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Nonorientable Lagrangian surfaces in rational 4–manifolds

BO DAI

CHUNG-I HO

TIAN-JUN LI

We show that for any nonzero class A in H2.X IZ2/ in a rational 4�manifold X,
A is represented by a nonorientable embedded Lagrangian surface L (for some
symplectic structure) if and only if P.A/� �.L/ .mod 4/ , where P.A/ denotes the
mod 4 valued Pontryagin square of A .

53D12, 57Q35

1 Introduction

A smooth immersion or embedding f W L!X from a smooth manifold L into a sym-
plectic manifold .X; !/ is called Lagrangian if dim LD 1

2
dim X and f �! D 0. The

existence of Lagrangian submanifolds is an important problem in symplectic topology
and is studied by many people; see Audin [1], Audin, Lalonde and Polterovich [2],
Biran [3], Lalonde and Sikorav [7], Polterovich [13] and others. When X is a uniruled
4–manifold, it is well known that the only Lagrangian embedding of closed orientable
surfaces to X are spheres and tori, and Lagrangian tori are homologically trivial in X.
The existence question for Lagrangian spheres in a uniruled 4–manifold was completely
answered by Li and Wu [9].

The focus of this paper will be on the existence of embedded nonorientable Lagrangian
surfaces for a given mod 2 homology class. First of all, we have the following simple
observation by the Lagrangian immersion h–principle and the Lagrangian surgery
construction:

Proposition 1.1 Let .X; !/ be a symplectic 4–manifold. For any mod 2 homology
class A, there exists an embedded nonorientable Lagrangian surface representing this
class.

In light of the general existence, we ask the following question:

Published: 20 October 2019 DOI: 10.2140/agt.2019.19.2837

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=53D12, 57Q35
http://dx.doi.org/10.2140/agt.2019.19.2837


2838 Bo Dai, Chung-I Ho and Tian-Jun Li

Question 1.2 Given a mod 2 class A, what are the possible topological type of
nonorientable Lagrangian surfaces in the class A? In particular, what is the maximal
Euler number (equivalently, the minimal genus)?

We will study this question for rational 4–manifolds. Here, a smooth 4�manifold is
called rational if it is S2 �S2 or CP2 # kCP2 for some k 2 Z�0 .

Recall that any nonorientable surface is diffeomorphic to NkDkRP2DRP2#� � �#RP2

for some k 2N . The Euler number of Nk is 2�k , and the genus of Nk is defined to
be k . Audin’s congruence theorem [1] states that, for a mod 2 class A in an arbitrary
symplectic 4–manifold .X; !/, if A is represented by an embedded nonorientable
Lagrangian surface L, then the Pontryagin square of A is congruent to the Euler
number of L modulo 4.

The Pontryagin square referred here is a certain cohomology operation

PW H 2.X IZ2/!H 4.X IZ4/;

which is a lift of the mod 2 cup product (see eg Thomas [17]). Furthermore, if A

is the reduction of an integral class xA, then P.A/ is the mod 4 reduction of xA2 . In
particular, if X is a rational manifold, then H2.X IZ/ has no torsions, in particular
2–torsions, thus every mod 2 class A has an integral lift xA, and P.A/� xA2 .mod 4/.

For the zero class, it follows from Givental’s construction in R4 [4] that there are
nonorientable Lagrangian surfaces with Euler number divisible by 4, except possibly
the Klein bottle. Remarkably, it was shown by Shevchishin [15] and Nemirovskiı̆ [12]
that the mod 2 class of a Lagrangian Klein bottle in a uniruled manifold must be
nonzero. Together with Audin’s congruence theorem, the problem for the zero class is
thus completely understood for a uniruled manifold.

Now we assume that A is a nonzero class. The first step is to consider the situation
where the symplectic form ! is not fixed. We apply the classification of Lagrangian
spheres in [9] together with the Lagrangian blowup construction of Rieser [14] and
Givental’s local construction in [4] to show that Audin’s congruence is also sufficient
when A is a nonzero class in a rational manifold.

Theorem 1.3 Let X be a rational 4–manifold and A be a nonzero class in H2.X IZ2/.
Let P.A/ denote the Pontryagin square of A. Then A is represented by an embedded
nonorientable Lagrangian surface of Euler number � for some symplectic structure if
and only if

P.A/� � .mod 4/:
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Remark 1.4 If we let jP.A/j be the normalized P.A/ with values in f�2;�1; 0; 1g,
then the minimal genus of embedded nonorientable Lagrangian surfaces in a class A is

2� jP.A/j 2 f1; 2; 3; 4g:

Notice that for Lagrangian immersions, Proposition 1.1 holds for any symplectic
structure. The next step is to fix the symplectic form, or, equivalently, classify for
which symplectic forms there exist an embedded Lagrangian surface representing A.
A distinct feature is that, unlike for a Lagrangian sphere which only exists for a
codimension one locus of the symplectic cone due to the null symplectic area condition,
this seems to be an open condition. We will deal with this problem in future work.

The structure of this paper is as following. In Section 2, we introduce several general ap-
proaches in constructing Lagrangian submanifolds and use them to prove Proposition 1.1.
In Section 3, we construct embedded Lagrangian surfaces with desired genus and prove
Theorem 1.3.

Acknowledgements Li would like to thank Banghe Li for useful discussions on
Proposition 1.1. The research of Dai is partially supported by NSFC 11771232 and
11431001. The research of Ho is partially supported by MOST 105-2115-M-017-005-
MY2. The research of Li is partially supported by the NSF.

2 Constructing nonorientable Lagrangian surfaces

2.1 Existence of immersed Lagrangian surfaces

In this subsection we establish the existence of immersed Lagrangian surfaces in an
arbitrary symplectic 4–manifold.

Let us recall Gromov and Lee’s h–principle [6; 8]. Let L be a closed n–manifold and
.W; !/ be a symplectic 2n–manifold.

A smooth map f W L! .W; !/ is called an almost (or formal) Lagrangian immersion
if the following two conditions are satisfied:

(1) f �Œ!�D 0 in H 2.LIR/.

(2) There is an injective bundle map F W TL!f �T W over L such that F.TpL/�

.f �T W jp; f
�!jp/ is a Lagrangian subspace for any p 2L.
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Theorem 2.1 (Gromov, Lee) Every almost Lagrangian immersion is homotopic
through almost Lagrangian immersions to a Lagrangian immersion.

To apply this h–principle, here is a useful observation. If we take an !–compatible
almost complex structure on W , then symplectic vector bundles and complex vector
bundles are closely related and Lagrangian subbundles correspond to real subbundles.
Hence condition (2) can be replaced by an isomorphism as complex vector bundles

(2-1) TL˝C Š f �T W:

In our situation, we have:

Lemma 2.2 Rank two complex vector bundles over a nonorientable surface are classi-
fied by w2 .

Proof Let † be a nonorientable surface and E a rank two complex vector bundle
over †. In particular, there is an almost complex structure J on E. For dimensional
reasons, there is a nowhere-zero section � 2 �.E/. Then � ˚ J� forms a trivial
complex line bundle and induces a splitting C ˚ � . The complex line bundle � is
classified by c1 2H 2.†IZ/D Z2 . Notice that c1 � w2 under the mod 2 reduction
homomorphism H 2.†IZ/!H 2.†IZ2/, which is an isomorphism in this case.

Proposition 2.3 Let .X; !/ be a symplectic 4–manifold and A a mod 2 homology
class. Suppose † is a nonorientable surface and f W †!X is a smooth map such that
f�.Œ†�/DA and �.†/�hw2.X /;Ai .mod 2/. Then there is a Lagrangian immersion
from † to .X; !/ which is homotopic to f .

Proof By Theorem 2.1 it suffices to show that f is an almost Lagrangian immersion.
Since † is a nonorientable surface, H 2.†IR/D 0 and hence f �Œ!� is automatically
zero.

Let us now analyze the bundle f �TX as a real vector bundle by calculating the Stiefel–
Whitney classes. Firstly, w1.f

�TX /D f �w1.TX /D 0 since X is orientable. Since
† is nonorientable, we have the pairing hw2.f

�TX /; Œ†�i, and

hw2.f
�TX /; Œ†�i D hw2.TX /;Ai:

For the bundle T†˝C, as a real bundle,

T†˝C D T†˚T†
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has w1 D 0 and, by Wu’s formula (see Theorem 11.14 in [11]),

w2 D 2w2.T†/Cw1.T†/ �w1.T†/D w1.T†/ �w1.T†/D w2.T†/:

Since w2.T†/ is the mod 2 reduction of the Euler class of T†!† we have

hw2.T†˝C/; Œ†�i � �.†/ .mod 2/:

It follows from Lemma 2.2 that (2-1) holds if and only if

�.†/� hw2.TX /;Ai .mod 2/:

Remark 2.4 Since hw2.W /;Ai�A�A .mod 2/, the condition �.†/�hw2.TX /;Ai

.mod 2/ is equivalent to �.†/�A �A .mod 2/.

2.2 Existence of embedded nonorientable Lagrangian surfaces

In this subsection, we review the Lagrangian surgery and Givental’s beautiful local
constructions. Then we use these tools to construct new embedded Lagrangian surfaces
from old or immersed ones in a given symplectic 4–manifold.

2.2.1 Lagrangian surgery [13] A Lagrangian surgery is a desingularization of a
transversal Lagrangian intersection point. Let .R2n; !0/ be the standard symplectic
vector space and l1 and l2 Lagrangian subspaces of R2n which intersect transversally
at the origin. Let J W R2n!R2n be an !0 –compatible almost complex structure with
l2DJ.l1/. Let W Df� 2 l1 j!0.�;J �/D1gŠSn�1 . Define a map F W W �R!R2n ,
.�; t/ 7! e�t�CetJ � . Then F is a Lagrangian embedding, and F is asymptotic to l1 as
t!�1, and asymptotic to l2 as t!C1. One can smooth F outside a large ball to
obtain a Lagrangian embedding F 0W W �R!R2n such that F 0.W � .�1;�c�/� l1

and F 0.W � Œc;C1// � l2 for some c > 0. The image of F 0, �.l1; l2/, is called a
Lagrangian handle joining l1 and l2 .

In general, if x is a transversal intersection point of two Lagrangian submanifolds L1

and L2 or a transversal self-intersection point of a Lagrangian submanifold L, by
the Weinstein neighborhood theorem, we can choose a neighborhood U of x such
that .L1[L2/\U or L\U is the union of two Lagrangian disks. The Lagrangian
surgery is cutting out U and gluing back a portion of the Lagrangian handle carefully
to construct a new Lagrangian submanifold.

Notice that the Lagrangian isotopy class of a Lagrangian handle is independent of the
choice of almost complex structures and smoothing. It turns out that the topological
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type of the resulting manifold is also completely determined. It will be much easier
to describe it if we introduce the signs or orientations for the manifolds and the
intersections. Assume the orientations of l1 and l2 are given. The Lagrangian handle
�.l1; l2/ is called positive or has sign 1 if the orientations of l1 and l2 coincide in
the image of F 0. Otherwise, it is called negative or has sign �1. There is a natural
orientation for the positive Lagrangian handle induced by the orientation of l1 and l2 .

We know that:

Proposition 2.5 [13]

(1) The sign of the Lagrangian handle �.l1; l2/ is .�1/
n.n�1/

2
C1 ind.l1; l2/.

(2) Let Pn D Sn�1�S1 and Qn D Sn�1� Œ�1; 1�=�, where .x; 1/� .�.x/;�1/,
and � W Sn�1 ! Sn�1 is an orientation-reversing involution. Suppose L is a
connected immersed Lagrangian manifold with a self-intersection point x and
N is the resulting manifold of a Lagrangian surgery at x . If L is orientable, then
N ŠL # Pn when the surgery is positive and N ŠL # Qn when the surgery is
negative. If L is nonorientable, then N ŠL # Pn ŠL # Qn .

(3) (a) L and N are homologous (mod 2).

(b) If L is oriented and the surgery is positive , then L and N are homologous.

When n D 2, the sign of a Lagrangian handle coincides with ind.l1; l2/. N is dif-
feomorphic to L # T 2 if L is orientable and the index of self-intersection point is 1.
Otherwise, N is diffeomorphic to L # KB, where KB denotes a Klein bottle.

2.2.2 Wavefront construction Let x D .x1; : : : ;xn/ be a coordinate system of Rn

and y D .y1; : : : ;yn/ the coordinates for fibers of T �Rn corresponding to the
basis dx1; : : : ; dxn . Then �can D

P
i yidxi is the Liouville form on T �Rn , and

!0 D�d�can , the standard symplectic structure.

A smooth section f W L.� Rn/ ! .T �Rn; !0/ is Lagrangian if f �!0 D 0. So
f �d�can D df ��can D 0 and f ��can is closed. We call f exact if f ��can D dh

for some function h on L. We call h a generating function of f . The graph of h in
L�R is called a wavefront of f . Note that h is unique up to an addition by a constant.

Conversely, let h be a smooth function on Rn . Consider the gradient function
rhW Rn ! Rn . The graph of rh is a Lagrangian section of R2n Š T �Rn with
a generating function h.
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Figure 1

In general, if L is a Lagrangian submanifold of a 2n–dimensional symplectic manifold
.X; !/ and x 2L, we can choose a neighborhood U of x and a local chart �W U !
T �Rn carefully so that �.L\U / is a Lagrangian section of T �Rn with a generating
function h. If f1 and f2 are two local sections with generating functions h1 and h2 ,
respectively, then f1 and f2 coincide at x 2 Rn if and only if rh1.x/ D rh2.x/.
Geometrically, it is equivalent to the condition that the wavefronts of f1 and f2 are
parallel at x . This approach is extremely useful for nD 2 since we can explicitly draw
the wavefronts, ie the graphs of h1 and h2 in R3 .

Definition 2.6 Let L1 and L2 be two Lagrangian sections of T �Rn which are given
by fk W R

n! T �Rn , ie Lk D fk.R
n/, and h1 and h2 be their generating functions.

Assume further that rh1.x/Drh2.x/ and pD .x; h1.x//. We define sgn.p/D 1 if
det.Hess.h2� h1// > 0 and sgn.p/D�1 if det.Hess.h2� h1// < 0 at p .

When nD 2, sgn.p/ can be visualized from the wavefronts easily. We can assume
further that h1.x/D h2.x/ by adding constants. If det.Hess.h2 � h1// > 0, then in
a small neighborhood of x , one wavefront is completely in the top of the other one
except x (see Figure 1, left). When det.Hess.h2 � h1// < 0, these two wavefronts
always intersect at some point near but not equal to x (see Figure 1, right).

Definition 2.7 Let L1 and L2 be two oriented Lagrangian sections of T �Rn which
are given by fk W R

n! T �Rn and h1 and h2 be their generating functions. Let Rn

be oriented naturally by the ordered basis @=@x1; : : : ; @=@xn . We define:

(1) s.Lk/ D 1 if fk is orientation-preserving; s.Lk/ D �1 if fk is orientation-
reversing.

(2) L1 and L2 have the same orientation or s.L1;L2/D1 if f2ıf
�1

1
W L1!L2 is

orientation-preserving; L1 and L2 have opposite orientation or s.L1;L2/D�1

if f2 ıf
�1

1
is orientation-reversing.

It is clear that s.L1;L2/D s.L1/s.L2/.
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Lemma 2.8 Let L1 and L2 be two oriented Lagrangian sections of T �Rn intersect-
ing transversally at p D .x;y/. Let h1 and h2 be their generating functions. Let
indp.L1;L2/ denote the intersection index of L1 and L2 at p . Then

indp.L1;L2/D .�1/
n.n�1/

2 s.L1;L2/ sgn.p/:

Proof The tangent plane T.x;fk.x//Lk has a basis

ek
i D

@

@xi
C

X
j

@2hk

@xi@xj
.x/

@

@yj

for 1� i � n.

Since L1 and L2 intersect transversally at p D .x;y/, then y D f1.x/Drh1.x/D

rh2.x/D f2.x/ and e1
1
; : : : ; e1

n; e
2
1
; : : : ; e2

n form a basis of Tp.T
�Rn/.

The coefficient matrix of the ordered basis e1
1
; : : : ; e1

n; e
2
1
; : : : ; e2

n with respect to the
ordered basis @=@x1; : : : ; @=@xn; @=@y1; : : : ; @=@yn is

C D

�
I Hess.h1/

I Hess.h2/

�
:

We can show that det.C /Ddet.Hess.h2�h1//. The sign between the basis @=@x1; : : : ,
@=@xn; @=@y1; : : : ; @=@yn and the standard basis @=@x1; @=@y1; : : : ; @=@xn; @=@yn is
.�1/

n.n�1/
2 . Hence

indp.L1;L2/D s.L1/s.L2/ sgn.det.C // � .�1/
n.n�1/

2

D .�1/
n.n�1/

2 s.L1;L2/ sgn.p/:

Examples 2.9 (1) Let L be a constant section of T �R2 given by y1Da and y2Db ;
L is Lagrangian and a wavefront of L is a plane h.x1;x2/D ax1C bx2C c in R3 .
The wavefronts of two different constant sections are two nonparallel planes.

(2) Whitney sphere Let SnDf.x;y/2Rn�R jxD .x1; : : : ;xn/; kxk
2Cy2D 1g

and wW Sn!R2n , w.x1; : : : ;xn;y/D .x1; : : : ;xn;x1y; : : : ;xny/.

Then w can be viewed as the union of two sections of T �Rn Š R2n over the unit
disk, w˙.x/D .x; t˙.x/x/, where t˙.x/D˙

p
1�kxk2 . Let L˙ denote the graph

of w˙ .

The w˙ have generating functions h˙ D �
1
3
.1� kxk2/

3
2 , and rhC D rh� when

kxk D 1 or x is the origin. L˙ can be sewed smoothly along kxk D 1. So w is an
immersed Lagrangian n–sphere with a double point at the origin.
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hC

h�

rhC Drh� D)

LC

L�

D

Figure 2

When nD 1, hC and h� have same slopes at xD 0; 1;�1. Moreover, if an orientation
of w.S1/ is given, it induces orientations for L˙ . For instance, if it is oriented as
shown in Figure 2, then LC is oriented in the x1 direction and L� is oriented in the
�x1 direction. So s.LC;L�/D�1.

When nD2, hC and h� have same slopes on the circle kxkD1 and at the origin .0; 0/.
Assume an orientation of w.S2/ is given by a frame near the common boundary of L˙

as shown in Figure 3. When the frame is moved away from the boundary, we can
keep the first vector in the x2 direction, then the second one is in the �x1 direction
for LC but in the x1 direction for L� . So the induced orientations for LC and L�

are different (compare with the natural orientation of R2 ) and s.LC;L�/D�1.

hC

h�

rhC Drh�

x2

x1

D)

LC

L�

rhC.0; 0/Drh�.0; 0/ (self-intersection)

x2

x1

Figure 3
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h2

h0�

a b

x2

x1

Figure 4

Moreover, at the intersection point pD .0; 0; 0; 0/, we know that Hess.hC�h�/D 2I,
det.Hess.hC�h�//D 4> 0 and sgn.p/D 1. This also can be observed from Figure 1,
left.

(3) Let L1 D LC [L� be the 2–dimensional Whitney sphere in (2) and L2 be
a nonzero constant section close to but not intersecting with L1 . Without loss of
generality, we may assume L2 has a generating function h2.x1;x2/Dx1 . Let h0� be a
generating function deformed from h� as shown in Figure 4 and L0� be its Lagrangian
section. L0

1
DLC[L0� is another Lagrangian sphere in T �R2 with one double point

p D .0; 0; 0; 0/.

Along the line x2 D 0, rh0� D rh2 D .1; 0/ at two points .a; 0/ and .b; 0/ with
a< b < 0. Moreover, @h0�=@x2 < 0 when x2 > 0 and @h0�=@x2 > 0 when x2 < 0 in
the deformed area. So rh0� is never parallel to rh2 when x2 ¤ 0 and L0� and L2

intersect transversally at two points p1 D .a; 0; 1; 0/ and p2 D .b; 0; 1; 0/. More-
over, det.Hess.h0� � h2// < 0 at .a; 0/ and det.Hess.h0� � h2// > 0 at .b; 0/. So
sgn.p1/D�1 and sgn.p2/D 1.

2.2.3 Surgeries on wavefronts When we consider Lagrangian sections on the cotan-
gent bundle T �Rn , the sign of Lagrangian handles can be easily read out from their
generating functions.
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h1

h2

Figure 5

Lemma 2.10 Suppose two Lagrangian sections L1 and L2 are oriented and intersect
transversally at p D .x;y/. Then the sign of the Lagrangian handle at p is

�s.L1;L2/ sgn.p/:

Proof By Proposition 2.5(1) and Lemma 2.8, the sign of the Lagrangian handle at p

is
.�1/

n.n�1/
2
C1
� .�1/

n.n�1/
2 s.L1;L2/ sgn.p/D�s.L1;L2/ sgn.p/:

As we mentioned in the paragraph before Proposition 2.5, the topological feature of
the resulting manifold after Lagrangian surgery is independent of the choice of the
Lagrangian sections. When nD 2, the effect of the surgery is completely determined
by sgn.p/ and can be visualized from their wavefronts easily and can be visualized as
shown in Figure 5. The graphs on the left are the wavefronts and the ones on the right
are the Lagrangian surfaces after surgery.

Examples 2.11 (1) The 2–dimensional Whitney sphere in Example 2.9(2) is an
immersed sphere in T �Rn with a self-intersection point at p . If it is oriented,
we have shown that s.LC;L�/ D �1 and sgn.p/ D 1. By Lemma 2.10, the
Lagrangian handle at p is positive and the resulting manifold is an embedded
Lagrangian torus in T �R2 .

(2) Consider the Lagrangian surfaces L0
1

and L2 in Example 2.9(3). There are
three intersection or self-intersection points, p , p1 and p2 . Assume L0

1
and

Algebraic & Geometric Topology, Volume 19 (2019)
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L2 are oriented so that s.L0�;L2/D 1. By Lemma 2.10, the Lagrangian handle
is positive at p and p1 and negative at p2 . If we apply Lagrangian surgery
at p1 , the resulting manifold L3 is diffeomorphic to L0

1
# L2 with natural

orientation and two double points p and p2 . Applying the surgery to L3 at p ,
by Proposition 2.5, the resulting manifold L4 also has natural orientation and
is diffeomorphic to L0

1
# L2 # T 2 with one double point p2 . Finally, we can

apply the surgery to L4 at p2 and get an embedded Lagrangian surface which
is diffeomorphic to KB # L2 # T 2 or L2 # 4RP2 .

2.2.4 Existence of embedded nonorientable Lagrangian surfaces Now we can
prove the existence of embedded nonorientable Lagrangian surfaces.

Proof of Proposition 1.1 By a classical result of Thom [16], any mod 2 homology
class is represented by a smooth map f W †!M, for some surface †. If necessary, by
taking connected sum with an appropriate number of locally null-homologous RP2 , we
can assume that † is nonorientable and �.†/� hw2.X /;Ai .mod 2/. Then there is a
Lagrangian immersion †! .X; !/ by Proposition 2.3. Perform Lagrangian surgeries
on the double points to obtain an embedded nonorientable Lagrangian surface in the
class A.

We can further construct more Lagrangian surfaces with arbitrary small Euler numbers.

Proposition 2.12 If A is represented by a Lagrangian surface L, then it is represented
by a Lagrangian surface of type L # .4l/RP2 for any positive integer l .

Proof Let f W L!X be a Lagrangian submanifold. By a local version of Weinstein’s
Lagrangian neighborhood theorem, for any x 2 L, there exists a neighborhood U

and a symplectic embedding �W .U; !/ ! .T �Rn; !0/ such that �.L \ U / is the
intersection of �.U / with the constant section L2 in Example 2.9(3). As shown in
Example 2.11(3), we can take a null-homologous immersed Lagrangian sphere with
a self-intersection point, and intersecting L at two other points. Apply Lagrangian
surgeries to construct a Lagrangian submanifold L0, which is diffeomorphic to L#4RP2 .
By Proposition 2.5(3), L0 is in the same mod 2 homology class of L.

We can repeat this process and get L # .4l/RP2 for any l 2N .

Remark 2.13 It is more natural to consider the Clifford torus to increase the genus.
Here we choose a deformation of the Whitney sphere because it is easier to give a clear
explanation for the whole process via wavefront in this case. Actually, the construction
in Example 2.11(2) is generic and should work in more general situations.
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2.3 Lagrangian blowup

In this section, we describe the procedure of Lagrangian blowup in [14] and give an
important example. Let zBD f.z; l/2Cn�CPn�1 j z 2 lg, zB"D f.z; l/2 zB j jzj � "g
and Br D fz 2 Cn j jzj � rg. There are two natural projections, p1W

zB ! Cn and
p2W
zB!CPn�1 . The projection p1 implies that zB is the blowup of Cn at the origin,

and p2 implies that zB is also the universal line bundle over CPn�1 . For any � > 0,
let !� D p�

1
!0C�

2p�
2
!FS be the induced symplectic form on zB.

There is a symplectomorphism ˛W . zB"� zB0; !�/Š.B
p
�2C"2�B�; !0/ (see Lemma 7.11

of [10]). In particular, this preserves the real parts of zB and Cn .

Suppose X is a symplectic manifold and x 2 X. By Darboux’s theorem, there is a
symplectic embedding  W .Bı; !0/! .X; !/ for ı �

p
�2C "2 when � and " are

sufficiently small, and  .0/D x . Let zX D .X � .B�//q zB"=�, with  .˛.y//� y

for any y 2 zB" � zB0 . The closed 2–form z! induced by ! and !0 is a symplectic
structure on zX.

If X is a symplectic 4–manifold, L is a Lagrangian surface in X and x 2L, then there
exists a neighborhood U of x and a symplectic embedding �W .U; !/! .C2; !0/

such that �.L\U / is the real part. By Theorem 1.21 in [14], after blowing up at x ,
L is lifted to a Lagrangian surface zL� zX with zLŠL # RP2 . Moreover, the mod 2

class Œ zL�2 represented by zL satisfies

Œ zL�2 D ŒL�2CE;

where ŒL�2 is the mod 2 class represented by L and E is the mod 2 reduction
of the exceptional divisor, and we use the natural decomposition H2. zX ;Z2/ D

H2.X;Z2/˚Z2E.

An important example is the holomorphic blowup of CP2 ,

zX D f.ŒW1 WW2�; ŒZ0 WZ1 WZ2�/ 2CP1
�CP2

jZ1W2 DZ2W1g:

There are natural projections pi W
zX!CP i , i D 1; 2. The projection p1W

zX!CP1 is
a nontrivial CP1 –bundle over CP1 . The preimage p�1

2
.Œ1W0W0�/DCP1�fŒ1W0W0�g is

the exceptional curve, and p2W
zX�p�1

2
.Œ1W0W0�/!CP2�fŒ1W0W0�g is a diffeomorphism.

There is a family of Kähler forms on CP1 �CP2 , given by ! D p�
1
�1C �

2p�
2
�2 ,

where � > 0, and �i are the Fubini–Study forms on CP i . Then zX inherits a family
of Kähler forms.
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Let H 2H2. zX IZ/ be the hyperplane class of CP2 , and E the exceptional class. The
real locus of zX is diffeomorphic to RP2#RP2ŠKB representing HCE2H2. zX ;Z2/.
It is an embedded Lagrangian surface with respect to that family of Kähler forms,
and also has the structure of a nontrivial RP1 –bundle over RP1 . Note that a fiber
of nontrivial S2 –bundle over S2 represents the integral class H � E. Hence the
Lagrangian KB and a fiber of the nontrivial S2 –bundle represent the same mod 2 class.

3 Minimal genus Lagrangian surfaces in rational
4–manifolds

We will prove the following result:

Proposition 3.1 Let X be a rational 4�manifold and A2H2.X IZ2/ a nonzero class.
A is represented by a Lagrangian lRP2 with 0� l � 3 (for some symplectic structure)
if and only if P.A/� 2� l .mod 4/. Here , we use the convention S2 D 0RP2 .

Proof The conditions are necessary by [1]. So we just need to show that they are
sufficient.

First we consider the case X DCP2#kCP2 with k 2N . Assume H is the generator of
H2.CP2;Z/, the Ei are the exceptional classes of H2.X;Z/ and H;Ei 2H2.X;Z2/

are the reductions of H and Ei , respectively. Any class in H2.X;Z2/ is of the form

AD aH C b1E1C � � �C bkEk ;

where a and the bi are either 0 or 1. Note that P.E1C� � �CEk/D�k .mod 4/ and
P.H CE1C � � � CEk/ D 1� k .mod 4/. All our conclusions and results are valid
under permutation of exceptional divisors. For convenience, we will choose one class
in discussion, which also works for any other classes of the same type. For example,
H CE1 can also represent H CE2 , H CE3 , etc.

Let KX D�3H C
P

i Ei be the standard canonical class. For any t 2N , let

Zt D tH �E1� � � � �E2tC1� .t � 1/E.2tC2/:

We explain that Zt is represented by a smooth sphere. Let D be a configuration
of t degree-one algebraic curves D1; : : : ;Dt in CP2 such that D1; : : : ;Dt�1 pass
through a common point x , while Dt misses x . Blowing up at x and the other 2tC1

points in Dt which are away from the intersection points D1\Dt ; : : : ;Dt�1\Dt ,
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the lift zD of D in CP2 # .2t C 2/CP2 is in the class Zt if we arrange the indices
of exceptional divisors appropriately. A sphere is given by resolving the intersecting
points D1\Dt ; : : : ;Dt�1\Dt . Hence Zt is represented by a smooth sphere.

By [9, Proposition 5.6], an integral class Z is represented by a Lagrangian sphere
(with respect to some symplectic structure ! with canonical class KX ) if and only
if Z is represented by a smooth sphere, Z �KX D 0 and Z2 D�2. It can be shown
straightforwardly that Zt satisfies Zt �KX D 0 and Z2

t D �2. Hence Zt (and its
reduction Zt ) is represented by a Lagrangian sphere.

The reduction of Zt is E1C� � �CE4lC2 when t D 2l and is H CE1C� � �CE4lC3

when t D 2l C 1. Therefore, the mod 2 classes in the two sequences

fE1C � � �CE4lC2 j l � 0g and fH CE1C � � �CE4lC3 j l � 0g

are represented by Lagrangian spheres.

We perform the Lagrangian blowup construction (see Section 2.3) at one point of a
Lagrangian sphere in the mod 2 class E1C � � �CE4lC2 to obtain a Lagrangian RP2

in the mod 2 class
E1C � � �CE4lC3

for any l � 0. And, by repeating this process, for any l � 0 we obtain a Lagrangian
2RP2 in the mod 2 class

E1C � � �CE4lC4

and a Lagrangian 3RP2 in the mod 2 class

E1C � � �CE4lC5:

Similarly, for any l � 0, by blowing up at 1, 2 or 3 points of a Lagrangian sphere
in the mod 2 class H CE1 C � � � CE4lC3 , we can construct a Lagrangian RP2 ,
2RP2 D KB or 3RP2 in the mod 2 classes

H CE1C � � �CE4lC4; H CE1C � � �CE4lC5; H CE1C � � �CE4lC6;

respectively.

We are only left with the mod 2 classes

0; H; E1; H CE1; H CE1CE2

to consider. The real part of CP2 is a Lagrangian RP2 of class H. A Lagrangian KB
of H CE1 and a Lagrangian 3RP3 of H CE1CE2 can be constructed by blowing
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up one or two points on this RP2 . Blowing up at a point of the Clifford torus, we get
a Lagrangian 3RP2 representing E1 .

Since .S2 �S2/ # kCP2 is diffeomorphic to CP2 # .kC 1/CP2 for any k � 1, the
remaining rational 4–manifold is S2�S2 . H2.S

2�S2;Z/ŠZ˚Z has two generators,
the base class (or section class) B D ŒS2 � pt� and the fiber class F D Œpt�S2�. Let
B;F 2H2.S

2 �S2;Z2/ denote their reductions.

Let �W S2 ! S2 be the antipodal map, and ! a symplectic form on S2 such that
��! D �! . Note that the standard symplectic form obeys this condition. Equip
S2 �S2 with the product symplectic form !˚! . It is easy to see that the graph of
the antipodal map x 7! .x; �.x// is an embedded Lagrangian sphere representing the
integral class B �F, hence the mod 2 class BCF.

Since the mod 2 classes B and F are symmetric, it suffices to construct Lagrangian
surfaces for the class F. We will construct such a Lagrangian representative by the
real part of CP2 # CP2 , and embed this Lagrangian surface into the symplectic fiber
sum of two copies of CP2 # CP2 .

We recall the operation of symplectic fiber sum briefly (see [5; 10]). Let .X1; !1/ and
.X2; !2/ be symplectic manifolds of the same dimension 2n, and .Q; �/ be a compact
symplectic manifold of dimension 2n� 2. Suppose that

�i W Q!Xi

are symplectic embeddings such that their images �i.Q/ have trivial normal bundles.
By the symplectic neighborhood theorem, there are symplectic embeddings

fi W Q�B2.�/!Xi ; f �i !i D � ˚ dx ^ dy

such that fi.q; 0/D �i.q/ for q 2Q and i D 1; 2.

Let A.�; �/ be the annulus on B2.�/ with radius � < r < � , and �W A.�; �/!A.�; �/

be an area- and orientation-preserving diffeomorphism which swaps the two boundary
components. Then the symplectic fiber sum is defined by

X1 #Q X2 D .X1�f1.Q�B2.�//[ .X2�f2.Q�B2.�//=�;

where
f2.q; z/� f1.q; �.z// for all .q; z/ 2Q�A.�; �/:

There is a natural symplectic structure on X1 #Q X2 induced by !1 and !2 .
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Let us take two copies of CP2 # CP2 as in the last part of Section 2, and denote them
by X1 and X2 . Let L1 be the real locus of X1 , which is a Lagrangian Klein bottle.
Regard X1 and X2 as nontrivial S2 –bundles over S2 , and form the symplectic fiber
sum X1 #S2 X2 so that the gluing region in the base of X1 is away from the real locus
RP1 �CP1 . Denote the resulting manifold and symplectic form by . yX ; y!/. Then yX
is a trivial S2 –bundle over S2 , since �1.DiffC.S2//Š �1.SO.3//Š Z2 . It is easy
to see that L1 is embedded in yX as a Lagrangian Klein bottle, representing the fiber
class in H2. yX ;Z2/.

Let us complete the proof of Theorem 1.3.

Proof of Theorem 1.3 It is given by Propositions 3.1 and 2.12.
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