Xt =

∞∑
j=−∞

ψjεt−j (20)

where (εt)t∈Z a centered white noise with variance σ2, and

ψ(z) =

∞∑
j=−∞

ψjz
j

with (ψj)j∈Z a sequence real number absolutely summable.
To detect the intervals of homogeneity, Stărică and Granger proposes the following
test statistic :

T (n,X,Mµ,σ2,fψ ) = sup
λ∈[0,π]

∣∣∣∣∣
∫ λ

−π

(
In,X(y)

fψ(y)
− σ̂2

σ2

)
dy

∣∣∣∣∣ (21)

where
In,X(λ) = γn,X(0) + 2

n−1∑
i=1

γn,X(h)cos(λh) (22)

represent the natural estimator of the spectral density fX of the process (Xt)t∈Z,
with γn,X his autocovariance function, fψ(.) defined by

fψ(λ) =
σ2

2π

∣∣∣ψ(e−iλ)
∣∣∣2 λ ∈ [0, π], (23)

the spectral density function of the linear process (20) and

σ̂2 =

∫ π

−π

In,X(z)

|ψ(e−iz)|2
dz (24)

estimator of σ2 variance of the noise (εt)t.

On the basis of the following Theorem, we notice that the asymptotic distribution
of the test statistic (21) is connected to Brownien motion1.

Theorem 1. (Kluppelberg & Mikosch, 1996).
Assume that E(εt) = 0, E(ε4t ) <∞, and denote V ar(εt) = σ2.
Let Xt denote the linear processes (20) and σ̂2 the estimate of σ2 defined in equation
(24). Then the following holds

√
n

∫ λ

−π

(
In,X(y)

fψ(y)
− σ̂2

σ2

)
dy

d−→ πB(
λ

π
) in D([0, π]) (25)

where fψ defined in equation (23) represent the spectral density function of the linear
process (20) and B(.) is a Brownien bridge.

1 A Brownian bridge on [0,1] is defined as B(λ) = W (λ)− λW (1) where W is a standard Brownian motion.
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The following corollary yields the critical values for the hypothesis testing central
to the methodology explained above.

Corollary 1.
Under the hypothesis and with the notation of Theorem 1, we have the following:
(a) If Xt is the linear processes (20), then

√
n sup
λ∈[0,π]

∣∣∣∣∫ λ

−π

(
In,X(y)

fψ(y)
− σ̂2

σ2

)
dy

∣∣∣∣ d−→ π sup
λ∈[0,π]

|B(
λ

π
)| (26)

(b) If Xt is a white noise, denote σ̃2 = 1
n

∑n
t=1X

2
t , then

√
n

∫ λ

−π

(
In,X(y)

σ2

2π

− σ̃2

σ2

)
dy

d−→ πB(
λ

π
)

√
n sup
λ∈[0,π]

∣∣∣∣∣
∫ λ

−π

(
In,X(y)

σ2

2π

− σ̃2

σ2

)
dy

∣∣∣∣∣ d−→ π sup
λ∈[0,π]

|B(
λ

π
)| (27)

in D([0, π]), where B(.) is a Brownien bridge defined on [0, 1].

In the sequel, the linear process (20) with mean µ, noise variance σ2, and spectral
density fψ will be compactly denoted byMµ,σ2,fψ .

One assumes that the sample X1,...,Xn, generated by Xt, presents subsamples
X

(1)
1 , ..., X

(1)
n1 , ..., X

(r)
nr , ..., X

(r)
n different which we suppose stationaries. The intervals

of homogeneity on X1, ..., Xn are constructed as follows. Let us consider the
subsample X

(1)
1 , ..., X

(1)
n1 , assume that he is described by Mµ,σ2,fψ a linear

parametric model with mean µ, noise variance σ2 and spectral density fψ. We
want to decide if the interval of homogeneity containing the observations X(1)

1 to
X

(1)
n1 can be extend with p observations, Xn1+1, ..., Xn1+p, that is if p observations,

Xn1+1, ..., Xn1+p, also belong to the interval. To accomplish this, we use the
statistical test T (n,X,Mµ,σ2,fψ ) which consists to test if the linear modelMµ,σ2,fψ

fits well to the subsample Xn1+p−s, Xn1+p that contains p new points of data (s, a
number constant, is the size of the subsample on which the test is conducted).

3.2. Estimation of parameters of the model

For the estimation, we use a Bayesian Markov chain Monte Carlo (MCMC) methods
that circumvents the problem of path dependence by including the state variables
in the parameter space. This method allows us to treat the latent state variables
as parameters of the model and to construct the likelihood function assuming we
know the states. This technique is called data augmentation, see Tanner and Wong
(1987) and Dufays (2012). The properties of the estimator compare favorably
with other approaches. It is straightforward to obtain smoothed estimates of
volatility from MCMC output. Here, we present the Bayesian algorithm for a
RS-ARFIMA-GARCH model with the case of two regimes and normality of the error
term εt, and in Section 4, we illustrate that it recovers correctly the parameters of
a simulated data generating process.
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We denote by Xt the vector (x1, x2, ..., xt) and likewise St = (s1, s2, ..., st) with
transition probabilities {pij = P (st = i|st−1 = j)}. The model parameters consist
of p = (p00, p10, p12, p11), µ = (µ0, µ1), d, and θ = (θ0, θ1), where θk = (α0j , α1j , β1j) for
k = 0, 1 and j = 0, 1. The conditional density of xt is the Gaussian density

f(xt|Xt−1, St, µ, d, θ) =
1√

2πσ2
t

exp

(
− (xt − µst)2

2σ2
t

)
(28)

The marginal density (or probability mass function) of st is specified by

f(st|Xt−1, p, St−1) = f(st|p, St−1) = pstst−1
. (29)

Indeed, let us consider the realization X = {x1, x2, ..., xn}, µ, θ and the vector of
states S = (s1, s2, ..., sn), the conditional density function of Xt, generator of the
observations and the regimes, is given by

f(X|S, µ, d, θ) = f(xn|x1, ..., xn−1, S, µ, d, θ)...f(x2|x1, S, µ, θ)f(x1|S, µ, d, θ)

=
n∏
t=1

1√
2πσ2

t

exp

(
− (xt − µst)2

2σ2
t

)
, (30)

where σ2
t is a function of θ through st, defined by equation (16). This would be the

likelihood function to maximize if the sates were known. Notice that it does not
depend on p. Given p and X the distribution of S is given by

f(S|X, p) = f(S|p) =

n∏
t=1

pstst−1
(31)

which does not depend on µ, d and θ.
The joint density of X and S given the parameters is then obtained by taking the
product of the densities in (28) and (29) over all observations :

f(X,S|µ, d, θ, p) =

n∏
i=1

1

σt
exp

(
− (xt − µst)2

2σ2
t

)
pstst−1

. (32)

To implement the MCMC algorithm, we implement a Gibbs sampling algorithm
that allows us to sample from the full conditional posterior densities of blocks of
parameters given by θ, µ, d, p and the elements of S. We explain what our prior
densities are for θ, µ, d and p when we define the different blocks of the Gibbs
sampler. We note by S6=t the vector S without the element st. The steps in the
MCMC algorithm are as follows :

1. sample st|S6=t, µ, θ, p, d, Y
2. sample θ|S, µ, p, d, Y
3. sample µ|S, θ, p, d, Y
4. sample d|S, µ, θ, p, Y
5. sample p|S, µ, θ, d, Y
6. goto 1

A pass through 1-5 provides a draw from the posterior. We repeat this several 5000
times and collect these draws after an initial burn-in period. For detailed steps of
the algorithm see Bauwens and al. (2010, 2013).
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4. Simulation study

In this section, we make some simulations, on the one hand, to illustrate the
behavior of the model, and on the other hand, to make the estimation of the
parameters of the model. Because there is no known technique for generating an
exact RS-ARFIMA-GARCH, we will approximate the infinite moving average (19) by
the truncation moving average :

Xt = mst +

M∑
k=1

bk(d)εt−k, t = 1, ..., n (33)

where the non-random constants bk are defined by (14) and M is the truncation
parameter. As in Gray and al. (1989), we fixe M = 29000.
First, we show that this RS-ARFIMA-GARCH framework can also distinguish
between the ARFIMA and RS-GARCH DGPs. To verify that, we simulate two DGP
corresponding respectively to ARFIMA(0,d,0) with two cases according to the
parameter d :

1. d = 0.2,
2. d = 0.4

and a RS-GARCH(1,1) in two cases according the following means and transition
probabilities :

1. RS-GARCH(1,1) : with m0 = −0.5, m1 = 0.5 with transition probabilities
p00 = p11 = 0.99,

2. RS-GARCH(1,1) : withe m0 = −2, m1 = 2 with transition probabilities
p00 = 0.98 et p11 = 0.99,

with, for every case, the parameters : α00 = 0.015, α10 = 0.12, β10 = 0.25 and
α01 = 0.065, α11 = 0.35, β11 = 0.18. And we fit both the simulated data into the
RS-ARFIMA(0,d,0)GARCH (1,1) model.
Secondly, to see how RS-ARFIMA-GARCH framework performs when the DGP is
composed of both long memory and regime switching with GARCH noise, we
simulate a RS-ARFIMA-GARCH : (1 − B)d(Xt − mst) = εt under the two following
forms :

1. RS-ARFIMA(0,d,0)GARCH(1,1) : with m0 = −0.5, m1 = 0.5, d = 0.2, and with
transition probabilities p00 = p11 = 0.99.

2. RS-ARFIMA(0,d,0)GARCH(1,1) : with m0 = −2, m1 = 2, d = 0.4, and with
transition probabilities p00 = 0.98 and p11 = 0.99.

Each simulated data set is then fitted into the original RS-ARFIMA(0,d,0)-
GARCH(1,1) model. We plotted in Figure 1 the trajectories of the process (Xt)t∈Z RS-
ARFIMA-GARCH when the GARCH coefficients are α00 = 0.015, α10 = 0.12, β10 = 0.25
and α01 = 0.065, α11 = 0.35, β11 = 0.18 for each of the two models. In these two
graphs, we observe that the underlying processes seem to be locally stationary as
soon as we stay inside a regime but seem to be globally stationary if the means in
absolute value become small.
After the simulation of a series, Xt, coming from each of the models listed above,
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Figure 1 : Trajectory of the simulated models, n=1000.

we make the estimations of the parameters by Markov Chain Monte Carlo (MCMC)
methods. In Table 4.1 and Table 4.2, we report the estimations of the parameters
for the models corresponding to the two DGP.

Estimation of parameters of simulated ARFIMA(0,d,0) and RS-GARCH(1,1) data fitted into
RS-ARFIMA(0,d,0)-GARCH(1,1) model

Table 4.1
DGP ARFIMA RS-ARFIMA-GARCH DGP RS-GARCH RS-ARFIMA-GARCH

st 0 1 0 1 0 1
pii / 0.9272 0.8949 0.99 0.99 0.9893 0.9872
mi / -0.0328 0.0094 -0.5 0.5 -0.5391 0.4927
α0i / 0.0148 0.0119 0.015 0.065 0.0117 0.0628
α1i / -0.0095 0.0038 0.12 0.35 0.1196 0.2992
β1i / 0.0075 0.0016 0.25 0.18 0.2419 0.1793
d 0.2 0.2146 / 0.0328
pii / 0.8365 0.7948 0.98 0.99 0.9795 0.9779
mi / -0.0753 0.0528 -2 2 -2.1091 2.1423
α0i / 0.0128 0.0025 0.015 0.065 0.0134 0.0719
α1i / 0.0018 -0.0032 0.12 0.35 0.1256 0.3291
β1i / 0.0025 -0.0018 0.25 0.18 0.2584 0.1916
d 0.4 0.4126 / 0.0124

Estimation of parameters of simulated RS-ARFIMA(0,d,0)-GARCH(1,1) data fitted into RS-ARFIMA(0,d,0)-GARCH(1,1)

models.

Table 4.2
DGP1 values RS-ARFIMA-GARCH DGP2 values RS-ARFIMA-GARCH

St 0 1 0 1 0 1 0 1
pii 0.99 0.99 0.9885 0.9863 0.98 0.99 0.9937 0.9975
mi -0.5 0.5 -0.4835 0.5182 -2 2 -2.0096 1.9628
α0i 0.015 0.065 0.0094 0.0587 0.015 0.065 0.0146 0.0628
α1i 0.12 0.35 0.1268 0.3482 0.12 0.35 0.1194 0.2992
β1i 0.25 0.18 0.2486 0.1863 0.25 0.18 0.2416 0.1793
d 0.2 0.2138 0.4 0.3948

In Table 4.1, we find that the mean estimates of d are close to true values
for ARFIMA DGP and close to 0 for RS-GARCH DGP. In addition, for RS-GARCH,
mean estimates of all parameters, particularly of p11 and p22, are also close to their
corresponding true values. Thus, we further argue that RS-ARFIMA-GARCH model
can consistently identify the states of RS-GARCH. These results show that, the
RS-ARFIMA-GARCH model can distinguish between the pure ARFIMA and pure
RS-GARCH DGPs and provide consistent estimates of parameters.
In Table 4.2, it can be seen that all estimated values of parameters from RS-ARFIMA-
GARCH model, for each regime, are quite close to the true values. As a result, it
suggests that RS-ARFIMA-GARCH model is capable of identifying the states.
We also see that, RS-ARFIMA-GARCH framework can further provide consistent
estimate of long memory parameter and can consistently identify the volatility
states.
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5. Application on real data

For evaluate the capacity of our RS-ARFIMA-GARCH framework to describe the
data, we compare it with RS-ARFIMA, RS-GARCH, standard ARFIMA and standard
Markov regime switching models.

5.1. Data

The data of exchange rate being very volatile, we choose them as our study. So, we
are interested in the daily series of exchange rate of the US Dollar (USD) towards
the Euro (EURO), from January 04th, 1999 to March 14th, 2014, daily frequency
(5 days a week), that is a trajectory of length T = 3965. We note (Xt)t=1,...,T this
series which the graphic representation is given at Figure 2. We then considered
the logarithmic transformation

logXt − logXt−1, ∀ t ≥ 1

The studied series thus become the daily variations, expressed in percentage.
These data come from the FRED database maintained by the Federal Reserve Bank
of Saint-Louis, available on-line on the site of the bank 2 in the section: Exchange
rate, balance of payments and trade data. The choice of this exchange rate recovers
from its status as world currency and his role on foreign exchange market.
The presence of long memory in the series of exchange rate, supposed stationaries,
was shown in a empirical way in Klaassen (2005). Intervals of homogeneities were
identified on these series, what proves their nonstationary character.
We present in the below Table 5.1 the characteristics of the series.

Characteristics USD/EURO
Mean 1.2205
Median 1.2719

Maximum 1.6010
Minimum 0.8270
Ecart type 0.1854
Skewness -0.4663
Kurtosis 2.2769

Jarque Bera 230.081

Table 5.1-Descriptive statistics of exchange rate Xt

It emerges from this Table that the distribution of the exchange rate USD/EURO
does not seem to be normally distributed, because the sign of Skewness statistic is
negative for this series and we see well also that the Jarque-Bera statistic is widely
superior to the critical value of Chi-deux (5.991) at the 5% level of significance,
what brings us to believe that the distribution of our series is non normal, what is
a general characteristic of the financial series.

Figure 2 presents on the left the evolution of the daily exchange rate, on the
middle the trajectory of the daily returns of exchange rate and on the right the
autocorrelation function in absolute value of returns of exchange rate. The left
graph reveals the existence of an increase trend for the parity, from 2002 until

2 http://www.stls.frb.org/
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2008 year of financial and economic crisis, thus a priori a nonstationarity of
the series. Consequently, we need a test to confirm or invalidate this behavior of
nonstationarity. We use for that purpose, Augmented Dickey-Fuller (ADF) unit root.

Table 5.2 - Augmented Dickey-Fuller test on the logarithm of the parity3.

Parity lag order Statistic Prob significance level
p of the test 1% 5%

USD/EURO 6 -23.158 0.01 -3.9614 -3.4115

The logarithm of USD/EURO parity is not stationary in level and stationary in first
differency, of this fact the study will carry on the returns of USD/EURO parity.

The empirical autocorrelation function of the series, right graph, decrease in a slow
way towards positive values, what constitutes an indicator of the presence of long
memory. This slow decay can be explained by the second term of the relation (2.4)
in Mikosch and Stáricá (2004).
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Figure 2 : Evolution (top left), Trajectory (top middle) and ACF (top right).

5.2. Regime change

Table 5.3 presents the results of the identification test of intervals of homogeneity
(Starica and Granger (2005)). On the whole period considered, the studied series
seems to be more stable than over the last two years of our sample. Indeed, we
identify by means of the test several significant jumps over the period of study,
decomposing so the whole period in several periods where the unconditional
variance seems to be constant. We so identify the last interval of homogeneity from
10/08/2012 to 14/03/2014.

3 The choice of p was made by means of the criteria of Schwartz and Akaike.
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Table 5.3
Homogeneity intervals from 04/01/1999–14/03/2014

USD/EUR0
Statistic T Intervals

0.829 04/01/1999 - 07/09/2001
0.515 09/02/2001 - 01/11/2002
0.469 05/04/2002 - 21/03/2003
0.514 23/08/2002 - 08/08/2003
0.441 10/01/2003 - 26/12/2003
0.515 30/05/2003 - 01/10/2004
0.297 05/03/2004 - 08/07/2005
0.304 10/12/2004 - 26/10/2007
0.623 30/03/2007 - 25/09/2009
0.323 27/02/2009 - 26/08/2011
0.291 10/09/2010 - 01/06/2012
0.301 17/06/2011 - 26/07/2013
0.421 10/08/2012 - 14/03/2014

By putting p = 100 new points of data, s = 250 the size of subsample on which the
test is driven, m = 700 the size of the first block, the statistical homogeneity test
practiced on the subsample Xm+p−s, ..., Xm+p supplies a value of the identification
test T = 0.829 widely upper to the critical value at the risk α = 5%, what makes that
the block X1, ..., X700 cannot be extend to X1, ..., X800. So, from January, 1999, we
found the first interval of homogeneous data which corresponds to a subsample
of 700 data, what seems to be in agreement with the regular depreciation of the
Euro, as soon as its introduction in 1999, compared with the Dollar until 2001.
A structural change thus occurred according to our analysis between m = 700
and m = 800, what could correspond to the end of the abnormal depreciation
of the Euro face to face of the Dollar between 2000 and 2001. This change was
short because immediately we were up in the interval of homogeneity with the
subsample X550, ..., X1000. But of m = 1000 data, what would correspond with
the end of 2002 or the beginning of 2003, until m = 1400 which corresponds to
roughly at the beginning of 2004, we detected many structural changes on the
data. From 2004, aside some two changes which occurred between m = 1500
and m = 1600 and between m = 1700 and m = 1800, we found data which are
homogeneous for the mostly; this situation of the data a little bit similar to that
of before 2002, could correspond on the contrary to the appreciation of the Euro
opposite of the Dollar. We notice a change between m = 2300 and m = 2400 what
seems to correspond to the completion, in the second quarter 2008, of the bullish
movement introduced to the second quarter of 2002 with extreme points situated
at 0.8230 and at 1.6030 approximately. Then comes a break between m = 2800 and
m = 3000 situation which can be explained by the fall of the Euro in the beginning
summer 2010 reaching 1.1959 on 07/06/2010. Since then, we notice a certain form
of homogeneity to between m = 3400 and m = 3500 which correspond respectively
to the dates 12/01/2012 and 01/06/2012. This break between these two dates is
apparently connected to the resumption of the downward trend of the series in
May, 2012 reaching the minimal value 1.2062 on 24/07/2012. With the resumption
of the upward trend, the series seems to be homogeneous since 07/09/2012. It thus
seems that this series is really informative as regards the detection of structural
changes.
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5.3. Estimation

Studying the performance on simulated data, we verify the reliability of our model
on the real data. In Table 5.4, we report the parameters from the estimation of
different models using the estimation sample. The estimated models include the
two regimes RS-ARFIMA-GARCH model defined by equations (15) and (17), the
RS-ARFIMA, the RS-GARCH, the standard ARFIMA and the standard Markov
regime switching. The estimated value for d in ARFIMA model is 0.1808 and
significantly greater than 0, suggesting that the long memory is present. The
presence of a long memory in the series of exchange rate is in agreement with
the works of Booth and al. (1982) detecting such a phenomenon by means of
the analysis R/S or still those of Cheung (1993b) using the procedure R/S and
the method of estimation of the processes ARFIMA of Geweke and Porter-Hudak
(1983). The estimated values for α11 et α12 in RS-GARCH are α̂11 = 0.0236 and
α̂12 = 0.0817, indicate that the exhange rate has conditional volatility. Turning to
the RS-Markov model, estimates of p11 and p22 are significant and greater than
0.98. This suggests a significant regime-switching process, with a small frequency
to switch between states. Concerning the RS-ARFIMA-GARCH, estimated d is
0.1348. Since it is significantly greater than 0, the long memory is expected
to exist for the exchange rate USD/EURO. Comapred with the other estimated
values d from other models, we can see that the estimate of d is more small. As
to GARCH parameters, estimates of RS-ARFIMA-GARCH model are fairly close to
those of RS-GARCH model. In terms of p11 and p22, RS-ARFIMA-GARCH model
generates consistent estimates with those in RS-Markov model. In terms of model
performance evaluations, logarithm of likelihood, Akaike Information Criterion
(AIC) and Bayesian Information Criterion (BIC) all suggest that RS-ARFIMA-
GARCH model outperform all other models.
In conclusion, using the empirical results of the exchange rate USD/EURO, we
demonstrate that RS-ARFIMA-GARCH framework is capable of estimating the
true long memory parameter and identifying the nonstationarity. Compared with
ARFIMA model, it can control for the effects of regime switching and generate more
reliable estimate of long memory. It overall outperforms all the models which we
considered in this study and could be a widely useful tool for modeling financial
time series submitted to structural changes.

Table 5.4
Parity US/EURO

RS-ARFIMA-GARCH RS-ARFIMA RS-GARCH ARFIMA RS-Markov
St 1 2 1 2 1 2 One regime 1 2
pii 0.9924 0.9946 0.9938 0.9842 0.9969 0.9858 / 0.9986 0.9968
mi 0.02964 -0.02753 0.03156 -0.02573 0.02925 -0.02974 0.03267 0.02738 -0.01951
d 0.1348 0.1693 / 0.1826 /
α0i 0.0053 0.0241 / 0.0049 0.0256 / /
α1i 0.0345 0.0325 / 0.0316 0.0297 / /
β1i 0.8281 0.8516 / 0.8123 0.8537 / /
Ln 2429.75 2417.23 2419.31 2412.48 2425.30
AIC -4857.50 -4835.27 -4831.04 -4851.42 -4843.61
BIC -4552.93 -4547.32 -4529.61 -4431.57 -4446.03

Conclusion

In this work we are interested in a joint modeling of the nonstationarity and the
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long memory observed on processes supposed short memory stationary. In this
viewpoint, we have developed a regime-switching univariate RS-ARFIMA-GARCH
model for take into account this two phenomena. The model cannot be estimated
by the ML method because of the path dependence problem. To circumvent this
problem, we use a Bayesian Markov chain Monte Carlo (MCMC) algorithm. For
evaluate his capacity to describe the data, we have compare it with RS-ARFIMA,
RS-GARCH, standard ARFIMA and RS-Markov models. We have found that the
the RS-ARFIMA-GARCH framework for modeling financial time series submitted
to structural changes outperforms all these models which we considered in this
study.
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