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The1–categorical Eckmann–Hilton argument
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We define a reduced 1–operad P to be d –connected if the spaces P.n/ of n–ary
operations are d –connected for all n� 0 . Let P and Q be two reduced 1–operads.
We prove that if P is d1–connected and Q is d2–connected, then their Boardman–
Vogt tensor product P ˝Q is .d1Cd2C2/–connected. We consider this to be a
natural 1–categorical generalization of the classical Eckmann–Hilton argument.
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1 Introduction

Overview The classical Eckmann–Hilton argument (EHA), introduced in [10], states
that given a set X with two unital (ie having a two-sided unit) binary operations

ı;�W X �X !X;

if the two operations satisfy the “interchange law”

.a ı b/� .c ı d/D .a � c/ ı .b � d/ for all a; b; c; d 2X;

then they coincide and, moreover, this unique operation is associative and commutative.
Even though it is easy to prove, the EHA is very useful. The most familiar applications
are the commutativity of the higher homotopy groups of a space and the commutativity
of the fundamental group of an H –space.
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3120 Tomer M Schlank and Lior Yanovski

A natural language for discussing different types of algebraic structures and the inter-
actions between them is that of operads (by which, for now, we mean one-colored,
symmetric operads in sets). For example, the data of a unital binary operation on a
set X can be encoded as a structure of an algebra on X over a certain operad Uni.
Similarly, the data of a unital, associative and commutative binary operation on a set X
(namely the structure of a commutative monoid) can be encoded as an algebra structure
on X over the operad Com. Furthermore, the category of operads is equipped with a
tensor product operation, introduced by Boardman and Vogt [4], such that given two
operads P and Q, a .P˝Q/–algebra structure on a set X is equivalent to a P –algebra
structure and a Q–algebra structure on X, which satisfy a certain natural generalization
of the interchange law defined above. Specializing to the case at hand, one can rephrase
the EHA as

Uni˝Uni' Com:

Noting that Com is the terminal object in the category of operads (as all operation sets
are singletons), this formulation looks perhaps a bit less surprising than the classical
one. One can further observe that we can replace Uni by more general operads. We
call an operad P reduced if both the set of nullary and the set of unary operations of P
are singletons (ie there is a unique constant and it serves as a unit for all operations).
The classical proof of the EHA can be easily modified1 to show that given two reduced
operads P and Q whose n–ary operation sets are nonempty for all n, we have

P˝Q' Com:

We call this the “operadic formulation of the EHA”.

In many applications of the EHA, the two binary operations one starts with are actually
known to be associative in advance. This version, which of course follows from the
general EHA, can be stated as

Ass˝Ass' Com;

where Ass is the operad that classifies the structure of a (unital, associative) monoid.
For future reference, we call this “the associative EHA”.

The language of operads already helps in organizing and systematizing the study of
ordinary algebraic structures, but it is really indispensable for studying (and even
defining) enriched and homotopy coherent algebraic structures. To start with, by

1See eg Proposition 3.8 of Fiedorowicz and Vogt [11].
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replacing the sets of n–ary operations of an operad with spaces and requiring the
various composition and permutation maps to be continuous, one obtains the notion of a
topological operad. By further introducing an appropriate notion of a weak equivalence,
one can study homotopy coherent algebraic structures. A fundamental example of
such an object is the little n–cubes topological operad En for 0 � n � 1 (see eg
J P May [18]). Loosely speaking, the structure of an En–algebra on a space X can
be thought of as a continuous unital multiplication map on X for which associativity
holds up to a specified coherent homotopy and commutativity also holds up to a
specified coherent homotopy, but only up to “level n”.2 On a more technical level,
E1 and E1 can be interpreted as cofibrant models for Ass and Com, respectively, in
a suitable model structure on the category of topological operads (see eg Vogt [21]).
The sequence En serves as a kind of interpolation between them.

There are many approaches to modeling “homotopy coherent operads” (both one-
colored and multicolored). Among them, the original approach of May via specific
topological operads [18], via model structures (or partial versions thereof) on simplicial
operads — see Berkger and Moerdijk [3], Vogt [21], Cisinski and Moerdijk [8] and
Robertson [19] — or dendroidal sets/spaces — see Cisinski and Moerdijk [6; 7] — via
“operator categories” of C Barwick [2] — or intrinsically to .1; 1/–categories via
analytic monads — see Gepner, Haugseng and Kock [12] — or Day convolution; see
Haugseng [14]. We have chosen to work with the notion of 1–operads introduced
and developed by J Lurie [17] based on the theory of 1–categories introduced by
A Joyal [15] and extensively developed in Lurie [16].3 In this theory of 1–operads
(as in some of the others), there is a notion analogous to the Boardman–Vogt tensor
product and it is natural to ask whether there is also an analogue of the EHA. For the
associative EHA, one has the celebrated “additivity theorem”, proved by G Dunn in the
classical context [9] and by Lurie in the language of 1–operads [17, Theorem 5.1.2.2],
which states that for all integers m; k � 0, we have

Em˝Ek ' EmCk :

The goal of this paper is to state and prove an 1–categorical version of the classical
(nonassociative) EHA. The key observation about the operadic formulation of the
classical EHA is that both the hypothesis regarding the nonemptiness of the operation
sets of P and Q and the characterization of Com as having singleton operation sets

2The situation is slightly different for nD 0 as an E0–algebra is just a pointed space.
3See Chu, Haugseng and Heuts [5] for a discussion of the comparison of the different models.
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can be phrased in terms of connectivity bounds. For an integer d � �2, we say that a
reduced 1–operad P is d –connected if all of its operation spaces are d –connected.
We prove:

Theorem 1.0.1 Given integers d1; d2 � �2 and two reduced 1–operads P and Q
such that P is d1–connected and Q is d2–connected, the 1–operad P ˝ Q is
.d1Cd2C2/–connected.

Unlike in the classical case, our result does not imply the additivity theorem (or vice
versa), but the additivity theorem does demonstrate the sharpness of our result, since
En is .n�2/–connected for all n� 0.

We shall deduce our1–categorical version of the EHA from a “relative” version, which
might be of independent interest. For a reduced 1–operad P and an integer n� 0,
we denote by P.n/ the space of n–ary operations of P . We say that a map of spaces
is a d –equivalence if it induces a homotopy equivalence on d –truncations, and that a
map of reduced 1–operads P!Q is a d –equivalence if for every integer n� 0, the
map P.n/!Q.n/ is a d –equivalence.

Theorem 1.0.2 Let P ! Q be a d –equivalence of reduced 1–operads and let R
be a k–connected reduced 1–operad. The map P ˝R! Q˝R is a .dCkC2/–
equivalence.

This behavior of the Boardman–Vogt tensor product on reduced 1–operads is some-
what analogous to the behavior of the join operation on spaces. Given a map of spaces
X! Y that is a d –equivalence and a k–connected space Z , the map X ?Z! Y ?Z

is a .dCkC2/–equivalence. Incidentally, for the space of binary operations we have
.P˝R/.2/'P.2/?R.2/ (see [11, Proposition 4.8]), which relates the two phenomena.

Outline of the proof The proof of the classical EHA is straightforward. One simply
uses repeatedly the unitality and interchange law to deduce the various equalities. For
1–operads, the situation is considerably more complicated as all identities hold only up
to a specified coherent homotopy and keeping track of this large amount of data is very
difficult. Consequently, there is probably no hope of writing down an explicit formula
for the operation spaces of P˝Q in terms of those of P and Q, except for low degrees.
Therefore, as usual with 1–categories, one has to adopt a less direct approach.

The proof of Theorem 1.0.2 proceeds by a sequence of reductions, which we now sketch
in an informal way (we refer the reader to the end of this section for a list of notational
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conventions). An1–operad is called an essentially d –operad if all of its multimapping
spaces are homotopically .d�1/–truncated. With every 1–operad we can associate
an essentially d –operad, called its d –homotopy operad, by .d�1/–truncating the
multimapping spaces. This operation constitutes a left adjoint to the inclusion of the full
subcategory on essentially d –operads into the 1–category of 1–operads. Using this
adjunction and the Yoneda lemma, a map of1–operads f W P!Q is a d –equivalence
if and only if the induced map

Map.Q;R/!Map.P;R/

is a homotopy equivalence for every essentially .dC1/–operad R. Further analysis of
the monad associated with a reduced1–operad shows that when P and Q are reduced,
it is enough to check the above equivalence only for those R that are .dC1/–topoi
endowed with the cartesian symmetric monoidal structure.

Now let P!Q be a d –equivalence of reduced1–operads and let R be a k–connected
1–operad. We want to show that the map P˝R!Q˝R is a .dCkC2/–equivalence.
By the above reductions, it is enough to show that for every .dCkC3/–topos C
endowed with the cartesian symmetric monoidal structure, the induced map

Map.Q˝R; C/!Map.P˝R; C/

is a homotopy equivalence. A key property of the tensor product of 1–operads is that
it endows the 1–category of 1–operads with a symmetric monoidal structure that
is closed. Namely, for every 1–operad O , there is an internal hom functor AlgO.�/

that is right adjoint to the tensor product �˝O .4 It is therefore enough to show that
the map

Map.Q;AlgR.C//!Map.P;AlgR.C//

is a homotopy equivalence. Let Triv be the trivial operad. There are essentially unique
maps Triv! P and Triv!Q that induce a commutative triangle

Map.Q;AlgR.C//

))

// Map.P;AlgR.C//

uu

Map.Triv;AlgR.C//' AlgR.C/'

4It is necessary to work here with multicolored operads as developed in [17], since even though the full
subcategory of one-colored, or even reduced, 1–operads is closed under the tensor product, the induced
symmetric monoidal structure would not be closed.
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and it is enough to show that the top map induces an equivalence on the fibers over each
object X of AlgR.C/. Fixing such an X, the fiber of the left map consists of the space of
ways to endow X with the structure of a Q–algebra. Since Q is reduced, one can show
that this is the space of maps from Q to the so-called “reduced endomorphism operad
of X ”. This is a reduced 1–operad Endred.X/ whose space of n–ary operations is
roughly the space of maps Xn ! X for which plugging the unique constant in all
entries but one produces the identity map of X. More formally, we have a homotopy
fiber sequence

Endred.X/.n/!Map.Xn; X/!Map.Xtn; X/

over the fold map rW Xtn!X. Consequently, by applying analogous reasoning to P
and some naturality properties, we are reduced to showing that for all X in AlgR.C/,
the induced map

Map.Q;Endred.X//!Map.P;Endred.X//

is a homotopy equivalence. Since P!Q is a d –equivalence, it will suffice to show
that Endred.X/ is an essentially .dC1/–operad. Namely, we need only to show that
the spaces Endred.X/.n/ are d –truncated. Using the homotopy fiber sequence above,
we may present Endred.X/.n/ as the space of lifts in the commutative square

Xtn

��

r
// X

��

Xn //

==

pt

The underlying1–category of AlgR.C/ is an essentially .dCkC3/–category (since C
is); hence the right vertical map is .dCkC2/–truncated. We show that in a general
presentable 1–category, the space of lifts of an n–connected map against an m–
truncated map is .m�n�2/–truncated. It is therefore enough to show that the map
Xtn!Xn is k–connected in AlgR.C/. Under suitable conditions, which are satisfied
in our situation, the k–connectedness of a map of algebras over an 1–operad can be
detected on the level of the underlying objects. Using the fact that C is an 1–topos
we are reduced to proving that the map Xtn!Xn has a section and that it becomes
an equivalence after k–truncation in C . For the first assertion, we show that one can
construct a section rather easily using any n–ary operation of R for n� 2. The second
assertion follows from the fact that R itself is k–connected, and so, roughly speaking,
after k–truncation we can replace R with E1 and the coproduct of E1–algebras
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coincides with the product. The 1–categorical EHA now follows easily from this by
taking QD E1 .

Organization The paper is organized as follows. In Section 2, we develop some
general theory regarding reduced (and unital) 1–operads. The first theme is the
construction and analysis of the reduced endomorphism operad. The second is an
explicit formula for the associated map of monads induced from a map of reduced
1–operads.

In Section 3, we recall from Schlank and Yanovski [20] some basic definitions and
properties of essentially d –categories (and operads), as well as the notion of a d –
homotopy category (and operad). We then proceed to prove that a map of 1–operads
is a d –equivalence if and only if it induces an equivalence on the spaces of algebras in
every .dC1/–topos endowed with the cartesian symmetric monoidal structure.

In Section 4, we prove some general results regarding the notions of d –connected and
d –truncated morphisms in presentable 1–categories.

In Section 5 we prove the main results of the paper. In particular we prove Theorem 1.0.2
and the 1–categorical Eckmann–Hilton argument as a corollary. We also include a
couple of simple applications.

For a more detailed outline we refer the reader to the introduction of each section.

Much of the length of the paper is due to the careful and detailed verification of
many lemmas in 1–category theory, whose proofs are arguably straightforward but
nonetheless do not appear in the literature. This refers mainly to the material up to
Section 4.3, from which the main theorems are Propositions 2.2.9, 3.1.8 and 3.2.6.
Having said that, we believe that the theory and language of 1–categories in general
and 1–operads in particular is still in an early enough stage of development to justify
full detailed proofs of every claim that has no reference (known to the authors) in the
literature. Hopefully, the added value in terms of rigor and accessibility to nonexperts
compensates for the loss in brevity and elegance of exposition.

Conventions We work in the setting of 1–categories (aka quasicategories) and 1–
operads, relying heavily on the results of [16; 17]. As a rule, we follow the notation
of [16; 17] whenever possible. However, we supplement this notation and deviate from
it in several cases in which we believe this enhances readability. In particular:

(1) We abuse notation by identifying an ordinary category C with its nerve N.C/.
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(2) We use the symbol ptC to denote the terminal object of an 1–category C (or
just pt if C is clear from the context).

(3) We abbreviate the data of an 1–operad pW O˝! Fin� by O and reserve the
notation O˝ for the 1–category that is the source of p . Similarly, given two
1–operads O and U , we write f W O! U for a map of 1–operads from O
to U . The underlying 1–category of O , which in [17] is denoted by O˝

h1i
, is

here denoted by O .

(4) When the 1–operad is a symmetric monoidal 1–category, we usually denote it
by C or D . We will sometimes abuse notation and write C also for the underlying
1–category C when there is no chance of confusion.

(5) By a presentably symmetric monoidal 1–category we mean a symmetric
monoidal1–category C such that the underlying1–category C is a presentable
1–category and the tensor product preserves colimits separately in each variable.

(6) Given two 1–operads O and U , we denote by AlgO.U/ the 1–operad

AlgO.U/
˝
! Fin�

from [17, Example 3.2.4.4]. This is the internal mapping object induced from
the closed symmetric monoidal structure on Op1 (see [17, 2.2.5.13]). The
underlying 1–category AlgO.U/ is the usual 1–category of O–algebras in U
(which in [17] is denoted by AlgO.U/). Moreover, the maximal Kan subcomplex
AlgO.U/' is the space of morphisms MapOp1.O;U/ from O to U as objects of
the 1–category Op1 . Recall from [17, 3.2.4.4] that for a symmetric monoidal
1–category C , the 1–operad AlgO.C/ is again symmetric monoidal and for
every object X 2O , the evaluation functors evX W AlgO.C/! C are symmetric
monoidal functors.

(7) Let C be an 1–category. We denote the corresponding cocartesian 1–operad
Ct! Fin� by Ct (see [17, Definition 2.4.3.7]). If C has all finite products, we
denote the cartesian symmetric monoidal 1–category C�! Fin� by C� (see
[17, Construction 2.4.1.4]).
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as all the participants of the Seminarak group, for useful discussions about the subject
of this paper. We also thank the referee for helpful comments and corrections. Schlank
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2 Reduced1–operads

In this section we develop some general theory of unital and reduced 1–operads. In
Section 2.1 we establish some formal results for adjunctions and under categories.
In Section 2.2 we specialize the results of Section 2.1 to prove that the inclusion of
reduced 1–operads into pointed unital 1–operads admits a right adjoint, and analyze
it. More precisely, given a unital 1–operad O and an object X 2 O we define a
reduced 1–operad Endred

O .X/, which we call the reduced endomorphism operad of X,
and show that it satisfies a universal property. Moreover, we give an explicit description
of Endred

C .X/, which will be fundamental in analyzing the truncatedness of its spaces
of operations.

In Section 2.3 we discuss the underlying symmetric sequence of a reduced 1–operad
and in Section 2.4 we use it to write an explicit formula for the free algebra over an
1–operad (this is essentially a reformulation of [17, 3.1.3]). The material of the last
two subsections is well known in the 1–categorical setting and will come as no surprise
to anyone familiar with the subject. We note that in [14], Haugseng develops a theory
of 1–operads using this approach and compares it with other models including Lurie’s
1–operads, though, as far as we know, the precise results for algebras have not been
furnished yet. Thus, we take it upon ourselves to flesh out the details of the little part
of this theory that is required for our purposes.

2.1 Adjunctions and under-categories

We begin with some formal general observations on adjunctions and under-categories.

Lemma 2.1.1 Let RW D� C WL be an adjunction between 1–categories. For every
object X 2 C there is a canonical equivalence of 1–categories DL.X/= ' D�C CX= .

Proof We denote the 1–category D �C CX= by DX= . Let �W X ! RL.X/ be the
X –component of the unit of the adjunction L aR . By [16, 2.1.2.1], the projections
p0W C�=! CX= and p1W C�=! CRL.X/= are left fibrations. Moreover, since �f1g ,!�1

is right anodyne, the map p1 is an equivalence of 1–categories. By [16, 2.2.3.3],
we can choose an inverse p�11 W CRL.X/=! C�= to p1 that strictly commutes with the
projections to C . We obtain a commutative diagram of simplicial sets
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DL.X/=

��

// CRL.X/=

��

p0p
�1
1
// CX=

��

D // C // C

There is an induced map from the upper left corner to the pullback of the outer rectangle
without the upper left corner, which is another commutative diagram of simplicial sets

DL.X/= //

##

DX=

}}

D

Since left fibrations are closed under base change [16, 2.1.2.1], the vertical maps are
left fibrations over D . Hence, to show that the top map is an equivalence it is enough
to show that the induced map on fibers is a homotopy equivalence [16, 2.2.3.3]. For
every Y 2 D we get a map

MapRD.L.X/; Y /!MapRC .X;R.Y //;

which is by construction obtained by applying the functor R and precomposing with
the unit �W X !RL.X/. By the universal property of the unit map this is a homotopy
equivalence for all Y 2 D and therefore the map DL.X/=! DX= is an equivalence of
1–categories.

Lemma 2.1.2 Let LW C� D WR be an adjunction of 1–categories and let X 2 C .
The induced functor

LX W CX=! DL.X/=

has a right adjoint RX . Moreover, if R is fully faithful, then RX is also fully faithful.

Proof Let pWM! �1 be the cocartesian fibration associated with the functor L
(which is also cartesian, since L has a right adjoint). We can assume that we have a
commutative diagram

�1 � C s
//

##

M

p
~~

�1

such that sj�f0g�C D Id, sj�f1g�C D L and sj�1�fXg is a cocartesian edge of M for
every X 2 C (combine [16, 5.2.1.1 and 5.2.1.3]). It is clear from [16, 1.2.9.2] that
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for any pair of 1–categories with objects X 2 C and Y 2 D there is a canonical
isomorphism

.C �D/.X;Y /= ' CX= �DY=:

Hence, we get an induced commutative diagram

�1 � CX= ' .�1 � C/.0;X/=
s

//

))

MX=

pX
zz

�1 '�1
0=

The functor pX is a cartesian and cocartesian fibration by the duals of [16, 2.4.3.1(1)
and 2.4.3.2(1)]. Moreover, an edge in MX= is (co)cartesian if and only if its projection
to M is (co)cartesian by the duals of [16, 2.4.3.1(2) and 2.4.3.2(2)], which shows that
the functor LX is associated with pX . It follows that LX has a right adjoint RX .

Assuming that R is fully faithful, we will show that RX is fully faithful by showing
that the counit of the adjunction LX a RX is an equivalence. For every object, the
counit map is an edge of MX= . Since the projection MX=!M is conservative, it is
enough to show that the counit map of LX aRX is mapped to the counit map of LaR .
Indeed, for an object Y 2 D 'Mj�f1g , we choose a cartesian edge eW R.Y /! Y

and a cocartesian edge d W R.Y /! L.R.Y //, and combine them into a commutative
diagram of the form

ƒ20
f
//

��

M

p

��

�2 // �1

where f j�f0;1g D d and f j�f0;2g D e . Since d is cocartesian, there exists a lift
xf W �2!M that gives an edge

xf j�f1;2g D cW L.R.Y //! Y

that is isomorphic to the counit map of the adjunction L a R at Y in the homotopy
category hD . We can similarly construct the counit map for an object of MX= . The
assertion now follows from the above characterization of (co)cartesian edges in MX= .

Lemma 2.1.3 Let F W C! D be a functor that preserves pullbacks; then FX W CX=!
DF.X/= also preserves pullbacks.
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Proof Consider the commutative square

CX= //

��

DF.X/=

��

C // D

The vertical functors and the bottom horizontal functor preserve pullbacks. The right
vertical functor is conservative. It follows that the top horizontal functor preserves
pullbacks as well.

Definition 2.1.4 Let F W C! D be a functor between 1–categories. We say that an
object Y is reduced if F.Y / is initial in D . We define Cred to be the full subcategory
of C spanned by the reduced objects (F will always be clear from the context when
we employ this terminology).

Proposition 2.1.5 Let LW C� D WR be an adjunction between 1–categories. As-
sume that C admits and L preserves pullbacks, that D admits an initial object, and that
R is fully faithful. For every object Y 2 C we consider the pullback diagram

Y red

��

// Y

��

R.¿D/ // RL.Y /

where the right vertical map is the unit map of Y and the bottom horizontal map is
the image under R of the essentially unique map ¿D ! L.Y /. The top horizontal
map �W Y red! Y exhibits Y red as a colocalization of Y with respect to Cred (dual to
[16, 5.2.7.6]).

Proof First, we show that Y red is in fact reduced. Applying L to the defining diagram
of Y red and using the fact that L preserves pullbacks, we see that the map L.Y red/!

LR.¿/ is the pullback of the map L.Y /! LRL.Y /, which is an equivalence (from
the fact that the counit LR.Y /! Y is an equivalence, the zigzag identities and the
2-out-of-3 property). It follows that the map L.Y red/!LR.¿/ is an equivalence, but
LR.¿/!¿ is an equivalence as well (since R is fully faithful) and we are done.

Now, we show that � is a colocalization. Let Z be a reduced object. We have a
homotopy pullback diagram of spaces
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Map.Z; Y red/

��

// Map.Z; Y /

��

Map.Z;R.¿// // Map.Z;RL.Y //

and we note that the space of maps from a reduced object to any object in the essential
image of R is contractible.

Corollary 2.1.6 In the setting of Proposition 2.1.5, the inclusion Cred ,! C admits a
right adjoint and the colocalization map Y red! Y can be taken to be the counit of the
adjunction at Y .

Proof This follows from Proposition 2.1.5 and the dual of [16, 5.2.7.8].

2.2 Pointed unital and reduced 1–operads

Recall from [17] the following definitions:

Definition 2.2.1 [17, 2.3.1.1 and 2.3.4.1] An 1–operad O is called:

(1) Unital if for every object X of O , the space of constants MulO.¿; X/ is con-
tractible. We denote the full 1–category spanned by the unital 1–operads
by Opun

1 .

(2) Reduced if it is unital and the underlying 1–category is a contractible space.
We denote the full 1–category spanned by the reduced 1–operads by Opred

1 .

Example 2.2.2 A symmetric monoidal 1–category is unital if and only if the unit
object is initial.

We proceed by listing the various adjunctions between the different 1–categories
of 1–operads and 1–categories. First, recall from [17, 2.1.4.10] that there is an
underlying 1–category functor .�/W Op1! Cat1 and that this functor has a left
adjoint �W Cat1 ,!Op1 , which is a fully faithful embedding. Informally, � regards
an 1–category as an 1–operad with empty higher (and nullary) multimapping spaces.
On the other hand:

Lemma 2.2.3 The restriction of the forgetful functor .�/W Opun
1! Cat1 admits a

right adjoint that takes every 1–category C to the cocartesian 1–operad Ct and the
unit map of the adjunction Ct! C is an equivalence (ie .�/t is fully faithful ).
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Proof The first claim follows from [17, 2.4.3.9] by passing to maximal 1–sub-
groupoids. The second claim follows from [17, 2.4.3.11].

By [17, 2.3.1.9], the fully faithful embedding Opun
1 ,!Op1 has a left adjoint given

by tensoring with E0 (which is a localization functor). From this follows:

Lemma 2.2.4 E0 is the initial object of Opred
1 .

Proof The composition of forgetful functors

Opun
1!Op1! Cat1

has a left adjoint given as the composition of the corresponding left adjoints. The first
one takes �0 to Triv (by [17, 2.1.4.8]) and the second takes Triv to Triv˝E0 ' E0
(by [17, 2.3.1.9]). Hence, for every reduced operad P (which is in particular unital),
we get

Map.E0;P/'Map.�0;P/' P' '�0:

One source of unital symmetric monoidal 1–categories is:

Lemma 2.2.5 Let Q be a unital 1–operad and let C be a symmetric monoidal
1–category. The symmetric monoidal 1–category AlgQ.C/ is also unital.

Proof By [17, 3.2.4.4], the 1–operad AlgQ.C/˝ ! Fin� is also a symmetric
monoidal 1–category and so we only need to show that the unit object of AlgQ.C/
is initial. Since Q is unital, the canonical map Q! E0 ˝Q is an equivalence of
1–operads (by [17, 2.3.1.9]) and therefore the forgetful functor

AlgE0˝Q.C/' AlgE0.AlgQ.C//! AlgQ.C/

is an equivalence of 1–categories. On the other hand, by [17, 2.1.3.10] we have

AlgE0.AlgQ.C//' AlgQ.C/1=;

where 1 2 AlgQ.C/ is the unit object and the projection AlgQ.C/1=! AlgQ.C/ is an
equivalence of 1–categories if and only if 1 is initial [16, 1.2.12.5].

Definition 2.2.6 The 1–category of pointed 1–categories is denoted by Cat1;� D
.Cat1/�0= . The 1–category of pointed 1–operads is denoted by

Op1;� DOp1 �Cat1 Cat1;�:

We also denote by Opun
1;� and Opred

1;� the corresponding 1–categories of pointed
unital (resp. reduced) 1–operads.
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Remark 2.2.7 By Lemma 2.1.1, we have an equivalence of 1–categories Op1;� '
.Op1/Triv= . Since Triv ! E0 is an equivalence after tensoring with E0 , we get
Opun
1;� ' .Opun

1/E0= and therefore also Opred
1;� ' .Opred

1 /E0= . We allow ourselves to
pass freely between the two points of view on (unital, reduced) pointed 1–operads.

Remark 2.2.8 By Lemma 2.2.4, the projection Opred
1;�! Opred

1 is an equivalence.
Hence, the inclusion Opred

1 ,!Opun
1 induces a functor

Opred
1 'Opred

1;� ,!Opun
1;�:

Moreover, it exhibits Opred
1 as the full subcategory of Opun

1;� spanned by the reduced
objects with respect to the underlying 1–category functor .�/W Opun

1;�! Cat1 in
the sense of Definition 2.1.4. Thus, the two notions of “reduced 1–operad” coincide.

We now apply the general observations from the previous subsection to deduce the
following:

Proposition 2.2.9 The inclusion

Opred
1 'Opred

1;� ,!Opun
1;�

has a right adjoint .�/red . Moreover, for a pointed unital 1–operad Q the value of
the right adjoint is given by the pullback

Qred //

��

Q

��

E1 // Qt

in the 1–category Opun
1;� . Furthermore, the top map can be taken to be the counit of

the adjunction at Q.

Proof We need to verify the hypothesis of Proposition 2.1.5. The underlying 1–
category functor LW Opun

1!Cat1 is a composition of two functors Opun
1!Op1!

Cat1 . The first is a right adjoint by [17, 2.3.1.9] and the second is a right adjoint by
[17, 2.1.4.10]. Hence, the composition is a right adjoint as well and therefore preserves
limits. Moreover, by Lemma 2.2.3, L is also a left adjoint and its right adjoint is
fully faithful. Hence, the functor Opun

1;� ! Cat1;� also has a fully faithful right
adjoint and we have .Opun

1;�/
red'Opred

1;� . Finally, by Proposition 2.1.5, the inclusion
Opred
1 'Opred

1;� ,!Opun
1;� admits a right adjoint with the stated description.
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Definition 2.2.10 A unital 1–operad Q and an object X 2Q determine a pointed
unital1–operad QX 2Opun

1;� . We write Endred
Q .X/ WD .QX /red and call it the reduced

endomorphism 1–operad of X in Q.

We can describe the reduced 1–operad Endred
Q .X/ informally as follows. For every

m 2N , denote by X .m/ the m–tuple .X; : : : ; X/. The space of m–ary operations is
the “subspace” of MulQ.X .m/; X/ of those maps that are reduced in the sense that
plugging the unique constant in all arguments but one results in an identity morphism
X !X. We end this subsection by making the above description precise in a special
case of a symmetric monoidal 1–category. For this, we first need to analyze the way
multimapping spaces interact with limits of 1–operads.

For every integer m, there is a functor hG.m/W hOp1;�! hS , that takes each 1–
operad P pointed by an object X to the space MulP.X .m/; X/ and a map of pointed
1–operads f W P!Q to the homotopy class of the induced map on multimapping
spaces MulP.X .m/; X/!MulQ.f .X/.m/; f .X//.

Lemma 2.2.11 For every integer m, there is a limit-preserving functor

G.m/W Op1;�! S

that lifts the functor hG.m/W hOp1;�! hS .

Proof Recall the combinatorial simplicial model category POp1 of 1–preoperads,
whose underlying 1–category is Op1 (see [17, 2.1.4]). Let Z0 � Z1 � Fin� be the
following subcategories:

(1) The category Z0 is discrete and contains only the objects h1i and hmi.

(2) The category Z1 contains Z0 together with a unique nonidentity morphism,
which is the active map ˛W hmi ! h1i.

We endow Z0 and Z1 with the induced (trivial) marking. Unwinding the definition, for
any 1–operad P , the simplicial set MapPOp1.Z0;P

\/ is isomorphic to P'
hmi
�P'
h1i

.
Moreover, given

X D .X1˚ � � �˚Xm; Y / 2 P'hmi �P'
h1i;

the fiber of the fibration (hence also the homotopy fiber)

'P W MapPOp1.Z1;P
\/!MapPOp1.Z0;P

\/' P'
hmi �P'

h1i
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over X is homotopy equivalent to the multimapping space MulP.fX1; : : : ; XmgIY /.
Let Z0 and Z1 be1–operads that are fibrant replacements of Z0 and Z1 , respectively.
Moreover, let f W Z0 ! Z1 be a map corresponding to the inclusion Z0 ,! Z1 .
The functor F W .Op1/Z0= ! S , corepresented by f W Z0 ! Z1 , preserves limits.
Furthermore, its value on gW Z0! P fits by [16, 5.5.5.12] into a fiber sequence

F.P/

��

// Map.Z1;P/

��

�0
Œg�

// Map.Z0;P/

which therefore identifies F.P/ with MulP.fX1; : : : ; XmgIY / for the objects X1 , : : : ,
Xm; Y 2 P determined by g .

Let U W Op1;�! .Op1/Z0= be the functor induced from the map Z0! Triv cor-
responding to the inclusion Z0 ,! Triv. By [16, 1.2.13.8], the functor U preserves
limits. We define G.m/W Op1;�!S to be the composition of F and U, which is limit-
preserving as a composition of limit-preserving functors. Unwinding the definitions,
G.m/ indeed lifts hG.m/ .

Let C be a symmetric monoidal 1–category that is unital as an 1–operad (ie the
unit is an initial object). For every X 2 C and m 2 N we have a canonical map
� W Xtm!X˝m defined as follows. For k D 1; : : : ; m, on the kth summand of Xtm

the map is the tensor product of m maps, where the kth one is X Id
�!X and the rest

are the unique map 1C!X.

Lemma 2.2.12 Let C be a symmetric monoidal 1–category that is unital as an 1–
operad and that admits finite coproducts. For every X 2 C and every m 2N , there is a
fiber sequence

Endred
C .X/.m/!MapC.X

˝m; X/ �
�

�!MapC.X
tm; X/;

where the fiber is taken over the fold map rW Xtm!X.

Proof By Proposition 2.2.9 we have a pullback square of pointed unital 1–operads

Endred
C .X/ //

��

C

��

E1 // Ct
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which, by Lemma 2.2.11, induces a pullback square of multimapping spaces

Endred
C .X/.m/ //

��

MulC.X .m/; X/

��

E1.m/ // MulCt.X
.m/; X/

The bottom map is the map �0!MapC.X
tm; X/ that chooses the fold map since it

is induced from the map E1 D .�0/t! Ct . The right vertical map is induced by
precomposition with the map � W Xtm!X˝m , since it is induced by the adjunction

.�/tW Cat1�Opun
1 W.�/:

2.3 Symmetric sequences

There is another perspective on reduced 1–operads provided by the notion of a
symmetric sequence. Roughly speaking, a symmetric sequence is a sequence of †n–
spaces Xn for n � 0, where †n is the symmetric group on n elements. From an
1–operad O with an object X 2O one can construct a symmetric sequence of spaces
by

O.n/DMulO.X .n/IX/;

where the action of †n comes from permuting the inputs. For our purposes it is
convenient to use the following model:

Definition 2.3.1 Let Fin denote the skeletal version of the category of finite sets, ie
the full subcategory of Set spanned by the objects Œn�D f1; : : : ; ng for each integer n.
We define the 1–category of symmetric sequences (in spaces), denoted by SSeq, to
be S=Fin' .

Remark 2.3.2 (1) The inclusion of the full subcategory SKan
=Fin' � S=Fin' spanned

by Kan fibrations is an equivalence of1–categories and the straightening functor
of [16] induces an equivalence of 1–categories SKan

=Fin' ' Fun.Fin';S/. Since
Fin' is equivalent to the disjoint union of classifying spaces of the symmetric
groups †n , we get

SSeq' Fun
�a
n�0

B†n;S
�
'

Y
n�0

Fun.B†n;S/:

More explicitly, given a symmetric sequence pW S ! Fin' , taking pullback
along the map �0! Fin' that corresponds to the object Œn� 2 Fin' , we obtain
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a space S.n/ that is the underlying space of the †n–space on the right-hand
side of the above equivalence.

(2) In relating1–operads to symmetric sequences it is useful to note that the functor
Fin! Fin� , which adds a basepoint, induces an isomorphism of groupoids
Fin' ��! Fin'� . Moreover, Fin'� is isomorphic to Triv˝act (see the notation in
[16, 3.1.1.1]).

We next define the underlying symmetric sequence of a pointed 1–operad OX , which
is given by a map Triv!O such that X is the image of h1i 2Triv (see Remark 2.2.7).

Definition 2.3.3 Given a pointed 1–operad OX , we define its underlying symmetric
sequence to be

pW Triv˝act �O˝act
.O˝act/=X ! Triv˝act ' Fin'

and denote it by OX;SSeq . By analogy with 1–operads, we denote by O˝X;SSeq the
source of p .

Lemma 2.3.4 Given a pointed 1–operad OX , the map

pW Triv˝act �O˝act
.O˝act/=X ! Triv˝act ' Fin'

is a Kan fibration.

Proof Since p is a pullback of the right fibration .O˝act/=X !O˝act it is itself a right
fibration. The simplicial set Triv˝act is isomorphic to Fin' and is in particular a Kan
complex. By [16, 2.1.3.3] the map p is a Kan fibration.

Definition 2.3.3 relates to the informal description at the beginning of the subsection
by:

Lemma 2.3.5 Given a pointed 1–operad OX , there is a homotopy equivalence

OX;SSeq.n/'MulO.X .n/IX/;

which is natural in OX .

Proof This follows directly from unwinding Definition 2.3.3.

Let f W Triv!O be a pointed 1–operad and let pW O! U be a map of 1–operads.
Consider U as pointed by the composition pıf . Let X D f .h1i/ and Y Dp.f .h1i//.
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The (1–categorical) functoriality of the formula in Lemma 2.3.4 induces a map of
symmetric sequences

Triv˝act �O˝act
.O˝act/=X ! Triv˝act �U˝act

.U˝act/=Y :

One can verify that this yields a functor on the level of homotopy categories

.�/SSeqW h.Op1/Triv=! hSSeq:

It will be important in what follows to know the following:

Proposition 2.3.6 The functor .�/SSeq is conservative.

Proof Let gW P!Q be a map of reduced 1–operads such that gSSeq is an equiva-
lence. The map g is defined by a commutative triangle

P˝

""

g˝
// Q˝

||

Fin�

To show that g is an equivalence of 1–operads, we need to show that g˝ is an
equivalence of 1–categories. Since P and Q are reduced, it is clear that g˝ is
essentially surjective. To show that g˝ is fully faithful, we can use the Segal conditions
to reduce this to showing that the map

P.n/DMulP.�.n/;�/!MulQ.�.n/;�/DQ.n/

is a homotopy equivalence for all n. By Lemma 2.3.5, those maps are induced by the
equivalence gSSeq and therefore are equivalences.

Remark 2.3.7 It is possible to lift .�/SSeq to a functor of 1–categories, but a bit
tedious to do so. We shall be content with the above weaker version as it will suffice
for our applications.

2.4 Free algebras

The symmetric sequence underlying a reduced1–operad P features in the construction
of free P–algebras. In what follows we briefly recall and summarize the material of
[17, 3.1.3] specialized to the setting that is of interest to us. That is, let P be a reduced
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1–operad and let pW C˝! Fin� be a presentably symmetric monoidal 1–category.
By [17, 3.1.3.5] the forgetful functor

UP W AlgP.C/! AlgTriv.C/' C

admits a left adjoint FP (the free P –algebra functor) that can be characterized as follows.
By [17, Definition 3.1.3.1], for every object X 2C we get a diagram PSSeq.X/W P˝SSeq!

C˝act that, loosely speaking, corresponds to a sequence of maps PSSeq.n/! C˝act such
that each map lands in the connected component of X˝n and is †n–equivariant in the
evident way. Furthermore, a map f W X ! UP.A/ in C gives a lift of P˝SSeq.X/ to a
cone diagram

P˝SSeq.f /W P
˝
SSeq! .C˝act/=UP.A/:

We say that f exhibits A as the free P–algebra on X if P˝SSeq.f / is an operadic
p–colimit diagram. By [17, 3.1.3.2 and 3.1.3.5], such a map f exists for every X and
can be taken as the X –component of a unit natural transformation for an adjunction
FP a UP .

Using our assumption on C , we can reduce the operadic colimit in the above discussion
to an ordinary colimit in C . Consider the commutative diagram

�f0g � C˝
� _

��

Id
// C˝

p

��

�1 � C˝ ˛
//

x̨

::

Fin�

where ˛ is a natural transformation from p to the constant diagram on h1i that consists
of active morphisms. Let x̨ be a cocartesian natural transformation that lifts ˛ . The
restricted functor F D x̨j

�f1g�C˝act
lands in the fiber over h1i and is therefore a functor

F W C˝act! C .

Remark 2.4.1 Informally speaking, F takes each multiobject X1˚ � � �˚Xn to the
tensor product X1˝ � � �˝Xn . There are two abstract characterizations of F (which
we shall not use):

(1) It is the left adjoint of the inclusion C ,! C˝act .

(2) The symmetric monoidal envelope is a left adjoint to the inclusion of symmetric
monoidal 1–categories into 1–operads. The functor F is the induced functor
on the underlying 1–categories of the unit of this adjunction at the object C .
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By [17, 3.1.1.15 and 3.1.1.16], P˝SSeq.f / is an operadic p–colimit diagram if and only
if the diagram PSSeq.f /D F ıP˝SSeq.f / is a colimit diagram in C . In particular, we
get:

Lemma 2.4.2 Let P be a reduced 1–operad and let C be a presentably symmetric
monoidal 1–category. The forgetful functor

UP W AlgP.C/! AlgTriv.C/' C

admits a left adjoint FP and the associated monad TP D UP ıFP acts on an object
X 2 C as follows:

TP.X/D UPFP.X/D colimPSSeq.X/D
a
n�0

.P.n/˝X˝n/h†n

(where we let ˝ denote the canonical enrichment of C over S as well).

Our next goal is to articulate the functoriality of TP in the 1–operad P .

Construction 2.4.3 Given a map of reduced 1–operads P!Q we get a forgetful
functor GW AlgQ.C/! AlgP.C/ such that UPG D UQ . The unit map

Id! UQFQ D UPGFQ

has an adjunct FP ! GFQ and by applying UP we obtain an induced map of the
associated monads (as endofunctors of C ),

˛G W TP D UPFP ! UPGFQ D UQFQ D TQ;

which is well defined up to homotopy.

Lemma 2.4.4 In the setting of Construction 2.4.3, if G is an equivalence of 1–
categories, then the map ˛G W TP ! TQ is a natural equivalence of functors.

Proof Since all the steps in the construction are invariant, we may assume without
loss of generality that G is the identity functor and UP DUQ . In this case, the map ˛G
is given by applying UQ to the composition

FQ
FQu
��! FQUQFQ

cFQ
��! FQ;

where u and c are the unit and counit of the adjunction FQ a UQ . This composition
is homotopic to the identity by the zigzag identities.
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Our last task is to show that the map from Construction 2.4.3 is induced from the map
of symmetric sequences PSSeq! QSSeq by the functoriality of the explicit formula
given in Lemma 2.4.2.

Lemma 2.4.5 Given a map f W X ! UP.A/, the map colimPSSeq.X/ ! UP.A/

induced by the diagram PSSeq.f / is equivalent to the canonical map zf W UPFP.X/!

UP.A/ (ie UP of the adjunct of f ).

Proof One only has to observe that the map zf W UPFP.X/!UP.A/ is a map of cones
on PSSeq.X/. Let uX W X!UPFP.X/ be the unit map of the free-forgetful adjunction
at X. The adjunct map FP.X/!A induces a map zf FW .C˝act/=UPFP.X/! .C˝act/=UP.A/ .
Inspecting [17, Construction 3.1.3.1], it can be seen that the cone diagram PSSeq.f / is
equivalent to the composition of the universal cone diagram PSSeq.uX / and zf F .

From this we get:

Proposition 2.4.6 Let gW P ! Q be a map of reduced 1–operads and let C be a
presentably symmetric monoidal 1–category. For every object X 2 C , the induced
map of the associated monads

TP.X/D colimPSSeq.X/! colimQSSeq.X/D TQ.X/

is equivalent to the canonical map on colimits that is induced by precomposition with

gSSeqW PSSeq!QSSeq:

Proof We denote by GW AlgQ.C/! AlgP.C/ the forgetful functor induced by the
map g . Let

f W X ! UQFQ.X/' UPGFQ.X/

be the unit map. It induces a cone diagram

PSSeq.f /W PSSeq! C=UQFQ.X/

and, by Lemma 2.4.5, the associated map zf W UPFP.X/! UQFQ.X/ is equivalent to
the map colimPSSeq.X/! UQFQ.X/ specified by the cone diagram PSSeq.f /. On
the other hand, inspecting [17, Construction 3.1.3.1], it can be seen that the diagram
PSSeq.f / is obtained from the diagram

QSSeq.f /W QSSeq! C=UQFQ.X/

by precomposition with gSSeqW PSSeq!QSSeq and that QSSeq.f / exhibits UQFQ.X/

as the colimit of QSSeq.X/. Thus, we get the desired equivalence.
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3 d –Categories and d –operads

This section deals with essentially d –categories, ie1–categories all of whose mapping
spaces are .d�1/–truncated (Definition 3.1.2), and with the analogous notion for 1–
operads (Definition 3.1.6).

In Section 3.1 we discuss the fact that the inclusion of the full subcategory spanned
by the essentially d –categories (resp. d –operads) into Cat1 (resp. Op1 ) admits a
left adjoint and that the unit of this adjunction consists of .d�1/–truncation of the
(multi)mapping spaces. The proofs of these (very plausible) facts are rather technical,
involving a combinatorial analysis of some strict models for the above constructions,
and can be found in [20]. In Section 3.2 we use the results of Section 3.1 to characterize
when a map of 1–operads induces an equivalence on d –homotopy operads in terms
of the induced functor on algebras in a d –topos (Proposition 3.2.6).

3.1 d –Homotopy categories and operads

Recall the following definition from classical homotopy theory.

Definition 3.1.1 For d � 0, a space X 2 S is called d –truncated if �i .X; x/D 0 for
all i > d and all x 2 X. In addition, a space is called .�2/–truncated if and only if
it is contractible and it is called .�1/–truncated if and only if it is either contractible
or empty. We denote by S�d the full subcategory of S spanned by the d –truncated
spaces. The inclusion S�d ,! S admits a left adjoint and we call the unit of the
adjunction the d –truncation map.

This leads to the following definition in 1–category theory.

Definition 3.1.2 Let d � �1 be an integer. An essentially d –category is an 1–
category C such that for all X; Y 2 C , the mapping space MapC.X; Y / is .d�1/–
truncated. We denote by Catd the full subcategory of Cat1 spanned by essentially
d –categories.

Remark 3.1.3 An 1–category C is an essentially 1–category if and only if it lies
in the essential image of the nerve functor N W Cat! Cat1 and it is an essentially
0–category if and only if it is equivalent to the nerve of a poset.

In [16, 2.3.4], Lurie develops the theory of d –categories (see [16, Definition 2.3.4.1]),
which are a strict model for essentially d –categories. In particular, he associates with
every 1–category C a d –category hdC (see [16, Proposition 2.3.4.12]), which we
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refer to as the d –homotopy category of C . In [20] we make a further study of this
theory and use it to prove the following:

Proposition 3.1.4 [20, Theorem 2.15] The inclusion Catd ,! Cat1 admits a left
adjoint hd such that for every1–category C , the value of hd on C is the d –homotopy
category of C , the unit transformation �d W C! hdC is essentially surjective, and for
all X; Y 2 C , the map of spaces

MapC.X; Y /!MaphdC.�d .X/; �d .Y //

is the .d�1/–truncation map.

Warning 3.1.5 An 1–category C is an essentially d –category if and only if all
objects of C are .d�1/–truncated in the sense of [16, 5.5.6.1]. Hence, another way
to associate an essentially d –category with an 1–category C is to consider the full
subcategory spanned by the .d�1/–truncated objects. For a presentable 1–category,
this is denoted by ��d�1C in [16, 5.5.6.1] and called the .d�1/–truncation of C . We
warn the reader that the two essentially d –categories hdC and ��d�1C are usually very
different. For example, when C D S is the 1–category of spaces, h1S is the ordinary
homotopy category of spaces, while ��0S is equivalent to the ordinary category of
sets. Both constructions will play a central role in the proof of the main result, and
hopefully the distinction in notation and terminology will prevent confusion.

With these ideas in mind, one might hope that for an 1–category C , the condition
of being an essentially .dC1/–category would coincide with the condition of begin a
d –truncated object of the presentable 1–category Cat1 . This turns out to be false.
More precisely, it can be shown that a d –truncated object of Cat1 is an essentially
.dC1/–category and that an essentially .dC1/–category is a .dC1/–truncated object
of Cat1 , but neither of the converses hold (see [20, Remark 2.10]).

By analogy with the above, we also have a natural notion of an essentially d –operad.

Definition 3.1.6 Let d � �1. An essentially d –operad is an 1–operad O such that
for all X1; : : : ; Xn; Y 2O , the multimapping space MulO.fX1; : : : ; XngIY / is .d�1/–
truncated. We denote by Opd the full subcategory of Op1 spanned by essentially
d –operads.

Example 3.1.7 Two important special cases are:

(1) A symmetric monoidal 1–category C is an essentially d –operad if and only if
the underlying 1–category C is an essentially d –category.
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(2) A reduced 1–operad P is an essentially d –operad if and only if the symmetric
sequence fP.n/gn�0 consists of .d�1/–truncated spaces.

In [20] we develop a parallel notion of a d –operad, which bears the same relation to
an essentially d –operad as a d –category does to an essentially d –category, ie it is a
strict model for an essentially d –operad. Using this theory we show the following:

Proposition 3.1.8 [20, Theorem 3.12] The inclusion Opd ,! Op1 admits a left
adjoint hd such that for every 1–operad O , the unit transformation �d W O! hdO is
essentially surjective and for all X1; : : : ; Xn; Y 2O , the map of spaces

MulO.fX1; : : : ; XngIY /!MulhdO.f�d .X1/; : : : ; �d .Xn/gI �d .Y //

is the .d�1/–truncation map.

Definition 3.1.9 Given an1–operad O , we refer to hdO as the d –homotopy operad
of O .

For future use, we record the following fact:

Proposition 3.1.10 [20, Proposition 3.13] Let O be an 1–operad and let U be an
essentially d –operad. The 1–category AlgO.U/ is an essentially d –category.

3.2 d –Equivalences and d –topoi

Definition 3.2.1 For d � �2, a map of 1–operads f W O ! U is called a d –
equivalence if the induced map hdC1.f /W hdC1O ! hdC1U is an equivalence of
1–operads, ie if it is essentially surjective on the underlying categories and induces
an equivalence on the d –truncations of all the multimapping spaces.

An important special case is:

Definition 3.2.2 For d ��2, an 1–operad O is called d –connected if the unique
map from O to the terminal 1–operad E1 is a d –equivalence, ie if all the multi-
mapping spaces in O are d –connected.

Remark 3.2.3 Let P be a reduced 1–operad. It is d –connected if and only if all
the spaces P.n/ in the underlying symmetric sequence of P are d –connected. If P is
not equivalent to E0 , then for some n� 2 we have P.n/¤¿, and so there exists an
n–ary operation � 2 P.n/ for n� 2. By composing � with itself, we can obtain an
operation in P of arbitrarily high arity and, by composition with the unique nullary
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operation, we can obtain an operation of arbitrary arity. It follows that P § E0 if and
only if P is .�1/–connected.

The main result of this section is a characterization of d –equivalences of reduced 1–
operads. But first, we need some preliminary observations about cartesian symmetric
monoidal structures.

Lemma 3.2.4 Let f˛W D ! C˛ be a collection of jointly conservative, symmetric
monoidal functors between symmetric monoidal 1–categories.

(1) If C˛ is cartesian and f˛ preserves finite products for all ˛ and D has all finite
products, then D is cartesian.

(2) If C˛ is cocartesian and f˛ preserves finite coproducts for all ˛ and D has all
finite coproducts, then D is cocartesian.

Proof By [17, 2.4.2.7], the opposite of a symmetric monoidal 1–category acquires a
symmetric monoidal structure, which is cartesian if and only if the original symmetric
monoidal 1–category is cocartesian. Hence, it is enough to prove (2). The unit object
1 2 D has a unique map from the initial object ¿! 1. Since f˛ is both symmetric
monoidal and preserves finite coproducts, f˛.¿! 1/ is the unique map from the
initial object to the unit object of C˛ , which is an equivalence by assumption. Since
the collection of f˛ is jointly conservative, it follows that the unit of D is initial
in D as well. Namely, D is unital as an 1–operad. Using Lemma 2.2.3 we have
a map of 1–operads GW D! Dt , which is an equivalence on the underlying 1–
categories. We need to show that this map is symmetric monoidal, namely that it maps
cocartesian edges (over Fin� ) to cocartesian edges. Since we already know that it is a
map of 1–operads and hence preserves inert morphisms, we only need to show that
active cocartesian edges map to cocartesian edges. Using the Segal conditions, we are
further reduced to considering only cocartesian lifts of the unique active morphism
�W hni ! h1i. For every collection of objects X1; X2; : : : ; Xn 2 D , let

�˝W X1˚ � � �˚Xn!X1˝X2˝ � � �˝Xn

be a cocartesian lift of � to D˝ . Since G is an equivalence on the underlying 1–
categories, G.�˝/ can be considered as a map

X1˚ � � �˚Xn!X1˝X2˝ � � �˝Xn

in Dt . Now, let
�tW X1˚ � � �˚Xn!X1 tX2 t � � � tXn
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be a cocartesian lift of � to Dt . There exists a unique (up to homotopy) map

gX1;:::;Xn W X1 tX2 t � � � tXn!X1˝X2˝ � � �˝Xn

such that G.�˝/D gX1;:::;Xn ı�t . We need to show that gX1;:::;Xn is an equivalence
in D for all X1; : : : ; Xn 2D . For every ˛ , we have a homotopy commutative diagram

D˝ //

f˛
��

Dt

f˛
��

C˝˛ // Ct˛

in which the vertical and bottom maps are symmetric monoidal. It follows that
f˛.gX1;:::;Xn/ is an equivalence in C˛ for all ˛ . By joint conservativity, gX1;:::;Xn is
an equivalence as well.

Lemma 3.2.5 Let C� be a cartesian symmetric monoidal 1–category. For every
1–operad D , the 1–operad AlgD.C/ (see [17, 2.2.5.4]) is also cartesian.

Proof By [17, 2.2.5.4], since C� is symmetric monoidal, so is AlgD.C/ and, for every
X 2D , the evaluation functor eX W AlgD.C/! C� is a symmetric monoidal functor. On
the underlying 1–categories, eX also preserves finite products since it preserves all
limits. Finally, we show that the collection of evaluation functors is jointly conservative
since they can be presented as the composition of the conservative restriction functor

AlgD.C/! Fun.D; C/

and the collection of evaluation functors

eX W Fun.D; C/! C;

which are jointly conservative by [16, 3.1.2.1]. Now, by Lemma 3.2.4(1), AlgD.C/ is
cartesian.

We are now ready for the main proposition.

Proposition 3.2.6 Let d ��1. Given a map of reduced 1–operads f W P!Q, the
following are equivalent :

(1) The map f is a d –equivalence.

(2) For every .dC1/–topos C , the induced map

MapOp1.Q; C�/!MapOp1.P; C�/

is a homotopy equivalence.
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(3) For every simplicial set K , the induced map

MapOp1.Q;S
K
�d /!MapOp1.P;S

K
�d /

is a homotopy equivalence , where SK
�d

is given the cartesian symmetric monoidal
structure.

(4) The induced map
AlgQ.S�d /! AlgP.S�d /

is an equivalence of 1–categories , where S�d is given the cartesian symmetric
monoidal structure.

Proof .1/D).2/ Consider the commutative diagram

MapOp1.Q; C/

��

// MapOp1.P; C/

��

MapOp1.hdC1Q; C/
// MapOp1.hdC1P; C/

Since hdC1.P/! hdC1.Q/ is an equivalence of 1–operads, the bottom map is a
homotopy equivalence. By Proposition 3.1.8, the vertical maps are equivalences as
well, and so, by the 2-out-of-3 property, the top map is an equivalence.

.2/D).3/ Since SK
�d

is a .dC1/–topos, this is just a special case.

.3/D).4/ By Yoneda’s lemma applied to Cat1 , the map

AlgQ.S�d /! AlgP.S�d /

is an equivalence of 1–categories if for every 1–category E , the map

MapCat1.E ;AlgQ.S�d //!MapCat1.E ;AlgP.S�d //

is a homotopy equivalence. Using the fully faithful embedding Cat1 ,!Op1 , which
is left adjoint to the underlying category functor Op1! Cat1 (see [17, 2.1.4.11]),
this map is equivalent to

MapOp1.E ;AlgQ.S�d //!MapOp1.E ;AlgP.S�d //:

By adjointness with the Boardman–Vogt tensor product and the fact that it is symmetric,
the map is equivalent to

MapOp1.Q;AlgE.S�d //!MapOp1.P;AlgE.S�d //:
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Since E is an 1–category, by Lemma 3.2.5 the 1–operad AlgE.S�d / is just the 1–
category of functors .S�d /E endowed with the cartesian symmetric monoidal structure.
Since the functor category is invariant under Joyal equivalences, we can replace E with
any simplicial set K .

.4/D).1/ Consider the commutative diagram

AlgQ.S�d /

o

��

// AlgP.S�d /

o

��

AlghdQ.S�d / // AlghdP.S�d /

By Proposition 3.1.8, the vertical maps are equivalences; hence, by 2-out-of-3, the
top map is an equivalence if and only if the bottom map is. We can therefore assume
without loss of generality that P and Q are themselves essentially d –operads. This
implies that P.n/ and Q.n/ are d –truncated spaces for all n� 0. Now, consider the
commutative diagram

AlgQ.S�d /
f �

//

UQ %%

AlgP.S�d /

UPyy

S�d

where UP and UQ are the corresponding forgetful functors. By Lemma 2.4.4, the
associated map

TP D
a
n

.P.n/�Xn/h†n
��!

a
n

.Q.n/�Xn/h†n D TQ

of Construction 2.4.3 is a natural equivalence of functors. On the other hand, by
Proposition 2.4.6, this map is induced from a map fSSeqW fP.n/g ! fQ.n/g of sym-
metric sequences. We want to deduce that fSSeq is an equivalence. For d D�1, there
is nothing to prove and so we assume that d � 0. Taking X D Œn�, there is a coproduct
decomposition

.P.n/�Xn/h†n D P.n/tJ;

where the summand P.n/ corresponds to orbits of points whose Xn component is a
permutation (note that when d D 0, the homotopy orbits in S�0 are just the orbits
as a set). This characterization implies that fSSeqW P.n/! Q.n/ is an equivalence.
Finally, since .�/SSeq is conservative, by Proposition 2.3.6 we deduce that f is an
equivalence.
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4 Truncatedness and connectedness

This section deals with properties of truncated and connected morphisms in a presentable
1–category. We begin in Section 4.1 with some basic facts about the space of lifts in a
commutative square. The key result is Proposition 4.1.5, which expresses the homotopy
fiber of the diagonal of the space of lifts as the space of lifts in a closely related
square. In Section 4.2 we expand on the notions of n–truncated and n–connected
morphisms. The main result is Proposition 4.2.8, which is a quantitative version of the
defining orthogonality relation between n–connected and n–truncated morphisms. In
Section 4.3 we introduce an auxiliary notion of an

�
n�1

2

�
–connected morphism and

compare it with the notion of an n–connected morphism under some assumptions on the
ambient1–category. We conclude with Section 4.4, in which we study the notion of n–
connectedness for the 1–category of algebras over a reduced 1–operad. In particular,
we show that under some reasonably general conditions, a map of algebras is n–
connected if the map between the underlying objects is n–connected (Proposition 4.4.5).

We rely on [16, 5.5.6] for the basic theory of truncated morphisms and objects, but
we note that the properties of connected morphisms are studied in [16] only in the
context of 1–topoi. Some further results, still in the context of 1–topoi, can be
found in [1]. For example, our Proposition 4.2.8 is a generalization of Proposition 3.15
of [1] from 1–topoi to general presentable 1–categories (such as the 1–category
of algebras over an 1–operad). Some results on truncatedness and connectedness
for general presentable 1–categories can also be found in [13]. In fact, Lemmas
4.2.5 and 4.2.6 (with its corollary) already appear in [13], yet we have chosen to
include detailed proofs for completeness. Though we shall not use it, it is worthwhile to
mention another result from [13], namely, that the pair of classes of n–connected and n–
truncated morphisms form a factorization system for every presentable 1–category C
(generalizing [16, 5.2.8.16] from 1–topoi).

We reiterate that, especially in this section, some of the facts that we state as lemmas
might appear obvious or well known. Nonetheless, we have chosen to include detailed
proofs where those are not to be found in the literature (to the best of our knowledge).

4.1 Space of lifts

Definition 4.1.1 [16, 5.2.8.1] A commutative square in an 1–category C is a map
qW �1 ��1! C , which we write somewhat informally as
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A //

��

X

��

B // Y

suppressing the homotopies. The space of lifts for q is defined as follows. Restricting
to the diagonal �1 ! �1 ��1 , we get a morphism hW A! Y in C , which can be
viewed as an object Y in the 1–category CA= . The diagram q can be encoded as a
pair of objects B;X 2 CA==Y and the space of lifts for q is given as the mapping space

L.q/DMapCA==Y
.B;X/:

Remark 4.1.2 Let us denote the horizontal morphisms in the above diagram by
f W A! X and gW B ! Y . By the dual of [16, 5.5.5.12] we have a homotopy fiber
sequence

MapCA==Y
.B;X/!MapCA=.B;X/!MapCA=.B; Y /

over g 2MapCA=.B; Y /. Using [16, 5.5.5.12] again for the middle and the right term
we obtain a presentation of MapCA==Y

.B;X/ as the total fiber of the square

MapC.B;X/

��

// MapC.B; Y /

��

MapC.A;X/
// MapC.A; Y /

In other words, we have a homotopy fiber sequence

L.q/!MapC.B;X/!MapC.A;X/�
h
MapC.A;Y /

MapC.B; Y /

over the point determined by the diagram q .

Another reasonable definition of the space of lifts is as follows. The inclusion

�f0;1g ��f0;2g ,!�3

induces a restriction map C�3 ! C�1��1 and we can consider the (automatically
homotopy) fiber over the vertex q 2 C�1��1 , which is an1–category. In [16, 5.2.8.22]
it is proved that this 1–category is categorically equivalent to L.q/ (and in particular
a Kan complex).

The next lemma shows that the space of lifts behaves well with respect to pullback and
pushout.
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Lemma 4.1.3 Given a commutative rectangle �1 ��2! C , depicted as

A //

��

X

��

// Z

��

B // Y // W

with left square ql , right square qr and outer square q ,

(1) if qr is a pullback square , then we have a canonical equivalence L.q/' L.ql/;

(2) if ql is a pushout square , then we have a canonical equivalence L.q/' L.qr/.

Proof By symmetry, it is enough to prove (1). Observe that the prism �1 ��2 is a
left cone on the simplicial set obtained by removing the initial vertex. Formally,

�1 ��2 ' .�2 ��f1g t�f1;2g��f1g �
f1;2g
��1/G:

We can therefore interpret the rectangle as a diagram in CA= (and hence ignore A).
Since the projection CA=! C preserves and reflects limits (dual of [16, 1.2.13.8]), the
square qr is a pullback square in CA= . The universal property of the pullback implies
that we have a homotopy cartesian square

MapCA=.B;X/
//

��

MapCA=.B;Z/

��

MapCA=.B; Y /
// MapCA=.B;W /

which in turn induces a homotopy equivalence of homotopy fibers of the vertical
maps. Considering the given map B! Y as a point in MapCA=.B; Y / and considering
the induced equivalence on the homotopy fibers of the vertical maps, we obtain by
[16, 5.5.5.12] an equivalence

MapCA==Y .B;X/
��!MapCA==W .B;Z/;

where B and X are A! B! Y and A!X ! Y viewed as objects of CA==Y and
B and Z are A! B !W and A! Z!W viewed as objects of CA==W . By the
definition of the space of lifts, this is precisely the equivalence L.ql/' L.q/.

The following lemma expands on [16, Remark 5.2.8.7]:

Algebraic & Geometric Topology, Volume 19 (2019)



3152 Tomer M Schlank and Lior Yanovski

Lemma 4.1.4 Let F W C � D WG be an adjunction of 1–categories. For every
commutative square qW �1 ��1! D of the form

F.A/

F.f /

��

// X

g

��

F.B/ // Y

there is an adjoint square pW �1 ��1! C of the form

A

f

��

// G.X/

G.g/

��

B // G.Y /

and a canonical homotopy equivalence L.q/' L.p/.

Proof Let M!�1 be the cartesian–cocartesian fibration associated with the adjunc-
tion F aG. Since C and D are full subcategories of M we can think of the square q
as taking values in M and it does not change the space of lifts. Consider the diagram
in M given by

A //

f

��

F.A/

F.f /

��

// X

g

��

B // F.B/ // Y

where in the left square ql the horizontal arrows are cocartesian and the rest of the
data is given by the lifting property of cocartesian edges. Since the inclusion of the
spine ƒ21 ,! �2 is inner anodyne, so is �1 �ƒ21 ,! �1 ��2 (by [16, 2.3.2.4]) and
since M!�1 is an inner fibration, the diagram can be extended to �1 ��2!M
and we can denote the outer square by r W �1 ��1!M. We now claim that ql is a
pushout square in M. For every Z 2M, consider the induced diagram

Map.F.B/;Z/

��

// Map.B;Z/

��

Map.F.A/;Z/ // Map.A;Z/

If Z 2M0 ' C , then the spaces on both left corners are empty and if Z 2M1 ' D ,
then both horizontal arrows are equivalences. Either way, this is a pullback square and
hence ql is a pushout square. By Lemma 4.1.3 we get L.q/' L.r/.
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We can now factor the outer square r W �1 ��1!M as

A //

f

��

G.X/

G.g/

��

// X

g

��

B // G.Y / // Y

where the left square is p and in the right square qr the horizontal arrows are cartesian
and the square is determined by the lifting property of cartesian edges. Repeating the
argument in the dual form we get that qr is a pullback square and using Lemma 4.1.3
again we get L.p/' L.r/ and therefore L.p/' L.q/.

Proposition 4.1.5 Let C be an 1–category. Let qW �1 ��1! C be a commutative
square

A

f
��

˛
// X

g

��

B
ˇ
// Y

with space of lifts L.q/. Given a point .s0; s1/ 2 L.q/�L.q/, the homotopy fiber of
the diagonal

ıL.q/W L.q/! L.q/�L.q/

over .s0; s1/ is homotopy equivalent to the space of lifts for a square pW �1 ��1! C
of the form

A

f
��

˛
// X

ıg
��

B
.s0;s1/

// X �Y X

Proof For ease of notation, set DD CA= . Recall that

L.q/DMapD=Y
.B;X/

and therefore

L.q/�L.q/DMapD=Y
.B;X/�MapD=Y

.B;X/'MapD=Y
.B;X �X/:

Products in the over-category are fibered products and products in the under-category
are just ordinary products (dual of [16, 1.2.13.8]). Hence, X �X is the diagram A!

X �Y X! Y , which we denote by X �Y X. Thus, a point s D .s0; s1/ 2L.q/�L.q/
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corresponds to a lift in the diagram

X �Y X

��

B //

;;

Y

in the category D . Furthermore, the diagonal map ıL.q/W L.q/! L.q/ � L.q/ is
induced from the diagonal map ıX W X!X �X. Namely, ıL.q/ D .ıX /� . Our goal is
therefore to compute the homotopy fiber of .ıX /� over a given point

s D .s0; s1/'MapD=Y
.B;X �X/:

The projection D=Y ! D induces an equivalence

.D=Y /=X�YX ' D=X�YX :

It follows that the fiber is the space of lifts in the diagram

X

��

B
s
//

;;

X �Y X

in D . By (the dual of) [16, 5.5.5.12], this space of lifts is homotopy equivalent to the
mapping space MapD=X�Y X

.B;X/. Recalling that DD CA= , we see that this is none
other than the space of lifts for p .

4.2 Truncatedness and connectedness

We recall the following definition from classical homotopy theory:

Definition 4.2.1 For d � �2, a map f W X ! Y of spaces is called d –truncated if
all of its homotopy fibers are d –truncated spaces (Definition 3.1.1).

Using this definition, one can define a general notion of d –truncatedness in an 1–
category.

Definition 4.2.2 [16, 5.5.6.1] For d � �2, a map f W X ! Y in an 1–category C
is called d –truncated if for every Z 2 C the induced map

Map.Z;X/!Map.Z; Y /
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is a d –truncated map of spaces. An object X is d –truncated if the map X ! ptC
is d –truncated. We denote by ��dC the full subcategory of C spanned by the d –
truncated objects. When C is presentable, by [16, 5.5.6.21] the 1–category ��dC is
itself presentable and, by [16, 5.5.6.18], the inclusion ��dC ,! C has a left adjoint
�C
�d
W C! ��dC .

Remark 4.2.3 It is not difficult to show that ��d extends to a functor from the 1–
category of presentable 1–categories to the full subcategory spanned by presentable
essentially .dC1/–categories and that it is left adjoint to the inclusion. The maps �C

�d

can be taken to be the components of the unit transformation (this essentially follows
from [16, 5.5.6.22]), but we shall not need this.

We now turn to discuss the dual notion of n–connectedness.

Definition 4.2.4 For n��2, a map f W A!B in an 1–category C is n–connected
if it is left orthogonal to every n–truncated map; ie for every commutative square
qW �1 ��1! C ,

A

f
��

// X

g

��

B // Y

in which g is n–truncated, L.q/ is contractible. An object A2C is called n–connected
if A! ptC is n–connected.

Lemma 4.2.5 Let C and D be 1–categories that admit finite limits and let F W C�
D WG be an adjunction with F aG.

(1) For every d � �2 and a d –truncated morphism g in D , the morphism G.g/ is
a d –truncated morphism in C .

(2) For every n� �2 and an n–connected morphism f in C , the morphism F.f /

is an n–connected morphism in D .

Proof As a right adjoint, G is left exact and therefore preserves d –truncated mor-
phisms by [16, 5.5.6.16]. Since G preserves n–truncated morphisms and the space of
lifts in the square

F.A/ //

��

X

��

F.B/ // Y
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is homotopy equivalent to the space of lifts in the adjoint square

A //

��

G.X/

��

B // G.Y /

given by Lemma 4.1.4, we see that if f is left orthogonal to all n–truncated morphisms
then so is F.f /.

Lemma 4.2.6 Let C be a presentable 1–category, let f W A! B be a morphism
in C , and let n��2 be an integer. The map f is n–connected if and only if , viewed as
an object xA of C=B , its n–truncation �C=B�n . xA/ is the terminal object (ie IdB W B! B ).

Proof Since C has all pullbacks, every commutative square qW �1 ��1! C of the
form

A

f
��

// X

��

B // Y

can be factored as
A //

��

B �Y X

��

// X

��

B // B // Y

By Lemma 4.1.3, the space of lifts for the original square q is equivalent to the space
of lifts in the left square of the above rectangle. Moreover, n–truncated morphisms are
closed under base change and so to check that f is n–connected, we can equivalently
restrict ourselves to checking the left orthogonality condition only for squares q in
which the map B! Y is the identity on B. Writing xA, X and B for A!B, X!B

and IdW B!B as objects of C=B , respectively, we see that by the dual of [16, 5.5.5.12]
the space of lifts fits into a fiber sequence

L.q/DMapCA==B .B;X/!MapC=B .B;X/
f �
�!MapC=B .

xA;X/:

Hence, f is n–connected if and only if f � is an equivalence for every n–truncated
morphism X ! B. By [16, 5.5.6.10], a morphism X ! B is n–truncated if and
only if X is an n–truncated object of C=B . Hence, we need the above map to be an
equivalence for every n–truncated object X 2 C=B . This precisely means that the map
xA! B exhibits B, the terminal object of C=B , as the n–truncation of xA.
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Corollary 4.2.7 In a presentable 1–category C , an object X is n–connected for
some n� �2 if and only if its n–truncation �C�nX is a terminal object of C .

The following is a quantitative generalization of the defining property of an n–connected
morphism.

Proposition 4.2.8 Let C be a presentable 1–category. Fix integers d � n��2. For
every square qW �1 ��1! C of the form

A //

��

X

��

B // Y

in which f W A! B is n–connected and gW X ! Y is d –truncated, the space of lifts
L.q/ is .d�n�2/–truncated.

Proof We prove this by induction on d . For d D n, the claim follows from the
definition of an n–connected morphism and the fact that a space is .�2/–connected if
and only if it is contractible. We now assume that this is true for d � 1, and prove it
for d . Denote the space of lifts by L.q/. By [16, 5.5.6.15], it suffices to show that the
diagonal map ıW L.q/! L.q/�L.q/ is .d�n�3/–truncated. By Proposition 4.1.5,
the homotopy fiber over a point .s0; s1/ 2 L.q/�L.q/ is equivalent to the space of
lifts in the square

A //

��

X

��

B //

;;

X �Y X

where the bottom map is .s0; s1/. By [16, 5.5.6.15], since X ! Y is d –truncated,
X ! X �Y X is .d�1/–truncated and, therefore, by induction, the space of lifts is
..d�1/�n�2/–truncated and we are done.

4.3
�
n�1

2

�
–Connectedness

We begin by introducing an auxiliary notion that will be helpful in the study of n–
connectedness.

Definition 4.3.1 For every n � �2, a morphism f W X ! Y is called
�
n�1

2

�
–

connected if the induced map �C�n.f /W �
C
�nX ! �C�nY is an equivalence.
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To justify the terminology we need to show that it indeed sits between n– and .n�1/–
connectedness, at least under some reasonable conditions. One direction is completely
general:

Lemma 4.3.2 Let n � �2 and let C be a presentable 1–category. If a morphism
f W A! B is n–connected, then it is

�
n�1

2

�
–connected.

Proof By the Yoneda lemma it is enough to show that for every n–truncated object
Z in C the induced map

f�W Map.B;Z/!Map.A;Z/

is an equivalence. For this, it is enough to show that for every gW A! Z , the fiber
of f� over g is contractible. By [16, 5.5.5.12], the fiber is equivalent to the space of
lifts for the square

A //

��

Z

��

B // pt

which is contractible by definition as f W A! B was assumed to be n–connected.

For the other direction, we need to assume that our 1–category is an m–topos. First:

Lemma 4.3.3 Let C be an m–topos for some �1�m�1. For every d –truncated
morphism gW X ! Y , the diagram

X //

��

�C
�dC1

X

��

Y // �C
�dC1

Y

is a pullback square.

Proof For C D S , this follows from inspecting the induced map between the long
exact sequences of homotopy groups associated with the vertical maps. For C D SK ,
this follows from the claim for S , since both truncation and pullbacks are computed
levelwise. A general 1–topos is a left exact localization of SK for some K , and left
exact colimit-preserving functors between presentable 1–categories commute with
truncation by [16, 5.5.6.28] and with pullbacks by assumption. Finally, by [16, 6.4.1.5]
every m–topos is the full subcategory on .m�1/–truncated objects in an 1–topos and
this full subcategory is closed under limits.

Algebraic & Geometric Topology, Volume 19 (2019)



The 1–categorical Eckmann–Hilton argument 3159

From this we deduce:

Lemma 4.3.4 Let n � �2 and let C be an m–topos for some �1 � m � 1. If a
morphism f W A! B is

�
nC1

2

�
–connected then it is n–connected.

Proof To show that f W A! B is n–connected, we need to show that the space of
lifts for every square

A //

��

X

��

B // Y

in which the right vertical arrow is n–truncated is contractible. Applying Lemmas
4.3.3 and 4.1.3, we see that this space is equivalent to the space of lifts in the square

A //

��

�C
�nC1X

��

B // �C
�nC1Y

which, by Lemma 4.1.4, is equivalent to the space of lifts in the adjoint square

�C
�nC1A

//

��

�C
�nC1X

��

�C
�nC1B

// �C
�nC1Y

which is contractible since the left vertical arrow is an equivalence.

As a consequence, we obtain another sense in which
�
n�1

2

�
–connected morphisms are

“close” to being n–connected:

Proposition 4.3.5 Let n � �2 and let C be an m–topos for some �1 �m �1. If
a morphism f W A! B in C is

�
n�1

2

�
–connected and has a section (ie there exists

sW B! A such that f ı s � IdB ), then f is n–connected.

Proof We first prove the case of m D 1. For n D �2, there is nothing to prove,
and so we assume that n � �1. Since f ı s D IdB we get �C�n.f / ı �

C
�n.s/ D IdB

and, since ��n.f / is an equivalence, so is ��n.s/ and hence s is
�
n�1

2

�
–connected.

By Lemma 4.3.4, s is .n�1/–connected and hence, by [16, 6.5.1.20], the map f is
n–connected (note that n–connective means .n�1/–connected).
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For a general m, by [16, 6.4.1.5] there exists an 1–topos D and an equivalence
C' ��m�1D , and so we may identify C with the full subcategory of .m�1/–truncated
objects of D . If f W A!B is

�
n�1

2

�
–connected in C , then it is also

�
n�1

2

�
–connected

in D , since the restriction of �D�n to C is equivalent to �C�n . It follows from the case of
mD1 that f is n–connected in D . Since f D �D

�m�1f and �D
�m�1 is a left adjoint

functor, by Lemma 4.2.5 the map f is also n–connected as a map in C .

4.4 Connectedness in algebras

We begin with the following general fact:

Lemma 4.4.1 Let F W C� D WU be a monadic adjunction between presentable 1–
categories. If the monad T DU ıF preserves n–connected morphisms, then U detects
n–connected morphisms. Namely, given a morphism f W A! B in D , if U.f / is
n–connected for some n� �2, then f is n–connected.

Proof Given a morphism f W A! B in D , using the canonical simplicial resolution
provided by the proof of [17, 4.7.3.13], we can express it as a colimit of the simplicial
diagram of morphisms,

colim
�op

.T nC1.A/! T nC1.B//;

which one can write as

colim
�op

.F T nU.A/! F T nU.B//:

If U.f / is n–connected as in the statement, then since T preserves n–connected
morphisms by assumption and F preserves n–connected morphisms by being left
adjoint, it follows that all the maps in the diagram are n–connected. By [16, 5.2.8.6(7)],
the map f is also n–connected.

We want to apply the above to the free-forgetful adjunction between a symmetric
monoidal1–category C and the category of P –algebras in C , where P is a reduced1–
operad. For this, we need some compatibility between the notion of n–connectedness
and the symmetric monoidal structure:

Lemma 4.4.2 Let C be a presentably symmetric monoidal 1–category. For every
integer n � �2, the class of n–connected morphisms in C is closed under tensor
products.
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Proof Since C is presentable and the tensor product commutes with colimits separately
in each variable, for each object X 2 C the functor Y 7!X ˝Y is a left adjoint and
therefore preserves n–connected morphisms by Lemma 4.1.4. Hence, given two
n–connected morphisms f W A1! B1 and gW A2! B2 , the composition

A1˝B1
A1˝g
���! A1˝B2

f˝B2
���! A2˝B2

is n–connected as a composition of two n–connected morphisms.

Example 4.4.3 For every m–topos (with �1 � m � 1) and n � �2, the class of
n–connected morphisms is closed under cartesian products. In particular, this applies
to SK�m for every simplicial set K .

Lemma 4.4.4 Let P be a reduced 1–operad and let C be a presentably symmetric
monoidal 1–category. The free-forgetful adjunction

F W C� AlgP.C/ WU

is monadic and the associated monad T D U ıF preserves n–connected morphisms.

Proof By [17, 4.7.3.11], the adjunction F aU is monadic. Hence, given a morphism
A! B in C , by Proposition 2.4.6 the morphism T .A/! T .B/ can be expressed asa

n�0

.P.n/˝A˝n/h†n !
a
n�0

.P.n/˝B˝n/h†n :

By Lemma 4.4.2, n–connected morphisms are closed under ˝ and, by [16, 5.2.8.6],
they are closed under colimits. Hence, we obtain that T .A/! T .B/ is n–connected
as well.

Proposition 4.4.5 Let P be a reduced 1–operad and let C be a presentably symmet-
ric monoidal 1–category. Given a morphism f W A!B in AlgP.C/, if the underlying
map U.f / is n–connected for some n� �2, then f is n–connected.

Proof Combine Lemmas 4.4.4 and 4.4.1.

5 The1–categorical Eckmann–Hilton argument

In this final section we prove our main results. In Section 5.1 we analyze the canonical
map from the coproduct to the tensor product of two algebras over a reduced1–operad.
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The main result is that under suitable assumptions, if the1–operad is highly connected,
then this map is also highly connected (Proposition 5.1.3). In Section 5.2 we use the
connectivity bound established in Section 5.1 to analyze the reduced endomorphism
operad of an object in an 1–topos. This analysis recovers and expands on classical
results on deloopings of spaces with nonvanishing homotopy groups in a bounded region.
In Section 5.3 we prove our main theorem, Theorem 5.3.1, and its main corollary, the
1–categorical Eckmann–Hilton argument (Corollary 5.3.3). We conclude with some
curious applications of the main theorem to some questions regarding tensor products
of reduced 1–operads.

5.1 Coproducts of algebras

Let C be a symmetric monoidal 1–category and let P be a reduced 1–operad. For
every two algebras A;B 2 AlgP.C/, there is a canonical map of algebras

fA;B W AtB! A˝B

formally given by

fA;B D IdA˝1B t 1A˝ IdB ;

where 1AW 1! A and 1B W 1! B are the respective unit maps viewed as maps of
algebras (see [17, 3.2.1]).

Lemma 5.1.1 Let C be a symmetric monoidal 1–category and let P be a reduced
1–operad. If P § E0 , then for every pair of algebras A;B 2 AlgP.C/, the canonical
map

fA;B W AtB! A˝B

has a section after we apply the forgetful functor .�/W AlgP.C/! C .

Proof By Remark 3.2.3, if P § E0 , then it is .�1/–connected and in particular
P.2/¤¿. We shall construct a section to fA;B using any binary operation � 2 P.2/.
Let iAW A!AtB and iB W B!AtB be the canonical maps of the coproduct. Define
s to be the composition of the maps

A˝B
iA˝iB
���! .AtB/˝ .AtB/

�AtB
���! AtB:

Now, consider the diagram in the homotopy category of C ,
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.AtB/˝ .AtB/

fA;B˝fA;B

��

�AtB
// AtB

fA;B

��

A˝B

iA˝iB

33

.IdA˝1B/˝.1A˝IdB/
//

.IdA˝1A/˝.1B˝IdB/
++

.A˝B/˝ .A˝B/
�A˝B

//

IdA˝�A;B˝IdB

��

A˝B

.A˝A/˝ .B˝B/
�A˝�B

// A˝B

The upper square commutes since fA;B is a map of algebras. The upper triangle
commutes since it is the tensor product of two triangles, which commute by the very
definition of fA;B . The lower square commutes by the definition of the algebra structure
on A˝B and the lower triangle also clearly commutes. The composition of the bottom
diagonal map and the bottom right map is the identity, since the restriction of � to the
unit in one of the arguments is homotopic to the identity map of the other argument.
The composition of the top diagonal map with the top right map is s . It follows that
fA;B ı s � IdA˝B .

Lemma 5.1.2 Let C and D be symmetric monoidal 1–categories and let F W C!D
be a symmetric monoidal functor. If F W C ! D is a left adjoint, then the induced
functor F˝W C˝! D˝ is a left adjoint relative to Fin� and for every 1–operad P
the induced functor AlgP.C/! AlgP.D/ is a left adjoint.

Proof For every hni 2 Fin� , the restriction of F˝ to the fiber over hni is just
F nW Cn! Dn , which is clearly a left adjoint. Hence, by [17, 7.3.2.7], the functor F˝

is a left adjoint relative to Fin� . Let G˝ be the right adjoint of F˝ . Applying
[17, 7.3.2.13], we obtain that F˝ and G˝ induce an adjunction

AlgP.C/� AlgP.D/:

In what follows we are going to restrict ourselves to the case of a cartesian monoidal
structure. The next proposition is the key connectivity bound on which the main
theorems of this paper rest.

Proposition 5.1.3 Let C be an m–topos for some �1 � m �1 with the cartesian
symmetric monoidal structure and let P be a reduced d –connected 1–operad for
some d � �2. For every pair of algebras A;B 2 AlgP.C/, the canonical map

fA;B W AtB! A�B

is d –connected.
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Proof For d D �2 there is nothing to prove and so we assume that d � �1. By
Proposition 4.4.5, it is enough to show that fA;B is d –connected, where

.�/W AlgP.C/! C

is the forgetful functor. By Proposition 4.3.5, it is enough to show that fA;B has a
section and is

�
d�1

2

�
–connected. Since d � �1, we have P ¤ E0 and, therefore, by

Lemma 5.1.1, fA;B has a section. Thus, we are reduced to showing that the image of
fA;B under the functor �C

�d
W C! ��dC is an equivalence. First, we show that �C

�d

preserves binary products. For mD1, this follows from [16, 6.5.1.2]. The general
case reduces to mD1 as by [16, 6.4.1.5] we can embed C as a full subcategory of an
1–topos spanned by the .m�1/–truncated objects. It follows that we get a symmetric
monoidal functor ��

�d
W C�! .��dC/� . By Lemma 5.1.2, the functor

F W AlgP.C/! AlgP.��dC/

induced by ���n is a left adjoint. Consider the (solid) commutative diagram in the
homotopy category of Cat1 ,

AlgP.C/
F
//

��

AlgP.��dC/

��

G0
// AlgE1.��dC/

G
oo

��

C
�C
�d

// ��dC ��dC

where the vertical maps are the forgetful functors and G is induced by restriction along
the essentially unique map P! E1 . Since ��dC is an essentially .dC1/–category,
it follows from Proposition 3.1.8 that G is an equivalence. Taking G0 to be an inverse
of G up to homotopy, the outer rectangle is a commutative square in the homotopy
category of Cat1 . Therefore, to show that �C

�d
.fA;B/ is an equivalence, it is enough

to show that G0.F.fA;B// is an equivalence. In fact, we shall show that G0.F.fA;B//
is an equivalence. Note that the composition of the left and then bottom functors
preserves binary products and since the right vertical functor preserves products and
is conservative, it follows that the top functor G0 ıF also preserves binary products.
On the other hand, G0 ıF also preserves coproducts, since F is left adjoint (by the
above discussion) and G is an equivalence. Finally, in AlgE1.��dC/, the canonical
map from the coproduct to the product is an equivalence by [17, 3.2.4.7].

We now apply the above results to the study of reduced endomorphism operads. For
every unital 1–operad Q and a symmetric monoidal 1–category C , the symmetric
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monoidal 1–category AlgQ.C/ is unital by Lemma 2.2.5. Hence, for every X 2
AlgQ.C/ we can consider the reduced endomorphism 1–operad Endred

AlgQ.C/
.X/.

Corollary 5.1.4 Let Q be a reduced n–connected 1–operad for some n��2 and let
C be a .dC1/–topos with the cartesian symmetric monoidal structure for some d ��2.
For every object X 2 AlgQ.C/, the reduced endomorphism operad Endred

AlgQ.C/
.X/ is

an essentially .d�n�1/–operad (ie all multimapping spaces are .d�n�2/–truncated ).

Proof The 1–operad E D Endred
AlgQ.C/

.X/ has a unique object, which we call X.
We need to show that for every m 2 N , the multimapping space MulE.X .m/; X/ is
.d�n�2/–truncated. By Lemma 2.2.12, we have a fiber sequence

MulE.X .m/; X/!MulAlgQ.C/.X
m; X/!MapAlgQ.C/.X

tm; X/;

where the fiber is taken over the fold map rW Xtm!X. The fiber is equivalent to the
space of lifts for the square

Xtm

��

r
// X

��

Xm // pt

Since C is an essentially .dC1/–category, so is the cartesian 1–operad C� and,
therefore, by Proposition 3.1.10, so is AlgQ.C/. In particular, X is d –truncated.
Hence, by Proposition 4.2.8, it is enough to show that the canonical map Xtm!Xm

is n–connected. Since Q is n–connected, this follows from repeated application of
Proposition 5.1.3.

5.2 Topoi and the reduced endomorphism operad

In this subsection we describe a simple application of Corollary 5.1.4. Let C be an
1–topos and let C� be the 1–category of pointed objects in C with the cartesian
symmetric monoidal structure.

Definition 5.2.1 For a pair of integers m; k � �2, we denote by CŒk;m�� � C� the
full subcategory spanned by objects which are simultaneously .k�1/–connected (ie
k–connective) and m–truncated.

Theorem 5.2.2 Let C be an 1–topos and let k; d � �2. For every X 2 CŒk;2kCd��

the 1–operad Endred
C� .X/ is an essentially .dC1/–operad. In particular, for d D�1,

the 1–operad Endred
C� .X/ is either E0 or E1 and for d D�2, it is E1 .
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Proof By [17, 5.2.6.10 and 5.2.6.12], we have a commutative diagram of1–categories

C�k�

�k

$$

� // Alggrp
Ek
.C�/

U

��

C�

in which U is the forgetful functor. Since the k–fold loop space functor restricts to a
functor CŒk;2kCd�� ! ��kCdC� , we can restrict the above diagram to

CŒk;2kCd��

�k
''

� // Alggrp
Ek
.��kCdC�/

U

��

��kCdC�

The 1–category Alggrp
Ek
.��kCdC�/ is a full subcategory of AlgEk .��kCdC�/, which

is itself equivalent to AlgEk .��kCdC/. The 1–category ��kCdC is a .kCdC1/–
topos (with the cartesian symmetric monoidal structure) and Ek is .k�2/–connected.
Thus, Corollary 5.1.4 implies that for every X in Alggrp

Ek
.��kCdC�/, the reduced

endomorphism operad of X is an essentially .dC1/–operad.

Let d D�1. We recall from Remark 3.2.3 that if P § E0 , then it is .�1/–connected.
Therefore, if P is an essentially 0–operad, then P ' E1 . Hence, P is either E0
or E1 .

Let d D �2. We get that P is an essentially .�1/–operad and hence equivalent
to E1 .

For every reduced 1–operad P , the structure of a P –algebra on an object X 2 C� is
equivalent to the data of a map P! Endred

C� .X/. Thus, if X 2 CŒk;2k�2�� , then X has a
unique P –algebra structure for every reduced 1–operad P . Combining this with the
fact that for a pointed connected object in an 1–topos, a structure of an E1–algebra
is equivalent to an 1–delooping, we get the following classical fact:

Corollary 5.2.3 Let C be an1–topos and let k�1 be an integer. Every X2CŒk;2k�2��

admits a unique 1–delooping.

In fact, we can get slightly more from Theorem 5.2.2. For example:

Corollary 5.2.4 Let C be an 1–topos, let k � 1 be an integer and let X 2 CŒk;2k�1�� .
If X admits an H –structure, then it admits a unique 1–delooping.
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Proof By Theorem 5.2.2, the 1–operad Endred
C� .X/ is either E0 or E1 . On the

other hand, the existence of an H –structure is equivalent to Endred
C� .X/.2/¤¿. Thus,

X admits an H –structure if and only if Endred
C� .X/' E1 if and only if X admits a

unique 1–delooping.

5.3 The 1–categorical Eckmann–Hilton argument

The main theorem of this paper is:

Theorem 5.3.1 For all integers d1; d2��2, given a d1–equivalence P!Q between
two reduced 1–operads and a reduced d2–connected 1–operad R, the induced map
P˝R!Q˝R is a .d1Cd2C2/–equivalence.

Proof Set d D d1Cd2C 2. By Proposition 3.2.6, it is enough to show that for every
.dC1/–topos C with the cartesian symmetric monoidal structure, the map

MapOp1.Q˝R; C/!MapOp1.P˝R; C/;

induced by precomposition with f , is a homotopy equivalence. Using the tensor–hom
adjunction, it is the same as showing that the map

MapOp1.Q;AlgR.C//!MapOp1.P;AlgR.C//

is an equivalence. The underlying category functor gives a commutative diagram

.�/

MapOp1.Q;AlgR.C// //

��

MapOp1.P;AlgR.C//

��

MapCat1.Q;AlgR.C// // MapCat1.P;AlgR.C//

As P !Q is an equivalence of 1–categories (both are equivalent to �0 ), the bottom
map is a homotopy equivalence. Hence, it suffices to show that the induced map on
the homotopy fibers is a homotopy equivalence for each choice of a basepoint. A
point in the space Map.�0;AlgR.C// is just an R–algebra X in C . We denote by
AlgR.C/X the1–operad AlgR.C/ pointed by X viewed as an object of Opun

1;� . With
this notation, we see that the homotopy fiber of the right vertical map is equivalent to

MapOpun
1;�

.P;AlgR.C/X /:

By Lemma 2.2.5, the 1–operad AlgR.C/ is unital. Therefore, by the adjunction

�W Opred
1 �Opun

1;� W.�/
red;
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the above mapping space is also equivalent to

MapOpred
1
.P;Endred

AlgR.C/
.X//'MapOp1.P;Endred

AlgR.C/
.X//;

since Opred
1 �Op1 is a full subcategory. The induced map on the fibers of the vertical

maps in .�/ over X is therefore equivalent to

MapOp1.Q;Endred
AlgR.C/

.X//!MapOp1.P;Endred
AlgR.C/

.X//:

Finally, since C is a .dC1/–topos and R is d2–connected, Corollary 5.1.4 implies
that the 1–operad Endred

AlgR.C/
.X/ is an essentially .d�d2�1Dd1C1/–operad. Since

P ! Q is a d1–equivalence, by Proposition 3.1.8 the above map is a homotopy
equivalence and this completes the proof.

Example 5.3.2 Let P ! Q be a d –equivalence of reduced 1–operads. For every
integer k � 0, the induced map P˝Ek!Q˝Ek is a .dCk/–equivalence.

The 1–categorical Eckmann–Hilton argument is now an immediate consequence of
Theorem 5.3.1.

Corollary 5.3.3 For all integers d1; d2��2, given two reduced1–operads P and Q,
if P is d1–connected and Q is d2–connected, then P˝Q is .d1Cd2C2/–connected.

Proof Since P is d1–connected, the essentially unique map P ! E1 is a d1–
equivalence. Hence, by Theorem 5.3.1, the map P˝Q! P˝E1 is a .d1Cd2C2/–
equivalence. Since E1 is also d2–connected, by the same argument the induced
map

P˝E1! E1˝E1 ' E1

is also a .d1Cd2C2/–equivalence. The .d1Cd2C2/–equivalences are closed under
composition, and so the result follows (in fact, we know a posteriori that the map above
is actually an equivalence of 1–operads).

We conclude this section (and this paper) with a couple of curious applications of the
1–categorical Eckmann–Hilton argument. The first is the classification of idempotent
reduced 1–operads.

Corollary 5.3.4 Let P be a reduced 1–operad. If P ˝ P ' P , then P ' E0 or
P ' E1 .

Proof If P § E0 , then, by Remark 3.2.3, P is d –connected for some d � �1.
Therefore, by Theorem 5.2.2, P˝P is .2dC2/–connected, and 2d C 2 > d . Since
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P ' P˝P , we can continue by induction and deduce that P is 1–connected; hence
P ' E1 .

The second application is to a tensor product of a sequence of reduced 1–operads.
Given a sequence of reduced 1–operads .Pi /1iD1 , we can define the tensor product of
them all,

N1
iD1 Pi , as the colimit of the sequence

E0! P1! P1˝P2! P1˝P2˝P3! � � � ;

where the i th map is obtained by tensoring the essentially unique map E0! Pi with
P1˝ � � �˝Pi�1 .

Example 5.3.5 If we take Pi DE1 for all i , then the additivity theorem [17, 5.1.2.2]
implies that

N1
iD1E1 is the colimit of the sequence of 1–operads

E0! E1! E2! E3! � � � ;

which is E1 .

We offer the following generalization:

Corollary 5.3.6 Let .Pi /1iD1 be a sequence of reduced 1–operads not equivalent
to E0 . There is an equivalence of 1–operads

N1
iD1 Pi ' E1 .

Proof By Remark 3.2.3, all Pi are .�1/–connected. By induction on k and Corollary
5.3.3, the 1–operad P1˝ � � �˝Pk is .k�2/–connected. For every n 2N we get� 1O

iD1

Pi
�
.n/' colim

k
.P1˝ � � �˝Pk/.n/' pt

and therefore
N1
iD1 Pi ' E1 .

For example, this implies that putting countably many compatible H –space structures
on a pointed connected space X is the same as putting an 1–loop space structure
on X.
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