# Seifert surfaces for genus one hyperbolic knots in the 3-sphere 

Luis G Valdez-SÁNCHEZ

We prove that any collection of mutually disjoint and nonparallel genus one orientable Seifert surfaces in the exterior of a hyperbolic knot in the 3 -sphere has at most 5 components and that this bound is optimal.

57M25; 57N10

1. Introduction ..... 2151
2. Preliminaries ..... 2154
3. Genus two handlebodies and pairs ..... 2158
4. Genus one hyperbolic knots in $\mathbb{S}^{3}$ ..... 2169
5. Toroidal surfaces in knot exteriors ..... 2171
6. Structure of pairs ..... 2177
7. The case $|\mathbb{T}|=6$ ..... 2194
8. Examples of genus one hyperbolic knots in $\mathbb{S}^{3}$ ..... 2221
References ..... 2230

## 1 Introduction

Any knot $K$ in the 3 -sphere $\mathbb{S}^{3}$ bounds orientable Seifert surfaces $S^{\prime} \subset \mathbb{S}^{3}$, and the smallest genus among such surfaces is the genus of $K$. For any minimal genus Seifert surface $S^{\prime}$ for $K$ the once-punctured surface $S=S^{\prime} \cap X_{K} \subset X_{K}$ is incompressible in the exterior $X_{K}=\mathbb{S}^{3} \backslash$ int $N(K)$ of $K$, with boundary slope the standard longitude $J=\partial S \subset \partial X_{K}$ of $K$.

The knot $K$ is hyperbolic if its complement $\mathbb{S}^{3} \backslash K$ admits a complete hyperbolic structure of finite volume, or equivalently, by Thurston's work [17], if any properly embedded annulus or closed torus in its exterior $X_{K}$ is compressible or parallel to $\partial X_{K}$,
in which case there are at most finitely many exceptional slopes $r \subset \partial X_{K}$ for which the surgery manifold $X_{K}(r)=X_{K} \cup_{\partial}\left(\mathbb{S}^{1} \times \mathbb{D}^{2}\right)$, where $r$ bounds a meridian disk in $\mathbb{S}^{1} \times \mathbb{D}^{2}$, is not hyperbolic.

Regarding a question of K Motegi, of whether there is a universal bound on the number of pieces in the JSJ decomposition of the surgery manifolds $X_{K}(r)$ for hyperbolic knots $K \subset \mathbb{S}^{3}$, the family of genus one hyperbolic knots is an interesting test case. In this direction, Y Tsutsumi [19] proved that for $r=J$ the exterior of any genus one hyperbolic knot in $\mathbb{S}^{3}$ contains at most 7 mutually disjoint and nonparallel genus one Seifert surfaces, providing a potential bound for the number of pieces in the JSJ decomposition of the surgery manifold $X_{K}(J)$, and gave an example of a genus one hyperbolic knot $K_{0} \subset \mathbb{S}^{3}$ whose exterior contains three genus one Seifert surfaces that produce the JSJ decomposition of $X_{K_{0}}(J)$ consisting of three pieces, one of them hyperbolic.

In this paper we establish the optimal bound of 5 for the number of genus one Seifert surfaces in the exterior of any hyperbolic knot in $\mathbb{S}^{3}$.

Theorem 1 The exterior of any genus one hyperbolic knot in $\mathbb{S}^{3}$ contains at most 5 mutually disjoint and nonparallel genus one Seifert surfaces.

We point out that replacing the once-punctured tori in Theorem 1 with nonisotopic once-punctured Klein bottles of common boundary slope produces a similar bound (see Theorem 1.1 of Valdez-Sánchez [20]).

Denote by $\mathbb{T}$ a collection of mutually disjoint and nonparallel once-punctured tori properly embedded in the exterior $X_{K}$ of a genus one hyperbolic knot $K \subset \mathbb{S}^{3}$. A complementary region of $\mathbb{T} \subset X_{K}$ is the closure of a component of $X_{K} \backslash \mathbb{T}$ if $\mathbb{T}$ separates $X_{K}$, and otherwise the manifold $X_{K}$ cut along $\mathbb{T}$. The collection $\mathbb{T} \subset X_{K}$ is maximal if it has the largest possible number of components among all such collections in $X_{K}$.

By Theorem 1, any maximal collection $\mathbb{T}$ has at most 5 components, and the next result shows that the bound of 5 is achieved by infinitely many hyperbolic knots.

Theorem 2 There is a family of genus one hyperbolic knots

$$
K=K^{(1)}\left(p_{1}, q_{1}, p_{3}, \delta_{3}, p_{6}, q_{6}\right) \subset \mathbb{S}^{3}
$$

parametrized by infinitely many choices for the integers $p_{1}, p_{3}, p_{6}, q_{6} \geq 2$ and $q_{1}, \delta_{3} \subset$ $\{ \pm 1\}$ each of whose exterior $X_{K}$ contains a maximal collection of 5 mutually disjoint
and nonparallel once-punctured tori, such that the JSJ decomposition of $X_{K}(J)$ consists of 5 Seifert fiber spaces over the annulus with one singular fiber and any exceptional surgery on $K$ is an integral homology 3-sphere.

All the complementary regions of $\mathbb{T} \subset X_{K}$ for the knots in Theorem 2 are genus two handlebodies; in fact, in Lemma 4.1 we prove that for any collection $\mathbb{T}$ at most one complementary region may not be a genus two handlebody, and if such a nonhandlebody region is present then $\mathbb{T}$ has at most 4 components. Also, by Lemma 8.1 the property of any exceptional surgery on $K$ being an integral homology 3 -sphere holds for arbitrary hyperbolic knots with a 4 - or 5 -component collection $\mathbb{T}$ in their exterior.

The paper is organized as follows. The proofs of the main results are given in Sections 4, 7 and 8 , with Sections 2, 3, 5 and 6 containing supporting technical material.

The first approximation to Theorem 1 is given in Lemma 4.3, which states that any collection $\mathbb{T} \subset X_{K}$ has at most 6 components. Its proof relies on certain features of the complementary regions of a maximal collection $\mathbb{T}$ obtained by analyzing the properties of the disk faces of the graphs of intersection produced by $\mathbb{T}$ and a Gabai meridional planar surface for the knot. The complementary regions of $\mathbb{T}$ that are handlebodies play a crucial role throughout the paper, and we model them by pairs $(H, J)$ consisting of a genus two handlebody $H$ and a separating circle $J \subset \partial H$ which is nontrivial in $H$ and stands for the longitudinal slope of $K$, and in particular by simple pairs, which arise from boundary compressing an incompressible separating once-punctured torus in a genus two handlebody. The basic properties of pairs needed in the proof of Lemma 4.3 are presented earlier in Section 3.

In the case of a collection $\mathbb{T}$ with exactly 6 components we have that all complementary regions are genus two handlebodies; disposing of this case requires a detailed analysis of how these complementary regions fit together to form a knot exterior in $\mathbb{S}^{3}$, and to this end we further develop the properties of pairs in Section 6, along with some useful properties of once- and twice-punctured tori in knot exteriors given in Section 5 and aimed at distinguishing satellite knots.

In Section 6.1 we show that any simple pair identifies a unique "core knot" of its handlebody. The results of Sections 5 and 6 along with the classification of hyperbolic knots with nonintegral toroidal surgeries - see Gordon and Luecke [9] - are then used to establish a mechanism in Section 7.1 by which the "core knot" of a simple pair complementary region of $\mathbb{T}$ can be identified as a hyperbolic Eudave-Muñoz knot,
whose surgery properties lead to the construction in Section 7.2 of genus two Heegaard splittings of $\mathbb{S}^{3}$ associated to any 6 -component collection $\mathbb{T} \subset X_{K}$, with the knot $K$ embedded as a separating circle in the corresponding genus two Heegaard surface. The picture obtained at this point is that of each complementary region of $\mathbb{T}$ being a simple pair, with the collection of associated core knots "orbiting" around the knot $K$ (see Figure 12).

These Heegaard splittings are translated in Section 7.3 into Heegaard diagrams and further into presentations of the fundamental group of the 3-manifold corresponding to each splitting. Two nonequivalent families of Heegaard diagrams are obtained and discussed in detail in Sections 7.4 and 7.5. A theorem of T Kaneto [15] on the structure of the relators of a group presentation of $\pi_{1}\left(\mathbb{S}^{3}\right)$ obtained from a genus two Heegaard diagram provides the final contradiction that proves Theorem 1 at the end of Section 7.5. Section 8 is devoted to the construction of the family of genus one hyperbolic knots $K^{(1)}\left(p_{1}, q_{1}, p_{3}, \delta_{3}, p_{6}, q_{6}\right) \subset \mathbb{S}^{3}$ with exterior containing a 5-component collection $\mathbb{T}$ and the proof of Theorem 2. These examples are constructed by adapting some of the Heegaard splittings obtained in Section 7 so as to produce the manifold $\mathbb{S}^{3}$ and using a criterion from Lemma 8.1 to establish their hyperbolicity, a strategy that also allows the construction of examples of hyperbolic knots with maximal 4-component collections $\mathbb{T}$.

Interestingly, for the examples of knots where $\mathbb{T}$ has 5 components, in Lemma 8.3 we prove that the "core knot" of at least one of the complementary regions is a hyperbolic Eudave-Muñoz knot, while conversely E Ramírez-Losada (personal communication) has independently constructed infinite families of hyperbolic knots that bound 5 genus one Seifert surfaces starting from a tangle decomposition whose double branched cover is a hyperbolic Eudave-Muñoz knot.

## Acknowledgements

The author is grateful to E Ramírez-Losada for bringing Tsutsumi's paper [19] to his attention and for many helpful discussions, and to the referees for their many suggestions which greatly improved the original text.

## 2 Preliminaries

We work in the PL category. Standard definitions, constructions and results of 3manifold topology can be found in [10; 11], and information on JSJ decompositions of

3-manifolds in $[11 ; 13 ; 14]$. If $A$ is a set or a space then $|A|$ denotes its cardinality or the number of its connected components.

Unless otherwise stated, all manifolds are assumed to be compact and orientable, and submanifolds to be properly embedded. If $A$ is a submanifold of a manifold $M$ then $N(A), \operatorname{int}(A), \operatorname{cl}(A)$ and $\operatorname{fr}(A)$ denote its regular neighborhood, interior, closure and frontier in $M$, respectively; the components of $\partial A$ are denoted by $\partial_{1} A, \partial_{2} A, \ldots, \partial_{k} A$. Any two submanifolds can be isotoped so as to intersect minimally, that is, transversely and in the smallest possible number of components.

For circles $\alpha$ and $\beta$ in a surface $S, \alpha$ is nontrivial if it does not bound a disk in the surface, the isotopy class of $\alpha$ in the surface is called its slope (relative to the surface), $\Delta(\alpha, \beta)$ denotes their minimal geometric intersection number and $\alpha \cdot \beta$ their integral algebraic intersection number whenever the surface $S$ is orientable.

Let $S$ be a surface in a 3-manifold $M$ which is not a disk or 2 -sphere. The surface $S$ is compressible if some nontrivial circle in $S$ bounds a disk in $M$, called a compression disk for $S$; otherwise $S$ is incompressible. Such a surface $S$ is boundary compressible in $M$ if there is an arc $\alpha$ in $S$ which is not boundary parallel and an arc $\beta$ in $\partial M$ with $\beta \cap S=\partial \alpha$ and not parallel in $\partial M$ into $\partial S$ such that the circle $\alpha \cup \beta$ bounds a disk in $M$ with interior disjoint from $S$; otherwise $S$ is boundary incompressible. The surface $S$ is essential in $M$ if it is incompressible, boundary incompressible and not parallel to any component of $\partial M$.

A 3-manifold $M$ is irreducible if every 2 -sphere in $M$ bounds a 3-ball, and boundary irreducible if $\partial M$ is an incompressible surface in $M ; M$ is atoroidal if any incompressible torus in $M$ is parallel to $\partial M$, and toroidal otherwise. For $\Lambda \subset \partial M$ a 1 -submanifold, $M(\Lambda)$ denotes the 3 -manifold obtained by attaching 2 -handles to $M$ along the components of $\Lambda$ and capping off any resulting 2 -sphere boundary components with 3-balls. If $S$ is a surface in $M$ with $\partial S \neq \varnothing, \widehat{S}$ denotes the surface in $M(\partial S)$ obtained by capping off the circles $\partial S$ with disjoint disks in $M(\partial S)$. We denote by $M \mid S$ the manifold cl $[M \backslash N(S)] \subset M$ obtained by cutting $M$ along $S$.

If $K \subset \mathbb{S}^{3}$ is a knot with exterior $X_{K} \subset \mathbb{S}^{3}$ then the slopes in $\partial X_{K}$ correspond homologically to circles in $\partial X_{K}$ of the form $p \mu+q \lambda$, where $p, q \in \mathbb{Z}$ are relatively prime integers and $\mu$ and $\lambda$ are a standard meridian-longitude pair of $K$; we also say that $p \mu+q \lambda$ has slope $p / q \in \mathbb{Q} \sqcup\{\infty\}$, with $\infty$ corresponding to the slope $1 / 0$ of $\mu$; thus a slope $r \subset \partial X_{K}$ is integral if and only if $\Delta(r, \mu)=1$. The knot $K$ is simple if
its exterior $X_{K}$ is atoroidal, and a satellite knot otherwise; by [17] a simple knot is either a torus knot or a hyperbolic knot.
$S\left(n_{1}, \ldots, n_{k}\right)$ denotes a Seifert fiber space over the surface $S$ with $k \geq 1$ singular fibers of indices $n_{i} \geq 2$. Usually $S$ will be the 2 -sphere $\mathbb{S}^{2}$, the disk $\mathbb{D}^{2}$ or the annulus $\mathbb{A}^{2}$. We write $S(*, \ldots, *)$ when the specific values of the $n_{i}$ are not relevant. We use $L_{p}$, with $p \geq 0$, to denote a lens space with fundamental group $\mathbb{Z} / p \mathbb{Z}$, so $L_{0}=\mathbb{S}^{1} \times \mathbb{S}^{2}$ and $L_{1}=\mathbb{S}^{3}$.

### 2.1 Graphs of intersection

Let $M$ be an irreducible 3-manifold with boundary and $P$ and $Q$ compact surfaces (orientable or not) properly embedded in $M$. After isotoping $P$ in $M$ so as to intersect $Q$ minimally, each component of $\partial P$ intersects each component of $\partial Q$ minimally in $\partial M$ and no circle component of $P \cap Q$ is trivial in both $P$ and $Q$.

We call $G_{P}=P \cap Q \subset P$ and $G_{Q}=P \cap Q \subset Q$ the graphs of intersection between $P$ and $Q$, where we take the boundary circles of, say, $P$, as the fat vertices of $G_{P}$ and the arc components of $P \cap Q$ as the edges of $G_{P}$.

If $F$ is a face of $G_{P}$ then each boundary component of $F$ which is not a circle in $P \cap Q$ is an alternating union of edges of $G_{P}$ and arcs in $\partial M ; F$ is a $k$-sided face if its boundary contains a total of $k$ edges.

A disk face $D$ of $G_{P}$ is trivial if it is 1 -sided. An edge of $G_{P}$ is trivial if it is part of a trivial disk face of $G_{P}$, and essential otherwise. The graph $G_{P}$ is essential if it has no trivial edges.

The faces of the graphs of $G_{P}$ and $G_{Q}$ can be used to find information about the complementary regions of $P$ or $Q$ in $M$; we have for instance the following wellknown facts:

Lemma 2.1 (1) If $P$ is boundary incompressible then the graph $G_{Q}$ is essential.
(2) If $P$ is incompressible then any circle component of $P \cap Q$ is nontrivial in $Q$.
(3) Suppose that $P$ is a separating surface. Let $R$ be the closure of some component of $M \backslash P$ and $D$ a $k$-sided disk face of $G_{Q}$ properly embedded in $R$. If the graph $G_{P}$ is essential then $\partial D$ intersects $\partial P \subset \partial R$ minimally in $2 k$ points; in particular, $D$ is a compression disk for $\partial R$ in $R$.

### 2.2 Essential surfaces in knot exteriors

Let $K$ be a nontrivial knot in $\mathbb{S}^{3}$ and $P$ an essential surface (not necessarily orientable nor connected) in the exterior $X_{K} \subset \mathbb{S}^{3}$ of $K$ with boundary slope $r \neq \mu$, where $\mu \subset \partial X_{K}$ is the meridional slope of $K$.

In this context, using thin position, D Gabai proved in [7] the following result:
Lemma 2.2 [7, Lemma 4.4] There is a planar surface $Q \subset X_{K}$ with meridional boundary slope which intersects $P$ minimally so that each arc component of $P \cap Q$ is essential in $P$ and $Q$ and each circle component of $P \cap Q$ is essential in $Q$.

We call the surface $Q$ in the above lemma a Gabai meridional planar surface for $P$.

### 2.3 Planar graphs

A planar graph is a graph in a many-punctured 2 -sphere $Q \subset \mathbb{S}^{2}$.
Let $G$ be a planar graph consisting of a set $V$ of vertices and a set $E$ of edges. For convenience, we also denote by $V$ and $E$ the cardinalities of the sets $V$ and $E$, respectively, and by $d$ the number of disk faces of $G$; we thus have the Euler relation $E \leq V+d-2$.

A bigon is a 2 -sided disk face of $G$. A graph without bigons is called reduced. We denote by $\bar{G}$ the reduced graph of $G$ obtained by amalgamating each maximal collection of mutually parallel edges of $G$ into a single edge. Thus each edge $\bar{e}$ of $\bar{G}$ corresponds to some collection of mutually parallel edges $e_{1}, \ldots, e_{k}$ of $G$, in which case we say that $\bar{e}$ has size $|\bar{e}|=k$.
Following [21], we will say that a component $\Gamma$ of $G$ is extremal if $\Gamma$ is contained in a disk $D \subset \mathbb{S}^{2}$ which is disjoint from $G \backslash \Gamma$, and that a vertex $v$ is an interior vertex of the extremal component $\Gamma$ if $v$ is a vertex in $\Gamma$ and there is no arc in $D$ that connects $v$ to $\partial D$ and whose interior is disjoint from $\Gamma$. Notice that any graph $G$ has at least one extremal component, and that any face of $G$ which is incident to an interior vertex of an extremal component is a disk.

Lemma 2.3 If $G$ is a reduced essential planar graph such that each vertex has degree at least 3 then
(1) any extremal component of $G$ has at least one interior vertex,
(2) if no disk face of $G$ is 3 -sided or 5-sided then $G$ has vertices of degree 3 and 4 -sided disk faces.

Proof Part (1) is the content of [21, Lemma 3.2]. For part (2), let $k$ be the smallest degree of the vertices of $G$ and $l$ the smallest number of edges around a disk face of $G$. By hypothesis we have that $k \geq 3$ and $l=4$ or $l \geq 6$, and from Euler's relation for $G$ that $k V \leq 2 E \leq 2 V+2 d-4$ and $l d \leq 2 E \leq 2 V+2 d-4$. Therefore $(k-2) V<2 d$ and $(l-2) d<2 V$, which implies that $(k-2)(l-2)<4$ and hence that $k=3$ and $l=4$.

## 3 Genus two handlebodies and pairs

In this section we present several properties of circles in the boundary of a genus two solid handlebody $H$ and their relations to annuli and once-punctured tori in $H$, and introduce the notion of a pair $(H, J)$.

### 3.1 Companion annuli and power circles in genus two handlebodies

Let $M$ be a 3-manifold with boundary and $\gamma \subset \partial M$ a circle which is nontrivial in $M$. We say that a separating annulus $A$ properly embedded in $M$ is a companion annulus of $\gamma$ if $A$ is not parallel into $\partial M$ and the circle components of $\partial A$ cobound an annulus $A_{\gamma} \subset \partial M$ with core isotopic to $\gamma$ in $\partial M$. If the region cobounded by $A$ and $A_{\gamma}$ in $M$ is a solid torus $V$, we say that $V$ is a companion solid torus of $\gamma$ in $M$ and denote the components of $M \mid A$ by $M_{A}$ and $V$.

The following result gives conditions for the uniqueness in $M$ of circles in $\partial M$ that have companion annuli:

Lemma 3.1 Let $M$ be an irreducible 3-manifold with boundary and $\gamma \subset \partial M$ a separating circle that is nontrivial in $M$ such that $\partial M=T_{1} \cup_{\gamma} F$, where $T_{1} \subset \partial M$ is a once-punctured torus. Then $T_{1}$ is incompressible in $M$ and there is, up to isotopy, at most one circle in $T_{1}$ which has a companion annulus in $M$.

Proof Any compression of $T_{1}$ in $M$ yields a disk in $M$ bounded by $\gamma$, contradicting the nontriviality of the circle $\gamma$; therefore $T_{1}$ is incompressible in $M$.

Suppose that $a$ and $b$ are nontrivial circles in $T_{1}$ with incompressible companion annuli $A, B \subset H$, respectively. Isotope $A$ and $B$ so as to intersect minimally, keeping $\partial(A \cup B) \subset T_{1}$, and suppose that $\partial A \cap \partial B \neq \varnothing$. Since $T_{1}$ is a once-punctured torus, each component $\partial_{i} A$ intersects each component $\partial_{j} B$ in $\Delta\left(\partial_{i} A, \partial_{j} B\right)=\left|\partial_{i} A \cdot \partial_{j} B\right|$ points; therefore the parity rule in [16, Lemma 2.2] applies and so any arc of $A \cap B$
has opposite parities with respect to $A$ and $B$. In particular, some arc $c$ of $A \cap B$ is positive in, say, $A$, and negative in $B$; thus $c$ is boundary parallel in $A$, essential in $B$, and may be assumed to be outermost in $A$, hence to cobound with $\partial A$ a boundary compression disk $D \subset A$ for $B$. Boundary compressing $B$ along $D$ produces a disk $E$ properly embedded in $M$ with $\partial E \subset T_{1}$ a nontrivial (separating) circle, contradicting the incompressibility of $T_{1}$. Therefore $\partial A$ and $\partial B$ are disjoint in $T_{1}$, so $a$ and $b$ are isotopic in $T_{1}$.

We now show that each boundary component of an "essential" annulus in a handlebody is always a nonseparating circle.

Lemma 3.2 If $H$ is a handlebody of genus at least two and $A \subset H$ is an incompressible and not boundary parallel annulus then there is a nontrivial disk $E \subset H$ disjoint from $A$, with $A$ and $E$ both separating or both nonseparating in $H$ and each component of $\partial A$ a nonseparating circle in $\partial H$.

Proof Boundary compressing the annulus $A$ in $H$ yields a properly embedded nontrivial disk $E \subset H$ homologous to $A$ which can be isotoped away from $A$. Thus $A$ and $E$ are both separating or both nonseparating in $H$ and $A$ is isotopic to an annulus constructed by adding a band in $\partial H$ to $E$ along some arc $\alpha \subset \partial H$ with both endpoints on the same side of $\partial E$ and otherwise disjoint and not parallel into $\partial E$, so the disk $E$ must be nontrivial in $H$. As $H$ has genus at least 2, there is a circle $\beta \subset \partial H \backslash \partial E$ which intersects $\alpha$ minimally in one point, which implies that each boundary component of $\partial A$ is a nonseparating circle in $\partial H$.

Let $\gamma, \gamma^{\prime} \subset \partial H$ be mutually disjoint and nonparallel circles. We say that

- $\quad \gamma$ is a primitive circle in $H$ if $\gamma$ represents a primitive element in the free group $\pi_{1}(H)$; geometrically, this is equivalent to the presence of a disk in $H$ which intersects $\gamma$ minimally in one point;
- $\gamma$ is a power circle in $H$ if $\gamma$ represents a nontrivial power in $\pi_{1}(H)$, that is, if $\gamma$ represents a power $p \geq 2$ of some nontrivial element in $\pi_{1}(H)$ (eg the circle $L$ in the handlebody $H_{1}$ of Figure 5, left);
- $\gamma, \gamma^{\prime} \subset \partial H$ are coannular if they cobound an annulus in $H$, and separated if there is a separating nontrivial disk (a waist disk) in $H$ separating $\gamma$ and $\gamma^{\prime}$;
- $\gamma, \gamma^{\prime} \subset \partial H$ are basic circles in $H$ if they represent a basis of the group $\pi_{1}(H)$ (relative to some basepoint), in which case, by the 2 -handle addition theorem [12; 2] applied to $\gamma^{\prime} \subset \partial H \backslash \gamma, \gamma$ and $\gamma^{\prime}$ must be separated circles (eg the circles $\omega_{1}^{\prime}$ and $\omega_{3}$ in the handlebody $R_{2,3}$ of Figure 16, top).

The concepts above are related to Casson and Gordon's discussion in [2] of roots in the fundamental group of a compression body. The following lemmas present the results we need here in the context of genus two handlebodies and through the properties of companion annuli, which will become increasingly relevant in the sequel.

Lemma 3.3 Let $H$ be a genus two handlebody and $\gamma \subset \partial H$ a circle which is nontrivial in $H$. Then
(1) the surface $\partial H \backslash \gamma$ compresses in $H$ if and only if $\gamma$ is a primitive or a power circle in $H$, in which case
(a) $\partial H \backslash \gamma$ compresses along a waist disk $D_{w} \subset H$ which cuts $H$ into two solid tori $V, V^{\prime} \subset H$ with $\gamma \subset \partial V$,
(b) $\partial H \backslash \gamma$ compresses along a nonseparating disk in $H$, which is unique up to isotopy;
(2) $\gamma$ has a companion annulus in $H$ if and only if $\gamma$ is a power circle in $H$, in which case $\gamma$ represents a nontrivial power of some primitive element of $\pi_{1}(H)$; more precisely,
(a) the companion annulus $A$ of $\gamma$ is unique up to isotopy and cobounds with $\partial H$ a companion solid torus of $\gamma$, of whose core $\gamma$ represents a nontrivial power in $\pi_{1}(H)$,
(b) $H \mid A$ consists of a genus two handlebody $H_{A}$ and a solid torus, and the core of $A$ is a primitive circle in $H_{A}$.

Proof That $\partial H \backslash \gamma$ compresses in $H$ if and only if $\gamma$ is a primitive or a power circle in $H$, and that $\gamma$ has a companion annulus in $H$ if and only if $\gamma$ is a power circle in $H$, follow from [20, Lemma 5.2].

Suppose that $D \subset H$ is a compression disk for $\partial H \backslash \gamma$. If $\partial D \subset \partial H \backslash \gamma$ is a nonseparating circle then there is a circle $\alpha \subset \partial H \backslash \gamma$ which intersects $\partial D$ transversely in one point, hence $D$ is nonseparating and the waist disk $D_{w}=\operatorname{fr} N(D \cup \alpha) \subset H$ is a compression disk for $\partial H \backslash \gamma$ which cuts $H$ into two solid tori $V, V^{\prime} \subset H$ with, say, $\gamma \subset V$, so (1)(a) and the first part of (2) hold.

If $\partial D \subset \partial H \backslash \gamma$ is a separating circle then we can take $D_{w}=D$ as the waist disk for $H$ in the above argument, so that $H=V \cup_{D_{w}} V^{\prime}$ with $\gamma \subset \partial V$, whence $\partial H \backslash \gamma$ compresses along some meridian disk $D^{\prime}$ of the solid torus $V^{\prime}$, which is nonseparating in $H$. It is not hard to see that $D^{\prime}$ is unique in $H$ up to isotopy, so (1)(b) holds.

In (2), any companion annulus $A$ of $\gamma$ can be isotoped away from $D^{\prime}$ and into the solid torus $H \mid D^{\prime}$, so the uniqueness of $A$ and the fact that it cobounds with $\partial H$ a companion solid torus of $\gamma$ follow from the uniqueness of $D^{\prime}$. Since $H=V \cup_{D_{w}} V^{\prime}$ and $\gamma \subset \partial V, A$ may also be isotoped in $H$ away from $D_{w}$ so that $A \subset V$ runs $p \geq 2$ times around $V$, whence $\gamma$ represents the $p^{\text {th }}$ power of the core circle of $V$, which is primitive in $\pi_{1}(H)$. We also have the decomposition $V \mid A=V_{1} \cup_{A} V_{2}$ for some solid tori $V_{1}, V_{2} \subset V$ with $\gamma \subset V_{1}$ and $A \subset \partial V_{2}$ running once around $V_{2}$; as $H_{A}=V_{2} \cup_{D_{w}} V^{\prime}$, it follows that $H_{A}$ is a genus two handlebody and that the core of $A \subset \partial V_{2}$ is isotopic to the core of $V_{2}$, which is primitive in $H_{A}$. Therefore (2) holds.

In light of Lemma 3.3(2),

- we will say that a circle $\gamma \subset \partial H$ is a power $p$ circle for some integer $p \geq 2$ if $\gamma$ is a power circle in $H$ that represents the power $p$ of some primitive element of $\pi_{1}(H)$, or, equivalently, if $\gamma$ runs $p$ times around its companion solid torus in $H$;
- we extend this notation so that a circle $\gamma \subset \partial H$ is a power $p=1$ circle if and only if $\gamma$ is a primitive circle in $H$.

Regarding separated or coannular circles we have the following result:
Lemma 3.4 Let $\gamma, \gamma^{\prime} \subset \partial H$ be disjoint and nonparallel circles in $\partial H$ which are nontrivial in a genus two handlebody $H$, and let $S=\partial H \backslash\left(\gamma \cup \gamma^{\prime}\right) \subset \partial H$. Then $S$ has at most one compression disk in $H$ up to isotopy, and the following conditions hold:
(1) The surface $S$ compresses in $H$ along a separating disk if and only if $\gamma$ and $\gamma^{\prime}$ are separated in $H$, in which case each circle $\gamma$ and $\gamma^{\prime}$ is a primitive or power circle in $H$.
(2) The surface $S$ compresses in $H$ along a nonseparating disk if and only if $\gamma$ and $\gamma^{\prime}$ are coannular circles in $H$, in which case $\gamma$ and $\gamma^{\prime}$ are both primitive or both power circles in $H$.
(3) If $\gamma$ is a primitive or power circle and $\gamma^{\prime}$ is a power circle then $S$ compresses in $H$ along a separating disk.
(4) If $\gamma$ and $\gamma^{\prime}$ are coannular in $H$ and $D$ is the nonseparating compression disk for $S$, then
(a) up to isotopy, the annulus bounded by $\gamma \sqcup \gamma^{\prime}$ is unique in $H$ when $\gamma$ is a primitive circle, and there are exactly two such annuli when $\gamma$ is a power circle;
(b) if $\gamma$ is a power circle with companion annulus $B \subset H$ then $B$ can be isotoped into $H \mid D$, in which case $\gamma^{\prime}$ and the core circle $\gamma_{B}$ of $B$ are coannular and primitive in the genus two handlebody $H_{B} \subset H \mid B$.

Proof If the circles $\gamma$ and $\gamma^{\prime}$ are separated by a waist disk $D \subset H$ then $D$ is a compression disk for $S$ in $H$. If $\gamma$ and $\gamma^{\prime}$ cobound an annulus $A \subset H$ then, by Lemma 3.2, each circle $\gamma$ and $\gamma^{\prime}$ is nonseparating in $\partial H$, so $A$ is nonseparating and there is a nonseparating disk $E \subset H$ disjoint from $A$, which is then a compression disk for $S$. In either case the surfaces $\partial H \backslash \gamma$ and $\partial H \backslash \gamma^{\prime}$ compress in $H$ and so by Lemma 3.3 each circle $\gamma$ and $\gamma^{\prime}$ is a primitive or a power circle in $H$, and it is not hard to see that $D$ and $E$ are unique up to isotopy.

Since the circles $\gamma$ and $\gamma^{\prime}$ are not parallel in $\partial H$, if $S$ compresses in $H$ along a separating disk $D \subset H$ then $\gamma$ and $\gamma^{\prime}$ are separated by $D$ in $H$; thus (2) holds.

If $\gamma$ is a primitive or power circle and $\gamma^{\prime}$ is a power circle in $H$ then, by Lemma 3.3(1), the surface $F=\partial H \backslash \gamma$ compresses in $H$ and contains $\gamma^{\prime}$; since, by Lemma 3.3(2), if $B^{\prime}$ and $V^{\prime}$ are the companion annulus and solid torus of $\gamma^{\prime}$ then the manifold $H\left(\gamma^{\prime}\right)=H_{B}\left(\gamma^{\prime}\right) \cup \widehat{B}^{\prime} V^{\prime}\left(\gamma^{\prime}\right)$ is a connected sum of a solid torus and a lens space, it follows by the 2 -handle addition theorem that the surface $S=F \backslash \gamma^{\prime}$ compresses in $H$. Thus (3) holds.

Suppose now that there is a nonseparating compression disk $D \subset H$ for $S$. Then $H \mid D$ is a solid torus with $\gamma \sqcup \gamma^{\prime} \subset \partial(H \mid D)$, so the closures of the components of $\partial(H \mid D) \backslash\left(\gamma \sqcup \gamma^{\prime}\right)$ are two annuli $A$ and $A^{\prime}$ and so $\gamma$ and $\gamma^{\prime}$ are coannular in $H \mid D$, hence in $H$. Thus (1) holds.

Let $\mathcal{A} \subset H$ be any properly embedded annulus with boundary $\gamma \sqcup \gamma^{\prime}$. By Lemma 3.2, the annulus $\mathcal{A}$ is incompressible and nonseparating in $H$, so $S$ compresses in $H$ along a unique nonseparating disk $D \subset H$ disjoint from $\mathcal{A}$; therefore $\mathcal{A}$ lies in the solid torus $H \mid D$ and hence it is parallel to $A$ or $A^{\prime}$ in $H \mid D$.

Let $p \geq 1$ be the number of times that $\gamma$ runs around $H \mid D$, so that $\gamma$ is a power $p$ circle in $H$. If $p=1$ then $A$ and $A^{\prime}$ are parallel in $H \mid D$ and so, up to isotopy, $\mathcal{A}$ is
the unique annulus in $H$ cobounded by $\gamma$ and $\gamma^{\prime}$. If $p \geq 2$ then $A$ and $A^{\prime}$ are not parallel in $H \mid D$ and so there are two possible such annuli $\mathcal{A}$.

Now, if $p \geq 2$ and $B \subset H$ is the companion annulus of $\gamma$ then $B$ can be isotoped so as to intersect $D$ minimally and hence, by a standard innermost-outermost intersection argument, to be disjoint from $D$. Since the circles $\gamma$ and $\gamma^{\prime}$ are not parallel in $\partial H$, necessarily the core circle $\gamma_{B}$ of $B$ and $\gamma^{\prime}$ are not parallel in the genus two handlebody $H_{B} \subset H \mid B$. Therefore, by Lemma 3.3(2), $\gamma_{B}$ is a primitive circle in $H_{B}$, and by part (2) the circles $\gamma^{\prime}$ and $\gamma_{B}$ are coannular in $H_{B}$. Thus (4) holds.

The following result gives conditions for the manifold obtained by attaching one or two solid tori to a genus two handlebody to be a handlebody.

Lemma 3.5 Let $H$ be a genus two handlebody and $\gamma, \gamma^{\prime} \subset \partial H$ a pair of disjoint circles.
(1) If $M=H \cup_{\gamma} V$ is a manifold obtained by gluing a solid torus $V$ to $H$ along an annular neighborhood $A=\partial H \cap \partial V$ of $\gamma$ such that $A$ runs at least twice around $V$, then $M$ is a genus two handlebody if and only if $\gamma$ is a primitive circle in $H$.
(2) If $M=V \cup_{\gamma} H \cup_{\gamma^{\prime}} V^{\prime}$ is a manifold obtained by gluing solid tori $V$ and $V^{\prime}$ to $H$ along disjoint annular neighborhoods $A=\partial H \cap \partial V$ and $A^{\prime}=\partial H \cap \partial V^{\prime}$ of $\gamma$ and $\gamma^{\prime}$, respectively, where each annulus $A$ and $A^{\prime}$ runs at least twice around $V$ and $V^{\prime}$, respectively, then $M$ is a genus two handlebody if and only if $\gamma$ and $\gamma^{\prime}$ are basic circles in $H$.

Proof For part (1), if $M$ is a genus two handlebody then by Lemma 3.3 the annulus $A \subset M$ is a companion annulus of some power circle in $\partial M$, so by Lemma 3.3(2)(b) the circle $\gamma$ is primitive in $H$. Conversely, if $\gamma \subset \partial H$ is primitive in $H$ then by Lemma 3.3 there is a waist disk of $H$ disjoint from $\gamma$ which cuts $H$ into solid tori $W$ and $W^{\prime}$ with $\gamma \subset W$ a circle that runs once around $W$; therefore $V \cup_{A} W$ is a solid torus, so $M=V \cup_{A}\left(W \cup_{D_{w}} W^{\prime}\right)=\left(V \cup_{A} W\right) \cup_{D_{w}} W^{\prime}$ is a genus two handlebody. For part (2), if $M$ is a genus two handlebody then $A$ and $A^{\prime}$ are companion annuli of some disjoint power circles $\alpha$ and $\alpha^{\prime}$ in $\partial M$, respectively; since $A$ and $A^{\prime}$ are disjoint, by [20, Lemma 5.1] the circles $\alpha$ and $\alpha^{\prime}$ are not mutually parallel in $\partial M$. Therefore, by Lemma 3.4(1), (3), the circles $\alpha$ and $\alpha^{\prime}$ are separated in $M$ by some waist disk $D \subset M$, which can be isotoped in $M$ to be disjoint from $A \sqcup A^{\prime}$ to become
a separating disk for $\gamma, \gamma^{\prime} \subset \partial H$. The argument for part (1) now shows that $\gamma$ and $\gamma^{\prime}$ are primitive and hence basic circles in $H$. The converse follows in a similar way.

### 3.2 Pairs

A pair $(H, J)$ consists of a genus two handlebody $H$ and a separating circle $J \subset \partial H$ which is nontrivial in $H$. If $(H, J)$ is a pair then the closures $T_{1}$ and $T_{2}$ of the components of $\partial H \backslash J$ are once-punctured tori with $\partial T_{1}=J=\partial T_{2}$ and $\partial H=T_{1} \cup_{J} T_{2}$. A pair $(H, J)$ is

- trivial if it is homeomorphic to the pair $\left(T_{1} \times I, \partial T_{1} \times\{0\}\right)$ with $T_{1}$ corresponding to $T_{1} \times\{0\}$;
- minimal if any once-punctured torus $T$ in $H$ with $\partial T=J$ is parallel to $T_{1}$ or $T_{2}$, so in particular any trivial pair is minimal;
- if $\omega_{i} \subset T_{i}$ is a power circle in $H$ with companion annulus $A_{i} \subset H$, where the circles $\partial A_{i}$ cobound an annulus $A_{i}^{\prime} \subset T_{i}$, then isotoping $\left(T_{i} \backslash A_{i}^{\prime}\right) \cup A_{i}$ slightly off $T_{i}$ produces a once-punctured torus $T_{i}^{\prime}$ properly embedded in $H$ with $\partial T_{i}^{\prime}=J$, and we say that $T_{i}^{\prime}$ is the once-punctured torus in $H$ induced by the power circle $\omega_{i}$.

The next result establishes the uniqueness of power circles in a couple of related situations.

Lemma 3.6 Let $H$ be a genus two handlebody and $\gamma \subset \partial H$ a nontrivial circle in $H$.
(1) If $\gamma$ separates $\partial H$ into once-punctured tori $T_{1}$ and $T_{2}$, then each $T_{i}$ is incompressible in $H$ and contains, up to isotopy, at most one power circle.
(2) If the circle $\gamma$ is nonseparating in $\partial H$ and neither a primitive nor power circle in $H$ then any two circles in $\partial H \backslash \gamma$ which are power circles in $H$ are isotopic in the torus $\partial H(\gamma)$.

Proof Part (1) follows from Lemma 3.1. For part (2), by Lemma 3.3(1) the surface $\partial H \backslash \gamma$ is incompressible in $H$, hence by the 2-handle addition theorem the manifold $H(\gamma)$ is irreducible with incompressible torus boundary. So if $a, b \subset \partial H \backslash \gamma$ are any power circles in $H$ with corresponding companion annuli $A, B \subset H$ then the annuli $A$ and $B$ are essential in $H(\gamma)$ and so, by an argument similar to the one used in the proof of Lemma 3.1, their minimal intersection $A \cap B$ must be empty, whence $a$ and $b$ are isotopic in $\partial H(\gamma)$.

It follows from Lemma 3.6(1) that the once-punctured torus induced by a power circle in $T_{i} \subset \partial H$ is unique up to isotopy. We will say that a pair $(H, J)$ is simple if, for some $\{i, j\}=\{1,2\}, T_{j}$ is parallel in $H$ to the once-punctured torus induced by some power circle in $T_{i}$.

We will see below that the pair $(H, J)$ in Figure 9, top, is simple.
The next result establishes several basic facts about pairs.
Lemma 3.7 Let $(H, J)$ be a pair with $\partial H=T_{1} \cup{ }_{J} T_{2}$ and $T \subset H$ any once-punctured torus with $\partial T=J$. Then
(1) $H(J)$ is an irreducible manifold with incompressible boundary $\widehat{T}_{1} \sqcup \widehat{T}_{2}$;
(2) $T$ is incompressible and separates $H$ into two components whose closure are genus two handlebodies $H_{1}$ and $H_{2}$ with $\partial H_{i}=T \cup_{J} T_{i}$;
(3) $T$ boundary compresses in $H$ towards some $T_{i}$, in which case the pair $\left(H_{i}, J\right)$ is either trivial or simple;
(4) the pair $(H, J)$ is trivial if and only if $H(J) \approx \widehat{T}_{1} \times I$.

Proof By Lemma 3.6, $T_{1}$ and $T_{2}$ are incompressible in $H$ and hence (1) holds by the 2 -handle addition theorem. Similarly, $T$ is incompressible in $H$. Since $H$ can be embedded in $\mathbb{S}^{3}$, the closed surface $T \cup T_{1}$ is orientable and separates $\mathbb{S}^{3}$, hence $T$ separates $H$ into two components whose closures $H_{1}, H_{2} \subset H$ satisfy $H=H_{1} \cup_{T} H_{2}$. That $H_{1}$ and $H_{2}$ are handlebodies follows now as in [19, Lemma 2.3].

Suppose now for definiteness that $T$ boundary compresses in $H$ towards $T_{1}$. Then $T$ boundary compresses into an annulus $A \subset H$ with $\partial A$ nonseparating circles in $T_{1}$ that cobound an annulus $A_{1} \subset T_{1}$. The once-punctured torus $T$ can be recovered by adding a band to the annulus $A$ along an arc in $T_{1}$ with one endpoint in $\partial_{1} A$ and the other in $\partial_{2} A$, that is, $T$ is parallel in $H$ to the once-punctured torus $\left(T_{1} \backslash A_{1}\right) \cup A$. If $A$ is parallel to $A_{1}$ then $T$ is parallel to $T_{1}$, so $H_{1} \approx T_{1} \times I$ and hence the pair ( $H_{1}, J$ ) is trivial. If $A$ is not parallel to $A_{1}$ then $A$ is a companion annulus of the core circle $\omega_{1}$ of $A_{1}$, in which case, by Lemma 3.3(2), the circle $\omega_{1}$ is a power $p \geq 2$ circle in $H$, which implies that $T$ is parallel in $H_{1}$ to the once-punctured torus in $H_{1}$ induced by the power circle $\omega_{1} \subset T_{1}$. Thus (3) holds.
For part (4), if $H(J)$ is homeomorphic to $\widehat{T}_{1} \times I$ then $J$ is the boundary of the cocore disk for some tunnel arc $t$ of $\widehat{T}_{1} \times I$. As $H$ is a handlebody, by [6, Lemma 1.1] the arc $t$ is isotopic in $\widehat{T}_{1} \times I$ to a vertical arc $\{x\} \times I$ and so $(H, J)$ is homeomorphic to the trivial pair ( $T_{1} \times I, \partial T_{1}$ ). The converse follows by definition of trivial pair.


Figure 1: The genus two handlebody $F \times I$.
We now construct a special family of pairs described in [19, Section 4]. Let $F$ be a once-punctured torus and $\alpha_{1}, \alpha_{2} \subset F$ properly embedded circles that intersect transversely in one point. The manifold $F \times I$ is a genus 2 handlebody with boundary $(F \times\{0\}) \cup((\partial F) \times I) \cup(F \times\{1\})$, and the circles $\gamma_{1}=\alpha_{1} \times\{0\} \subset F \times\{0\}$ and $\gamma_{2}=\alpha_{2} \times\{1\} \subset F \times\{1\}$ form a basis of the rank two free group $\pi_{1}(F \times I)$. We denote by $J$ the separating circle $(\partial F) \times\left\{\frac{1}{2}\right\} \subset \partial(F \times I)$. Figure 1 shows the 4 -tuple ( $F \times I, J, \gamma_{1}, \gamma_{2}$ ) up to homeomorphism.

Let $H$ be the manifold obtained by gluing solid tori $V_{1}$ and $V_{2}$ to $F \times I$ along annular regular neighborhoods of the circles $\gamma_{1}$ and $\gamma_{2}$, respectively, so that $\gamma_{i}$ is the fiber of a fibration of type $\left(a_{i}, p_{i}\right)$ in $V_{i}$ for some $p_{i} \geq 1$ (whence $\gamma_{i}$ runs $p_{i}$ times around $V_{i}$ ). By Lemma 3.5(2), $H$ is a genus two handlebody.

We will call a pair $(H, J)$ constructed as above a pair of type ( $a_{1}, p_{1} ; a_{2}, p_{2}$ ), or in short of type $\left(p_{1}, p_{2}\right)$; clearly, any pair of type $\left(p_{1}, p_{2}\right)$ is also of type $\left(p_{2}, p_{1}\right)$.

Remarks 3.8 (1) A pair is trivial if and only if it is of type ( 1,1 ).
(2) A pair is simple if and only if it is of type $(p, 1)$ or $(1, p)$ for some $p \geq 2$ (see Figure 9, top).
For, if $(H, J)$ is a $(p, 1)$ pair with $H=(F \times I) \cup V_{1}$ and $J=(\partial F) \times\left\{\frac{1}{2}\right\}$ as above, then the core $\omega_{1} \subset T_{1}$ of the annulus $\partial V_{1} \backslash(F \times\{0\})$ is a power $p \geq 2$ circle in $H$ with companion annulus $\partial V_{1} \cap(F \times\{0\})$; thus the once-punctured torus $T_{1}^{\prime}$ induced by $\omega_{1} \subset T_{1}$ in $H$ can be identified with $F \times\{0\}$, which is parallel to $T_{2}=F \times\{1\}$ in $H$, whence the pair $(H, J)$ is simple. Conversely, if
$(H, J)$ is simple then we may assume that there is a circle $\omega_{1} \subset T_{1}$ which is a power $p \geq 2$ circle in $H$, with companion annulus $A \subset H$ and companion solid torus $V \subset H$, such that $T_{2}$ is parallel in $H$ to the once-punctured torus $T_{1}^{\prime} \subset H$ induced by $\omega_{1}$. Thus the region in $H$ cobounded by $T_{1}^{\prime}$ and $T_{2}$ is homeomorphic to $T_{2} \times[0,1]$, with $T_{2}$ corresponding to $T_{2} \times\{0\}, T_{1}^{\prime}$ to $T_{2} \times\{1\}$, and $J$ to the circle $\left(\partial T_{2}\right) \times\{0\}$; as $H$ is homeomorphic to the handlebody obtained by adding the companion solid torus $V$ of $\omega_{1}$ to the core of the annulus $A \subset T_{2} \times\{1\}$, by definition $(H, J)$ is a $(p, 1)$ pair.
(3) A pair of type $\left(p_{1}, p_{2}\right)$ with $p_{1}, p_{2} \geq 2$ will be called a double pair.

The following result summarizes the content of Lemmas 4.2, 4.3 and 4.4 of [19].

Lemma 3.9 [19] For any pair $(H, J)$,
(1) if $(H, J)$ is simple then it is minimal;
(2) $H$ contains at most two once-punctured tori with boundary slope $J$ which are mutually disjoint and nonparallel, and not parallel into $\partial H$.

In light of Lemma 3.9 , we will say that a pair $(H, J)$ is maximal if $H$ contains two disjoint, mutually nonparallel once-punctured tori $T_{1}^{\prime}, T_{2}^{\prime} \subset H$ with boundary slope $J$ which are not parallel to $T_{1}$ or $T_{2}$.

In such a case, by Lemma 3.7, $T_{1}^{\prime} \cup T_{2}^{\prime}$ cuts $H$ into handlebodies $H_{0}, H_{1}$ and $H_{2}$ with $\partial H_{0}=T_{1}^{\prime} \cup T_{2}^{\prime}$ and $H=H_{1} \cup_{T_{1}^{\prime}} H_{0} \cup_{T_{2}^{\prime}} H_{2}$. The following result is an immediate consequence of Lemmas 3.7(3) and 3.9(1).

Corollary 3.10 If $(H, J)$ is a maximal pair with $H=H_{1} \cup_{T_{1}^{\prime}} H_{0} \cup_{T_{2}^{\prime}} H_{2}$ then the pairs $\left(H_{1}, J\right)$ and $\left(H_{2}, J\right)$ are simple.

The construction of maximal pairs will be discussed in more detail in Remarks 7.7. The last result of this section provides a useful classification of trivial or simple pairs.

Lemma 3.11 A pair $(H, J)$ is of type $(1, p)$ for some $p \geq 1$ if and only if there is a disk in $H$ which intersects $J$ minimally in 2 points.

Proof Suppose that $(H, J)$ is a $(1, p)$ pair obtained from the pair $(F \times I, J)$ in Figure 1 by gluing a solid torus $V_{2}$ along the circle $\gamma_{2} \subset \partial(F \times I)$, so that $\gamma_{2}$ runs $p$


Figure 2: The circle $\delta_{1} \subset T_{1}$.
times around $V_{2}$. Then the disk $D_{1} \subset F \times I$ shown in Figure 1 is properly embedded in $H$ and intersects $J \subset \partial H$ minimally in 2 points.

Conversely, suppose $D \subset H$ is a nontrivial disk which intersects $J \subset \partial H$ minimally in 2 points, and let $\partial H=T_{1} \cup_{J} T_{2}$. Then, for each $i=1,2, \alpha_{i}=T_{i} \cap \partial D$ is a nontrivial - hence nonseparating - arc in $T_{i}$, and so $D$ is a nonseparating disk in $H$.

Let $\beta_{i}$ be the core circle of the annulus obtained by cutting $T_{i}$ along the arc $\alpha_{i} \subset T_{i}$. Then $\beta_{1}$ and $\beta_{2}$ are disjoint from the circle $\partial D=\alpha_{1} \cup \alpha_{2}$, and hence from $D$, so by Lemma 3.4 the circles $\beta_{1}$ and $\beta_{2}$ are coannular power $p \geq 1$ circles in $H$. We also let $\delta_{1} \subset T_{1}$ be any circle that intersects the arc $\alpha_{1} \subset T_{1}$ and the circle $\beta_{1} \subset T_{1}$ each transversely in one point, so that $\delta_{1}$ is primitive in $H$. The situation is represented in Figure 2.

If $p \geq 2$ then by Lemma 3.4(4) the power circle $\beta_{2}$ has a companion annulus $B \subset H$ and companion solid torus $V_{B} \subset H$ disjoint from $D$, with core circle $\beta_{2}^{\prime} \subset B$ such that $\beta_{2}^{\prime}$ and $\beta_{1}$ are coannular and primitive circles in the genus two handlebody $H_{B} \subset H \mid B$. If $p \geq 2$, we let $H^{\prime}=H_{B}$, and, if $p=1$, we set $H^{\prime}=H$. Thus $H^{\prime}$ is a genus two handlebody with $J, \beta_{1}, \beta_{2}^{\prime}, \delta_{1} \subset \partial H^{\prime}$ and $D \subset H^{\prime}$, where $D$ intersects $J$ minimally in two points and is disjoint from the coannular primitive circles $\beta_{1}, \beta_{2}^{\prime} \subset \partial H^{\prime}$.

Now, the disk $D^{\prime}=\operatorname{fr} N\left(\delta_{1} \cup D\right) \subset H^{\prime}$ is a waist disk of $H^{\prime}$ that separates the primitive circles $\delta_{1}, \beta_{2}^{\prime} \subset \partial H^{\prime}$ and intersects $J \subset \partial H^{\prime}$ minimally in 4 points. Therefore the 4-tuple $\left(H^{\prime}, J, \delta_{1}, \beta_{2}^{\prime}\right)$ is homeomorphic to the 4-tuple $\left(F \times I, J, \gamma_{1}, \gamma_{2}\right)$ of Figure 1 ; since $H=H^{\prime}$ for $p=1$ and $H=H^{\prime} \cup_{B} V_{B}$ for $p \geq 2$, it follows that the pair $(H, J)$ is of type $(1, p)$.


Figure 3: The once-punctured tori $T_{i} \subset X_{K}$.

## 4 Genus one hyperbolic knots in $\mathbb{S}^{\mathbf{3}}$

In this section we assume that $K \subset S^{3}$ is a genus one hyperbolic knot and $\mathbb{T}=$ $T_{1} \sqcup \cdots \sqcup T_{N}$ a collection of $N=|\mathbb{T}| \geq 1$ mutually disjoint and nonparallel oncepunctured tori properly embedded in $X_{K}$ with boundary slope the longitude $J$ of $K$, where the $T_{i}$ are labeled consecutively around $\partial N(K)$ following some fixed orientation of the meridian slope $\mu \subset \partial N(K)$, as in Figure 3.

### 4.1 Complementary regions of $\mathbb{T} \subset X_{K}$

For any $1 \leq i, j \leq N$ with $i \neq j$ denote by $R_{i, j} \subset X_{K}$ the region cobounded by $T_{i}$ and $T_{j}$ that contains the oriented arc of $\mu$ with $\mu \cap \partial T_{i}$ as initial point and $\mu \cap \partial T_{j}$ as terminal point (see Figure 3), so that $R_{i, j} \cap R_{j, i}=T_{i} \sqcup T_{j}$ and $X_{K}=R_{i, j} \cup R_{j, i}$. For $i=j$ we let $R_{i, i}=\operatorname{cl}\left[X_{K} \backslash N\left(T_{i}\right)\right]$ be the manifold obtained by cutting $X_{K}$ along $T_{i}$.

Since the surface $\mathbb{T}$ is essential in $X_{K}$, by Lemma 2.2 there is a Gabai meridional planar surface $Q$ for $\mathbb{T}$ which intersects $\mathbb{T}$ minimally in essential graphs $G_{Q}=Q \cap \mathbb{T} \subset Q$ and $G_{\mathbb{T}}=Q \cap \mathbb{T} \subset \mathbb{T}$ such that each circle component of $Q \cap \mathbb{T}$ is essential in $Q$. We denote the subgraph $Q \cap\left(T_{i_{1}} \sqcup \cdots \sqcup T_{i_{k}}\right) \subset Q$ of $G_{Q}$ by $G_{Q}^{i_{1}, \ldots, i_{k}}$.

The next result establishes connections between properties of the graph $G_{Q}$ and the regions $R_{i, j}$.

Lemma 4.1 Each boundary cycle of any face of $G_{Q}$ has an even number of edges, and for any $i$ and $j$ either $R_{i, j}$ is a genus two handlebody or an atoroidal irreducible and boundary irreducible manifold. In particular, the following regions are genus two handlebodies:
(1) at least one of the regions $R_{i, j}$ or $R_{j, i}$ for any $i \neq j$;
(2) any region $R_{i, j}$ that contains a disk face of $G_{Q}^{i, j}$ (with $i=j$ allowed);
(3) any region $R_{i, i+1}$ if $G_{Q}$ is connected or each vertex of $\bar{G}_{Q}$ has degree at least 3, and if some region $R_{i, i+1}$ is not a handlebody then $|\mathbb{T}| \leq 4$ and any other region $R_{j, j+1}$ is a handlebody.

Proof That each boundary cycle of any face of $G_{Q}$ is even-sided follows from the fact that each component $T_{i}$ of $\mathbb{T}$ has one boundary component. As $K$ is a hyperbolic knot, its exterior $X_{K} \subset \mathbb{S}^{3}$ is irreducible and atoroidal, and since $T_{i}$ and $T_{j}$ are incompressible in $X_{K}$ each region $R_{i, j}$ is irreducible and atoroidal too.

Since the boundary slope $J$ of $T_{i}$ and $T_{j}$ is a longitude of $K$, in $\mathbb{S}^{3}$ the surfaces $\partial R_{i, j}$ and $\partial R_{j, i}$ for $i \neq j$ or $\partial R_{i, i}$ and $\partial N\left(T_{i}\right)$ for $i=j$ are mutually parallel and hence compressible. If, say, $\partial R_{i, j}$ compresses in $R_{i, j}$ then the maximal compression body $W$ of $\partial R_{i, j}$ in $R_{i, j}$ with $\partial_{+} W=\partial R_{i, j}$ (see [1]) is nontrivial and so either $\partial_{-} W=\varnothing$ or $\partial_{-} W$ is a collection of incompressible closed tori in $R_{i, j}$. As $T_{i}$ and $T_{j}$ are incompressible surfaces in $X_{K}$, any torus component of $\partial_{-} W$ must be incompressible in $X_{K}$, contradicting the hyperbolicity of $K$; therefore $\partial_{-} W=\varnothing$, so $W=R_{i, j}$ is a genus two handlebody, and so (1) holds.

Part (2) follows now from Lemma 2.1 and the argument above. If $G_{Q}$ is connected then all its faces are disks, while if each vertex of the reduced graph $\bar{G}_{Q}$ has degree at least 3 then by Lemma 2.3 any extremal component of $\bar{G}_{Q}$ has an interior vertex $v_{0}$, whence all faces of $G_{Q}$ incident to $v_{0}$ must be disks; in either case we have that necessarily each region $R_{i, i+1}$ contains a disk face of $G_{Q}$, so the first part of (3) follows from (2), and the second part is now a consequence of (1) and Lemma 3.9(2).

Lemma 4.2 If for some $i \neq j$ the region $R_{i, j}$ contains a bigon disk face of $G_{Q}^{i, j}$ then $R_{i, j}$ is a handlebody and the pair $\left(R_{i, j}, J\right)$ is simple. In particular, $|\bar{e}| \leq 2$ for each edge $\bar{e}$ of $\bar{G}_{Q}$.

Proof Suppose that $D \subset R_{i, j}$ is a bigon face of $G_{Q}^{i, j}$; in particular, $D$ may be the bigon disk face $\bar{D}$ in $G_{Q}$ cobounded by the outermost edges $e_{i} \subset T_{i}$ and $e_{j} \subset T_{j}$ of
some edge $\bar{e}=\left\{e_{i}, e_{i+1}, \ldots, e_{j}\right\}$ of $\bar{G}_{Q}$ with $|\bar{e}| \geq 2$. By Lemma 4.1(2) the region $R_{i, j}$ is a handlebody and so ( $R_{i, j}, J$ ) is a nontrivial pair, while by Lemma 2.1 the disk $D \subset R_{i, j}$ is nontrivial and intersects $\partial T_{i} \sqcup \partial T_{j}$ minimally in 4 points, and hence $J$ minimally in two points. Therefore, by Lemma 3.11, the pair ( $R_{i, j}, J$ ) is simple and hence minimal by Lemma 3.9(1), which in the case of $D=\bar{D}$ implies that $j=i+1$ and hence that $|\bar{e}|=2$.

We now establish a first approximation to Theorem 1.
Lemma 4.3 If $K \subset \mathbb{S}^{3}$ is a genus one hyperbolic knot and $\mathbb{T}=T_{1} \sqcup \cdots \sqcup T_{N} \subset X_{K}$ is a collection of $N \geq 1$ mutually disjoint and nonparallel once-punctured tori then $N \leq 6$, and if $N \geq 5$ then each complementary region $R_{i, i+1}$ is a handlebody.

Proof By Lemma 2.2, there is a Gabai meridional planar surface $Q \subset X_{K}$ for $\mathbb{T}$ which intersects $\mathbb{T}$ minimally in essential graphs $G_{Q} \subset Q$ and $G_{\mathbb{T}} \subset \mathbb{T}$ such that each vertex of the graph $G_{Q}$ has degree $N$ and, by Lemma 4.1, each disk face of $G_{Q}$, and hence of its reduced graph $\bar{G}_{Q}$, has an even number of edges around its boundary. Therefore, by Lemma 4.2, each vertex of $\bar{G}_{Q}$ has degree at least $\frac{1}{2} N$. If $N \geq 5$ then each vertex of $\bar{G}_{Q}$ has degree at least 3 and so, by Lemma 2.3(2), $\bar{G}_{Q}$ has a vertex of degree $3 \geq \frac{1}{2} N$, so $N \leq 6$, and each region $R_{i, i+1}$ is a handlebody by Lemma 4.1(3).

In the next couple of sections we digress to present the supporting results needed for the analysis in Section 7 of the case $|\mathbb{T}|=6$ and the construction in Section 8 of examples of hyperbolic knots for the cases $|\mathbb{T}|=4,5$.

## 5 Toroidal surfaces in knot exteriors

The results in this section analyze the interaction between once- or twice-punctured tori in a satellite knot exterior in $\mathbb{S}^{3}$ and the companion annuli of circles in such surfaces, and will be used in Section 7.1 to establish the connection between hyperbolic knots in $\mathbb{S}^{3}$ with 6 -component collections $\mathbb{T}$ and the family of hyperbolic Eudave-Muñoz knots.

### 5.1 Once-punctured tori in $X_{K}$

We extend the definition of companion annulus given in Section 3.1 to include the case of circles in nonseparating orientable surfaces.


Figure 4: The knot $K_{0}$ as a boundary component of the pair of pants $P=$ $(\partial B) \times I \cup b \subset V$.

Let $F$ be a properly embedded orientable surface in the exterior $X_{K}$ of a knot $K \subset \mathbb{S}^{3}$ and $F \times[-1,1]$ a thin regular neighborhood of $F$ in $X_{K}$ with $F=F \times\{0\}$. A surface $S$ in $X_{K}$ is said to locally lie on one side of $F$ if $\partial S \subset F, F \cap \operatorname{int}(S)=\varnothing$ and either $S \cap(F \times[-1,0))=\varnothing$ or $S \cap(F \times(0,1])=\varnothing$; that is, near $\partial S, S$ intersects only one side $F \times[0,1]$ or $F \times[-1,0]$ of $F \times[-1,1]$.

A companion annulus for a nontrivial circle $\gamma \subset F$ is an annulus $A$ that locally lies on one side of $F$ and is not parallel into $F$, with the circles $\partial A$ isotopic to $\gamma$ in $F$.

Examples of genus one knots $K_{0} \subset \mathbb{S}^{3}$ with a once-punctured torus $F \subset X_{K}$ that contains a nonseparating circle $\gamma$ with companion annuli on either side of $F$ can be constructed as follows. Let $L \subset \mathbb{S}^{3}$ be a cable knot with solid torus regular neighborhood $V \subset \mathbb{S}^{3}$ and essential annulus $B \subset X_{L}=\mathbb{S}^{3} \backslash \operatorname{int}(V)$. Using a thin regular neighborhood $(\partial V) \times[0,1] \subset V$ of $\partial V=(\partial V) \times\{0\}$, extend $B$ slightly into $\operatorname{int}(V)$ to an annulus $\widetilde{B}=B \cup((\partial B) \times[0,1])$. Construct a pair of pants $P$ embedded in $V$ by suitably attaching a band $b \subset \operatorname{int}(V)$ to the annuli $(\partial B) \times[0,1] \subset V$ connecting the boundary circles $(\partial B) \times\{1\}$, in such a way that the circles $\partial_{1} P \sqcup \partial_{2} P=P \cap \partial V(=\partial B)$, when oriented relative to $P$, end up with opposite orientations relative to $\partial V$, and the circle $K_{0}=\partial_{3} P$ is nontrivial in $V$ (see Figure 4). It follows that the knot $K_{0}$ is a satellite of $L$ with winding number zero in $V$ and $F=P \cup B$ is a once-punctured torus bounded by $K_{0}$; moreover, the core $\gamma$ of $B$ is a circle in $F$ with companion annuli the closures of the components of $\partial V \backslash \partial B$, which lie on either side of $F$.

In fact, the argument of the next result shows that any such knot $K_{0} \subset \mathbb{S}^{3}$ is obtained in this way.

Lemma 5.1 Let $K \subset S^{3}$ be a genus one knot and $F \subset X_{K}$ a properly embedded incompressible once-punctured torus. If there is a nontrivial circle $\gamma \subset F$ which has companion annuli locally on either side of $F$ then $\gamma$ is nonseparating in $F$ and $K$ is a satellite knot.

Conversely, if an essential torus in $X_{K}$ intersects $F$ minimally in a nonempty collection of circles then there is a nonseparating circle in $F$ which has companion annuli locally on either side of $F$.

Proof Let $A$ and $A^{\prime}$ be companion annuli for $\gamma \subset F$ that locally lie on opposite sides of $F$. Without loss of generality, we may assume that $A$ and $A^{\prime}$ have been isotoped so as to intersect minimally with the circles $\partial A=\partial A^{\prime}$ cobounding an annular neighborhood $B \subset F$ of $\gamma$. Let $V, V^{\prime} \subset X_{K}$ be the regions in $X_{K}$ bounded away from $\partial X_{K}$ by the closed tori $A \cup B$ and $A^{\prime} \cup B$, respectively, and let $r$ denote the slope of $\gamma$ in $\partial V$ and $\partial V^{\prime}$.

Suppose that $\gamma$ is parallel to $\partial F$ in $F$, and consider the companion annulus $A$ of $\gamma$. Then $A$ can be isotoped in $X_{K}$ so that its boundary lies in $\partial X_{K}$, whence $A$ becomes an essential annulus in $X_{K}$. It follows that either $A$ is a cabling annulus for $K$, in which case $X_{K}(\partial F)$ has a lens space connected summand, or $K$ is a composite knot with $A$ a decomposing annulus having meridional boundary slope, neither of which is the case since $\partial F$ is a longitude of $K$. Therefore $\gamma$ is not parallel to $\partial F$ and so $\gamma$ is a nonseparating circle in $F$.

Recall that $F \cap \operatorname{int}(A)=\varnothing=F \cap \operatorname{int}\left(A^{\prime}\right)$. If $A \cap A^{\prime} \neq \varnothing$ then each component in a minimal intersection of $A$ and $A^{\prime}$ is a core circle in $A$ and $A^{\prime}$ and so it is possible to construct a closed surface $S$ in $X_{K}$ which intersects $F$ transversely in the circle $\gamma$ out of the annular components of $A \backslash A^{\prime}$ and $A^{\prime} \backslash A$. As $\gamma$ is nonseparating in $F$, it follows that $S$ is a nonseparating closed torus or a Klein bottle in $X_{K} \subset \mathbb{S}^{3}$, which is impossible. Therefore $A \cap A^{\prime}=\varnothing$ and so $V \cap V^{\prime}=\varnothing$, hence $V \cup_{B} V^{\prime}$ is a manifold with torus boundary which contains $B$ as an essential annulus. Thus $V \cup_{B} V^{\prime}$ is not a solid torus, so $V_{L}=\mathbb{S}^{3} \backslash \operatorname{int}\left(V \cup_{B} V^{\prime}\right)$ is a solid torus whose core $L$ is a nontrivial knot in $\mathbb{S}^{3}$ with exterior $X_{L}=V \cup_{B} V^{\prime}$ and $N(K) \subset V_{L}$. Since $B$ is an essential annulus in $X_{L}$, the boundary slope $r \subset \partial X_{L}$ of $B$ relative to the solid torus $V_{L}$ is either meridional or integral.

Now, the surface $P=F \cap V_{L}$ is an incompressible pair of pants in $V_{L}$ with $\partial_{0} P=$ $\partial F \subset \partial N(K)$ and $\partial_{1} P \sqcup \partial_{2} P \subset \partial V_{L}$ oppositely oriented circles of slope $r$ relative to $V_{L}$. Thus $K$ has zero winding number in $V_{L}$ and is therefore not a core of $V_{L}$.

Suppose $K$ is disjoint from some meridian disk $D$ of $V_{L}$. If the slope $r$ is meridional in $V_{L}$ then the circle $\gamma \subset F$ bounds a disk in $X_{K}$ and so $F$ is not $\pi_{1}$-injective in $X_{K}$, contradicting the incompressibility of $F$. Therefore $r$ is an integral slope in $V_{L}$, so if $D$ and $P$ are isotoped so as to intersect minimally then an outermost disk of $D \cap P \subset D$ boundary compresses $P$ in $V_{L}$ towards $\partial V_{L}$ into an annulus whose boundary component in $\partial V_{L}$ is a trivial circle; thus $\partial_{0} P=\partial F$ bounds a disk in $V_{L}$, so $K$ bounds a disk in $V_{L}$, contradicting the nontriviality of $K$ in $\mathbb{S}^{3}$.

It follows that $K$ is a nontrivial knot in the solid torus $V_{L}$, and hence that $K$ is a satellite of the nontrivial knot $L$ in $\mathbb{S}^{3}$.

Conversely, suppose that $T$ is an essential torus in $X_{K}$ which intersects $F$ minimally in a nonempty collection of circles $T \cap F$. Then $T \cap F$ consists of at most two parallelism classes of circles in $F$ : a class corresponding to the slope of some nonseparating circle $\gamma \subset F$, and a class of circles parallel to $\partial F$.

Since $T$ separates $X_{K}, T \cap F$ cannot consist of a single copy of the nonseparating circle $\gamma$ in $F$, hence the closure $P$ of the component of $F \backslash T$ that contains $\partial F$ is not equal to $F$.

Suppose that $P$ is an annulus. If $T$ bounds a solid torus $V \subset \mathbb{S}^{3}$ with $N(K) \subset V$ and $V_{K}=V \backslash \operatorname{int} N(K)$ is the exterior of $K$ in $V$, then the annulus $P$ is properly embedded in $V_{K}$ and so $K$ is a cable of the core of $V$ with $\partial P \cap \partial N(K)$ the slope $m / 1$ in $\partial N(K)$ of the cabling annulus of $K$, where necessarily $m \neq 0$, contradicting the fact that $\partial F=\partial P \cap \partial N(K)$ is the longitude of $K$.

Therefore $P$ is not an annulus, which implies that all circles $T \cap F$ have slope $\gamma$ in $F$, and hence that $\gamma$ has companion annuli on both sides of $F$.

### 5.2 Twice-punctured tori in $X_{K}$

In this section we assume that $K \subset S^{3}$ is a knot whose exterior $X_{K}$ contains a properly embedded incompressible, separating, twice-punctured torus $F$ with boundary slope $r \subset \partial X_{K}$ such that the closures $F^{B}$ and $F^{W}$ of the components of $X_{K} \backslash F$ are genus two handlebodies.

We consider the following auxiliary conditions:
(C1) There is a nonseparating circle in $F$ which is a power circle in $F^{B}$ and $F^{W}$.
(C2) For some $\{*, * *\}=\{B, W\}$ there are two mutually disjoint and nonisotopic nonseparating circles in $F$ which are power circles in $F^{*}$ and primitive and coannular circles in $F^{* *}$.

Lemma 5.2 If the knot $K \subset \mathbb{S}^{3}$ is a satellite then either (C1) or (C2) holds and $K$ is a satellite of a torus knot, and if (C2) holds then $K$ is a genus one knot and the boundary slope $r$ of $F$ is the longitude of $K$.

Proof Let $K \subset \mathbb{S}^{3}$ be a satellite knot and $T \subset X_{K}$ an essential closed torus that bounds a solid torus $V \subset S^{3}$ with $K \subset N(K) \subset V$ whose core is a nontrivial knot with exterior $X=\mathbb{S}^{3} \backslash \operatorname{int}(V) \subset X_{K}$.

Isotope $T$ so as to intersect $F$ minimally. Since $F^{B}$ and $F^{W}$ are handlebodies, we must have that $T \cap F \neq \varnothing$. By the incompressibility of $T$ and $F$ and the minimality of $T \cap F$, each component of $T \cap F$ is a circle which is nontrivial in both $T$ and $F$; thus for $* \in\{B, W\}$ each component of $T \cap F^{*}$ is an incompressible annulus in $F^{*}$ which is not parallel into $F$.
Suppose $A_{1}$ is a component of, say, $T \cap F^{B}$ which is parallel in $F^{B}$ into $\partial F^{B}$. By minimality of $T \cap F, A_{1}$ must be parallel in $F^{B}$ to the annulus $F^{B} \cap N(K)$, that is, the circles $\partial_{1} A_{1}$ and $\partial_{2} A_{1}$ must be parallel in $F$ to the circles $\partial_{1} F$ and $\partial_{2} F$. If $A_{2}$ is the component of $T \cap F^{W}$ with $\partial_{1} A_{2}=\partial_{2} A_{1}$ then $\partial_{1} A_{2}$ is neither a primitive nor power circle in $F^{W}$ and so, by Lemmas 3.3 and 3.4, $A_{2}$ is parallel into $\partial F^{W}$. By minimality of $T \cap F$, it then follows that $T=A_{1} \cup A_{2}$, hence that $T$ is parallel in $X_{K}$ to $\partial N(K)$, contradicting the hypothesis on $T$.

Therefore no annulus component of $T \cap F^{*}$ is parallel in $F^{*}$ into $\partial F^{*}$, so again, by Lemmas 3.2, 3.3 and 3.4, in $\partial F^{*}$ each component of $T \cap F$ is a nonseparating primitive or power circle in $F^{*}$, and so in $F$ the circles $T \cap F$ form at most two parallelism classes, neither one parallel to $\partial F$.
If some component of $T \cap F$ is a power circle in both $F^{B}$ and $F^{W}$ then (C1) holds. If some component $\gamma_{1}$ of $T \cap F$ is not a power circle in, say, $F^{B}$, then $\gamma_{1}$ is primitive in $F^{B}$ and by Lemma 3.3 it has no companion annulus in $F^{B}$; hence the component $A^{B}$ of $T \cap F^{B}$ with $\gamma_{1} \subset \partial A^{B}$ must be a nonseparating annulus in $F^{B}$. It follows that $T \cap F$ has two parallelism classes in $F$, represented by the circles $\partial A^{B}=\gamma_{1} \sqcup \gamma_{2} \subset F$. Any component $A^{W}$ of $T \cap F^{W}$ that is a nonseparating annulus in $F^{W}$ can be isotoped in $F^{W}$ so that $\partial A^{B}=\partial A^{W}$, thus producing a closed Klein bottle or nonseparating

$H_{1}$

Figure 5: The ( $p_{1}, p_{2}$ )-torus knot $L$ in $H_{1}$ and $V_{1}\left(\right.$ with $\left(p_{1}, p_{2}\right)=(2,3)$ ).
torus $A^{B} \cup_{\partial} A^{W} \subset X_{K} \subset \mathbb{S}^{3}$, which is impossible. Therefore $T \cap F^{W}$ is a union of a family of disjoint companion annuli for $\gamma_{1}$ and another family of disjoint companion annuli for $\gamma_{2}$. By Lemma 3.3(2), $\gamma_{1}$ and $\gamma_{2}$ must be power circles in $F^{B}$ and so (C2) holds. Moreover, in this case the circles $\partial A^{B}=\gamma_{1} \sqcup \gamma_{2}$ cut the surface $F$ into two pairs of pants, hence the frontier of $N\left(A^{B} \cup F\right)$ in $X_{K}$ consists of two disjoint once-punctured tori, each with boundary slope $r$, and so $K$ is a genus one knot with longitudinal slope $r$.

We remark that the converse of Lemma 5.2 holds, that is, if one of the conditions (C1) or (C2) is satisfied then $K$ is a satellite knot, though we shall not make use of this fact. Examples of knots $K \subset \mathbb{S}^{3}$ with such a twice-punctured incompressible torus $F \subset X_{K}$ satisfying condition (C1) or (C2) can be constructed, not exhaustively, as follows. We begin by constructing two distinct genus two Heegaard splittings of $\mathbb{S}^{3}$ associated to any ( $p_{1}, p_{2}$ )-torus knot $L \subset \mathbb{S}^{3}$ with $p_{1}, p_{2} \geq 2$. Figure 5 , left, shows a genus two handlebody $H_{1}$ standardly embedded in $\mathbb{S}^{3}$, which produces a Heegaard splitting $H_{1} \cup H_{2}$ of $\mathbb{S}^{3}$, where the knot $L$ is embedded in $\partial H_{1}$ in the "bottom-half" solid torus part of $H_{1}$. Thus, for $i=1,2, L$ is a power $p_{i}$ circle in $H_{i}$.

Figure 5 , right, shows the knot $L$ in the boundary of a solid torus $V_{1}$ which is part of a genus one Heegaard splitting $V_{1} \cup V_{2}$ of $\mathbb{S}^{3}$. Let $N(L) \subset \mathbb{S}^{3}$ be a thin regular
neighborhood of $L$, and for $i=1,2$ let $\gamma_{i}$ be a core of the annulus $V_{i} \cap \partial N(L) \subset \partial N(L)$, so that $\gamma_{i}$ runs $p_{i}$ times around $V_{i}$. As the arc $\tau \subset \partial V_{1}$ with endpoints in $L$ shown in Figure 5, right, is a tunnel for $L$, the genus two handlebody $H_{1}=N(L \cup \tau) \subset \mathbb{S}^{3}$ is part of a Heegaard splitting $H_{1} \cup H_{2}$ of $\mathbb{S}^{3}$. After a small isotopy if necessary, we may assume that the circles $\gamma_{1} \sqcup \gamma_{2}$ lie in $\partial H_{1}=\partial H_{2}$, whence $\gamma_{1}$ and $\gamma_{2}$ are coannular primitive circles in $H_{1}$ while $\gamma_{i}$ is a power $p_{i}$ circle in $H_{2}$ for $i=1,2$.

Clearly, if $K$ is any circle embedded in $\partial H_{1} \backslash L$ or $\partial H_{1} \backslash\left(\gamma_{1} \sqcup \gamma_{2}\right)$ which is neither a primitive nor a power circle in $H_{1}$ and $H_{2}$ (any "sufficiently complicated" such embedding will do), then by Lemma 3.3(1) the knot $K$ and the twice-punctured torus $F=\left(\partial H_{1}\right) \cap X_{K}$ satisfy condition (C1) or (C2), respectively.

## 6 Structure of pairs

We now take a closer look at the structure of pairs. We begin with a classification of pairs $(H, J)$ of type $\left(p_{1}, p_{2}\right)$, which include all simple and double pairs, in terms of the number of intersections of $J$ with nontrivial disks in $H$. Each simple pair $(H, J)$ is shown to have a distinguished core knot in $H$, and double pairs are shown to be obtained as a union of two simple pairs. Basic and primitive pairs are introduced in order to classify maximal pairs and to discuss properties of more general pairs $(H, J)$, including the relationship between primitive, power and Seifert circles in $\partial H \backslash J$. These properties will be used in later sections in the analysis of knot exteriors in $S^{3}$ that can be decomposed as a union of nontrivial pairs.

Lemma 6.1 A pair $(H, J)$ is of type $\left(p_{1}, p_{2}\right)$ for some $p_{1}, p_{2} \geq 1$ if and only if there is a disk in $H$ which intersects $J$ minimally in 4 points.

Proof Let $(H, J)$ be a pair of type ( $p_{1}, p_{2}$ ). By construction, the pair is obtained by attaching solid tori to the genus two handlebody $F \times I$ shown in Figure 1 along the circles $\gamma_{1}, \gamma_{2} \subset F \times I$; clearly the waist disk $D_{w} \subset F \times I$ shown in Figure 1 lies in $H$ and intersects $J$ minimally in 4 points.

Conversely, suppose that $(H, J)$ is a pair with $\partial H=T_{1} \cup_{J} T_{2}$ and $E \subset H$ is disk which intersects $J$ minimally in 4 points. Then, for $i=1,2, T_{i} \cap \partial E$ consists of 2 arcs such that either (1) for $i=1,2$, the arcs $T_{i} \cap \partial E$ are parallel in $T_{i}$, in which case $E$ is a separating disk, or (2) for some $\{i, j\}=\{1,2\}$, the arcs $T_{i} \cap \partial E$ are parallel in $T_{i}$ and the arcs $T_{j} \cap \partial E$ are nonparallel in $T_{j}$, in which case $E$ is a nonseparating


Figure 6: The unique circle $\gamma_{2} \subset T_{2}$ with $\Delta\left(\gamma_{2}, \partial E\right)=\left|\gamma_{2} \cdot \partial E\right|=2$.
disk. Notice that, by connectedness of $\partial E$, the case where the $\operatorname{arcs} T_{i} \cap E$ are not parallel in $T_{i}$ for $i=1,2$ does not occur.

In case (1) $E$ is a waist disk for $H$. Let $\gamma_{i} \subset T_{i}$ be the unique circle in $T_{i}$ which is disjoint from the arcs $T_{i} \cap \partial E$. Then the circles $\gamma_{1}$ and $\gamma_{2}$ are separated in $H$ by $E$ and so, for each $i=1,2, \gamma_{i}$ is a power $p_{i}$ circle for some $p_{i} \geq 1$, which implies that $(H, J)$ is a pair of type $\left(p_{1}, p_{2}\right)$.

In case (2) we may assume that $(i, j)=(1,2)$, and Figure 6 shows the triple $(\partial H, J, \partial E)$ up to homeomorphism. Since the arcs $T_{2} \cap \partial E$ are not parallel in $T_{2}$, there is a unique circle $\gamma_{2} \subset T_{2}$ which intersects the arcs $T_{2} \cap \partial E$ each minimally in one point with algebraic intersection number $\gamma_{2} \cdot \partial E= \pm 2$ (see Figure 6). If $E^{\prime}$ is a disjoint parallel copy of $E$ and $\alpha$ is any arc component of $\gamma_{2} \backslash\left(\partial E \cup \partial E^{\prime}\right)$ not in the parallelism region between $E$ and $E^{\prime}$, then $E_{0}=\mathrm{fr} N\left(E \cup \alpha \cup E^{\prime}\right)$ is a waist disk of $H$ which can be isotoped so as to intersect $J$ minimally in 4 points and be disjoint from $E \cup \gamma_{2}$. Therefore, by case (1) the pair $(H, J)$ is of type $\left(p_{1}, p_{2}\right)$ for some $p_{1}, p_{2} \geq 1$. In fact, since $E$ and $D$ form a complete disk system for $H$, it follows that $\gamma_{2}$ is a power 2 circle in $H$ and hence that $p_{2}=2$.

### 6.1 Cores of simple pairs

The next result classifies simple pairs via power circles and summarizes some of their properties.

Lemma 6.2 Let $(H, J)$ be a pair with $\partial H=T_{1} \cup_{J} T_{2}$. Then $(H, J)$ is a simple pair of type $(1, p)$ for some $p \geq 2$ if and only if the pair $(H, J)$ is minimal and there is a circle in $T_{1}$ or $T_{2}$ which is a power $p$ circle in $H$, in which case
(1) there are power $p$ circles $\omega_{i} \subset T_{i}$ which are coannular in $H$ and such that $\partial H \backslash\left(\omega_{1} \sqcup \omega_{2}\right)$ compresses along a nonseparating disk $D \subset H$ that intersects $J$ minimally in 2 points;
(2) any power circle in $T_{i}$ is isotopic to $\omega_{i}$;
(3) any disk in $H$ which intersects $J$ minimally in 2 points is isotopic to $D$;
(4) $H(J)=\mathbb{A}^{2}(p)$ with singular fiber of index $p$ represented by the core $K$ of the solid torus $H \mid D$ and regular fibers the circles $\omega_{i} \subset \widehat{T}_{i} \subset \partial H(J)$; moreover, if $(H, J)$ is a simple pair of type $(0,1 ; a, p)$ then there are essential annuli $A_{1}, A_{2} \subset H \backslash N(K)$ with $\partial_{1} A_{i}=\omega_{i}$ and $\partial_{2} A_{i} \subset \partial N(K)$ a circle of type $(a, p)$ in $N(K)$ (see Figure 7);
(5) if a nonseparating circle $\alpha \subset T_{i}$ intersects $\omega_{i}$ and $D$ minimally then $\left|\alpha \cap \omega_{i}\right|=$ $|\alpha \cap D|$; in particular, $\alpha \subset T_{i}$ is primitive in $H$ if and only if $\left|\alpha \cap \omega_{i}\right|=1=$ $|\alpha \cap D|$, and if $q=\left|\alpha \cap \omega_{i}\right|=|\alpha \cap D|$ then

$$
H(\alpha)=H(J)(\alpha)= \begin{cases}\left(\mathbb{S}^{1} \times \mathbb{D}^{2}\right) \# L_{p} & \text { if } q=0 \\ \mathbb{S}^{1} \times \mathbb{D}^{2} & \text { if } q=1, \\ \mathbb{D}^{2}(p, q) & \text { if } q \geq 2\end{cases}
$$

Proof Suppose that $(H, J)$ is a simple pair of type $(1, p)$ for some $p \geq 2$. Thus $H=(F \times I) \cup V$ for some once-punctured torus $F$, where $J \subset \partial H$ is the core of the annulus $(\partial F) \times I$ and $V$ is a solid torus glued to $F \times I$ along an annular neighborhood of some nonseparating circle $\gamma \subset F \times\{0\}$ such that $\gamma$ runs $p$ times around $V$. If $\gamma_{0} \subset F \times\{0\} \backslash V$ is a circle parallel to $\gamma$ in $F \times\{0\}$ and $\delta_{0} \subset F \times\{0\}$ is an essential arc in $F \times\{0\}$ disjoint from $V \sqcup \gamma_{0}$, then the annulus $B=\gamma_{0} \times I \subset F \times I$ is properly embedded in $H$ with boundary a pair of coannular power $p$ circles $\omega_{1}=\partial_{1} B=$ $\gamma_{0} \times\{0\} \subset F \times\{0\} \subset T_{1}$ and $\omega_{2}=\partial_{2} B=\gamma_{0} \times\{1\} \subset F \times\{1\} \subset T_{2}$ in $H$, and $D=\delta_{0} \times I$ is a nonseparating disk properly embedded in $H$ which intersects $J$ minimally in two points and is disjoint from $\omega_{1} \sqcup \omega_{2}$. That $\omega_{i}$ is the only power circle in $T_{i}$ follows from Lemma 3.6, while, by Lemma 3.3(1), the disk $D \subset H$ is the unique compression disk for $\partial H \backslash \omega_{1}$; thus (1), (2) and (3) hold.

As $\gamma$ is a primitive circle in $F \times I, \gamma$ is also primitive in the solid torus $F \times I \mid D$ and so the core of $V$ and the core $K$ of the solid torus $H \mid D=(F \times I \mid D) \cup_{\gamma} V$ are isotopic in $H \mid D \subset H$. From the identity

$$
H(J)=(F \times I)(J) \cup_{\gamma} V=(\hat{F} \times I) \cup_{\gamma} V
$$



Figure 7: The core knot $K$ and power circles $\omega_{1} \subset T_{1}$ and $\omega_{2} \subset T_{2}$ of a simple pair $(H, J)$.
it follows that the manifold $H(J)$ is a Seifert fiber space $\mathbb{A}^{2}(p)$ over the annulus with singular fiber $K \subset H$ of index $p$ and regular fibers $\omega_{i} \subset \widehat{T}_{i}$ and so (4) holds.

Finally, let $\alpha \subset T_{1}$ be any nonseparating circle, and consider the arc $\delta_{1}=T_{1} \cap \partial D \subset D$. After isotoping $\alpha$ in $T_{1}$ so as to intersect $\omega_{1} \cup \delta_{1} \subset T_{1}$ minimally we must have $q=\left|\alpha \cap \omega_{1}\right|=\left|\alpha \cap \delta_{1}\right|=|\alpha \cap D|$. Since $J$ bounds a disk in $H(\alpha)$ we have the identity $H(\alpha)=H(J)(\alpha)=\mathbb{A}^{2}(p)(\alpha)$; therefore,
$\alpha$ is primitive in $H \Longleftrightarrow H(\alpha)=\mathbb{A}^{2}(p)(\alpha)$ is a solid torus $\Longleftrightarrow\left|\alpha \cap \omega_{1}\right|=1$,
and the rest of (5) follows in a similar way.

We will call the knot $K \subset H$ in Lemma 6.2(4) the core of the simple pair $(H, J)$, and say that $K$ and the pair $(H, J)$ have index $p \geq 2$.

Lemma 6.3 Let $(H, J)$ be a simple pair with $\partial H=T_{1} \cup_{J} T_{2}$, core knot $K \subset H$, power circles $\omega_{1} \subset T_{1}$ and $\omega_{2} \subset T_{2}$, and incompressible annuli $A_{1}, A_{2} \subset H \backslash \operatorname{int} N(K)$ as shown in Figure 7. Then the solid torus $V_{1}=N\left(A_{1}\right) \cup N(K) \subset H$ has core $K$ and is the companion solid torus of the power circle $\omega_{1}$, and there is a homeomorphism

$$
H^{\prime}=\operatorname{cl}\left[H \backslash V_{1}\right]=\operatorname{cl}\left[H \backslash\left(N\left(A_{1}\right) \cup N(K)\right)\right] \approx T_{2} \times I
$$

such that $T_{2} \subset H^{\prime}$ corresponds to $T_{2} \times\{0\} \subset T_{2} \times I$ and the circle $A_{2} \cap N(K) \subset \partial H^{\prime}$ to $\omega_{2} \times\{1\} \subset T_{2} \times\{1\}$.

In particular, if $\left(H^{*}, J^{*}\right)$ is a pair with $\partial H^{*}=T_{1}^{*} \cup_{J^{*}} T_{2}^{*}$ and $M=H \cup_{T_{1}=T_{1}^{*}} H^{*}$ then $M$ is a handlebody if and only if $\omega_{1} \subset T_{1}=T_{1}^{*}$ is primitive in $H^{*}$.

Proof $\quad V_{1}=N\left(A_{1}\right) \cup N(K) \subset H$ is indeed a solid torus with core $K$, with the power $p \geq 2$ circle $\omega_{1}$ running $p$ times around $V_{1}$ by Lemma 6.2(4). Therefore $\operatorname{fr}\left(N\left(A_{1}\right) \cup N(K)\right)$ is a companion annulus for $\omega_{1}$ in $H$ with companion solid
torus $V_{1}$, both of which are unique up to isotopy in $H$ by Lemma 3.3, and so the first part follows from the definition of a simple pair. As the homeomorphism $H^{\prime}=\operatorname{cl}\left[H \backslash\left(N\left(A_{1}\right) \cup N(K)\right)\right] \approx T_{2} \times I$ induces a homeomorphism $M \approx H^{*} \cup_{\omega_{1}} V_{1}$, the second part now follows from Lemma 3.5(1).

Lemma 6.4 Let $(H, J)$ be a simple pair with $\partial H=T_{1} \cup_{J} T_{2}$, core knot $K \subset H$ of index $p \geq 2$, and power circles $\omega_{1} \subset T_{1}$ and $\omega_{2} \subset T_{2}$. Denote by $X H_{K}=H \backslash \operatorname{int} N(K)$ the exterior of $K$ in $H$, and by $r$ the slope in $\partial N(K)$ corresponding to the circles $\partial_{2} A_{i}$ (see Figure 7).

If $\alpha_{1} \subset T_{1}$ and $\alpha_{2} \subset T_{2}$ are primitive circles in $H$, then there is a unique slope $s \subset \partial N(K)$ such that the circles $\alpha_{1}$ and $\alpha_{2}$ are coannular in the handlebody $X H_{K}(s)$, and the following conditions hold:
(1) $\Delta(s, r)=1$ and the pair $\left(X H_{K}(s), J\right)$ is trivial.
(2) There is a unique circle $s^{\prime} \subset \partial H \backslash\left(\alpha_{1} \sqcup \alpha_{2}\right)$ which cobounds an annulus $\mathcal{A}$ in $X H_{K}$ with $s \subset \partial N(K) ; s^{\prime}$ intersects each circle $\omega_{1}, \omega_{2} \subset \partial H$ minimally in one point.
(3) The circles $\alpha_{1} \sqcup \alpha_{2} \subset \partial H$ and $s \subset \partial N(K)$ cobound a pair of pants $\mathcal{P}$ in $X H_{K}$ disjoint from the annulus $\mathcal{A}$.
(4) The slope $s$ is integral in $N(K)$ if and only if $\alpha_{1}$ and $\alpha_{2}$ are basic circles in $H$ if and only if $s^{\prime}$ is a primitive circle in $H$, in which case each circle $\alpha_{1}$ and $\alpha_{2}$ runs once around the solid torus $H\left(s^{\prime}\right)$.

Proof By Lemma 6.2 there is a unique disk $D \subset H$ which intersects $J$ minimally in two points, is disjoint from $\omega_{1} \sqcup \omega_{2}$ and intersects each primitive circle $\alpha_{1}$ and $\alpha_{2}$ minimally in one point. Thus the frontier $D_{w}$ of a thin regular neighborhood of $\alpha_{1} \cup D$ is a waist disk of $H$ which minimally intersects $J$ in 4 points and the circle $\alpha_{2}$ in 2 points.

The waist disk $D_{w}$ separates $H$ into two solid tori $V$ and $V^{\prime}$ with $V \cap V^{\prime}=D_{w}$ and $D$ a meridian disk of $V$. Since the solid tori $H \mid D$ and $V^{\prime}$ are isotopic in $H$, the core knot $K$ of the pair $(H, J)$ can be identified with the core circle of $V^{\prime}$. Therefore the exterior $V_{K}^{\prime}=V^{\prime} \backslash$ int $N(K)$ of $K$ in $V^{\prime}$ is a product of the form $(\partial N(K)) \times I$ and $V_{K}^{\prime}(s)$ is a solid torus with $\partial V_{K}^{\prime}(s)=\partial V^{\prime}$ for each slope $s \subseteq \partial V^{\prime}$. In particular we have that $X H_{K}(s)=V \cup_{D_{w}} V_{K}^{\prime}(s)$ is a handlebody, and each slope $s \subset \partial N(K)$


Figure 8: The circles $\alpha_{1}, \alpha_{2}, \omega_{1}$ and $\omega_{2}$ in $\partial H$ and $\partial X H_{K}(s)$.
cobounds an annulus $\mathcal{A}$ in $V_{K}^{\prime}$ with a unique slope $s^{\prime} \subset \partial V^{\prime} \backslash D_{w}$, so that $s^{\prime}$ bounds a meridian disk $D_{s}^{\prime}$ in the solid torus $V_{K}^{\prime}(s)$.

We also have that $\omega_{2} \subset \partial V^{\prime} \backslash D_{w}$ and that $t_{2}=\alpha_{2} \cap \partial V^{\prime}$ is a single arc which, by Lemma 6.2(5), intersects $\omega_{2}$ minimally in one point. The situation is represented in Figure 8, top, where for simplicity we have used $p=2$ and a specific primitive circle $\alpha_{2} \subset T_{2}$; the circle $\alpha_{1}$ is not shown in this figure.

For any slope $s \subset \partial N(K)$, as $D_{s}^{\prime}$ is disjoint from $\alpha_{1}$, by Lemmas 3.3(1)(b) and 3.4 the circles $\alpha_{1}$ and $\alpha_{2}$ are coannular in $X H_{K}(s)$ if and only if $D_{s}^{\prime}$ is disjoint from $\alpha_{2}$, that is, if and only if the circle $s^{\prime}=\partial D_{s}^{\prime}$ is disjoint from the arc $t_{2}$. Since, up to isotopy,
there is a unique such circle $s^{\prime} \subset \partial V^{\prime} \backslash D_{w}$, namely the circle obtained as the union of $t_{2}$ and a component of $\partial D_{w} \backslash t_{2}$, it follows that there is a unique slope $s \subset \partial N(K)$ such that $\alpha_{1}$ and $\alpha_{2}$ are coannular in $X H_{K}(s)$, in which case $\Delta(s, r)=1$ since $\left|s^{\prime} \cap \omega_{2}\right|=\left|t_{2} \cap \omega_{2}\right|=1$, and the corresponding meridian disk $D_{s}^{\prime} \subset V_{K}^{\prime}(s)$ is disjoint from $\alpha_{2}$ and intersects $\omega_{2}$ minimally in one point; thus $D_{s}^{\prime}$ intersects $J=\partial N\left(\alpha_{1} \cup \omega_{2}\right)$ minimally in two points and so the pair $\left(X H_{K}(s), J\right)$ is of type $(1,1)$, that is, trivial. Moreover, the circles $\alpha_{1}, \alpha_{2}$ and $s^{\prime}$ are necessarily mutually nonparallel in $\partial H$ and hence separate $\partial H$ into two pairs of pants, so $\alpha_{1}, \alpha_{2}$ and the slope $s$ cobound a pair of pants $\mathcal{P}$ in $X H_{K}$ disjoint from $\mathcal{A}$.

Finally, let $D^{\prime}$ be a meridian disk of $V^{\prime}$ which is disjoint from $D_{w} \subset \partial V^{\prime}$ and intersects $\alpha_{2}$ minimally, and let $x, y \subset H$ be circles dual to $D$ and $D^{\prime}$, respectively, which represent a basis for $\pi_{1}(H)$. Then there is a nonzero integer $m$ such that, in $\pi_{1}(H)=\langle x, y \mid-\rangle, \alpha_{1}=x$ and $\alpha_{2}=x y^{m}$. It follows from the above construction (see Figure 8, top) that $s^{\prime}=y^{m}$ in $\pi_{1}(H)$, hence that $s$ runs $|m|$ times around $N(K)$, and hence that

$$
\begin{aligned}
\text { the slope } s \text { is integral } & \Longleftrightarrow|m|=1 \\
& \Longleftrightarrow \alpha_{1} \text { and } \alpha_{2} \text { are basic circles in } H \\
& \Longleftrightarrow s^{\prime} \text { is primitive in } H,
\end{aligned}
$$

in which case $H\left(s^{\prime}\right)$ is a solid torus and the circles $\alpha_{1}$ and $\alpha_{2}$ run once around $H\left(s^{\prime}\right)$.

### 6.2 Basic simple pairs and Seifert circles

A pair $(H, J)$ with $\partial H=T_{1} \cup_{J} T_{2}$ is a basic pair if there are circles $\alpha_{1} \subset T_{1}$ and $\alpha_{2} \subset T_{2}$ which are basic in $H$. Any trivial pair is basic, and the next result classifies the simple pairs that are basic. The construction of general basic pairs will be discussed in Remarks 7.7.

Lemma 6.5 Let $(H, J)$ be a simple pair of type $(0,1 ; a, p)$ with $\partial H=T_{1} \cap_{J} T_{2}$ and unique meridian disk $D \subset H$ with $|D \cap J|=2$. Then $(H, J)$ is a basic pair if and only if $a \equiv \pm 1 \bmod p$, in which case if $\alpha_{1} \subset T_{1}$ is any primitive circle in $H$ then
(1) there is a circle $\alpha_{2} \subset T_{2}$ such that $\alpha_{1}$ and $\alpha_{2}$ are basic circles in $H$;
(2) up to isotopy in $T_{2}$, the circle $\alpha_{2} \subset T_{2}$ is unique if $p \geq 3$, and there are exactly 2 such circles if $p=2$;
(3) for each pair of basic circles $\alpha_{1} \subset T_{1}$ and $\alpha_{2} \subset T_{2}$ there is a unique complete disk system $D^{\prime}, D^{\prime \prime}$ of $H$ disjoint from $D$ such that $\left|D^{\prime \prime} \cap \alpha_{1}\right|=1=\left|D^{\prime} \cap \alpha_{2}\right|$ and $\left|D^{\prime \prime} \cap \alpha_{2}\right|=0=\left|D^{\prime} \cap \alpha_{1}\right|$; moreover, the 7-tuple ( $H, J, D, D^{\prime}, D^{\prime \prime}, \alpha_{1}, \alpha_{2}$ ) is homeomorphic to the one shown in Figure 9, bottom (where $p=2$ is used for simplicity).

Proof By Lemmas 3.11 and 6.2(3), (5) there is a unique disk $D \subset H$ which intersects $J$ minimally in two points such that a circle in $T_{1}$ or $T_{2}$ is primitive in $H$ if and only if it intersects $D$ minimally in one point.

If $\alpha_{1} \subset T_{1}$ is any primitive circle in $H$ then the frontier $D_{w}$ of a regular neighborhood of $\alpha_{1} \cup D$ is a waist disk of $H$ which intersects $J$ minimally in 4 points. Therefore the 5tuple $\left(\partial H, J, \partial D, \partial D_{w}, \alpha_{1}\right)$ is homeomorphic to the 5-tuple ( $\left.\partial(F \times I), J, D_{1}, D_{w}, \gamma_{1}\right)$ of Figure 1, which implies that the 5-tuple ( $H, J, D, D_{w}, \alpha_{1}$ ) is homeomorphic to the one shown in Figure 9, top (where $p=2$ is used for simplicity).
We construct a circle $\gamma \subset T_{2}$ which intersects $\omega_{2}$ minimally in one point as follows. The waist disk $D_{w}$ separates $H$ into two solid tori $V$ and $V^{\prime}$ with $V \cap V^{\prime}=D_{w}$ and meridian disks $D \subset V \backslash D_{w}$ and $D^{\prime} \subset V^{\prime} \backslash D_{w}$ such that $\omega_{2} \subset \partial V^{\prime}$ represents a circle of type $(a, p)$ in $V^{\prime}, R=V \cap T_{2}$ is a rectangle intersected by one arc of $\partial D$, and $A^{\prime}=V^{\prime} \cap T_{2}$ is an annular neighborhood of $\omega_{2}$ in $T_{2}$.
Let $t \subset A^{\prime}$ be any properly embedded arc with endpoints in $\partial D_{w}$ which intersects $\omega_{2}$ minimally in one point. Then $t$ along with an arc of $\partial D_{w}$ produces a closed circle $\hat{t} \subset \partial V^{\prime}$ of type $(c, q)$ in $V^{\prime}$ for some integers $c$ and $q$ such that $|q|=\left|D^{\prime} \cap t\right|$ and $a q-p c= \pm 1 ;$ thus $a \equiv \pm q^{-1} \bmod p$.
The union of the arc $t$ with a core arc in the rectangle $R=V \cap T_{2}$ which intersects $\partial D \cap R$ minimally in one point produces the desired circle $\gamma$ (see Figure 9, bottom). Since $\gamma$ and $\omega_{2}$ form a basis for the integral first homology group of $T_{2}$, if $\alpha_{2} \subset T_{2}$ is any circle which intersects $\omega_{2}$ minimally in one point then, homologically, the identity $\alpha_{2}=\gamma+n \omega_{2}$ holds in $T_{2}$ for some integer $n$.
Therefore, if $x$ and $y$ represent the basis of $\pi_{1}(H)$ dual to the complete disk system $D, D^{\prime} \subset H$, respectively, then, in $\pi_{1}(H)=\langle x, y \mid-\rangle$, under some orientation scheme, we can write $\alpha_{1}=x$ and $\alpha_{2}=x \cdot\left(y^{p}\right)^{m} \cdot y^{q}=x \cdot y^{m p+q}$ for some $m \in \mathbb{Z}$. Hence $\alpha_{1}$ and $\alpha_{2}$ are basic circles in $H$ if and only if $m p+q= \pm 1$, so $q \equiv \pm 1 \bmod p$, and so $a \equiv \pm q^{-1}= \pm 1 \bmod p$.
Now, there is at most one solution $m$ for each equation $m p+q= \pm 1$, and there are integers $m_{1}$ and $m_{2}$ with $m_{1} p+q=1$ and $m_{2} p+q=-1$ if and only if $p=2$ and


Figure 9: A basic simple pair $(H, J)$ of index $p=2$.
$q$ is odd, in which case $m_{1}-m_{2}=1$. Hence $\alpha_{2}=\gamma+m \omega_{2}$ is unique up to isotopy if $p \geq 3$, and there are two such circles $\alpha_{2}$ if $p=2$.

Since $D^{\prime}$ is disjoint from $\alpha_{1}$, if $\alpha_{1}$ and $\alpha_{2}$ are basic circles in $H$ then, by Lemma $3.3(1)(\mathrm{b}), D^{\prime}$ is the unique nonseparating compression disk of $\partial H \backslash \alpha_{1}$, while $\left|D^{\prime} \cap \alpha_{2}\right|=$ $|m p+q|=1$. As $\left|D \cap \alpha_{1}\right|=1=\left|D \cap \alpha_{2}\right|$, cutting $\partial H$ along $\partial D \cup \alpha_{2} \cup \partial D^{\prime}$ produces an annulus $A \subset \partial H$ which intersects $\alpha_{1}$ minimally in one spanning arc. Thus the core of $A$ is a circle in $\partial H$ disjoint from $D \cup \alpha_{2} \cup D^{\prime}$ that bounds a nonseparating disk $D^{\prime \prime}$ in $H$, hence, by Lemma $3.3(1)(\mathrm{b}), D^{\prime \prime}$ must be the unique compression disk for $\partial H \backslash \alpha_{2}$. Therefore the 7-tuple ( $H, J, D, D^{\prime}, D^{\prime \prime}, \alpha_{1}, \alpha_{2}$ ) is homeomorphic to the one shown in Figure 9, bottom (where $p=2$ for simplicity and one of the two possible circles $\alpha_{2}$ is shown).

Conversely, if $a \equiv \pm 1 \bmod p$ then the 4 -tuple $\left(H, J, D, D_{w}\right)$ is homeomorphic to the one shown in Figure 9, bottom, and so a circle $\alpha_{2} \subset T_{2}$ representing $x y^{ \pm 1}$ in $\pi_{1}(H)$ can be easily constructed, in which case $\alpha_{1}=x$ and $\alpha_{2}=x y^{ \pm 1}$ are basic circles in $H$.

A circle $\alpha \subset \partial H$ in a genus two handlebody $H$ is a Seifert circle if the manifold $H(\alpha)$ is a Seifert fiber space of the form $\mathbb{D}^{2}(*, *)$.

In the following result, we use the structure of the annuli obtained by 2 -handle addition on a 3 -manifold given in [4, Theorem 1] in order to characterize the Seifert circles $\alpha \subset \partial H$ in terms of properties of the surface $\partial H \backslash \alpha$ or the pair $(H, \alpha)$. Its statement uses the concept of a primitive pair $(H, J)$, a nontrivial pair that contains a nonseparating annulus whose boundary components are primitive circles in $H$ separated by $J$; the properties of primitive pairs will be developed in Section 6.4.

Lemma 6.6 Let $H$ be a genus two handlebody and $\alpha \subset \partial H$ a circle such that $\partial H \backslash \alpha$ is incompressible in $H$. If $H(\alpha)$ contains an essential annulus $A^{\prime}$ with $\partial A^{\prime} \subset \partial H \backslash \alpha$ then one of the following conditions holds:
(1) there is a circle in $\partial H \backslash \alpha$ which is a power circle in $H$ (necessarily, its companion annulus is essential in $H(\alpha)$ ),
(2) $\alpha$ separates $\partial H$ and the pair $(H, \alpha)$ is trivial or primitive,
(3) $\alpha$ is nonseparating in $\partial H$ and $H\left(\alpha \sqcup \partial A^{\prime}\right)=L_{p}$ for some $p \neq 1$.

Proof If $H(\alpha)$ contains an essential annulus $A^{\prime}$ then, by [4, Theorem 1] and Remark (d) after its statement, there is an essential annulus $A \subset H(\alpha)$ satisfying condition (a) or (b) of that theorem whose boundary is parallel in $\partial H$ to one or both of the components of $\partial A^{\prime}$.

Suppose first that part (a) of [4, Theorem 1] holds, that is, the annulus $A$ lies in $H$ with $\partial A \subset H \backslash \alpha$, which by [4, Theorem 1] is the case if $\alpha$ separates $\partial H$. Necessarily $A$ is incompressible and not boundary parallel in $H$, so by Lemma 3.2 each component of $\partial A$ is a nonseparating circle in $\partial H$, and by Lemmas 3.3(2) and 3.4 both components of $\partial A$ are primitive or both are power circles in $H$. In the latter case, (1) holds, so assume that the circles $\partial A$ are primitive in $H$. Since $A$ is not boundary parallel in $H$, by Lemma 3.3(2) $A$ must be a nonseparating annulus and so the circles $\alpha, \partial_{1} A$ and $\partial_{2} A$ are mutually disjoint and nonparallel in $\partial H$, and $H\left(\partial_{1} A\right)$ is a solid torus with meridian circle $\partial_{2} A$. If $\alpha \subset \partial H$ is a separating circle then by definition the pair $(H, \alpha)$ is either


Figure 10: The manifold $H(\alpha)$ and the disk $D \subset H_{2} \subset T(p=1)$.
trivial or primitive, so (2) holds, while if $\alpha$ is nonseparating then the circles $\partial_{2} A$ and $\alpha$ are parallel in $\partial H\left(\partial_{1} A\right)$ and hence $H\left(\alpha \sqcup \partial A^{\prime}\right)=H(\partial A)=\mathbb{S}^{1} \times \mathbb{S}^{2}=L_{0}$, so (3) holds.

Suppose now that part (b) of [4, Theorem 1] holds but not part (a), so that $\alpha$ is a nonseparating circle in $\partial H$ and no circle in $\partial H \backslash \alpha$ is a power circle in $H$. By Remark (b) after the statement of [4, Theorem 1], there is an incompressible, nonboundary parallel pair of pants $P \subset H$ with two boundary components $\partial_{1} P, \partial_{2} P \subset \partial H \backslash \alpha$ which are nonseparating and mutually parallel, and a third boundary component $\partial_{3} P \subset \partial H \backslash \alpha$ which separates $\partial_{1} P \sqcup \partial_{2} P$ from $\alpha$ such that the surface $\widehat{P} \subset H(\alpha)$ obtained by capping off $\partial_{3} P$ with a disk in $H(\alpha)$ is an essential separating annulus with the same boundary slope as $A^{\prime}$. Moreover, $\widehat{P}$ separates $H(\alpha)$ into two components $N$ and $T$, where $T$ is a solid torus such that if $\tau \subset H(\alpha)$ is the cocore of the 2 -handle attached to $H$ along $\alpha$, then $\tau$ can be slid over itself to form the union of an $\operatorname{arc} \tau_{2}$ and a core $\tau_{1}$ of $T$, where $\tau_{2} \cap T$ is a straight arc in $T$ from $\partial T$ to $\tau_{1}$; the situation is represented in Figure 10. Therefore $H=\operatorname{cl}\left[H(\alpha) \backslash N\left(\tau_{1} \cup \tau_{2}\right)\right]$, and in $\partial H$ the meridian circle of $N\left(\tau_{1}\right) \subset T$ is isotopic to $\alpha$ while the meridian circle of $N\left(\tau_{2}\right)$ is isotopic to $\partial_{3} P$.

The circle $\partial_{3} P$ separates $\partial H$ into two once-punctured tori $T_{1}$ and $T_{2}$, with

$$
\partial_{1} P \sqcup \partial_{2} P \subset T_{1}, \quad \alpha \subset T_{2} \quad \text { and } \quad \partial T_{1}=\partial_{3} P=\partial T_{2}
$$

while the incompressible surface $P$ separates $H$ into two genus two handlebodies $H_{1}$ and $H_{2}$ (see [19, Lemma 2.3]), where the notation is chosen so that $\alpha \subset T_{2} \subset \partial H_{2}$ and hence $H_{2}(\alpha)=T$.

Since the annulus $\widehat{P}$ is not boundary parallel in $H(\alpha)$ and $H(\alpha)=H_{1}\left(\partial_{3} P\right) \cup_{\widehat{P}} H_{2}(\alpha)$, $\widehat{P}$ must run $p \geq 2$ times around the solid torus $T=H_{2}(\alpha)$. Thus there is a disk $D$
properly embedded in $H_{2}$ which is disjoint from $\partial_{1} P \sqcup \partial_{2} P$ and intersects $P$ in one arc, $\partial_{3} P$ minimally in two points, and $\alpha$ minimally and coherently in $p$ points; the disk $D$ is shown in Figure 10 (in the case $p=1$ for simplicity).

Boundary compressing $P$ in $H$ along $D$ produces 2 nonseparating annuli $B_{1}, B_{2} \subset H$, where $\partial_{1} B_{1}=\partial_{1} P, \partial_{1} B_{2}=\partial_{2} P$, and $\partial_{2} B_{1}$ and $\partial_{2} B_{2}$ are parallel circles in $T_{2} \subset \partial H$ with $\Delta\left(\alpha, \partial_{2} B_{1}\right)=p=\Delta\left(\alpha, \partial_{2} B_{2}\right)$. By Lemma 3.4 and our hypothesis on $\partial H \backslash \alpha$ not containing any power circles in $H, \partial_{1} B_{1}$ and $\partial_{1} B_{2}$ are primitive circles in $H$. Therefore the pair $\left(H, \partial_{3} P\right)$ is primitive and $H\left(\partial_{1} B_{1}\right)$ is a solid torus with meridian disk $\widehat{B}_{1}$ such that $\Delta\left(\alpha, \partial \widehat{B}_{1}\right)=\Delta\left(\alpha, \partial_{2} B_{1}\right)=p$, whence $H\left(\alpha \sqcup \partial A^{\prime}\right)=H\left(\alpha \sqcup \partial_{1} B_{1}\right)=L_{p}$, so (3) holds.

Lemma 6.7 Let $H$ be a genus two handlebody and $\alpha \subset \partial H$ a nonseparating circle. Then $\alpha$ is a Seifert circle in $H$ if and only if the surface $\partial H \backslash \alpha$ is incompressible in $H$ and contains a power circle $\beta$ with companion annulus $B \subset H$ such that (1) $\alpha$ is a primitive circle in the handlebody $H_{B} \subset H \mid B$, in which case (2) $\beta$ is a regular fiber of $H(\alpha)$, and any power circle in $\partial H \backslash \alpha$ satisfies (1) and (2).

Proof If $\alpha$ is a Seifert circle in $H$ then by Lemma 3.3 and the 2 -handle addition theorem the surface $\partial H \backslash \alpha_{1} \subset H$ is necessarily incompressible and contains a power $p \geq 2$ circle by Lemma 6.6 applied to the unique separating essential annulus $A^{\prime}$ in $H(\alpha)=\mathbb{D}^{2}(*, *)$.

Let $B \subset H$ and $V_{B} \subset H$ be the companion annulus and solid torus of $\beta$, respectively. From the identity $H(\alpha)=H_{B}(\alpha) \cup_{B} V_{B}=\mathbb{D}^{2}(*, *)$ it follows that the annulus $B$ is essential in $H_{B}(\alpha)$ and hence that $H_{B}(\alpha)$ is a solid torus. Therefore $\alpha$ is a primitive circle in $H_{B}$ and the circles $\partial B$, and hence $\beta$, are regular fibers of $H(\alpha)=\mathbb{D}^{2}(*, *)$. The converse holds by a similar argument.

### 6.3 Double and maximal pairs

Lemma 6.8 Let $(H, J)$ be a pair with $\partial H=T_{1} \cup_{J} T_{2}$.
(1) Suppose that $\omega_{1} \subset T_{1}$ and $\omega_{2} \subset T_{2}$ are, respectively, power $p_{1}$ and $p_{2}$ circles in $H$ that induce disjoint once-punctured tori $T_{1}^{\prime}$ and $T_{2}^{\prime}$ in $H$ with boundary slope $J$. Then $T_{1}^{\prime} \sqcup T_{2}^{\prime}$ cut $H$ into 3 genus two handlebodies $H_{0}, H_{1}$ and $H_{2}$ as shown in Figure 11, top, such that
(a) $\left(H_{1}, J\right)$ and $\left(H_{2}, J\right)$ are simple pairs of types $\left(1, p_{1}\right)$ and $\left(1, p_{2}\right)$, respectively;
(b) $\left(H_{0}, J\right)$ is a basic pair; specifically, the power circles $\omega_{1}^{\prime} \subset T_{1}^{\prime}$ in $H_{1}$ and $\omega_{2}^{\prime} \subset T_{2}^{\prime}$ in $H_{2}$ are basic circles in $H_{0}$, with $\omega_{1}^{\prime}$ and $\omega_{2}^{\prime}$ primitive circles in $H_{0} \cup H_{2}$ and $H_{0} \cup H_{1}$, respectively;
(c) if $\left(H_{0}, J\right)$ is a simple pair with power circles $\gamma_{1} \subset T_{1}^{\prime}$ and $\gamma_{2} \subset T_{2}^{\prime}$ then, for each $i \in\{1,2\}, \Delta\left(\omega_{i}^{\prime}, \gamma_{i}\right)=1$ and $\gamma_{i}$ is a primitive circle in $H_{i}$;
(d) if the pair $\left(H_{0}, J\right)$ is nontrivial then any nonseparating circle $\alpha_{1} \subset T_{1}$ which is not isotopic to $\omega_{1}$ in $T_{1}$ is neither a primitive nor a power circle in $H$; in particular, the surface $\partial H \backslash \alpha_{1}$ is incompressible in $H$ and the manifold $H\left(\alpha_{1}\right)$ is irreducible with incompressible boundary, with $\alpha_{1}$ a Seifert circle in $H$ if and only if $\alpha_{1}$ is primitive in $H_{0} \cup H_{1}$.
(2) $(H, J)$ is a double pair of type $\left(p_{1}, p_{2}\right)$ if and only if there is a once-punctured torus $T \subset H$ with $\partial T=J$ that separates $H$ into simple pairs $\left(H_{1}, J\right)$ and $\left(H_{2}, J\right)$ of types $\left(1, p_{1}\right)$ and $\left(1, p_{2}\right)$, respectively (see Figure 11, bottom), in which case
(a) any once-punctured torus in $H$ bounded by $J$ is parallel to $T, T_{1}$ or $T_{2}$;
(b) if $\omega_{1}^{\prime} \subset T \subset H_{1}$ and $\omega_{2}^{\prime} \subset T \subset H_{2}$ are the power circles in $H_{1}$ and $H_{2}$ then $\Delta\left(\omega_{1}^{\prime}, \omega_{2}^{\prime}\right)=1, \omega_{1}^{\prime}$ is a primitive circle in $H_{2}$, and $\omega_{2}^{\prime}$ is a primitive circle in $H_{1}$;
(c) if $\alpha_{1} \subset T_{1}$ is any nonseparating circle which intersects $\omega_{1}$ minimally in $q$ points, then

$$
\begin{aligned}
H\left(\alpha_{1}\right) & =H_{2}(J) \cup_{\widehat{T}} H_{1}\left(\alpha_{1}\right) \\
& = \begin{cases}\left(\mathbb{S}^{1} \times \mathbb{D}^{2}\right) \# L_{p_{1}} & \text { if } q=0, \\
\mathbb{S}^{1} \times \mathbb{D}^{2} & \text { if } q=1 \text { and } \alpha_{1} \text { is primitive in } H, \\
\mathbb{D}^{2}\left(p_{2}, r\right) \text { for some } r \geq 2 & \text { if } q=1 \text { and } \alpha_{1} \text { is not primitive in } H, \\
\mathbb{A}^{2}\left(p_{2}\right) \cup_{\widehat{T}} \mathbb{D}^{2}\left(p_{1}, q\right) & \text { if } q \geq 2 .\end{cases}
\end{aligned}
$$

Proof For part (1), that the manifolds $H_{0}, H_{1}$ and $H_{2}$ are genus two handlebodies follows from Lemma 3.7, so the pairs $\left(H_{1}, J\right)$ and $\left(H_{2}, J\right)$ are simple by definition and so (1)(a) holds.

By a similar argument both $H_{0} \cup H_{1}$ and $H_{0} \cup H_{2}$ are handlebodies. Now, if $V_{1} \subset H_{1}$ and $V_{2} \subset H_{2}$ are companion solid tori of the power circles $\omega_{1}^{\prime} \subset T_{1}^{\prime}$ and $\omega_{2}^{\prime} \subset T_{2}^{\prime}$ (see Figure 11, top) then, by Lemma 6.3, $H^{\prime}=V_{1} \cup H_{0} \cup V_{2}$ is homeomorphic to $H$, so by Lemma 3.5(2) the circles $\omega_{1}^{\prime}$ and $\omega_{2}^{\prime}$ are basic circles in $H_{0}$. Similarly, by Lemma 6.3 $\omega_{1}^{\prime}$ is primitive in $H_{2} \cup H_{0}$ and $\omega_{2}^{\prime}$ is primitive in $H_{1} \cup H_{0}$, and if the pair $\left(H_{0}, J\right)$


Figure 11: Once-punctured tori in a genus two handlebody $H$.
is simple and $\gamma_{i} \subset T_{i}^{\prime}$ is a power circle in $H_{0}$ then $\Delta\left(\omega_{i}^{\prime}, \gamma_{i}\right)=1$ by Lemma 6.2(5), and we also have that $\gamma_{i}$ is primitive in $H_{i}$. Therefore parts (1)(b) and (1)(c) hold.

For part (1)(d), if $\alpha_{1}$ is not isotopic to $\omega_{1}$ then by Lemma $3.6 \alpha_{1}$ is not a power circle in $H$. If $\alpha_{1}$ is a primitive circle in $H$ then by Lemma 6.3 the manifold $H \cup_{\alpha_{1}} V$ obtained by gluing a solid torus to $H$ along an annular neighborhood of $\alpha_{1}$ in $T_{1}$, so that $\alpha_{1}$ runs $p \geq 2$ times around $V$, is a genus two handlebody which, as $\left(H_{0}, J\right)$ is a nontrivial pair, contains three mutually disjoint nonparallel and not boundary parallel once-punctured tori with boundary slope $J$, contradicting Lemma 3.9. Therefore $\alpha_{1}$ is also not primitive in $H$, so by Lemma 3.3(1) the surface $\partial H \backslash \alpha_{1}$ is incompressible in $H$, and so by the 2 -handle addition theorem the manifold $H\left(\alpha_{1}\right)$ is irreducible with incompressible torus boundary. The remaining part of (1)(d) follows from Lemma 6.7.

For part (2), if $(H, J)$ is a double pair of type ( $p_{1}, p_{2}$ ) then, by construction, there are power $p_{i}$ circles $\omega_{i} \subset T_{i}$ and so the hypothesis of part (1) is satisfied with $\left(H_{0}, J\right)=\left(T_{1}^{\prime} \times I, J\right)$ a trivial pair; therefore by (1)(a) the torus $T=T_{1}^{\prime}$ separates $H$ into simple pairs $\left(H_{1}, J\right)$ and $\left(H_{2}, J\right)$ having the claimed types. Conversely, if a once-punctured torus $T \subset H$ exists that separates $H$ into simple pairs $\left(H_{1}, J\right)$ and
$\left(H_{2}, J\right)$ of types $\left(1, p_{1}\right)$ and $\left(1, p_{2}\right)$, respectively, then again $T_{1}$ and $T_{2}$ contain power $p_{1}$ and $p_{2}$ circles, so by (1) and (1)(a), along with Lemma 3.9(1), we have that the induced once-punctured tori $T_{1}^{\prime}$ and $T_{2}^{\prime}$ are parallel in $H$ to $T$, so $\left(H_{0}, J\right)$ is a trivial pair and so $(H, J)$ is a double pair of type $\left(p_{1}, p_{2}\right)$. In particular, (2)(a) holds. Since for any two nonseparating circles $\alpha, \beta \subset T$, in $H_{0} \approx T \times[-1,1]$ the circles $\alpha \times\{-1\} \subset T \times\{-1\}$ and $\beta \times\{1\} \subset T \times\{1\}$ are basic circles if and only if $\alpha$ and $\beta$ intersect transversely in $T$ in one point, (2)(b) follows from (1)(b) and (1)(c), while (2)(c) follows from the identity $H\left(\alpha_{1}\right)=\mathbb{A}^{2}\left(p_{2}\right) \cup_{\widehat{T}} H_{1}\left(\alpha_{1}\right)$.

### 6.4 Primitive pairs

Recall that a nontrivial pair $(H, J)$ with $\partial H=T_{1} \cup_{J} T_{2}$ is primitive if there are circles $\alpha_{1} \subset T_{1}$ and $\alpha_{2} \subset T_{2}$ which are primitive and coannular in $H$. In this section we use primitive pairs to analyze the structure of nonminimal pairs with power or Seifert circles.

Lemma 6.9 If $(H, J)$ is a primitive pair with $\partial H=T_{1} \cup_{J} T_{2}, A \subset H$ is any annulus with boundary a pair of primitive circles $\alpha_{1} \subset T_{1}$ and $\alpha_{2} \subset T_{2}$, and $\beta_{i} \subset T_{i}$ is any nontrivial circle with $\Delta\left(\beta_{i}, \alpha_{i}\right) \geq 1$, then
(1) the manifold $H\left(\beta_{i}\right)$ is irreducible and boundary irreducible, and if $\Delta\left(\beta_{i}, \alpha_{i}\right) \geq 2$ then $H\left(\beta_{i}\right)$ is toroidal;
(2) any incompressible, nonboundary parallel annulus in $H$ with boundary in $\partial H \backslash J$ is isotopic to $A$, and any circle in $T_{i}$ which is primitive in $H$ is isotopic to $\alpha_{i}$.

Proof Assuming (1) holds, if $\beta_{i} \subset T_{i}$ is a primitive or power circle in $H$ then $H\left(\beta_{i}\right)$ has compressible boundary by Lemma 3.3(1)(b), hence $\beta_{i}$ must be isotopic to $\alpha_{i}$; also any incompressible and nonboundary parallel annulus $B \subset H$ with boundary in $\partial H \backslash J$ is either a companion or a nonseparating annulus in $H$, hence each component of $\partial B$ is a primitive circle in $H$ by Lemmas 3.2 and 3.3 and the argument above, and so $B$ must be isotopic to $A$ in $H$ by Lemma 3.4(4). Thus part (2) follows from part (1).

Suppose now for definiteness that $\beta_{1} \subset T_{1}$ is any nontrivial circle with $\Delta\left(\beta_{1}, \alpha_{1}\right) \geq 1$. By Lemma 3.7(1) the manifold $H(J)$ is irreducible with incompressible boundary $\widehat{T}_{1} \sqcup \widehat{T}_{2}$. Set $H(J)\left(\alpha_{1}\right)=H(J) \cup V_{1}$, where $V_{1}$ is a solid torus attached to $H(J)$ along $\widehat{T}_{1}$ so that $\alpha_{1}$ bounds a disk in $V_{1}$. Then $H(J)\left(\alpha_{1}\right)=H\left(\alpha_{1}\right)$ is a solid torus with meridian disk $\hat{A} \subset H\left(\alpha_{1}\right)$ which intersects the core $K_{1}$ of $V_{1}$ minimally in one point, so in $H\left(\alpha_{1}\right)$ the knot $K_{1}$ has wrapping number one and exterior $H(J) \subset H\left(\alpha_{1}\right)$.

Since the pair $(H, J)$ is not trivial, by Lemma 3.7(4) the knot $K_{1}$ is not a core of $H\left(\alpha_{1}\right)$. Therefore $K_{1}$ is a locally knotted core of the solid torus $H\left(\alpha_{1}\right)$, that is, the torus $\widehat{F} \subset H(J)$ obtained as the frontier of $M=N(A \cup \partial H(J)) \subset H(J)$ is essential and separates $H(J)$ into two components $X$ and $M$, where $X$ is the exterior of a nontrivial knot in $\mathbb{S}^{3}$ (ie of the local knot tied along the core of $H\left(\alpha_{1}\right)$ ), and $M$ can be identified with a Seifert fiber space of the form $P \times \mathbb{S}^{1}$, with $P$ a pair of pants, such that $\partial M=\widehat{T}_{1} \sqcup \widehat{T}_{2} \sqcup \hat{F}$ and the annulus $A \subset M$ is fibered. Thus $H\left(\beta_{1}\right)=X \cup_{\widehat{F}} M\left(\beta_{1}\right)$ is irreducible and boundary irreducible.

Since $M\left(\beta_{1}\right) \approx \mathbb{A}^{2}(q)$ for $q=\Delta\left(\alpha_{1}, \beta_{1}\right) \geq 1$ and $\partial M\left(\beta_{1}\right)=\widehat{T}_{2} \sqcup \hat{F}$, if $q \geq 2$ then $\widehat{T}_{2}$ and $\widehat{F}$ are not mutually parallel in $M(\beta)$ and so the torus $\widehat{F}$ is essential in $H(\beta)$. Therefore (1) holds.

In the following result we determine the structure of a general pair $(H, J)$ for which there is a circle $\gamma \subset \partial H \backslash J$ which is either a power circle (eg if $(H, J)$ is a simple, double or maximal pair) or whose complement $\partial H \backslash \gamma$ contains a power circle (eg if $\gamma$ is a Seifert circle).

Lemma 6.10 Let $(H, J)$ be a pair with $\partial H=T_{1} \cup_{J} T_{2}$ and $T \subset H$ any oncepunctured torus with $\partial T=J$ which separates $H$ into nontrivial pairs $\left(H_{1}, J\right)$ and $\left(H_{2}, J\right)$ with $\partial H_{i}=T \cup T_{i}$.
(1) If $\omega_{1} \subset T_{1}$ is a power circle in $H$ then either $\omega_{1}$ is a power circle in $H_{1}$ or the pair $\left(H_{1}, J\right)$ is primitive with $\omega_{1}$ a primitive circle in $H_{1}$ and coannular in $H_{1}$ to some circle $\omega_{1}^{\prime} \subset T$ which is a power circle in $H_{2}$.
(2) If $\alpha_{1} \subset T_{1}$ is a nonseparating circle such that the surface $\partial H \backslash \alpha_{1} \subset H$ is incompressible and contains a circle $\beta$ which is a power circle in $H$, as is the case when $\alpha_{1}$ is a Seifert circle in $H$, then either $\beta \subset T_{2}$ or each pair ( $H_{1}, J$ ) and $\left(H_{2}, J\right)$ is a simple or double pair; in particular,
(a) there is a circle in $T_{2}$ which is a power circle in $H$,
(b) if $\alpha_{1}$ is a Seifert circle in $H$ then $\alpha_{1}$ is a primitive circle in $H_{1}$ and there is a circle in $T_{2}$ which is a power circle in $\mathrm{H}_{2}$.

Proof For part (1), by Lemma 3.3(2) there is a companion annulus $A$ for $\omega_{1}$ in $H$. As $A$ and $T$ are incompressible in $H, A$ can be isotoped so as to intersect $T$ minimally, so that $A \cap T$ consists of circles which are nontrivial in $A$ and $T$. If $A \cap T=\varnothing$ then $\omega_{1}$ is a power in $H_{1}$ by Lemma 3.3(2), so assume that $A \cap T \neq \varnothing$. Then $A \cap H_{1}$ has an annulus component $A_{1}$ with $\partial_{1} A_{1}=\omega_{1}$ and $\partial_{2} A_{1}=\omega_{1}^{\prime} \subset T$, and the
component $A_{2}$ of $A \cap H_{2}$ with $\partial_{1} A_{2}=\omega_{1}^{\prime}$ is, by minimality of $A \cap T$, a companion annulus for $\omega_{1}^{\prime}$ in $H_{2}$; thus $\omega_{1}^{\prime}$ is a power circle in $H_{2}$ by Lemma 3.3(2). If $T^{\prime} \subset H_{2}$ is the once-punctured torus induced by $\omega_{1}^{\prime}$ then, by Lemma 3.7(2), $H_{2} \mid T^{\prime}$ consists of two handlebodies $H_{2}^{\prime}$ and $H_{2}^{\prime \prime}$, say with $T^{\prime} \subset \partial H_{2}^{\prime}$, such that the pair $\left(H_{2}^{\prime}, T^{\prime}\right)$ is simple. Similarly, $H \mid T^{\prime}$ consists of two handlebodies $H_{1} \cup_{T} H_{2}^{\prime}$ and $H_{2}^{\prime \prime}$ and so, by Lemma 6.3 applied to the pairs $\left(H_{1}, J\right)$ and $\left(H_{2}^{\prime}, J\right)$, the circle $\omega_{1}^{\prime}$, and hence $\omega_{1}$, are primitive circles in $H_{1}$; therefore the pair $\left(H_{1}, J\right)$ is primitive.

For part (2), let $\beta \subset \partial H \backslash \alpha_{1}$ be a power circle in $H$. Notice that if $\alpha_{1}$ is a Seifert circle in $H$ then by Lemma 6.7 the surface $\partial H \backslash \alpha_{1} \subset H$ is incompressible and contains such a power circle $\beta$; in particular, by Lemma 3.3(1) $\alpha_{1}$ is neither a primitive nor power circle in $H$.

We assume that $\beta$ has been isotoped in $\partial H \backslash \alpha_{1}$ so as to intersect $J$ minimally. As $\alpha_{1}$ is not a power circle in $H$, if $\beta \cap J=\varnothing$ then $\beta \subset T_{2}$.

Suppose now that $\beta \cap J \neq \varnothing$, and let $B \subset H$ be a companion annulus for $\beta$ which is disjoint from $\alpha_{1}$ and intersects $T$ minimally, so that the graphs of intersection $G_{T}=B \cap T \subset T$ and $G_{B}=B \cap T \subset B$ are nonempty. Since $\partial H \backslash \alpha_{1}$ is incompressible in $H$, the minimality of $B \cap T$ implies that if $e \subset B \cap T$ is an arc that bounds a trivial disk face $D$ in $B$ (resp. $T$ ) then $e$ is essential in $T$ (resp. $B$ ) and so $D$ is a boundary compression disk for $T$ (resp. $B$ ) in $H$.

If the graph $G_{T}=B \cap T \subset T$ has a trivial disk face $D_{T}$ then boundary compressing $B$ along $D_{T}$ produces a nontrivial separating disk in $H$ with boundary in $\partial H \backslash \alpha_{1}$, contradicting the incompressibility of $\partial H \backslash \alpha_{1}$ in $H$; therefore the graph $G_{T}$ has no trivial disk faces.

If the graph $G_{B}=B \cap T \subset B$ has a trivial disk face $D_{B}$ and $D_{B} \subset H_{i}$, then $D_{B}$ intersects $J$ minimally in 2 points by Lemma 2.1(3) and so the pair $\left(H_{i}, J\right)$ is simple by Lemma 3.11. If $D_{B} \subset H_{1}$ then, as $\alpha_{1}$ is disjoint from $\partial B$, $\alpha_{1}$ is disjoint from $D_{B} \subset B$ and so, by Lemma 6.2(5), $\alpha_{1}$ is disjoint and hence isotopic in $T_{1}$ to the power circle of the simple pair ( $H_{1}, J$ ), which is not the case. Therefore $D_{B} \subset H_{2}$ and so the pair $\left(H_{2}, J\right)$ is simple, whence $T_{2}$ contains a power circle in $H_{2}$ by Lemma 6.2(1).

Otherwise the graphs $G_{T}$ and $G_{B}$ are essential, so $G_{B}$ consists of spanning arcs that cut $B$ into a collection of 4 -sided disk faces, alternately lying in $H_{1}$ and $H_{2}$. By minimality of $B \cap T$ any such disk face of $G_{B}$ in $H_{2}$ intersects $J$ minimally in 4 points; therefore each pair $\left(H_{1}, J\right)$ and $\left(H_{2}, J\right)$ is a simple or double pair by Lemma 6.1, so again $T_{2}$ contains a power circle in $H_{2}$. Thus (2)(a) holds.


Figure 12: The complementary regions $R_{i, i+1}$ of $\mathbb{T} \subset X_{K}$.
Observe now that $H\left(\alpha_{1}\right)=H_{2}(J) \cup_{\hat{T}} H_{1}\left(\alpha_{1}\right)$, where $H_{2}(J)$ is an irreducible and boundary irreducible manifold by Lemma 3.7. If $\alpha_{1}$ is a Seifert circle in $H$ then $H\left(\alpha_{1}\right)=\mathbb{D}^{2}(*, *)$ is an irreducible and atoroidal manifold, hence $\hat{T}$ bounds a solid torus in $H\left(\alpha_{1}\right)$ and so $H_{1}(\alpha)$ must be a solid torus, so $\alpha_{1}$ is primitive in $H_{1}$. By (2)(a) there is a circle $\gamma \subset T_{2}$ which is a power circle in $H$. If $\gamma$ is not a power circle in $H_{2}$ then by (1) the pair $\left(H_{2}, J\right)$ is primitive, with $\gamma \subset T_{2}$ a primitive circle in $H_{2}$ and coannular to a circle $\gamma^{\prime} \subset T$ which is a power $q \geq 2$ circle in $H_{1}$. By Lemma 3.4 the circles $\alpha_{1}$ and $\gamma^{\prime}$ are separated in $H_{1}$, hence the meridian disk of the solid torus $H_{1}\left(\alpha_{1}\right)$ intersects $\gamma^{\prime}$ minimally in $q \geq 2$ points, which by Lemma 6.9(1) implies that $H\left(\alpha_{1}\right)=H_{2}(J) \cup_{\widehat{T}} H_{1}\left(\alpha_{1}\right)=\mathbb{D}^{2}(*, *)$ is a toroidal manifold, a contradiction. Therefore $\gamma \subset T_{2}$ is a power circle in $H_{2}$ and so (2)(b) holds.

## 7 The case $|\mathbb{T}|=6$

In this section we assume that $K \subset S^{3}$ is a hyperbolic knot and $\mathbb{T}=T_{1} \sqcup \cdots \sqcup T_{N}$ a collection of $N$ mutually disjoint and nonparallel once-punctured tori in $X_{K}$, initially considering several special cases with $N \leq 5$ before discussing the case $N=6$ in detail.

For the rest of this section we extend each once-punctured torus $T_{i} \subset X_{K}$ up to the knot $K$ via annuli in $N(K)$ with disjoint interiors, so that $\partial T_{i}=K$ and $\operatorname{int}\left(T_{i}\right) \cap \operatorname{int}\left(T_{j}\right)=\varnothing$ for $i \neq j$; for simplicity we will continue to say that the $T_{i}$ are mutually disjoint.

Using the notation set up in Section 6.1, we represent and label the regions $R_{i, i+1}$ as in Figure 12 (where we take $N=6$ ), each of which is a handlebody by Lemma 4.3. In particular, if a pair $\left(R_{i, i+1}, K\right)$ is simple then its core $K_{i}$ has index $p_{i} \geq 2$ and its power $p_{i}$ circles $\omega_{i} \subset T_{i}$ and $\omega_{i}^{\prime} \subset T_{i+1}$ cobound annuli $A_{i}, A_{i}^{\prime} \subset R_{i, i+1} \backslash \operatorname{int} N\left(K_{i}\right)$ with $\partial_{1} A_{i}=\omega_{i}$ and $\partial_{1} A_{i}^{\prime}=\omega_{i}^{\prime}$ and circles $\partial_{2} A_{i}, \partial_{2} A_{i}^{\prime} \subset \partial N\left(K_{i}\right)$ of slope $a_{i} / p_{i}$ relative to $N\left(K_{i}\right)$, where $\operatorname{gcd}\left(a_{i}, p_{i}\right)=1$, so that $\left(R_{i, i+1}, K\right)$ is a pair of type $\left(0,1 ; a_{i}, p_{i}\right)$.

### 7.1 Core knots and hyperbolic Eudave-Muñoz knots

The next result establishes a connection between the core knots $K_{i}$ produced by the collection $\mathbb{T}$ and the family of hyperbolic Eudave-Muñoz knots under some conditions.

Lemma 7.1 Let $K \subset \mathbb{S}^{3}$ be a hyperbolic knot that bounds a collection $\mathbb{T}=T_{1} \cup T_{2} \cup T_{3}$ of mutually disjoint and nonparallel once-punctured tori such that $R_{1,2}$ is a handlebody and $\left(R_{1,2}, K\right)$ a simple pair with core knot $K_{1}$, and the regions $R_{1,3}$ and $R_{3,2}$ are not handlebodies. Let $V_{1}=N\left(K_{1}\right) \cup N\left(A_{1}\right) \subset R_{1,2}$ be a solid torus neighborhood of $K_{1}$ and identify $X_{K_{1}}$ with $\mathbb{S}^{3} \backslash$ int $V_{1}$, so that $\omega_{1}$ is a nonintegral slope in $\partial X_{K_{1}}$ of the form $a_{1} / p_{1}$. Then
(1) the twice-punctured torus $F=\operatorname{cl}\left(T_{1} \cup T_{3} \backslash V_{1}\right) \subset X_{K_{1}}$ is essential in $X_{K_{1}}$;
(2) $X_{K_{1}}\left(\omega_{1}\right)$ is an irreducible manifold and $\widehat{F} \subset X_{K_{1}}\left(\omega_{1}\right)$ is an incompressible separating torus;
(3) if $T_{a} \subset R_{2,3}$ and $T_{b} \subset R_{3,1}$ are once-punctured tori bounded by $K$ which are not parallel to $T_{2}, T_{3}$ and $T_{1}, T_{3}$, respectively, then
(a) $K_{1}$ is a hyperbolic Eudave-Muñoz knot of index $p_{1}=2$;
(b) there are circles $\gamma^{\prime}, \gamma^{\prime \prime} \subset T_{3}$ with $\Delta\left(\gamma^{\prime}, \gamma^{\prime \prime}\right) \neq 0$ which are power circles in $R_{a, 3}$ and $R_{3, b}$, respectively; in particular, if any of the pairs $\left(R_{a, 3}, K\right)$ or ( $R_{3, b}, K$ ) is minimal then it is simple;
(c) the regions $R_{1, a}$ and $R_{b, 2}$ are handlebodies;
(d) if each of the pairs $\left(R_{2, a}, K\right)$ and $\left(R_{b, 1}, K\right)$ is simple of index 2 then the region $R_{b, a}$ is a handlebody.

Proof Let $F^{B}, F^{W} \subset X_{K_{1}}$ be the closures of the components of $X_{K_{1}} \backslash F$, with $F^{W}=R_{3,1}$; the situation is represented in Figure 13. By Lemma $6.3 F^{B}$ is homeomorphic to $R_{2,3}$, while by Lemma 4.1(1) the regions $R_{2,3}$ and $R_{3,1}$ are handlebodies; therefore $F^{B}$ and $F^{W}$ are handlebodies.


Figure 13: The regions $F^{B}$ and $F^{W}$ in $X_{K_{1}}=\mathbb{S}^{3} \backslash$ int $V_{1}$.

By Lemmas 5.1 and 6.3, the circle $\omega_{1} \subset T_{1}$ is neither primitive nor a power in $R_{3,1}$. Therefore the surface $F$ is incompressible in $R_{3,1}$ by Lemma 3.3(1) and so, by the 2-handle addition theorem, $F^{W}\left(\omega_{1}\right)=R_{3,1}\left(\omega_{1}\right)$ is an irreducible manifold with incompressible boundary the torus $\widehat{F}$.

Using the solid torus neighborhood $V_{1}^{\prime}=N\left(K_{1}\right) \cup N\left(A_{1}^{\prime}\right) \subset R_{1,2}$ of $K_{1}$, it follows in a similar way that $\omega_{1}^{\prime}$ is neither a primitive nor power circle in $R_{2,3}$, and hence that $\partial R_{2,3} \backslash \omega_{1}^{\prime}$ is incompressible in $R_{2,3}$ and $R_{2,3}\left(\omega_{1}^{\prime}\right)$ is an irreducible and boundary irreducible manifold.

Since the homeomorphism between $F^{B}$ and $R_{2,3}$ identifies $F$ with the surface $\partial R_{2,3} \backslash$ int $N\left(\omega_{1}^{\prime}\right)$ and the slope $\omega_{1}$ of the core of the annulus $V_{1} \cap F_{B}$ with $\omega_{1}^{\prime}$, we have that $F$ is incompressible in $X_{K_{1}}$ and

$$
X_{K_{1}}\left(\omega_{1}\right)=F^{W}\left(\omega_{1}\right) \cup_{\widehat{F}} F^{B}\left(\omega_{1}\right) \approx R_{3,1}\left(\omega_{1}\right) \cup_{\partial} R_{2,3}\left(\omega_{1}^{\prime}\right)
$$

is irreducible with $\widehat{F} \subset X_{K_{1}}\left(\omega_{1}\right)$ an incompressible separating torus, so (1) and (2) hold. In particular, $K_{1}$ is not a torus knot, so by [17] $K_{1}$ is either a satellite or hyperbolic knot.

For part (3) observe that, by Lemma 3.7(2), $\left(R_{2, a}, K\right),\left(R_{a, 3}, K\right),\left(R_{3, b}, K\right)$ and $\left(R_{b, 1}, K\right)$ are all nontrivial pairs. As the boundary slope $\omega_{1} \subset \partial X_{K_{1}}$ of $F$ is nonintegral, if $K_{1}$ is a satellite knot then by Lemma 5.2 there is a circle $\gamma \subset F$, not parallel to $\partial F$, which is a power circle in $F^{B}$ and $F^{W}$. Via the homeomorphism $F^{B} \approx R_{2,3}$, $\gamma$ corresponds to a circle in $\partial R_{2,3} \backslash \omega_{1}^{\prime}$ which is a power circle in $R_{2,3}$, so by

Lemma 6.10(2)(a) there is a circle $\gamma^{\prime} \subset T_{3}$ which is a power circle in $F^{B} \approx R_{2,3}$. A similar argument applied to $F^{W}=R_{3,1}$ shows that there is a circle $\gamma^{\prime \prime} \subset T_{3}$ which is a power circle in $F^{W}$. However, by Lemma 3.6, the circles $\gamma$ and $\gamma^{\prime}$ are isotopic in $\partial F^{B}\left(\omega_{1}^{\prime}\right)$, while $\gamma$ and $\gamma^{\prime \prime}$ are isotopic in $\partial F^{W}\left(\omega_{1}\right)$. But then $\gamma^{\prime}$ and $\gamma^{\prime \prime}$ must be isotopic in $T_{3}$, which by Lemma 5.1 cannot be the case since $K$ is a hyperbolic knot.

Therefore $K_{1}$ must be a hyperbolic knot, so by [9, Theorem 1.1] $K_{1}$ is a hyperbolic Eudave-Muñoz knot and the slope $a_{1} / p_{1}$ of $\partial F_{1}$ is half-integral, whence $p_{1}=2$. By [5, Theorem 2.1] and the invariance argument used in [5, Proposition 2.2], the closed torus $\hat{F} \subset K_{1}\left(\omega_{1}\right)$ is unique up to isotopy and separates $X_{K_{1}}\left(\omega_{1}\right)$ into two Seifert fiber spaces $F^{B}\left(\omega_{1}\right)$ and $F^{W}\left(\omega_{1}\right)$ of type $\mathbb{D}^{2}(*, *)$ (the uniqueness of the torus $\widehat{F} \subset K_{1}\left(\omega_{1}\right)$ also follows from the fact [9] that the regular fibers of the two Seifert fiber spaces $\mathbb{D}^{2}(*, *)$ in $K_{1}\left(\omega_{1}\right)$ intersect transversely in one point). Therefore, by Lemma $6.10(2)(\mathrm{b})$, there are circles $\gamma^{\prime}, \gamma^{\prime \prime} \subset T_{3}$ which are power circles in $R_{a, 3}$ and $R_{3, b}$, respectively, where $\Delta\left(\gamma^{\prime}, \gamma^{\prime \prime}\right) \neq 0$ by Lemma 5.1. And whichever pair ( $R_{a, 3}, K$ ) or ( $R_{3, b}, K$ ) is minimal must, by Lemma 6.2 , be simple.

Moreover, as $\omega_{1}$ is a Seifert circle in $F^{W}=R_{3,1}$, by Lemma 6.10(2)(b) the circle $\omega_{1}$ is primitive in $R_{b, 1}$ and so $R_{b, 2}$ is a handlebody by Lemma 6.3. Since $F^{B}\left(\omega_{1}\right)$ corresponds to $R_{2,3}\left(\omega_{1}^{\prime}\right)$, in a similar way it follows that $\omega_{1}^{\prime}$ is primitive in $R_{2, a}$ and $R_{1, a}$ is a handlebody. Therefore (3)(a), 3(b) and 3(c) hold.

For (3)(d), if each of the pairs $\left(R_{b, 1}, K\right)$ and $\left(R_{2, a}, K\right)$ is simple of index 2 then each circle $\partial_{2} A_{2} \subset \partial N\left(K_{2}\right)$ and $\partial_{2} A_{b}^{\prime} \subset \partial N\left(K_{b}\right)$ (see Figure 13) bounds a Möbius band $B_{2} \subset N\left(K_{2}\right)$ and $B_{b} \subset N\left(K_{b}\right)$. By (3)(c) and Lemma 3.5(1) the circles $\omega_{1}=\partial_{1} A_{b}^{\prime}$ and $\omega_{1}^{\prime}=\partial_{1} A_{2}$ are primitive in $R_{1,2}$ and so by Lemma 6.4(3) there is a slope $s_{1}$ in $\partial N\left(K_{1}\right)$ which along with $\omega_{b}^{\prime} \sqcup \omega_{2}$ cobounds a pair of pants $P_{1}$ in $R_{1,2} \backslash \operatorname{int} N\left(K_{1}\right)$. Thus the slope $s_{1} \subset \partial N\left(K_{1}\right)$ bounds the once-punctured Klein bottle $B_{2} \cup P_{1} \cup B_{b}$ in the exterior $\mathbb{S}^{3} \backslash$ int $N\left(K_{1}\right)$ of the hyperbolic knot $K_{1}$ and so by [8, Theorem 1.3] the slope $s_{1}$ is integral; therefore the circles $\omega_{b}^{\prime}$ and $\omega_{2}$ are basic in $R_{1,2}$ by Lemma 6.4(4) and hence $R_{b, a}$ is a handlebody by Lemma 3.5(2).

### 7.2 Heegaard splittings of $\mathbb{S}^{3}$

For the rest of Section 7 we consider the case $N=6$ exclusively. In this section we prove that some pair of complementary regions $R_{i, i+3}$ and $R_{i+3, i}$ form a Heegaard splitting of $\mathbb{S}^{3}$. For convenience we summarize below a number of properties of the regions $R_{i, j}$.

Lemma 7.2 (1) Each region $R_{i, i+1}$ is a handlebody and each pair $\left(R_{i, i+1}, K\right)$ is minimal and nontrivial.
(2) For some $i \in\{1,2\}$ each pair $\left(R_{i, i+1}, K\right),\left(R_{i+2, i+3}, K\right)$ and $\left(R_{i+4, i+5}, K\right)$ is simple.
(3) Each region $R_{i, i+2}$ is a handlebody.
(4) No pair $\left(R_{i, i+1}, K\right)$ is a double pair, and if a region $R_{i, i+3}$ is a handlebody then $\left(R_{i, i+3}, K\right)$ is neither a simple nor a double pair and $\left(R_{i+1, i+2}, K\right)$ is a basic nonprimitive pair.
(5) The region $R_{i, i+3}$ is a handlebody if and only if the pair $\left(R_{i, i+1}, K\right)$ is simple and the power circle $\omega_{i}^{\prime} \subset T_{i+1}$ of $R_{i, i+1}$ is primitive in $R_{i+1, i+3}$, and if $R_{i, i+3}$ is a handlebody then $\left(R_{i+2, i+3}, K\right)$ is also a simple pair. Thus, if all regions $R_{i, i+3}$ are handlebodies then all pairs $\left(R_{i, i+1}, K\right)$ are basic and simple, and if ( $R_{i, i+1}, K$ ) is not a simple pair then the regions $R_{i, i+3}$ and $R_{i-2, i}$ are not handlebodies.

Proof Part (1) follows directly from Lemma 4.3 since the degree of each vertex of $G_{Q}$ is 6 . Also, by Lemmas 2.3(1) and 4.2 there is a vertex $v$ in $\bar{G}_{Q}$ of degree 3 around which there are 3 incident bigon disk faces of $G_{Q}$ located in alternating regions; thus (2) holds. We also have that for each $i$ the region $R_{i, i+2}$ contains no bigon disk faces of $G_{Q}^{i, i+2}$, so the graph $G_{Q}^{i, i+2, i+4}$ is reduced with each vertex of degree 3 and so by Lemma 4.1(3) the region $R_{i, i+2} \subset X_{K}$ is a handlebody; therefore (3) holds.

If the region $R_{i, i+3}$ is a handlebody then by Corollary 3.10 the pairs ( $R_{i, i+1}, K$ ) and $\left(R_{i+2, i+3}, K\right)$ are simple, and by Lemma 6.8(1)(b) the power circles $\omega_{i}^{\prime} \subset T_{i+1}$ and $\omega_{i+2} \subset T_{i+2}$ are basic in $R_{i+1, i+2}$. Therefore, in $R_{i+1, i+2}$, the circles $\omega_{i}^{\prime}$ and $\omega_{i+2}$ are primitive but not homotopic to each other, hence not coannular, which by Lemma 6.9(2) implies that the pair $\left(R_{i+1, i+2}, K\right)$ is not primitive. The remaining parts of (4) and (5) follow from (1) and Lemmas 3.7(3) and 6.8.

Lemma 7.3 At most one pair $\left(R_{i, i+1}, J\right)$ may not be simple.
Proof Suppose, for definiteness, that the pair ( $R_{1,2}, K$ ) is not simple. Then the region $R_{1,4}$ is not a handlebody by Lemma 7.2(5), so $R_{4,1}$ is a handlebody by Lemma 4.1(1). By Lemma 7.2(4), neither ( $R_{1,2}, K$ ) nor ( $R_{4,1}, K$ ) is a simple or double pair; as the pair $\left(R_{2,4}, K\right)$ is not minimal, by Lemma 3.9 it is not simple. Therefore by Lemma 4.2 the graph $G_{Q}^{1,2,4}$ has no bigon disk faces, and by Lemma 6.1 it has no 4 -sided disk
faces in $R_{1,2}$ or $R_{4,1}$. It follows that $G_{Q}^{1,2,4}$ is a reduced planar graph with each vertex of degree 3 , which by Lemma 2.3 must have 4 -sided disk faces, all of which must lie in the region $R_{2,4}$. Therefore ( $R_{2,4}, K$ ) is a double pair by Lemma 6.1 and so the pair $\left(R_{3,4}, K\right)$ is simple by Lemma 6.8(2).
A similar argument applied to the graph $G_{Q}^{1,2,5}$ shows that the pair $\left(R_{5,6}, K\right)$ is also simple. Since by Lemma $7.2(2)$ the pairs $\left(R_{2,3}, K\right),\left(R_{4,5}, K\right)$ and $\left(R_{6,1}, K\right)$ must be simple, the lemma follows.

Lemma 7.4 If the region $R_{1,4}$ is not a handlebody then
(1) all the pairs ( $R_{i, i+1}, K$ ) are simple,
(2) the core knots $K_{1} \subset R_{1,2}$ and $K_{3} \subset R_{3,4}$ are hyperbolic Eudave-Muñoz knots of indices $p_{1}=2=p_{3}$,
(3) all regions $R_{i, i+3} \neq R_{1,4}$ are handlebodies.

Proof Recall that if the region $R_{i, i+3}$ is a handlebody then by Lemma 7.2(5) the pairs $\left(R_{i, i+1}, K\right)$ and $\left(R_{i+2, i+3}, K\right)$ are simple.

Since $R_{1,4}$ is not a handlebody, by Lemma 4.1(1) the region $R_{4,1}$ is a handlebody, hence the pairs $\left(R_{4,5}, K\right)$ and ( $R_{6,1}, K$ ) are simple. By Lemma 7.3 we may assume that one of the pairs ( $R_{1,2}, K$ ) or $\left(R_{3,4}, K\right)$, say $\left(R_{1,2}, K\right)$, is simple. Thus at most one of the remaining pairs $\left(R_{2,3}, K\right),\left(R_{3,4}, K\right)$ or $\left(R_{5,6}, K\right)$ may not be simple.

Now, by Lemma 7.2(3) the region $R_{2,4}$ is a handlebody, while by Lemma 3.9 $R_{4,2}$ is not a handlebody. Therefore, by Lemma 7.1(3) applied to the simple pair ( $R_{1,2}, K$ ) and the collection of tori $T_{1}, T_{2}$ and $T_{4}$ with $T_{a}=T_{3}$ and $T_{b}=T_{5}$, the knot $K_{1}$ is a hyperbolic Eudave-Muñoz knot of index $p_{1}=2$, the minimal pair ( $R_{3,4}, K$ ) is simple, so the core knot $K_{3}$ is defined, and $R_{5,2}$ is a handlebody and so the pair ( $R_{5,6}, K$ ) is simple. By symmetry, $K_{3}$ is also a hyperbolic Eudave-Muñoz knot of index $p_{3}=2$ and $R_{3,6}$ is a handlebody.
If $R_{2,5}$ is not a handlebody then applying the argument above to the simple pair ( $R_{4,5}, K$ ) shows that ( $R_{2,3}, K$ ) is a simple pair and the core knots $K_{2} \subset R_{2,3}$ and $K_{4} \subset R_{4,5}$ are hyperbolic Eudave-Muñoz knots of indices $p_{2}=2=p_{4}$, contradicting Lemma 7.1(3)(d) applied to the simple pair ( $R_{3,4}, K$ ) and the tori $T_{1}, T_{3}$ and $T_{4}$ with $T_{a}=T_{2}$ and $T_{b}=T_{5}$. Therefore $R_{2,5}$ is a handlebody, so $\left(R_{2,3}, K\right)$ is a simple pair, and in a similar way $R_{6,3}$ is also a handlebody.

We now combine the results above to obtain a genus two Heegaard splitting of $\mathbb{S}^{3}$.

Proposition 7.5 All the pairs $\left(R_{i, i+1}, K\right)$ are simple and, without loss of generality, we may assume that all the regions $R_{1,4}, R_{4,1}, R_{5,2}$ and $R_{3,6}$ are handlebodies. In particular, $R_{1,4} \cup_{\partial} R_{4,1}$ is a genus two Heegaard splitting of $\mathbb{S}^{3}$ and $\omega_{1} \subset T_{1}$ and $\omega_{3}^{\prime} \subset T_{4}$ are Seifert circles in $R_{4,1}$.

Proof That all pairs $\left(R_{i, i+1}, K\right)$ are simple follows from Lemma 7.2(5) if all the regions $R_{i, i+3}$ are handlebodies, and otherwise from Lemma 7.4, which also implies that at most one region $R_{i, i+3}$ is not a handlebody, so we may assume that $R_{1,4}, R_{4,1}$, $R_{5,2}$ and $R_{3,6}$ are handlebodies.

Since $R_{3,6}$ is a handlebody, by Lemma 7.2(5) the circle $\omega_{3}^{\prime} \subset T_{4}$ is primitive in $R_{4,6}$ and hence a Seifert circle in $R_{4,1}$ by Lemma 6.8(1)(d), disjoint from the power circle $\omega_{6}^{\prime} \subset T_{1} \subset \partial R_{1,4}$. In a similar way, $\omega_{1} \subset T_{1}$ is a Seifert circle in $R_{4,1}$ since $R_{5,2}$ is a handlebody.

### 7.3 Heegaard diagrams

In this section we construct the Heegaard diagrams of the genus two Heegaard splittings $R_{1,4} \cup_{\partial} R_{4,1}$ of $\mathbb{S}^{3}$ provided in Proposition 7.5. To this end we first obtain specific homeomorphic representations of basic simple pairs and more general pairs with the help of the following result:

Lemma 7.6 Let $S$ be a closed genus two surface and $a_{1}, b_{1}, a_{2}, b_{2}, a_{0}, b_{0}, c_{0} \subset S$ nontrivial circles which intersect minimally as shown in Figure 14, top, where $c_{0}$ separates $S$ into two once-punctured tori $S_{1}$ and $S_{2}$ with $a_{i} \cup b_{i} \subset S_{i}$. Then
(1) any nontrivial separating circle $c_{a} \subset S$ which is disjoint from $a_{1} \sqcup a_{2}$ and intersects $a_{0}$ minimally in 2 points is obtained by Dehn twisting $c_{0}$ along $b_{0}$, that is, by connecting the endpoints of $2 n$ nontrivial arcs in $S_{1} \backslash a_{1}$ and $2 n$ nontrivial arcs in $S_{2} \backslash a_{2}$ in one of the two ways shown in Figure 14, center;
(2) any nontrivial separating circle $c_{b} \subset S$ which is disjoint from $b_{1} \sqcup b_{2}$ and intersects $b_{0}$ minimally in 2 points is obtained by Dehn twisting $c_{0}$ along $a_{0}$, that is, by connecting the endpoints of $2 n$ nontrivial arcs in $S_{1} \backslash b_{1}$ and $2 n$ nontrivial arcs in $S_{2} \backslash b_{2}$ in one of the two ways shown in Figure 14, bottom.

Proof Let $A_{0} \subset S$ be a thin annular neighborhood of $c_{0}$; we will refer to the components of $S \backslash$ int $A_{0}$ as $S_{1}$ and $S_{2}$, correspondingly, so that $\partial S_{1} \sqcup \partial S_{2}=\partial A_{0}$.


Figure 14: The separating circles $c_{a}, c_{b} \subset S$.

Suppose $c_{a} \subset S$ is a nontrivial separating circle disjoint from $a_{1} \sqcup a_{2}$. Then $c_{a}$ may be isotoped so as to intersect $c_{0}$ minimally, hence to intersect $A_{0} \subset S$ minimally into a collection of parallel spanning arcs. The arcs $c_{a} \cap S_{i}$, being disjoint from the


Figure 15: Generators of the arcs $c_{a} \cap A_{0}$ in the annulus $A_{0}$.
circle $a_{i} \subset S_{i}$, form a disjoint family of mutually parallel nontrivial arcs in $S_{i}$. Since $\left|a_{0} \cap a_{i}\right|=1$ it is possible to isotope $c_{a}$, if necessary, so that the $\operatorname{arcs} c_{a} \cap S_{i}$ are disjoint from the arc $a_{0} \cap S_{i}$, that is, so that the points $c_{a} \cap a_{0}$ lie in the annulus $A_{0}$. Also, as $c_{a}$ separates $S$, we must have $\left|c_{a} \cap S_{i}\right|=2 n$ for some integer $n \geq 1$. The situation so far is represented in Figure 14, center.

In the annulus $A_{0}$ the endpoints of the spanning $\operatorname{arcs} c_{a} \cap A_{0} \subset A_{0}$ are distributed around $\partial A_{0}=\partial S_{1} \sqcup \partial S_{2}$ and separated by the two arcs $a_{0} \cap A_{c}$ as shown in Figure 15. Now, the collection of $\operatorname{arcs} c_{a} \cap A_{0}$ is uniquely determined by one spanning arc connecting a point of $c_{a} \cap S_{1}$ with a point of $c_{a} \cap S_{2}$. It is not hard to see that the only collections $c_{a} \cap A_{0}$ which intersect $a \cap A_{c}$ minimally in two points are the ones generated from the arc connecting the points 1 and 2 or the arc connecting the points 3 and 4 indicated in Figure 15, each of which in fact produces a separating circle $c_{a}$ in $S$ as shown in Figure 14, center. Therefore part (1) holds, and (2) follows in a similar way.

We now construct a diagram for the Heegaard splitting $R_{1,4} \cup_{\partial} R_{4,1}$ as follows. Since $R_{1,4}=R_{1,2} \cup_{T_{2}} R_{2,3} \cup_{T_{3}} R_{3,4}$ is a handlebody, by Lemma 6.8(1)(b) the circles $\omega_{1}^{\prime} \subset T_{2}$ and $\omega_{3} \subset T_{3}$ are basic circles in $R_{2,3}$; therefore, as the pair $\left(R_{2,3}, K\right)$ is simple, by Lemma 6.5(3), there are unique disks $D, D^{\prime}, D^{\prime \prime} \subset R_{2,3}$ such that the 7-tuple $\left(R_{2,3}, D, D^{\prime}, D^{\prime \prime}, \omega_{1}^{\prime}, \omega_{3}, K\right)$ is homeomorphic to the 7-tuple ( $\left.H, D, D^{\prime}, D^{\prime \prime}, \alpha_{1}, \alpha_{2}, J\right)$ in Figure 9 , bottom (where $p_{2}=p=2$ is used for simplicity).

Since $\left|\omega_{1}^{\prime} \cap D^{\prime \prime}\right|=1$, by Lemma 3.4 $E_{2,3}=\operatorname{fr} N\left(\omega_{1}^{\prime} \cup D^{\prime \prime}\right) \subset R_{2,3}$ is the unique disk that separates the primitive circles $\omega_{1}^{\prime}$ and $\omega_{3}$; moreover $E_{2,3}$ intersects $D$ minimally
in one arc and the separating circle $K \subset \partial R_{2,3}$ minimally in $4 p_{2}$ points (see Figure 9 , bottom, with $J=K$ ).

Therefore, by Lemma 7.6(2) with $a_{1}=\partial D^{\prime \prime}, a_{2}=\partial D^{\prime}, b_{0}=\partial D, b_{1}=\omega_{1}^{\prime}, b_{2}=\omega_{3}$, $c_{0}=\partial E_{2,3}$ and $c_{b}=K$, the 7-tuple $\left(R_{2,3}, D, D^{\prime}, D^{\prime \prime}, \omega_{1}^{\prime}, \omega_{3}, K\right)$ is homeomorphic to the 7 -tuple shown in Figure 16, top, where there are two choices for the circle $K$, while the 6 -tuple ( $\partial R_{2,3}, \partial D, \omega_{1}^{\prime}, \omega_{3}, \partial E_{2,3}, K$ ) is homeomorphic to the 6-tuple in Figure 16, center, by Lemma 7.6(1), where there are two choices for the circle $\partial E_{2,3}$.

Remarks 7.7 (1) If $(H, J)$ is any basic pair and $\alpha_{1} \subset T_{1}$ and $\alpha_{2} \subset T_{2}$ are basic circles in $H$ then, by the 2 -handle addition theorem and Lemma 3.4, $\alpha_{1}$ and $\alpha_{2}$ are separated in $H$ and so the compression disk of $\partial H \backslash \alpha_{i}$ intersects $\alpha_{j}$ minimally in one point. It is not hard to see by the argument above that the pair $(H, J)$ must therefore be homeomorphic to the pair ( $R_{2,3}, K$ ) in Figure 16, top, obtained by any valid connecting pattern between the endpoints of the arcs $K \cap S_{1}$ and $K \cap S_{2}$, and that ( $H, J$ ) is simple if and only if it is constructed using the specific connecting schemes in Figure 16, top.
(2) By Corollary 3.10 and Lemmas 3.5 and 6.3, any maximal pair $(H, J)$ is homeomorphic to a manifold obtained by attaching solid tori $V_{1}$ and $V_{2}$ along annular neighborhoods of basic circles $\alpha_{1} \subset T_{1}^{\prime}$ and $\alpha_{2} \subset T_{2}^{\prime}$, respectively, of a nontrivial basic pair $\left(H_{0}, J\right)$ with $\partial H_{0}=T_{1}^{\prime} \cup_{J} T_{2}^{\prime}$, in such a way that each circle $\alpha_{i}$ runs at least twice around $V_{i}$.

By Lemmas 3.5(2) and 6.3, attaching the companion solid tori $V_{1}^{\prime} \subset R_{1,2}$ and $V_{3} \subset R_{3,4}$ to $R_{2,3}$ along the circles $\omega_{1}^{\prime}$ and $\omega_{3}$, respectively, yields a handlebody homeomorphic to $R_{1,4}$ such that the 5-tuple ( $\partial R_{1,4}, \omega_{1}, \omega_{3}^{\prime}, \partial E_{2,3}, K$ ) is homeomorphic to the 5tuple $\left(\partial R_{2,3}, \omega_{1}^{\prime}, \omega_{3}, \partial E_{2,3}, K\right)$ in Figure 16, center.

Notice that $E_{2,3} \subset R_{2,3}$ becomes a waist disk in $R_{1,4}$ which cuts $R_{1,4}$ into two solid tori $V_{1}, V_{3} \subset R_{1,4}$, and such that $\partial E_{2,3}$ cuts $\partial R_{1,4}$ into two once-punctured tori $S_{1} \subset \partial V_{1}$ and $S_{4} \subset \partial V_{3}$, with $\omega_{1} \subset S_{1}$ and $\omega_{3}^{\prime} \subset S_{4}$, and meridian disks $D_{1} \subset V_{1}$ and $D_{3} \subset V_{3}$ with $\partial D_{1} \subset S_{1}$ and $\partial D_{3} \subset S_{4}$. Thus $D_{1}$ and $D_{3}$ are the compression disks in $R_{1,4}$ of $\partial R_{1,4} \backslash \omega_{3}^{\prime}$ and $\partial R_{1,4} \backslash \omega_{1}$, respectively, which are unique by Lemma 3.3(1)(b). Since in $\partial R_{1,4}$ the circles $\omega_{1}$ and $\omega_{3}^{\prime}$ are disjoint from $K \cup \partial E_{2,3}$ while $\omega_{4}$ and $\omega_{6}^{\prime}$ are disjoint from $K$ with $\left|\omega_{1} \cap \omega_{6}^{\prime}\right|=1=\left|\omega_{4} \cap \omega_{3}^{\prime}\right|$, it follows that the 7-tuple $\left(\partial R_{1,4}, \omega_{1}, \omega_{3}^{\prime}, \omega_{4}, \omega_{6}^{\prime}, \partial E_{2,3}, K\right)$ is homeomorphic to the one shown in Figure 16, bottom.


Figure 16: The circles $K$ and $\partial E_{2,3}^{(i)}$ in $\partial R_{2,3}$ and $\partial R_{1,4}$.
Let $\partial E_{2,3}^{(1)}$ and $\partial E_{2,3}^{(2)}$ be the versions of the circle $\partial E_{2,3}$ shown in Figure 16 , bottom, obtained by connecting the endpoints 1 and 2 or 3 and 4 in Figure 16, center, respectively. It is not hard to see that the automorphism of $\partial R_{1,4}$ obtained by reflecting the surface $\partial R_{1,4}$ across the plane that contains the circles $\omega_{6}^{\prime} \sqcup \omega_{4}$ maps $\partial E_{2,3}^{(i)}$ onto $\partial E_{2,3}^{(j)}$ for $\{i, j\}=\{1,2\}$.

Therefore in the sequel we will assume for definiteness that $\partial E_{2,3}=\partial E_{2,3}^{(1)}$, as shown in Figure 17, top (where $p_{2}=2$ ).

In order to obtain the first half of the Heegaard diagram for $R_{1,4} \cup R_{4,1}$, it remains to identify the circles $\partial D_{1} \subset S_{1}$ and $\partial D_{3} \subset S_{4}$ in the version of $\partial R_{1,4}=S_{1} \cup_{\partial} S_{4}$ shown in Figure 17, top, where $p_{2}=2$ is used for simplicity. We do this with the help of a specific homological frame for $S_{1}$ and $S_{4}$.

The oriented circles $a_{1}, b_{1}$ indicated in Figure 17, center, lie in $T_{1}$ and have the minimal intersections $\left|a_{1} \cap b_{1}\right|=\left|a_{1} \cap \omega_{1}\right|=\left|b_{1} \cap \omega_{6}^{\prime}\right|=1$ and $\left|b_{1} \cap \omega_{1}\right|=0$. Since $a_{1}$ and $b_{1}$ are disjoint from $\partial E_{2,3}^{(1)}$ and $\left|\omega_{1} \cap \partial D_{1}\right|=p_{1}$, homologically in $S_{1}$ we can write $\partial D_{1}=p_{1} a_{1}+q_{1} b_{1}$ for some integer $q_{1}$ with $\operatorname{gcd}\left(p_{1}, q_{1}\right)=1$.

This and future arrangements can be described as follows: An oriented circle with a box $k$ on top represents a collection of $|k|$ mutually disjoint, parallel circles, oriented in the direction given by the arrows on the circle if $k>0$, and in the opposite direction if $k<0$; thus $\partial D_{1}$ is the circle obtained as the homological sum of the circle collections with boxes $p_{1}$ and $q_{1}$ in Figure 17, center. The circle $\partial D_{3}$ is constructed in a similar way as the homological sum of the collection of circles with boxes $p_{3}$ and $q_{3}$ with $\operatorname{gcd}\left(p_{3}, q_{3}\right)=1$, shown in Figure 17, bottom.

The second half of the Heegaard diagram for $R_{1,4} \cup R_{4,1}$ is obtained similarly: A waist disk $E_{5,6} \subset R_{4,1}$ is constructed that separates $R_{4,1}$ into solid tori that contain the power circles $\omega_{4}$ and $\omega_{6}^{\prime}$ and have meridian disks $D_{4}$ and $D_{6}$ with minimal intersections $\left|D_{4} \cap \omega_{4}\right|=p_{4},\left|D_{6} \cap \omega_{6}^{\prime}\right|=p_{6}$ and $\left|D_{4} \cap \omega_{6}^{\prime}\right|=0=\left|D_{6} \cap \omega_{4}\right|$. We then use the method of Lemma 7.6(2) (see Figure 14, bottom) to represent the circle $\partial E_{5,6} \subset \partial R_{4,1}$ on top of the diagrams for $\partial R_{1,4}=\partial R_{4,1}$ of Figure 17.
We will call the diagram for $\partial R_{4,1}$ obtained by constructing the circle $\partial E_{5,6}=\partial E_{5,6}^{(1)}$ using the endpoints labeled 1 and 2 in Figure 14, bottom, a type 1 diagram, and a type 2 diagram if $\partial E_{5,6}=\partial E_{5,6}^{(2)}$ is constructed using the endpoints labeled 3 and 4 in Figure 14, bottom.

The Heegaard diagrams are now uniquely determined up to some number $n \in \mathbb{Z}$ of Dehn twists along the annulus $A_{K} \subset \partial R_{1,4}$, which we consider in more detail in the sequel. In the meantime, for $n=0$, Figure 18 , top, shows the circle $\partial E_{5,6}^{(1)}$ of a type 1 diagram for $R_{4,1}$ with $p_{5}=2$, and the circles $\partial D_{4}$ and $\partial D_{6}$ appear in Figure 18, center and bottom, as obtained from the construction above.

We summarize our findings in this section in the following result:


Figure 17: The circles (top) $\partial E_{2,3}=\partial E_{2,3}^{(1)}\left(p_{2}=2\right)$ and (center and bottom) $\partial D_{1}$ and $\partial D_{3}$ in $\partial R_{1,4}$.

Lemma 7.8 If $K \subset \mathbb{S}^{3}$ is a genus one hyperbolic knot whose exterior $X_{K}$ contains 6 mutually disjoint and nonparallel once-punctured tori, then $\mathbb{S}^{3}$ admits a genus two Heegaard splitting $R_{1,4} \cup_{\partial} R_{4,1}$ of type 1 or 2 with $K \subset \partial R_{1,4}=\partial R_{4,1}$ a separating circle.


Figure 18: The circles $\partial E_{5,6}^{(1)}\left(p_{5}=2\right)$ and $\partial D_{4}$ and $\partial D_{6}$ in $\partial R_{4,1}=\partial R_{1,4}$ for $n=0$.

### 7.4 The type 1 Heegaard diagrams for $\boldsymbol{R}_{\mathbf{1 , 4}} \cup_{\partial} \boldsymbol{R}_{\mathbf{4}, \mathbf{1}}$

The identification of $\partial R_{1,4}$ and $\partial R_{4,1}$ is completely determined by the images of the circle pairs $\omega_{1} \sqcup \omega_{6}^{\prime}$ and $\omega_{3}^{\prime} \sqcup \omega_{4}$ up to some number $n \in \mathbb{Z}$ of Dehn twists along the annular neighborhood $A_{K} \subset \partial R_{1,4}$ of $K$ shown in Figure 19, top; the Dehn twists are applied only to the arcs $A_{K} \cap\left(\partial D_{4} \sqcup \partial D_{6}\right)$, where $n>0$ is taken as the direction indicated by the arrows along the arcs $\gamma$ and $\delta$ in $A_{K}$ shown in Figure 19, top.

Figure 19, top, shows the embeddings of the circles $\partial D_{1}$ and $\partial D_{3}$ in $\partial R_{1,4}$ obtained with $p_{2}=2$, and the embeddings of $\partial D_{4}$ and $\partial D_{6}$ are shown in Figure 19, center and bottom, respectively, with $n=0$ and $p_{5}=3$.
7.4.1 Fundamental group presentations, I In order to analyze the fundamental group of the manifold $R_{1,4} \cup_{\partial} R_{4,1}$ and properties of the words represented by circles in the Heegaard surface $\partial R_{1,4}$, we consider here the situation in more general terms.

Let $H$ be a genus two handlebody; its fundamental group is isomorphic to the rank 2 free group $\mathbb{F}_{2}$. For $i=1,2$, let $\gamma_{i} \subset \partial H$ be disjoint separated power $p_{i}$ circles with $p_{1} \geq 1$ and $p_{2} \geq 2$, where if $p_{1}=1$ then $\gamma_{1}$ is taken to be a primitive circle. Thus there is a waist disk $D$ that cuts $H$ into two solid tori $V_{1}$ and $V_{2}$ with $\gamma_{i} \subset \partial V_{i} \backslash D$, and by Lemma 3.3(1)(b) the meridian disks $D_{1} \subset V_{1} \backslash D$ and $D_{2} \subset V_{2} \backslash D$ are the unique compression disks of $\partial H \backslash \gamma_{2}$ and $\partial H \backslash \gamma_{1}$, respectively. Let $x_{i}$ be a core circle of $V_{i}$ dual to $D_{i}$, so that $\pi_{1}(H, q)=\left\langle x_{1}, x_{2} \mid-\right\rangle$ for $q \in D$.

By Lemma 3.3(2) the companion annulus $A_{2} \subset H$ of $\gamma_{2}$ is unique and can be isotoped away from $D$ and into $V_{2}$, hence $D$ lies in the handlebody $H_{A_{2}} \subset H \mid A_{2}$ as a waist disk; since by Lemma 3.5(1) the core circle $t_{2} \subset \partial H_{A_{2}}$ of $A_{2}$ is primitive in $H_{A_{2}}$, we have that $\pi_{1}\left(H_{A_{2}}, q\right)=\left\langle x_{1}, t_{2} \mid-\right\rangle$ for $q \in D$.

The next result now follows from van Kampen's theorem.
Lemma 7.9 The map $\pi_{1}\left(H_{A_{2}}, q\right) \rightarrow \pi_{1}(H, q)(q \in D)$ induced by the inclusion $H_{A_{2}} \subset H$ is an injection given by $x_{1} \mapsto x_{1}$ and $t_{2} \mapsto x_{2}^{p_{2}}$. In particular, if a circle $\gamma \subset \partial H \backslash \gamma_{2}$ is represented by the words $w\left(x_{1}, t_{2}\right) \in \pi_{1}\left(H_{A_{2}}, q\right)=\left\langle x_{1}, t_{2} \mid-\right\rangle$ and $W\left(x_{1}, x_{2}\right) \in \pi_{1}(H, q)=\left\langle x_{1}, x_{2} \mid-\right\rangle$ for $q \in \gamma \cap D$, then $W\left(x_{1}, x_{2}\right)=w\left(x_{1}, x_{2}^{p_{2}}\right)$.

Determining which words in the free group $\mathbb{F}_{2}$ of rank two are primitive will be useful in the sequel. The next result from [3] gives a simple condition satisfied by such words.


Figure 19: The type 1 Heegaard circles for $R_{1,4} \cup R_{4,1}: \partial D_{1} \sqcup \partial D_{3}$ (top), $\partial D_{4}$ (center) and $\partial D_{6}$ (bottom) (with $n=0, p_{2}=2, p_{5}=3$ ).

Lemma 7.10 [3] In any cyclically reduced primitive word in $\mathbb{F}_{2}=\left\langle x_{1}, x_{2} \mid-\right\rangle$ different from $x_{1}^{ \pm 1}$ or $x_{2}^{ \pm 1}$, for some $\{i, j\}=\{1,2\}$ the exponents in $x_{i}$ are all equal to 1 or all equal to -1 , while the exponents in $x_{j}$ are all nonzero of the form $m$ or $m+1$ for some $m \in \mathbb{Z}$.
7.4.2 Fundamental group presentations, II Recall that $D_{1}, D_{3} \subset R_{1,4}$ are the compression disks of $\partial R_{1,4} \backslash \omega_{3}^{\prime}$ and $\partial R_{1,4} \backslash \omega_{1}$, respectively. Therefore we have that $\pi_{1}\left(R_{1,4}\right)=\left\langle x_{1}, x_{3} \mid-\right\rangle$ where the free generators $x_{1}$ and $x_{3}$ represent the circles in $R_{1,4}$ dual to the disks $D_{1}$ and $D_{3}$ constructed in Section 7.4.1, respectively; similarly, $\pi_{1}\left(R_{4,1}\right)=\left\langle x_{4}, x_{6} \mid-\right\rangle$, where $x_{4}$ and $x_{6}$ represent the circles in $R_{4,1}$ dual to the disks $D_{4}$ and $D_{6}$, respectively.

Set $\varepsilon_{i}=q_{i}-p_{i}$ for $i=1,3,4,6$.

Lemma 7.11 $\operatorname{gcd}\left(p_{i}, \varepsilon_{i}\right)=1$ for $i=1,3,4,6$, and $\varepsilon_{i}=q_{i}-p_{i} \in\{ \pm 1\}$ for $i=4,6$.
Proof That $\operatorname{gcd}\left(p_{i}, \varepsilon_{i}\right)=1$ follows from the fact that $\operatorname{gcd}\left(p_{i}, q_{i}\right)=1$.
From Figure 18 we have that, in $\pi_{1}\left(R_{4,1}\right)=\left\langle x_{4}, x_{6} \mid-\right\rangle$,

$$
\omega_{1}=\left(x_{4}^{p_{4}} x_{6}^{p_{6}}\right)^{p_{5}-1} x_{4}^{p_{4}} x_{6}^{q_{6}} \quad \text { and } \quad \omega_{3}^{\prime}=\left(x_{6}^{p_{6}} x_{4}^{p_{4}}\right)^{p_{5}-1} x_{6}^{p_{6}} x_{4}^{q_{4}}
$$

relative to the basepoints $\omega_{1} \cap \omega_{6}^{\prime}$ and $\omega_{3}^{\prime} \cap \omega_{4}$. By Proposition 7.5, $\omega_{3}^{\prime}$ is a Seifert circle in $R_{4,1}$ disjoint from the power circle $\omega_{6}^{\prime} \subset T_{1} \subset R_{4,1}$. Therefore, by Lemmas 6.8(1)(d) and 7.9 the word $\left(x_{6} x_{4}^{p_{4}}\right)^{p_{5}-1} x_{6} x_{4}^{q_{4}}$ obtained by replacing $x_{6}^{p_{6}}$ with $x_{6}$ in the word that represents $\omega_{3}^{\prime}$ must be primitive in the free group $\left\langle x_{4}, x_{6} \mid-\right\rangle$. Since $p_{4} \geq 2$, by Lemma 7.10 we must have $q_{4}=p_{4} \pm 1$, and hence that $\varepsilon_{4} \in\{ \pm 1\}$. That $\varepsilon_{6} \in\{ \pm 1\}$ follows in a similar way by considering the word for $\omega_{1}$.

For convenience, in the sequel we will denote the generators $x_{1}$ and $x_{3}$ of the free group $\pi_{1}\left(R_{1,4}\right)=\left\langle x_{1}, x_{3} \mid-\right\rangle$ and their inverses by $x$ and $y$, and $X$ and $Y$, respectively.

Let $\mathbb{F}_{2}=\langle x, y \mid-\rangle$ denote the rank two free group generated by $x$ and $y$, and $\mathbb{M}_{2}$ the monoid generated by $x, X, y$ and $Y$. Denote the cyclic reduction of any word $w \in \mathbb{F}_{2}$ by $\llbracket w \rrbracket$. For any two words $w_{1}$ and $w_{2}$ in the monoid $\mathbb{M}_{2}$ we denote their equality in $\mathbb{M}_{2}$ by $w_{1} \cong w_{2}$ and in the free group $\mathbb{F}_{2}$ by $w_{1}=w_{2}$. Thus $w_{1} \cong w_{2}$ implies that $w_{1}=w_{2}$, and $x^{2} y \cong x x y \cong \llbracket X x^{3} y \rrbracket$ but $x^{2} y \nsubseteq X x^{3} y \nsubseteq x^{3} X y$.

Cyclic permutations of a word $w$ in $\mathbb{F}_{2}$ are performed by treating $w$ as an element in $\mathbb{M}_{2}$, that is, without performing any cancellations on $w$.

For any two words $w_{1}$ and $w_{2}$ in $\mathbb{F}_{2}$, we say that

- $w_{1}$ is equivalent to $w_{2}$ and write $w_{1} \equiv w_{2}$ if $w_{2}$ is some cyclic permutation of $w_{1}$ or $w_{1}^{-1}$;
- $w_{1}$ divides $w_{2}$ if $w_{2} \cong a \cdot w_{1} \cdot b$ for some (possibly empty) words $a$ and $b$;
- $w_{1} \| w_{2}$ if there is a word $u$ such that $\llbracket w_{1} \rrbracket \equiv u$ and $\llbracket w_{2} \rrbracket \equiv u \cdot v$, that is, if some word equivalent to $\llbracket w_{1} \rrbracket$ divides some word equivalent to $\llbracket w_{2} \rrbracket$.

With this notation the following result follows from Kaneto's theorem [15]:
Lemma 7.12 [15, Theorem 1] If $\left\langle x, y \mid r_{1}, r_{2}\right\rangle$ is a presentation of $\pi_{1}\left(\mathbb{S}^{3}\right)$ obtained from a genus two Heegaard splitting of $\mathbb{S}^{3}$ then, for some $\{i, j\}=\{1,2\}$, either $\llbracket r_{i} \rrbracket \equiv x$ and $\llbracket r_{j} \rrbracket \equiv y$, or $r_{i} \| r_{j}$.

Unlike the division relation, the relation $\|$ is not transitive: if $w_{1}=x^{2} y, w_{2}=x^{2} y^{2}$ and $w_{3}=x y^{2} x Y$ then $w_{1} \| w_{2}$ and $w_{2} \equiv x y^{2} x \| w_{3}$; however, none of the cyclic permutations $x^{2} y, x y x$ or $y x^{2}$ of $w_{1}$ divides any of the cyclic permutations $x y^{2} x Y$, $y^{2} x Y x, y x Y x y, x Y x y^{2}$ or $Y x y^{2} x$ of $w_{3}$, from which it follows that $w_{1} \nVdash w_{3}$. We have however the following restricted version of transitivity for $\|$ :

Lemma 7.13 Suppose that $w_{1}$ and $w_{2}$ are cyclically reduced words in $\mathbb{F}_{2}$ with $w_{1} \| w_{2}$. If each cyclic permutation of $w_{1}$ is divisible by one of the words $s, t \in \mathbb{F}_{2}$ then $s \| w_{2}$ or $t \| w_{2}$.

Proof Without loss of generality we may assume that $w_{2} \cong u \cdot v$ for some cyclic permutation $u$ of $w_{1}$, and that $s$ divides $u$; by definition it follows that $s \| w_{2}$.
7.4.3 Presentations for the group $\boldsymbol{\pi}_{\mathbf{1}}\left(\boldsymbol{R}_{\mathbf{1}, \mathbf{4}} \mathrm{U}_{\boldsymbol{\partial}} \boldsymbol{R}_{\mathbf{4}, \mathbf{1}}\right) \quad$ In order to apply Lemma 7.12 to the group presentation

$$
\pi_{1}\left(R_{1,4} \cup_{\partial} R_{4,1}\right)=\left\langle x, y \mid \partial D_{4}, \partial D_{6}\right\rangle
$$

we need to determine the words represented by the circles $\partial D_{4}, \partial D_{6} \subset \partial R_{4,1}=\partial R_{1,4}$ in the free group $\pi_{1}\left(R_{1,4}\right)=\langle x, y \mid-\rangle$. At this point we remind the reader that the bound $p_{i} \geq 2$ holds for each $1 \leq i \leq 6$.

We shall see below that some of the circles representing $\partial D_{4}$ or $\partial D_{6}$ contain disjoint parallel copies of the oriented arcs $\gamma$ and $\delta$ shown in Figure 19, top, obtained by Dehn-twisting once a corresponding spanning arc in the annulus $A_{K} \subset \partial R_{1,4}$ in the
indicated directions. Reading the oriented intersections of $\gamma$ and $\delta$ with the disks $D_{1}, D_{3} \subset R_{1,4}$ produces the words

$$
\gamma=\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}} \cdot\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}} \quad \text { and } \quad \delta=\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}} \cdot\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}}
$$

which will appear as factors in some of the words for $\partial D_{4}, \partial D_{6} \in \pi_{1}\left(R_{1,4}\right)=\langle x, y \mid-\rangle$. Let $\alpha$ and $\beta$ be oriented components of the collections with $p_{4}$ and $q_{4}$ circles shown in Figure 19, center, respectively, so that homologically we have $\partial D_{4}=p_{4} \alpha+q_{4} \beta$ and $\beta=-\omega_{4}$. It follows that $\partial D_{4}=w_{4}(\alpha, \beta)$ in $\pi_{1}\left(R_{1,4}\right)=\langle x, y \mid-\rangle$, where $w_{4}(\alpha, \beta)$ is a cyclically reduced primitive word in the free group $\langle\alpha, \beta \mid-\rangle$ (which is unique up to cyclic order) with abelianization $p_{4} \alpha+q_{4} \beta$. Since we have by Lemma 7.11 that $q_{4}=p_{4}+\varepsilon_{4}$ with $\varepsilon_{4}= \pm 1$, we can take $\partial D_{4}=\partial D_{4}^{+}=(\alpha \beta)^{p_{4}} \cdot \beta$ if $\varepsilon_{4}=+1$ and $\partial D_{4}=\partial D_{4}^{-}=\alpha \cdot(\alpha \beta)^{p_{4}-1}$ if $\varepsilon_{4}=-1$.
In a similar way, in $\pi_{1}\left(R_{1,4}\right)$, we have $\partial D_{6}=\partial D_{6}^{+}=(u v)^{p_{6}} \cdot v$ if $\varepsilon_{6}=+1$ and $\partial D_{6}=\partial D_{6}^{-}=u \cdot(u v)^{p_{6}-1}$ if $\varepsilon_{6}=-1$, where $u$ and $v$ are oriented components of the collections in Figure 19, bottom, with $p_{6}$ and $q_{6}$ circles, respectively, so that $v=\omega_{6}^{\prime}$. Taking $\alpha \cap \beta$ and $u \cap v$ as basepoints, the words corresponding to $\alpha$ and $\beta$, and $u$ and $v$, in $\pi_{1}\left(R_{1,4}\right)$ after $n \in \mathbb{Z}$ Dehn twists along the annulus $A_{K}$, with $n>0$ taken as the direction indicated by the arrows on the arcs $\gamma$ and $\delta$ in Figure 19, top, are given by the following expressions obtained with the convention that $\alpha$, say, reads $x$ whenever it intersects the oriented circle $\partial D_{1}$ from right to left, and $x^{-1}=X$ otherwise:

$$
\begin{aligned}
\alpha & =\left[\delta^{n} x^{q_{1}-p_{1}} \gamma^{n} y^{p_{3}-q_{3}}\right]^{p_{5}-1} \delta^{n} x^{q_{1}-p_{1}} \gamma^{n} x^{p_{1}}\left[y^{p_{3}} x^{p_{1}}\right]^{p_{2}-1} \\
& =\left[\delta^{n} x^{\varepsilon_{1}} \gamma^{n} Y^{\varepsilon_{3}}\right]^{p_{5}-1} \delta^{n} x^{\varepsilon_{1}} \gamma^{n} x^{p_{1}}\left[y^{p_{3}} x^{p_{1}}\right]^{p_{2}-1}, \\
\beta & =\omega_{4}^{-1}=\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}-1} X^{p_{1}} Y^{p_{3}+\varepsilon_{3}}=\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}} Y^{\varepsilon_{3}}, \\
\alpha \beta & =\left[\delta^{n} x^{\varepsilon_{1}} \gamma^{n} Y^{\varepsilon_{3}}\right]^{p_{5}} Y^{p_{3}}, \\
u & =\left[\gamma^{n} y^{p_{3}-q_{3}} \delta^{n} x^{q_{1}-p_{1}}\right]^{p_{5}-1} \gamma^{n} y^{p_{3}-q_{3}} \delta^{n} Y^{p_{3}}\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}-1} \\
& =\left[\gamma^{n} Y^{\varepsilon_{3}} \delta^{n} x^{\varepsilon_{1}}\right]^{p_{5}-1} \gamma^{n} Y^{\varepsilon_{3}} \delta^{n} Y^{p_{3}}\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}-1}, \\
v & =\omega_{1}=\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}-1} y^{p_{3}} x^{p_{1}+\varepsilon_{1}}=\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}} x^{\varepsilon_{1}}, \\
u v & =\left[\gamma^{n} Y^{\varepsilon_{3}} \delta^{n} x^{\varepsilon_{1}}\right]^{p_{5}} x^{p_{1}} .
\end{aligned}
$$

Therefore we obtain the following words for $\partial D_{4}$ and $\partial D_{6}$ :

$$
\begin{aligned}
\partial D_{4}^{+} & =(\alpha \beta)^{p_{4}} \beta=\left[\left[\delta^{n} x^{\varepsilon_{1}} \gamma^{n} Y^{\varepsilon_{3}}\right]^{p_{5}} Y^{p_{3}}\right]^{p_{4}}\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}} Y^{\varepsilon_{3}} \\
\partial D_{4}^{-} & =\alpha(\alpha \beta)^{p_{4}-1} \\
& =\left[\delta^{n} x^{\varepsilon_{1}} \gamma^{n} Y^{\varepsilon_{3}}\right]^{p_{5}-1} \delta^{n} x^{\varepsilon_{1}} \gamma^{n} x^{p_{1}}\left[y^{p_{3}} x^{p_{1}}\right]^{p_{2}-1}\left[\left[\delta^{n} x^{\varepsilon_{1}} \gamma^{n} Y^{\varepsilon_{3}}\right]^{p_{5}} Y^{p_{3}}\right]^{p_{4}-1}
\end{aligned}
$$

$$
\begin{aligned}
\partial D_{6}^{+} & =(u v)^{p_{6}} v=\left[\left[\gamma^{n} Y^{\varepsilon_{3}} \delta^{n} x^{\varepsilon_{1}}\right]^{p_{5}} x^{p_{1}}\right]^{p_{6}}\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}} x^{\varepsilon_{1}} \\
\partial D_{6}^{-} & =u(u v)^{p_{6}-1} \\
& =\left[\gamma^{n} Y^{\varepsilon_{3}} \delta^{n} x^{\varepsilon_{1}}\right]^{p_{5}-1} \gamma^{n} Y^{\varepsilon_{3}} \delta^{n} Y^{p_{3}}\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}-1}\left[\left[\gamma^{n} Y^{\varepsilon_{3}} \delta^{n} x^{\varepsilon_{1}}\right]^{p_{5}} x^{p_{1}}\right]^{p_{6}-1} .
\end{aligned}
$$

There are three cases to consider, depending on the value of $n \in \mathbb{Z}$.
7.4.4 The case $\boldsymbol{n}=\mathbf{0}$ We have the identities

$$
\begin{aligned}
& \partial D_{4}^{+}=[\underbrace{\left(x^{\varepsilon_{1}} Y^{\varepsilon_{3}}\right)^{p_{5}} Y^{p_{3}}}_{s}]^{p_{4}} \cdot\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}} Y^{\varepsilon_{3}} \\
& \partial D_{4}^{-}=\left(x^{\varepsilon_{1}} Y^{\varepsilon_{3}}\right)^{p_{5}-1} \underbrace{x^{p_{1}+\varepsilon_{1}}\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}-1} \cdot\left[\left(x^{\varepsilon_{1}}\right.\right.}_{s} \underbrace{\left.\left.Y^{\varepsilon_{3}}\right)^{p_{5}} Y^{p_{3}}\right]^{p_{4}-1}}_{t} \begin{array}{l}
\partial D_{6}^{+}=\left[\left(Y^{\varepsilon_{3}} x^{\varepsilon_{1}}\right)^{p_{5}} x^{p_{1}}\right]^{p_{6}} \cdot\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}} x^{\varepsilon_{1}} \\
\partial D_{6}^{-}=\left(Y^{\varepsilon_{3}} x^{\varepsilon_{1}}\right)^{p_{5}-1} Y^{p_{3}+\varepsilon_{3}} \cdot\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}-1} \cdot\left[\left(Y^{\varepsilon_{3}} x^{\varepsilon_{1}}\right)^{p_{5}} x^{p_{1}}\right]^{p_{6}-1}
\end{array} .
\end{aligned}
$$

It is then not hard to see that
(1) any cyclic permutation of $\llbracket \partial D_{4}^{+} \rrbracket$ is divisible by $s=\left(x^{\varepsilon_{1}} Y^{\varepsilon_{3}}\right)^{p_{5}} Y^{p_{3}}$ but $s \nVdash \partial D_{6}^{ \pm}$,
(2) any cyclic permutation of $\llbracket \partial D_{4}^{-} \rrbracket$ is divisible by

$$
s=x^{p_{1}+\varepsilon_{1}}\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}-1} x^{\varepsilon_{1}} \quad \text { or } \quad t=Y^{\varepsilon_{3}}\left(x^{\varepsilon_{1}} Y^{\varepsilon_{3}}\right)^{p_{5}-1} Y^{p_{3}}
$$

but $s, t \nVdash \partial D_{6}^{ \pm}$.
Observe now that the words $\partial D_{4}^{ \pm}$and $\partial D_{6}^{ \pm}$are related by the following symmetry:
(S) For each $* \in\{ \pm\}$ there is a word $w(x, y, X, Y ; a, b, c, d, e)$ in the free group $\langle x, y, X, Y \mid-\rangle$ depending on parameters $a, b, c, d, e \in \mathbb{Z}$ such that

$$
\begin{aligned}
\partial D_{4}^{*} & =w\left(x, y, X, Y ; \varepsilon_{1}, p_{1}, \varepsilon_{3}, p_{3}, p_{4}\right) \\
\partial D_{6}^{*} & =w\left(Y, X, y, x ; \varepsilon_{3}, p_{3}, \varepsilon_{1}, p_{1}, p_{6}\right)
\end{aligned}
$$

Similarly, in items (1) and (2) the words for $s$ and $t$ are each of the form

$$
W\left(x, y, X, Y ; \varepsilon_{1}, p_{1}, \varepsilon_{3}, p_{3}\right)
$$

that is, independent of $p_{4}$ and $p_{6}$. Therefore, replacing $s$ and $t$ in (1) and (2) above with the words $s^{\prime}$ and $t^{\prime}$ corresponding to the transformation

$$
W\left(x, y, X, Y ; \varepsilon_{1}, p_{1}, \varepsilon_{3}, p_{3}\right) \mapsto W\left(Y, X, y, x ; \varepsilon_{3}, p_{3}, \varepsilon_{1}, p_{1}\right)
$$

and using the symmetry ( $S$ ) above, statements (1) and (2) transform into the following equivalent statements:
$\left(1^{\prime}\right)$ any cyclic permutation of $\llbracket \partial D_{6}^{+} \rrbracket$ is divisible by $s^{\prime}=\left(Y^{\varepsilon_{3}} x^{\varepsilon_{1}}\right)^{p_{5}} x^{p_{1}}$ but $s^{\prime} \nVdash \partial D_{4}^{ \pm}$,
(2') any cyclic permutation of $\llbracket \partial D_{6}^{-} \rrbracket$ is divisible by either

$$
s^{\prime}=Y^{p_{3}+\varepsilon_{3}}\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}-1} Y^{\varepsilon_{3}} \quad \text { or } \quad t^{\prime}=x^{\varepsilon_{1}}\left(Y^{\varepsilon_{3}} x^{\varepsilon_{1}}\right)^{p_{5}-1} x^{p_{1}}
$$

but $s^{\prime}, t^{\prime} \nVdash \partial D_{4}^{ \pm}$.
We therefore have by Lemma 7.13 that $\llbracket \partial D_{i}^{ \pm} \rrbracket \nVdash \llbracket \partial D_{j}^{ \pm} \rrbracket$ for each $\{i, j\}=\{1,2\}$.
In all cases that follow for type 1 or 2 Heegaard diagrams we will explicitly establish the equivalent version of statements (1) and (2) above, and that the corresponding equivalent versions of $\left(1^{\prime}\right)$ and ( $2^{\prime}$ ) also hold will follow by the argument above.

Remark 7.14 The values $p_{i}=2$ for $1 \leq i \leq 5, p_{6}=4, \varepsilon_{1}=+1$ and $\varepsilon_{i}=-1$ for $i=3,4,6$ produce an integral homology 3 -sphere $R_{1,4} \cup_{\partial} R_{4,1}$ which by the argument above is not homeomorphic to $\mathbb{S}^{3}$ for $n=0$. Thus in general integral homology does not differentiate the manifolds $R_{1,4} \cup_{\partial} R_{4,1}$ from $\mathbb{S}^{3}$.
7.4.5 The case $\boldsymbol{n}>\mathbf{0}$ We have

$$
\begin{aligned}
& \partial D_{4}^{+}=([[\left(Y_{C}^{\left.Y^{p_{3}} X^{p_{1}}\right)^{p_{2}}}\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}}\right]^{n} x^{\varepsilon_{1}}[\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}} \underbrace{\left.\left.\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}}\right]^{n} Y^{\varepsilon_{3}}\right]^{p_{5}} Y^{p_{3}}}_{A})^{p_{4}} \\
& \cdot \underbrace{\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}} Y^{\varepsilon_{3}}}_{B}, \\
& \partial D_{4}^{-}=\left[\left[\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}}\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}}\right]^{n} x^{\varepsilon_{1}}\left[\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}}\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}}\right]^{n} Y^{\varepsilon_{3}}\right]^{p_{5}-1} \\
& \cdot\left[\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}}\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}}\right]^{n} x^{\varepsilon_{1}} \\
& \cdot[\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}} \underbrace{\left.\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}}\right]^{n} x^{p_{1}}\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}-1}}_{t} \\
& \cdot\left(\left[\left[\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}}\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}}\right]^{n} x^{\varepsilon_{1}}\right.\right. \\
& \left.\left.\cdot\left[\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}}\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}}\right]^{n} Y^{\varepsilon_{3}}\right]^{p_{5}} Y^{p_{3}}\right)^{p_{4}-1}, \\
& \partial D_{6}^{+}=\left(\left[\left[\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}}\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}}\right]^{n} Y^{\varepsilon_{3}}\left[\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}}\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}}\right]^{n} x^{\varepsilon_{1}}\right]^{p_{5}} x^{p_{1}}\right)^{p_{6}} \\
& \cdot\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}} x^{\varepsilon_{1}}, \\
& \partial D_{6}^{-}=\left[\left[\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}}\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}}\right]^{n} Y^{\varepsilon_{3}}\left[\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}}\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}}\right]^{n} x^{\varepsilon_{1}}\right]^{p_{5}-1} \\
& \cdot\left[\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}}\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}}\right]^{n} Y^{\varepsilon_{3}} \\
& \cdot\left[\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}}\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}}\right]^{n} Y^{p_{3}}\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}-1} \\
& \cdot\left(\left[\left[\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}}\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}}\right]^{n} Y^{\varepsilon_{3}}\right.\right. \\
& \left.\left.\cdot\left[\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}}\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}}\right]^{n} x^{\varepsilon_{1}}\right]^{p_{5}} x^{p_{1}}\right)^{p_{6}-1} .
\end{aligned}
$$

(1) Any cyclic permutation of $\llbracket \partial D_{4}^{+} \rrbracket$ is divisible by $s=Y^{3 p_{3}+\varepsilon_{3}}$ (located in $A C$ ) or

$$
t=A B C=\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}} Y^{p_{3}+\varepsilon_{3}}\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}} Y^{\varepsilon_{3}}\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}},
$$

but $s, t \nVdash \partial D_{6}^{ \pm}$.
(2) Any cyclic permutation of $\llbracket \partial D_{4}^{-} \rrbracket$ is divisible by either

$$
s=Y^{3 p_{3}+\varepsilon_{3}} \quad \text { or } \quad t=\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}} x^{p_{1}}\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}-1}
$$

but $s, t \nVdash \partial D_{6}^{ \pm}$.
7.4.6 The case $\boldsymbol{n}<\mathbf{0}$ We use the identities

$$
\begin{aligned}
\gamma^{n} & =\left(\gamma^{-1}\right)^{|n|}=\left[\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}}\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}}\right]^{|n|}, \\
\delta^{n} & =\left(\delta^{-1}\right)^{|n|}=\left[\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}}\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}}\right]^{|n|}
\end{aligned}
$$

to obtain the words

$$
\partial D_{4}^{+}=([\left[\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}}\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}}\right]^{|n|} x^{\varepsilon_{1}}\left[\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}}\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}}\right]^{|n|} \underbrace{\underbrace{\varepsilon_{3}}]^{p_{5}} Y^{p_{3}}}_{s})^{p_{4}}
$$

$$
\partial D_{4}^{-}=\left[\left[\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}}\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}}\right]^{|n|} x^{\varepsilon_{1}}\left[\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}}\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}}\right]^{|n|} Y^{\varepsilon_{3}}\right]^{p_{5}-1}
$$

$$
\cdot\left[\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}}\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}}\right]^{|n|} x^{\varepsilon_{1}}[\underbrace{\left.\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}}\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}}\right]^{|n|} \cdot x^{p_{1}}\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}-1}}_{A}
$$

$$
\cdot([[(\underbrace{X^{p_{1}} Y^{p_{3}}}_{B})^{p_{2}}\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}}]^{n \mid} x^{\varepsilon_{1}}\left[\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}}\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}}\right]^{n \mid} \underbrace{\left.V^{\varepsilon_{3}}\right]^{p_{5}} Y^{p_{3}}}_{s})^{p_{4}-1},
$$

$$
\partial D_{6}^{+}=\left(\left[\left[\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}}\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}}\right]^{|n|} Y^{\varepsilon_{3}}\left[\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}}\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}}\right]^{|n|} x^{\varepsilon_{1}}\right]^{p_{5}} x^{p_{1}}\right)^{p_{6}}
$$

$$
\cdot\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}} x^{\varepsilon_{1}}
$$

$$
\begin{aligned}
\partial D_{6}^{-}= & {\left.\left[\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}}\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}}\right]^{|n|} Y^{\varepsilon_{3}}\left[\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}}\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}}\right]^{|n|} x^{\varepsilon_{1}}\right]^{p_{5}-1} } \\
& \cdot\left[\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}}\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}}\right]^{|n|} Y^{\varepsilon_{3}}\left[\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}}\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}}\right]^{n \mid} Y^{p_{3}}\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}-1} \\
& \cdot\left(\left[\left[\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}}\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}}\right]^{|n|} Y^{\varepsilon_{3}}\left[\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}}\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}}\right]^{|n|} x^{\varepsilon_{1}}\right]^{p_{5}} x^{p_{1}}\right)^{p_{6}-1} .
\end{aligned}
$$

(1) Any cyclic permutation of $\llbracket \partial D_{4}^{+} \rrbracket$ is divisible by $s=Y^{p_{3}+\varepsilon_{3}}$ but $s \nVdash \partial D_{6}^{ \pm}$.
(2) Any cyclic permutation of $\llbracket \partial D_{4}^{-} \rrbracket$ is divisible by either

$$
s=Y^{p_{3}+\varepsilon_{3}} \quad \text { or } \quad t=A B=\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}} Y^{p_{3}}\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}}
$$

but $s, t \nVdash \partial D_{6}^{ \pm}$.

By Lemmas 7.13 and 7.12, we have therefore established the following result:

Lemma 7.15 If the Heegaard diagram of the manifold $R_{1,4} \cup_{\partial} R_{4,1}$ is of type 1 then $R_{1,4} \cup_{\partial} R_{4,1} \neq \mathbb{S}^{3}$.

### 7.5 The type 2 Heegaard diagrams for $\boldsymbol{R}_{1,4} \cup_{\partial} \boldsymbol{R}_{4,1}$

We follow the outline of the analysis of type 1 Heegaard diagrams given in Section 7.4.
The circles $\partial E_{5,6}^{(2)}, \partial D_{4}, \partial D_{6} \subset \partial R_{4,1}=\partial R_{1,4}$ are shown in Figure 20, and the circles $\partial D_{i} \subset \partial R_{1,4}$ for $i=1,3,4,6$ that form the Heegaard diagram of type 2 for $R_{1,4} \cup_{\partial} R_{4,1}$ are shown in Figure 21 (where $n=0, p_{2}=2$ and $p_{5}=3$ ).

The circles $\alpha, \beta, u, v \subset \partial R_{1,4}$ are defined and their words in $\pi_{1}\left(R_{1,4}\right)=\langle x, y \mid-\rangle$ computed relative to the basepoints $\alpha \cap \beta$ and $u \cap v$ as in Section 7.4, obtaining the identities

$$
\begin{aligned}
\alpha & =\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}}\left[\delta^{n} x^{\varepsilon_{1}} \gamma^{n} Y^{\varepsilon_{3}}\right]^{p_{5}} y^{p_{3}+\varepsilon_{3}} \\
\beta & =Y^{\varepsilon_{3}}\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}}, \\
\beta \alpha & =\left[Y^{\varepsilon_{3}} \delta^{n} x^{\varepsilon_{1}} \gamma^{n}\right]^{p_{5}} y^{p_{3}} \\
u & =\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}}\left[\gamma^{n} Y^{\varepsilon_{3}} \delta^{n} x^{\varepsilon_{1}}\right]^{p_{5}} X^{p_{1}+\varepsilon_{1}}, \\
v & =x^{q_{1}} y^{p_{3}}\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}-1}=x^{\varepsilon_{1}}\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}}, \\
v u & =\left[x^{\varepsilon_{1}} \gamma^{n} Y^{\varepsilon_{3}} \delta^{n}\right]^{p_{5}} X^{p_{1}}
\end{aligned}
$$

The conclusion of Lemma 7.11 applies in the present context, so we can take $\partial D_{4}=$ $\partial D_{4}^{+}=(\beta \alpha)^{p_{4}} \beta$ if $\varepsilon_{4}=+1$ and $\partial D_{4}=\partial D_{4}^{-}=\alpha(\beta \alpha)^{p_{4}-1}$ if $\varepsilon_{4}=-1$, and $\partial D_{6}=$ $\partial D_{6}^{+}=(v u)^{p_{6}} v$ if $\varepsilon_{6}=+1$ and $\partial D_{6}=\partial D_{6}^{-}=u(v u)^{p_{6}-1}$ if $\varepsilon_{6}=-1$. This yields the words

$$
\begin{aligned}
\partial D_{4}^{+} & =(\beta \alpha)^{p_{4}} \beta=\left[\left[Y^{\varepsilon_{3}} \delta^{n} x^{\varepsilon_{1}} \gamma^{n}\right]^{p_{5}} y^{p_{3}}\right]^{p_{4}} Y^{\varepsilon_{3}}\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}} \\
\partial D_{4}^{-} & =\alpha(\beta \alpha)^{p_{4}-1} \\
& =\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}}\left[\delta^{n} x^{\varepsilon_{1}} \gamma^{n} Y^{\varepsilon_{3}}\right]^{p_{5}} y^{p_{3}+\varepsilon_{3}}\left[\left[Y^{\varepsilon_{3}} \delta^{n} x^{\varepsilon_{1}} \gamma^{n}\right]^{p_{5}} y^{p_{3}}\right]^{p_{4}-1} \\
\partial D_{6}^{+} & =(v u)^{p_{6}} v=\left[\left[x^{\varepsilon_{1}} \gamma^{n} Y^{\varepsilon_{3}} \delta^{n}\right]^{p_{5}} X^{p_{1}}\right]^{p_{6}} x^{\varepsilon_{1}}\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}} \\
\partial D_{6}^{-} & =u(v u)^{p_{6}-1} \\
& =\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}}\left[\gamma^{n} Y^{\varepsilon_{3}} \delta^{n} x^{\varepsilon_{1}}\right]^{p_{5}} X^{p_{1}+\varepsilon_{1}}\left[\left[x^{\varepsilon_{1}} \gamma^{n} Y^{\varepsilon_{3}} \delta^{n}\right]^{p_{5}} X^{p_{1}}\right]^{p_{6}-1}
\end{aligned}
$$



Figure 20: The circles $\partial E_{5,6}^{(2)}\left(n=0, p_{5}=2\right)$ and $\partial D_{4}$ and $\partial D_{6}$ in $\partial R_{4,1}=\partial R_{1,4}$.


Figure 21: The type 2 Heegaard circles for $R_{1,4} \cup_{\partial} R_{4,1}\left(n=0, p_{2}=2\right.$, $p_{5}=3$ ).

### 7.5.1 The case $\boldsymbol{n}=\mathbf{0}$ We have

$$
\begin{aligned}
\partial D_{4}^{+} & =\left[\left(Y^{\varepsilon_{3}} x^{\varepsilon_{1}}\right)^{p_{5}} y^{p_{3}}\right]^{p_{4}} \cdot Y^{\varepsilon_{3}}\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}} \\
& =(\underbrace{Y^{\varepsilon_{3}} x^{\varepsilon_{1}}}_{B})^{p_{5}} \underbrace{y^{p_{3}}\left[\left(Y^{\varepsilon_{3}}\right.\right.}_{s} \underbrace{\left.\left.x^{\varepsilon_{1}}\right)^{p_{5}} y^{p_{3}}\right]^{p_{4}-1} \cdot Y^{\varepsilon_{3}}\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}}}, \\
\partial D_{4}^{-} & =\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}}(x^{\varepsilon_{1}} \underbrace{\left.Y^{\varepsilon_{3}}\right)^{p_{5}} y^{p_{3}+\varepsilon_{3}}\left[\left(Y^{\varepsilon_{3}}\right.\right.}_{s} x^{\varepsilon_{1}})^{p_{5}} y^{p_{3}}]^{p_{4}-1}, \\
\partial D_{6}^{+} & =\left[\left(x^{\varepsilon_{1}} Y^{\varepsilon_{3}}\right)^{p_{5}} X^{p_{1}}\right]^{p_{6}} x^{\varepsilon_{1}}\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}}, \\
\partial D_{6}^{-} & =\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}}\left(Y^{\varepsilon_{3}} x^{\varepsilon_{1}}\right)^{p_{5}} X^{p_{1}+\varepsilon_{1}}\left[\left(x^{\varepsilon_{1}} Y^{\varepsilon_{3}}\right)^{p_{5}} X^{p_{1}}\right]^{p_{6}-1}
\end{aligned}
$$

(1) Any cyclic permutation of $\llbracket \partial D_{4}^{+} \rrbracket$ is divisible by

$$
s=y^{p_{3}-\varepsilon_{3}} \quad \text { or } \quad t=A B=x^{\varepsilon_{1}} Y^{\varepsilon_{3}} X^{p_{1}}\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}-1} Y^{\varepsilon_{3}} x^{\varepsilon_{1}}
$$

but $s, t \nVdash \partial D_{6}^{ \pm}$.
(2) Any cyclic permutation of $\llbracket \partial D_{4}^{-} \rrbracket$ is divisible by $s=y^{p_{3}-\varepsilon_{3}}$ or $t=Y^{\varepsilon_{3}} x^{\varepsilon_{1}} y^{p_{3}}$ but $s, t \nVdash \partial D_{6}^{ \pm}$.
7.5.2 The case $\boldsymbol{n}>\mathbf{0}$ We have

$$
\partial D_{4}^{+}=([Y^{\varepsilon_{3}}[\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}}(y^{p_{3}} \underbrace{\left.\left.x^{p_{1}}\right)^{p_{2}}\right]^{n} x^{\varepsilon_{1}}\left[\left(x^{p_{1}}\right.\right.}_{s} y^{p_{3}})^{p_{2}}\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}}]^{n}]^{p_{5}} y^{p_{3}})^{p_{4}}, Y^{\varepsilon_{3}}\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}},
$$

$$
\begin{aligned}
& \partial D_{4}^{-}=\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}}[ {[\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}}(y^{p_{3}} \underbrace{\left.\left.x^{p_{1}}\right)^{p_{2}}\right]^{n} x^{\varepsilon_{1}}\left[\left(x^{p_{1}}\right.\right.}_{s} y^{p_{3}})^{p_{2}}\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}}]^{n} Y^{\varepsilon_{3}}]^{p_{5}} } \\
& \cdot y^{p_{3}+\varepsilon_{3}}\left(\left[Y^{\varepsilon_{3}}\left[\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}}\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}}\right]^{n} x^{\varepsilon_{1}}\right.\right. \\
& \cdot\left.\left.\cdot\left[\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}}\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}}\right]^{n}\right]^{p_{5}} y^{p_{3}}\right)^{p_{4}-1},
\end{aligned}
$$

$\partial D_{6}^{+}=\left(\left[x^{\varepsilon_{1}}\left[\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}}\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}}\right]^{n} Y^{\varepsilon_{3}}\left[\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}}\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}}\right]^{n}\right]^{p_{5}} X^{p_{1}}\right)^{p_{6}}$

$$
\cdot x^{\varepsilon_{1}}\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}},
$$

$$
\begin{aligned}
& \partial D_{6}^{-}=\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}}\left[\left(\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}}\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}}\right]^{n} Y^{\varepsilon_{3}}\left[\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}}\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}}\right]^{n} x^{\varepsilon_{1}}\right]^{p_{5}} \\
& \cdot X^{p_{1}+\varepsilon_{1}}\left(\left[x^{\varepsilon_{1}}\left[\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}}\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}}\right]^{n} Y^{\varepsilon_{3}}\right.\right. \\
& \left.\left.\cdot\left[\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}}\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}}\right]^{n}\right]^{p_{5}} X^{p_{1}}\right)^{p_{6}-1} .
\end{aligned}
$$

In this case we have that any cyclic permutation of $\llbracket \partial D_{4}^{ \pm} \rrbracket$ is divisible by $s=x^{2 p_{1}+\varepsilon_{1}}$ (located in several disjoint sites) but $s \nVdash \partial D_{6}^{ \pm}$.

### 7.5.3 The case $\boldsymbol{n}<\boldsymbol{0}$ We have

$$
\begin{aligned}
& \partial D_{4}^{+}=([\underbrace{Y^{\varepsilon_{3}}}_{C}\left[\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}}\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}}\right]^{|n|} x^{\varepsilon_{1}}\left[\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}}\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}}\right]^{|n|}]^{p_{5}} \underbrace{y^{p_{3}}}_{A})^{p_{4}} \\
& \cdot \underbrace{Y^{\varepsilon_{3}}\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}}}_{B},
\end{aligned}
$$

$$
\begin{aligned}
& \partial D_{4}^{-}= \underbrace{\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}}}_{D}[\left[\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}}\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}}\right]^{|n|} x^{\varepsilon_{1}}\left[\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}}\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}}\right]^{|n|} \underbrace{Y^{\varepsilon_{3}}}_{A}]^{p_{5}} \\
& \cdot \underbrace{y^{p_{3}+\varepsilon_{3}}}_{A^{\prime}}([\underbrace{Y^{\varepsilon_{3}}}_{B}\left[\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}}\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}}\right]^{|n|} x^{\varepsilon_{1}} \\
&\left.\cdot\left[\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}}\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}}\right]^{|n|}\right]^{p_{5}} \underbrace{y^{p_{3}}}_{C})^{p_{4}-1}
\end{aligned}
$$

$$
\partial D_{6}^{+}=\left(\left[x^{\varepsilon_{1}}\left[\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}}\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}}\right]^{|n|} Y^{\varepsilon_{3}}\left[\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}}\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}}\right]^{|n|}\right]^{p_{5}} X^{p_{1}}\right)^{p_{6}}
$$

$$
\cdot x^{\varepsilon_{1}}\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}}
$$

$$
\begin{gathered}
\partial D_{6}^{-}=\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}}\left[\left[\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}}\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}}\right]^{|n|} Y^{\varepsilon_{3}}\left[\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}}\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}}\right]^{|n|} x^{\varepsilon_{1}}\right]^{p_{5}} \\
\cdot X^{p_{1}+\varepsilon_{1}}\left(\left[x^{\varepsilon_{1}}\left[\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}}\left(Y^{p_{3}} X^{p_{1}}\right)^{p_{2}}\right]^{|n|} Y^{\varepsilon_{3}}\right.\right. \\
\left.\left.\cdot\left[\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}}\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}}\right]^{|n|}\right]^{p_{5}} X^{p_{1}}\right)^{p_{6}-1}
\end{gathered}
$$

(1) Any cyclic permutation of $\llbracket \partial D_{4}^{+} \rrbracket$ is divisible by either

$$
s=A C=y^{p_{3}-\varepsilon_{3}} \quad \text { or } \quad t=A B C=Y^{\varepsilon_{3}}\left(X^{p_{1}} Y^{p_{3}}\right)^{p_{2}-1} X^{p_{1}} Y^{\varepsilon_{3}}
$$

but $s, t \nVdash \partial D_{6}^{ \pm}$.
(2) Any cyclic permutation of $\llbracket \partial D_{4}^{-} \rrbracket$ is divisible by

$$
s=A A^{\prime} B=y^{p_{3}-\varepsilon_{3}} \quad \text { or } \quad t=C D=y^{p_{3}}\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}}
$$

but $s, t \nVdash \partial D_{6}^{ \pm}$.
By Lemmas 7.13 and 7.12, we have therefore established the following result:
Lemma 7.16 If the Heegaard diagram of the manifold $R_{1,4} \cup_{\partial} R_{4,1}$ is of type 2 then $R_{1,4} \cup_{\partial} R_{4,1} \neq \mathbb{S}^{3}$.

We are now ready to give the proof of the first main theorem of this paper:
Proof of Theorem 1 Let $K \subset \mathbb{S}^{3}$ be a genus one hyperbolic knot and $\mathbb{T}=T_{1} \sqcup \cdots \sqcup T_{N}$ a collection of $N \geq 1$ disjoint, mutually nonparallel once-punctured tori in $X_{K}$. By Lemma 4.3 we then have that $N \leq 6$, and if $N=6$ then, by Lemma $7.8, \mathbb{S}^{3}$ has a genus two Heegaard splitting of type 1 or 2 , contradicting Lemmas 7.15 and 7.16. Therefore $N \leq 5$.

## 8 Examples of genus one hyperbolic knots in $\mathbb{S}^{3}$

By Lemmas 4.1 and 5.1, if $K \subset \mathbb{S}^{3}$ is a hyperbolic knot with a collection $\mathbb{T} \subset X_{K}$ of once-punctured tori then each complementary region of $\mathbb{T}$ is atoroidal and no circle in any component $T_{i} \subset \mathbb{T}$ has a companion annulus in $X_{K}$ on either side of $T_{i}$. The next result shows that these two properties essentially characterize genus one hyperbolic knots and gives properties of some of its surgery manifolds. For notation, a surface $S$ properly embedded in a manifold $M$ is strongly knotted if the manifold obtained by cutting $M$ along $S$ is irreducible and boundary irreducible. As usual, $J \subset \partial X_{K}$ denotes the slope of the standard longitude of $K$.

Lemma 8.1 Let $K \subset \mathbb{S}^{3}$ be a genus one knot whose exterior $X_{K}$ contains a collection $\mathbb{T}=T_{1} \sqcup \cdots \sqcup T_{N} \subset X_{K}$ of $N \geq 1$ mutually disjoint and nonparallel once-punctured tori.
(1) If for each $1 \leq i \leq N$ the region $R_{i, i+1}$ is atoroidal and no circle in $T_{i}$ has companion annuli in $X_{K}$ on both sides of $T_{i}$ then either $K$ is a hyperbolic knot or $N=1$ and $K$ is the trefoil knot.
(2) For $K$ a hyperbolic knot and $r \subset \partial X_{K}$ any slope such that $\Delta(r, J) \geq 2$,
(a) if some component $T_{i} \subset \mathbb{T}$ is strongly knotted then the manifold $X_{K}(r)$ is Haken,
(b) if $N \geq 4$ then each component of $\mathbb{T}$ is strongly knotted and the manifold $X_{K}(r)$ is Haken and hyperbolic.

Proof For part (1), the hypotheses on the regions $R_{i, i+1}$ imply that any essential torus $T \subset X_{K}$ can be isotoped so as to intersect $\mathbb{T}$ minimally with $T \cap T_{1}$, say, a nonempty collection of circles which are nontrivial and mutually parallel in $T$ and $T_{i}$.

For $R_{1,1}=\operatorname{cl}\left(X_{K} \backslash T_{1} \times[-1,1]\right)$, each component of $T \cap R_{1,1}$ is therefore an annulus which is either (a) a companion annulus in $R_{1,1}$ for one of the slopes $T \cap\left(T_{1} \times\{-1,1\}\right)$, or (b) a nonseparating annulus in $R_{1,1}$ with one boundary component in each of $T_{1} \times\{-1\}$ and $T_{1} \times\{1\}$. By hypothesis not all the annuli in $T \cap R_{1,1}$ can be of type (a), while any annulus component of type (b) can be extended via an annulus in $T_{1} \times[-1,1]$ to form a closed Klein bottle or nonseparating torus in $X_{K} \subset \mathbb{S}^{3}$, which is impossible. Therefore $K$ is not a satellite knot, so by [17] $K$ is either a hyperbolic or torus knot, and in the latter case $K$ must be the trefoil knot and $N=1$.

For part (2)(a), assume for definiteness that $T_{1}$ is strongly knotted. Let $F=\partial R_{1,1} \subset X_{K}$ and let $r \subset \partial X_{K}$ be a slope with $\Delta(r, J) \geq 2$. If $X_{K}(r)=X_{K} \cup_{\partial} V_{r}$, where $V_{r}$ is a solid torus and $r$ bounds a disk in $V_{r}$, then the annulus $A=N\left(T_{1}\right) \cap \partial X_{K}$ is incompressible in the manifold $M=N\left(T_{1}\right) \cup_{A} V_{r}$, and we can write

$$
X_{K}(r)=\left[R_{1,1} \cup N\left(T_{1}\right)\right] \cup V_{r}=R_{1,1} \cup_{F}\left[N\left(T_{1}\right) \cup_{A} V_{r}\right]=R_{1,1} \cup_{F} M .
$$

Since $N\left(T_{1}\right) \approx T_{1} \times[-1,1]$ with $T_{1}$ corresponding to $T_{1} \times\{0\}$ and $A$ to $\left(\partial T_{1}\right) \times[-1,1]$, if $D \subset M$ is a compression disk for $\partial M=F$ then the minimal intersection of $A$ and $D$ in $M$ is nonempty, with $A \cap D \subset A$ consisting of a collection of spanning arcs of $A$. Hence if $E \subset D$ is an outermost disk cut out by an outermost arc of $A \cap D \subset D$ then $E$ lies in $N\left(T_{1}\right)$ or $V_{r}$ and $\partial E$ intersects the core $J$ of $A$ minimally in one point, which is impossible since $J$, the core of $A$, runs $\Delta(r, J) \geq 2$ times around $V_{r}$ and separates $\partial N\left(T_{1}\right)$. Therefore $M$ is irreducible and boundary irreducible and so the manifold $X_{K}(r)=R_{1,1} \cup_{F} M$ is Haken.

For part (2)(b), suppose that $N \geq 4$ and there is an incompressible torus $\widehat{T}$ in $X_{K}(r)$. Since the manifold $R_{i, i}$ contains the collection $\mathbb{T} \backslash T_{1}$ of $N-1 \geq 3$ once-punctured tori, the once-punctured torus $T_{1}$ is strongly knotted by Lemmas 3.9 and 4.1.

After an isotopy, $\widehat{T}$ may be assumed to intersect $V_{r}$ minimally in a nonempty collection of meridian disks, so that $T=\widehat{T} \cap X_{K}$ is an essential punctured torus which intersects $\mathbb{T}$ minimally in essential graphs $G_{T}=T \cap \mathbb{T} \subset T$ and $G=T \cap \mathbb{T} \subset \mathbb{T}$.

If $p=\Delta(r, J) \geq 2$ then each vertex of $G_{T}$ has degree $p N \geq 8$ and so, by the initial part of Lemma 4.1 and by Lemma 4.2, both of which hold with $T$ in place of the many-punctured 2-sphere $Q$, for the reduced graph $\bar{G}_{T}$ (see Section 2.3) each of its edges has size at most 2 , so each of its $V=|\partial T| \geq 2$ vertices has degree at least $\frac{1}{2} p N \geq 4$, and each of its $d \geq 0$ disk faces has at least 4 edges. Applying Euler's relation to the reduced graph $\bar{G}_{T}$ yields the relations

$$
\begin{aligned}
4 V \leq 2 E \leq 2 V+2 d & \Longrightarrow V \leq d, \\
4 d \leq 2 E \leq 2 V+2 d & \Rightarrow d \leq V,
\end{aligned}
$$

which imply that $d=V$, hence that $p=2$ and $N=4$, and that in $\bar{G}_{T}$ all vertices have degree 4 , all faces are 4 -sided disk faces, and each edge $\bar{e}$ is the amalgamation of two mutually parallel edges from $G_{T}$.

So if $f$ is a 4 -sided disk face of $G_{T}$ that lies in, say, the region $R_{1,2}$, then the union of $f$ and the bigon disk faces of $G_{T}$ incident to each edge around $f$ forms a 4-sided


Figure 22: The graph $G_{T}=T \cap \mathbb{T} \subset T$.
disk face $f^{3,4}$ of the graph $G_{T}^{3,4}=T \cap\left(T_{3} \sqcup T_{4}\right) \subset T$ which lies in the region $R_{4,3} \supset R_{1,2}$ (see Figure 22). Thus by Lemmas 2.1(3) and 4.1(2) the region $R_{4,3}$ is a genus two handlebody such that the disk $f^{3,4} \subset R_{4,3}$ intersects $K$ minimally in 4 points. By Lemma $6.1,\left(R_{4,3}, K\right)$ must be a simple or double pair, contradicting Lemma 6.8(2)(a) since the punctured tori $T_{1}, T_{2} \subset R_{4,3}$ are neither boundary parallel nor mutually parallel in $R_{4,3}$. Therefore the Haken manifold $X_{K}(r)$ is atoroidal, hence hyperbolic by Thurston's hyperbolization theorem [17; 18].

The type 1 Heegaard diagrams for the manifold $M=R_{1,4} \cup_{\partial} R_{4,1}$ constructed in Section 7.4 can be adapted to yield knots in $M$ that bound 5 mutually disjoint and nonparallel once-punctured tori, simply by setting $p_{5}=1$, so that $T_{5}$ and $T_{6}$ become mutually parallel in $R_{4,1}$, and 4 and 6 become consecutive labels.

After setting $p_{5}=1$, a simple strategy to obtain $M=\mathbb{S}^{3}$ consists in choosing some of the parameters $p_{i}$ and $q_{i}$ in such a way that the circle $\partial D_{4}$, say, is primitive in $R_{1,4}$, so that $R_{1,4}\left(\partial D_{4}\right)$ is a solid torus and hence $M=R_{1,4}\left(\partial D_{4} \sqcup \partial D_{6}\right)$ is a lens space. Choosing the remaining parameters so that the circles $\partial D_{4}$ and $\partial D_{6}$ represent an integral homology basis for $R_{1,4}$ finally yields that $M=\mathbb{S}^{3}$.

We remark that the symmetry between the words of $\partial D_{4}$ and $\partial D_{6}$ in $\pi_{1}\left(R_{1,4}\right)$ discussed in Section 7.4.4 makes irrelevant which of these two circles is chosen to be primitive in $R_{1,4}$, and also that it does not seem possible to implement this strategy using a type 2 Heegaard diagram for $R_{1,4} \cup_{\partial} R_{4,1}$.

For the rest of this section we will use the notation set up in Section 7.4. We implement the strategy outlined above by setting the standard parameters
$n=0, \quad q_{1}= \pm 1, \quad p_{2}=2, \quad \delta_{3}= \pm 1, \quad q_{3}=-\left(p_{3}+\delta_{3}\right), \quad\left(p_{4}, q_{4}\right)=(2,1), \quad p_{5}=1$ on top of the generic conditions $p_{1}, p_{3}, p_{6} \geq 2$ and $\operatorname{gcd}\left(p_{i}, q_{i}\right)=1$.


Figure 23: The knot $K=K^{(1)}\left(p_{1}, q_{1}, p_{3}, \delta_{3}, p_{6}, q_{6}\right)$.
As in Section 7.4, $x$ and $y$, and $x_{4}$ and $x_{6}$, denote circles dual to the complete disk systems $D_{1}, D_{3} \subset R_{1,4}$ and $D_{4}, D_{6} \subset R_{4,1}$, respectively, so that $\pi_{1}\left(R_{1,4}\right)=\langle x, y \mid-\rangle$ and $\pi_{1}\left(R_{4,1}\right)=\left\langle x_{4}, x_{6} \mid-\right\rangle$. Therefore, in $\pi_{1}\left(R_{1,4}\right)$, we have $\alpha=x^{q_{1}} y^{p_{3}} x^{p_{1}}, \quad \beta=X^{p_{1}} Y^{p_{3}} X^{p_{1}} Y^{q_{3}}, \quad u=Y^{q_{3}} X^{p_{1}} Y^{p_{3}}, \quad v=y^{p_{3}} x^{p_{1}} y^{p_{3}} x^{q_{1}}$ and hence $\partial D_{4}=\partial D_{4}^{-}=\alpha^{2} \beta=x^{q_{1}} y^{p_{3}} x^{q_{1}} y^{p_{3}+\delta_{3}}$ is primitive in $\pi_{1}\left(R_{1,4}\right)$.

From the proof of Lemma 7.11 we have that, in $\pi_{1}\left(R_{4,1}\right)$,

$$
\begin{aligned}
\omega_{1} & =\left(x_{4}^{p_{4}} x_{6}^{p_{6}}\right)^{p_{5}-1} x_{4}^{p_{4}} x_{6}^{q_{6}}=x_{4}^{2} x_{6}^{q_{6}}, \\
\omega_{3}^{\prime} & =\left(x_{6}^{p_{6}} x_{4}^{p_{4}}\right)^{p_{5}-1} x_{6}^{p_{6}} x_{4}^{q_{4}}=x_{4} x_{6}^{p_{6}},
\end{aligned}
$$

while from Figure 19, top, we obtain, in $\pi_{1}\left(R_{1,4}\right)$,

$$
\begin{aligned}
& \omega_{4}=\left(x^{p_{1}} y^{p_{3}}\right)^{p_{2}-1} x^{p_{1}} y^{q_{3}}=x^{p_{1}} y^{p_{3}} x^{p_{1}} Y^{p_{3}+\delta_{3}}, \\
& \omega_{6}^{\prime}=\left(y^{p_{3}} x^{p_{1}}\right)^{p_{2}-1} y^{p_{3}} x^{q_{1}}=y^{p_{3}} x^{p_{1}} y^{p_{3}} x^{q_{1}},
\end{aligned}
$$

relative to basepoints at the orientation arrows for $\omega_{4}$ and $\omega_{6}^{\prime}$ indicated in Figure 17, center. In particular, the circle $\omega_{3}^{\prime} \subset T_{4}$ is primitive in $R_{4,1}$.

By construction we still have that $\omega_{4} \subset T_{4}$ and $\omega_{6}^{\prime} \subset T_{1}$ are power circles in $R_{4,1}$, so $T_{5}$ and $T_{6}$ are the tori in $R_{4,1}$ induced by the power circles $\omega_{4} \subset T_{4}$ and $\omega_{6}^{\prime} \subset T_{1}$. Since the circle $\omega_{3}^{\prime} \subset T_{4}$ is primitive in $R_{4,1}$, by Lemma 6.8(1)(d) $T_{5}$ and $T_{6}$ are
indeed mutually parallel in $R_{4,1}$ and can be identified with one another, whence by Lemma 6.8(2)(b) we must have $\Delta\left(\omega_{4}^{\prime}, \omega_{6}\right)=1$ in $T_{5}=T_{6}$.

The knot $K \subset \partial R_{1,4} \subset M$ now depends on 6 parameters and will be denoted by

$$
K=K^{(1)}\left(p_{1}, q_{1}, p_{3}, \delta_{3}, p_{6}, q_{6}\right) \subset M,
$$

with the 5 once-punctured tori $\mathbb{T}=T_{1} \cup T_{2} \cup T_{3} \cup T_{4} \cup T_{6} \subset X_{K}$ and the core knots $K_{i}$ of the complementary regions of $\mathbb{T}$ represented by the diagram in Figure 23, obtained by setting $T_{5}=T_{6}$ in Figure 12. Homologically, in $R_{1,4}$ we have

$$
\begin{aligned}
& \partial D_{4}=2 \alpha+\beta=2 q_{1} x+\left(p_{3}-q_{3}\right) y=2 q_{1} x+\left(2 p_{3}+\delta_{3}\right) y, \\
& \partial D_{6}=p_{6} u+q_{6} v=\left[q_{6}\left(p_{1}+q_{1}\right)-p_{1} p_{6}\right] x+\left[2 p_{3} q_{6}+\delta_{3} p_{6}\right] y,
\end{aligned}
$$

and so
$M=\mathbb{S}^{3} \Longleftrightarrow \partial D_{4}$ and $\partial D_{6}$ form a basis for the first homology of $R_{1,4}$

$$
\Longleftrightarrow \operatorname{det}\left[\begin{array}{cc}
2 q_{1} & 2 p_{3}+\delta_{3} \\
\left(p_{1}+q_{1}\right) q_{6}-p_{1} p_{6} & 2 p_{3} q_{6}+\delta_{3} p_{6}
\end{array}\right]=A p_{6}+B q_{6}=\varepsilon \in\{ \pm 1\},
$$

where $A=p_{1}\left(2 p_{3}+\delta_{3}\right)+2 \delta_{3} q_{1}$ and $B=q_{1}\left(2 p_{3}-\delta_{3}\right)-p_{1}\left(2 p_{3}+\delta_{3}\right)$.

Lemma 8.2 $\operatorname{gcd}(A, B)=1$ for any of the standard values of $p_{i}, q_{i}$ and $\delta_{3}$; in particular, there are infinitely many pairs $\left(p_{6}, q_{6}\right)$ with $p_{6} \geq 2$ such that $M=\mathbb{S}^{3}$, for which $q_{6}>\frac{1}{2} p_{6} \geq 1$.

Proof Since $\delta_{3}, q_{1} \in\{ \pm 1\}$, we have that $A+B=q_{1}\left(2 p_{3}+\delta_{3}\right)$ is odd and $A-q_{1} p_{1}(A+B)=2 \delta_{3} q_{1}= \pm 2$, hence that $\operatorname{gcd}(A, B)=1$. The estimates

$$
\begin{aligned}
A & =p_{1}\left(2 p_{3}+\delta_{3}\right)+2 \delta_{3} q_{1} \geq 2\left(2 p_{3}-1\right)-2 \geq 4, \\
-B & =p_{1}\left(2 p_{3}+\delta_{3}\right)-q_{1}\left(2 p_{3}-\delta_{3}\right) \geq p_{1}\left(2 p_{3}-1\right)-\left(2 p_{3}+1\right) \\
& =\left(p_{1}-1\right)\left(2 p_{3}-1\right)-2 \geq 1
\end{aligned}
$$

show that $q_{6} \geq 1$. The relations

$$
\begin{aligned}
q_{6} & =\frac{A p_{6}-\varepsilon}{-B}=\frac{p_{6}(-B)+p_{6}(A+B)-\varepsilon}{-B} \\
& =p_{6}+\frac{q_{1} p_{6}\left(2 p_{3}+\delta_{3}\right)-\varepsilon}{-B}=p_{6}+q_{1} \cdot \frac{p_{6}\left(2 p_{3}+\delta_{3}\right)-\varepsilon q_{1}}{p_{1}\left(2 p_{3}+\delta_{3}\right)-q_{1}\left(2 p_{3}-\delta_{3}\right)}
\end{aligned}
$$

imply that $q_{6}>p_{6}$ for $q_{1}=+1$, while for $q_{1}=-1$, since $\varepsilon \leq 1<2 p_{3}-\delta_{3}$, we have

$$
\begin{aligned}
0<\frac{p_{6}\left(2 p_{3}+\delta_{3}\right)+\varepsilon}{p_{1}\left(2 p_{3}+\delta_{3}\right)+\left(2 p_{3}-\delta_{3}\right)} & <\frac{p_{6}\left(2 p_{3}+\delta_{3}\right)+\left(2 p_{3}-\delta_{3}\right)}{p_{1}\left(2 p_{3}+\delta_{3}\right)+\left(2 p_{3}-\delta_{3}\right)} \\
& \leq \frac{p_{6}\left(2 p_{3}+\delta_{3}\right)+\left(2 p_{3}-\delta_{3}\right)}{2\left(2 p_{3}+\delta_{3}\right)+\left(2 p_{3}-\delta_{3}\right)} \leq \frac{p_{6}}{2}
\end{aligned}
$$

and hence that

$$
q_{6}-\frac{p_{6}}{2} \geq \frac{p_{6}}{2}-\frac{p_{6}\left(2 p_{3}+\delta_{3}\right)+\varepsilon}{p_{1}\left(2 p_{3}+\delta_{3}\right)+\left(2 p_{3}-\delta_{3}\right)}>0 .
$$

Let $\mathcal{K}$ denote the family of all knots $K^{(1)}\left(p_{1}, q_{1}, p_{3}, \delta_{3}, p_{6}, q_{6}\right) \subset \mathbb{S}^{3}$ with standard parameters such that $A p_{6}+B q_{6}=\varepsilon \in\{ \pm 1\}$.

Proof of Theorem 2 For each knot $K \in \mathcal{K}$ there is a collection

$$
\mathbb{T}=T_{1} \sqcup T_{2} \sqcup T_{3} \sqcup T_{4} \sqcup T_{6} \subset X_{K}
$$

of 5 mutually disjoint once-punctured tori such that for each $i$ the region $R_{i, i+1}$ is a handlebody and the circles $\omega_{i-1}^{\prime}, \omega_{i} \subset T_{i}$ are power circles in $R_{i-1, i}$ and $R_{i, i+1}$, respectively, with $\Delta\left(\omega_{i-1}^{\prime}, \omega_{i}\right)=1$. If there is a circle $\gamma$ in $T_{i}$ which is a power in $X_{K}$ on either side of $T_{i}$ then, by Lemma 3.1 applied to $R_{i, i}, \gamma$ must be isotopic in $T_{i}$ to $\omega_{i-1}^{\prime}$ and $\omega_{i}$, contradicting the fact that $\Delta\left(\omega_{i-1}^{\prime}, \omega_{i}\right)=1$. Therefore, by Lemma 8.1 the knot $K$ is hyperbolic and the slope $r=a / b$ of any exceptional surgery on $K$ satisfies the condition $|a|=\Delta(r, J) \leq 1$, so $X_{K}(r)$ is an integral homology 3-sphere.

Moreover, each pair ( $R_{i, i+1}, J$ ) is simple of index $p_{i} \geq 2$ and so, by Lemma 6.2(4), $X_{K}(J)$ is the union of Seifert fiber spaces of the form $\mathbb{A}^{2}\left(p_{1}\right), \mathbb{A}^{2}\left(p_{2}\right), \mathbb{A}^{2}\left(p_{3}\right)$, $\mathbb{A}^{2}\left(p_{4}\right)$ and $\mathbb{A}^{2}\left(p_{6}\right)$, hence the collection $\widehat{\mathbb{T}}$ produces the JSJ decomposition of $X_{K}(J)$. As the manifolds $\mathbb{A}^{2}(p)$ and $\mathbb{A}^{2}(q)$ are not homeomorphic for $p \neq q$ (see [11, VI.16]), if $\left\{p_{1}, p_{3}, p_{6}\right\} \neq\left\{p_{1}^{\prime}, p_{3}^{\prime}, p_{6}^{\prime}\right\}$ then for the knots

$$
K=K^{(1)}\left(p_{1}, q_{1}, p_{3}, \delta_{3}, p_{6}, q_{6}\right) \in \mathcal{K} \quad \text { and } \quad K^{\prime}=K^{(1)}\left(p_{1}^{\prime}, q_{1}^{\prime}, p_{3}^{\prime}, \delta_{3}^{\prime}, p_{6}^{\prime}, q_{6}^{\prime}\right) \in \mathcal{K}
$$

the surgery manifolds $X_{K}(J)$ and $X_{K^{\prime}}\left(J^{\prime}\right)$ are not homeomorphic, hence $K$ and $K^{\prime}$ are knots of different types and so by Lemma 8.2 the family of knots $\mathcal{K}$ is infinite.

The following result establishes a connection between the hyperbolic knots in the family $\mathcal{K}$ and the hyperbolic Eudave-Muñoz knots:

Lemma 8.3 For each knot $K=K^{(1)}\left(p_{1}, q_{1}, p_{3}, \delta_{3}, p_{6}, q_{6}\right) \in \mathcal{K}$ the core knot $K_{4}$ of the simple pair $\left(R_{4,6}, K\right)$ is a hyperbolic Eudave-Muñoz knot; if $\left(p_{1}, q_{1}\right) \neq(2,1)$ then $K_{2}$ is also a hyperbolic Eudave-Muñoz knot, and otherwise it is a trivial or cable knot.

Proof By construction, the power circles $\omega_{i-1}^{\prime} \subset T_{i} \subset R_{i-1, i}$ and $\omega_{i} \subset T_{i} \subset R_{i, i+1}$ intersect minimally in one point, hence each region $R_{1,3}, R_{2,4}, R_{3,6}, R_{4,1}$ and $R_{6,2}$ is a handlebody by Lemma 7.2(3).

As $\omega_{1}=x_{4}^{2} \chi_{6}^{q_{6}} \in \pi_{1}\left(R_{4,1}\right)$ and $q_{6} \geq 2$ by Lemma 8.2, $\omega_{1}$ is a Seifert circle in $R_{4,1}$ and so by Lemma 3.5(1) $R_{4,2}$ is not a handlebody.

Since $D_{1}$ and $D_{3}$ are the compression disks of $\partial R_{1,4} \backslash \omega_{3}^{\prime}$ and $\partial R_{1,4} \backslash \omega_{1}$ in $R_{1,4}$, respectively, the setup in Section 7.4.1 applies and so by Lemma 7.9 the circle $\omega_{4}=x^{p_{1}} y^{p_{3}} x^{p_{1}} Y^{p_{3}+\delta_{3}} \in \pi_{1}\left(R_{1,4}\right)=\langle x, y \mid-\rangle$ is represented by the word $\omega_{4}=$ $z y^{p_{3}} Y^{p_{3}+\delta_{3}}$ in $\pi_{1}\left(R_{2,4}\right)=\langle z, y \mid-\rangle$, where $\omega_{1}^{\prime}=z$. Since $p_{3}+\delta_{3}=p_{3} \pm 1 \geq 1$,
 $R_{2,6}$ is not a handlebody by Lemma 3.5(1). Therefore, by Lemma 7.1 applied to the collection $T_{2}, T_{4}, T_{6} \subset X_{K}$, it follows that $K_{4}$ is a hyperbolic Eudave-Muñoz knot.

Since $\omega_{6}^{\prime}=y^{p_{3}} x^{p_{1}} y^{p_{3}} x^{q_{1}} \in \pi_{1}\left(R_{1,4}\right)=\langle x, y \mid-\rangle$ and $q_{1}= \pm 1$, by Lemmas 6.8(1)(d) and 7.9 we have that
$\omega_{6}^{\prime}$ is a Seifert circle in $R_{1,4} \Longleftrightarrow \omega_{6}^{\prime}=t x^{p_{1}} t x^{q_{1}}$ is primitive in $\pi_{1}\left(R_{1,3}\right)=\langle x, t \mid-\rangle$ $\Longleftrightarrow\left(p_{1}, q_{1}\right)=(2,1)$.
Thus, by Lemma 3.5(1), $R_{6,3}$ is a handlebody if and only if $\left(p_{1}, q_{1}\right)=(2,1)$. Therefore, if $\left(p_{1}, q_{1}\right) \neq(2,1)$ then $R_{6,3}$ is not a handlebody and so $K_{2}$ is a hyperbolic Eudave-Muñoz knot by Lemma 7.1 applied to the collection $T_{2}, T_{3}, T_{6} \subset X_{K}$.

For the case $\left(p_{1}, q_{1}\right)=(2,1)$, since $R_{1.4}$ is a handlebody and the pair $\left(R_{2,3}, K\right)$ is simple, by Lemmas 3.5 and 6.4 the circles $\omega_{1}^{\prime} \subset T_{2}$ and $\omega_{3} \subset T_{3}$ are basic in $R_{2,3}$ and there is an integral slope $s_{2} \subset N\left(K_{2}\right) \subset R_{2,3}$ which is coannular in $R_{2,3} \backslash$ int $N\left(K_{2}\right)$ to a circle $s_{2}^{\prime} \subset \partial R_{2,3} \backslash\left(\omega_{1}^{\prime} \sqcup \omega_{3}\right)$ which intersects each of the power circles $\omega_{2} \subset T_{2}$ and $\omega_{2}^{\prime} \subset T_{3}$ minimally in one point, whence $s_{2}^{\prime}$ intersects $K \subset \partial R_{2,3}$ minimally in two points; also, $s_{2}^{\prime}$ is a primitive circle in $R_{2,3}$ and the circles $\omega_{1}^{\prime}$ and $\omega_{3}$ run once around the solid torus $R_{2,3}\left(s_{2}^{\prime}\right)$.
By Lemma 6.3, $s_{2}^{\prime}$ can be isotoped in $R_{1,4}$ onto a circle $\widetilde{K}_{2}$ in $\partial R_{1,4} \backslash\left(\omega_{1} \sqcup \omega_{3}^{\prime}\right)$ so that it intersects $K \subset \partial R_{1,4}$ minimally in two points, hence each of the circles $\omega_{4}$
and $\omega_{6}^{\prime}$ minimally in one point. Thus $\tilde{K}_{2}$ must be the circle shown in Figure 19 , top or center (where $p_{2}=2$ ), modulo some number $m \in \mathbb{Z}$ of Dehn twists along the annulus $A_{K} \subset \partial R_{1,4}$.
Moreover, by Lemmas 6.3 and $6.4(4)$ the manifold $R_{1,4}\left(\tilde{K}_{2}\right)$ is homeomorphic to the union of the solid torus $R_{2,3}\left(s_{2}^{\prime}\right)$ and the companion solid tori of the power circles $\omega_{1}^{\prime}$ and $\omega_{3}$ in $R_{1,2}$ and $R_{3,4}$, respectively and hence it is a Seifert fiber space of the form $\mathbb{D}^{2}\left(p_{1}, p_{4}\right)$, so $\widetilde{K}_{2}$ is a Seifert circle in $R_{1,4}$.
In the case of the circle $\tilde{K}_{2}$ in Figure 19 , top, in $\pi_{1}\left(R_{1,4}\right)=\langle x, y \mid-\rangle$, the word represented by $\widetilde{K}_{2}$ is of the form
$w\left(x^{2}, y^{p_{3}}\right)=y^{p_{3}} x^{2}\left[X^{2} Y^{p_{3}} x^{2} y^{p_{3}} x^{2} y^{p_{3}} X^{2} Y^{p_{3}}\right]^{m}\left[X^{2} y^{p_{3}} x^{2} y^{p_{3}} x^{2} Y^{p_{3}} X^{2} Y^{p_{3}}\right]^{m}$
and it is not hard to see that if $m \neq 0$ then the cyclic reduction of the word $w\left(x, y^{p_{3}}\right)$ contains both $x$ and $X$ (and $y^{p_{3}}$ and $Y^{p_{3}}$ ) and hence it is not a primitive word by Lemma 7.10, which by Lemmas $6.8(1)(\mathrm{d})$ and 7.9 implies that $\widetilde{K}_{2}$ is not a Seifert circle in $R_{1,4}$, contradicting the above argument. Therefore we must have $m=0$ and so $\widetilde{K}_{2} \subset \partial R_{1,4}$ is isotopic to the circle shown in Figure 19 , top. In the case of the circle $\widetilde{K}_{2}$ of Figure 19 , center, a similar computation shows that the word $w\left(x, y^{p_{3}}\right)$ is not primitive for any $m \in \mathbb{Z}$ and so this case does not arise.
It follows that the circle $\partial D_{4}=p_{4} \alpha+q_{4} \beta=2 \alpha+\beta \subset \partial R_{1,4}=\partial R_{4,1}$, obtained from Figure 19 , center, with $p_{5}=1$, intersects $\widetilde{K}_{2}$ minimally in one point and so $\widetilde{K}_{2}$ is a primitive circle in $R_{4,1}$. The proof of Lemma 3.3(1) now shows that the unique compression disk $E \subset R_{4,1}$ for the surface $\partial R_{4,1} \backslash \widetilde{K}_{2}$ can be made disjoint from $D_{4}$. Since $\tilde{K}_{2}$ is isotopic in $\mathbb{S}^{3}$ to $K_{2}$, we can therefore identify the exterior $X_{2} \subset \mathbb{S}^{3}$ of the knot $K_{2}$ with the manifold $R_{1,4}(\partial E)$, so that $\partial D_{4} \subset \partial X_{2}$ is the meridian slope and $\tilde{K}_{2} \subset \partial X_{2}$ has integral slope.
Now, relative to the point $\widetilde{K}_{2} \cap \partial D_{4} \subset \partial R_{1,4}$, the words in $\pi_{1}\left(R_{1,4}\right)=\langle x, y \mid-\rangle$ represented by the circles $\widetilde{K}_{2}$ and $\partial D_{4}$ (oriented as in Figure 19, top and center) are

$$
\tilde{K}_{2}=y^{p_{3}} x^{2} \quad \text { and } \quad \partial D_{4}=y^{p_{3}} x Y^{q_{3}} x
$$

If $\left|q_{3}\right|=p_{3}+\delta_{3}=1$ then $p_{3}=2, \delta_{3}=-1$ and $q_{3}=-1$, in which case we have that

$$
\partial D_{4} \cdot\left(\tilde{K}_{2}\right)^{-1} \cdot \partial D_{4}=y^{p_{3}} x Y^{2 q_{3}} x=\left(y^{2} x\right)^{2}
$$

and hence $2 \cdot \partial D_{4}-\widetilde{K}_{2} \subset \partial R_{1,4}$ (written homologically) is a power circle in $R_{1,4}$, while if $\left|q_{3}\right| \geq 2$ then

$$
\left(\tilde{K}_{2}\right)^{-1} \cdot \partial D_{4}=(X Y x)^{q_{3}}
$$

and hence $\partial D_{4}-\widetilde{K}_{2} \subset \partial R_{1,4}$ is a power circle in $R_{1,4}$. Therefore in all cases there is a circle $\gamma \subset N\left(\partial D_{4} \cup \widetilde{K}_{2}\right) \subset \partial R_{1,4}$ which is a power in $R_{1,4}$ and is disjoint from $\partial E$, hence the companion annulus and companion solid torus of $\gamma$ in $R_{1,4}$ lie in $X_{2}=R_{1,4}(\partial E)$ and so $K_{2}$ is either a trivial or cable knot.

Remarks 8.4 (1) Other infinite families of hyperbolic knots $K$ in $\mathbb{S}^{3}$ with a collection $\mathbb{T} \subset X_{K}$ of 5 once-punctured tori can be obtained using variations of the construction above, for instance, by setting the parameters $n=0,\left(p_{4}, q_{4}\right)=(1,0)$ and

$$
\left(p_{1}, q_{1}\right)=(2,1), \quad p_{2}=p_{5}=2, \quad p_{3} \not \equiv 0 \bmod 3, \quad q_{3}= \pm 1,
$$

along with the conditions $p_{3}, p_{6} \geq 2$ and $\operatorname{gcd}\left(p_{6}, q_{6}\right)=1$ on a type 1 Heegaard diagram, in which case the core knot $K_{5}$ is always a hyperbolic Eudave-Muñoz knot.
(2) The above process can also be modified to produce examples of hyperbolic knots in $\mathbb{S}^{3}$ which bound a maximal collection of 4 mutually disjoint and nonparallel oncepunctured tori as follows. On top of the generic conditions $p_{1}, p_{3}, p_{4}, p_{6} \geq 2$ and $\operatorname{gcd}\left(p_{i}, q_{i}\right)=1$, set the standard values

$$
n=0, \quad p_{2}=1, \quad\left(p_{4}, q_{4}\right)=(2,1), \quad p_{5}=1,
$$

along with the condition

$$
2 q_{1}-p_{1}=\delta_{1}= \pm 1 \quad \text { or } \quad q_{3}= \pm 1
$$

Then $A=-\left(2 q_{1}-p_{1}\right) q_{3}$ and $B=q_{1} q_{3}+\left(2 q_{1}-p_{1}\right) p_{3}$ are relatively prime integers, and an infinite family of hyperbolic knots $K=K^{(1)}\left(p_{1}, q_{1}, p_{3}, q_{3}, p_{6}, q_{6}\right) \subset \mathbb{S}^{3}$ is produced by the condition $A p_{6}+B q_{6}= \pm 1$, each of which has exterior that contains a family of 4 mutually disjoint and nonparallel once-punctured tori $\mathbb{T}=T_{1} \sqcup T_{2} \sqcup T_{4} \sqcup T_{6}$ that separate $X_{K}$ into simple pairs, so that $\widehat{\mathbb{T}}$ produces the JSJ decomposition of $X_{K}(J)$ consisting of Seifert spaces of the form $\mathbb{A}^{2}\left(p_{1}\right), \mathbb{A}^{2}\left(p_{3}\right), \mathbb{A}^{2}\left(p_{4}\right)$ and $\mathbb{A}^{2}\left(p_{6}\right)$.

Now, any incompressible torus in $X_{K}(J)$ can be isotoped away from $\widehat{\mathbb{T}}$ and into the interior of some atoroidal cable space $\mathbb{A}^{2}\left(p_{k}\right)$, whence it must be isotopic to some component $\widehat{T}_{l} \subset \widehat{\mathbb{T}}$ of $\partial \mathbb{A}^{2}\left(p_{k}\right)$. So if $\mathbb{T}^{\prime}=T_{1}^{\prime} \sqcup T_{2}^{\prime} \sqcup T_{3}^{\prime} \sqcup T_{4}^{\prime} \sqcup T_{5}^{\prime} \subset X_{K}$ is a 5-component maximal family of once-punctured tori then, for some $i \neq j, \widehat{T}_{i}^{\prime}$ and $\widehat{T}_{j}^{\prime}$ must be mutually isotopic, hence parallel, in $X_{K}(J)$, and hence by Lemma 3.7(4) $T_{i}^{\prime}$ and $T_{j}^{\prime}$ must be mutually parallel in $X_{K}$, which is not the case. Therefore the collection $\mathbb{T}$ is maximal.

## References

[1] F Bonahon, Cobordism of automorphisms of surfaces, Ann. Sci. École Norm. Sup. 16 (1983) 237-270 MR
[2] A J Casson, C M Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987) 275-283 MR
[3] M Cohen, W Metzler, A Zimmermann, What does a basis of $F(a, b)$ look like?, Math. Ann. 257 (1981) 435-445 MR
[4] M Eudave Muñoz, On nonsimple 3-manifolds and 2-handle addition, Topology Appl. 55 (1994) 131-152 MR
[5] M Eudave-Muñoz, Non-hyperbolic manifolds obtained by Dehn surgery on hyperbolic knots, from "Geometric topology" (W H Kazez, editor), AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc., Providence, RI (1997) 35-61 MR
[6] C Frohman, Minimal surfaces and Heegaard splittings of the three-torus, Pacific J. Math. 124 (1986) 119-130 MR
[7] D Gabai, Foliations and the topology of 3-manifolds, III, J. Differential Geom. 26 (1987) 479-536 MR
[8] CM Gordon, J Luecke, Dehn surgeries on knots creating essential tori, I, Comm. Anal. Geom. 3 (1995) 597-644 MR
[9] CM Gordon, J Luecke, Non-integral toroidal Dehn surgeries, Comm. Anal. Geom. 12 (2004) 417-485 MR
[10] J Hempel, 3-Manifolds, Ann. of Math. Studies 86, Princeton Univ. Press (1976) MR
[11] W Jaco, Lectures on three-manifold topology, CBMS Regional Conference Series in Mathematics 43, Amer. Math. Soc., Providence, RI (1980) MR
[12] W Jaco, Adding a 2-handle to a 3-manifold: an application to property $R$, Proc. Amer. Math. Soc. 92 (1984) 288-292 MR
[13] W H Jaco, P B Shalen, Seifert fibered spaces in 3-manifolds, Mem. Amer. Math. Soc. 220, Amer. Math. Soc., Providence, RI (1979) MR
[14] K Johannson, Homotopy equivalences of 3-manifolds with boundaries, Lecture Notes in Mathematics 761, Springer (1979) MR
[15] T Kaneto, On genus 2 Heegaard diagrams for the 3-sphere, Trans. Amer. Math. Soc. 276 (1983) 583-597 MR
[16] S Lee, S Oh, M Teragaito, Reducing Dehn fillings and small surfaces, Proc. London Math. Soc. 92 (2006) 203-223 MR
[17] W P Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982) 357-381 MR
[18] W P Thurston, Hyperbolic structures on 3-manifolds, I: Deformation of acylindrical manifolds, Ann. of Math. 124 (1986) 203-246 MR
[19] Y Tsutsumi, Universal bounds for genus one Seifert surfaces for hyperbolic knots and surgeries with non-trivial JSJT-decompositions, Interdiscip. Inform. Sci. 9 (2003) 53-60 MR
[20] L G Valdez-Sánchez, Seifert Klein bottles for knots with common boundary slopes, from "Proceedings of the Casson Fest" (C Gordon, Y Rieck, editors), Geom. Topol. Monogr. 7, Geom. Topol. Publ., Coventry (2004) 27-68 MR
[21] Y-Q Wu, Dehn fillings producing reducible manifolds and toroidal manifolds, Topology 37 (1998) 95-108 MR

Department of Mathematical Sciences, University of Texas at El Paso
El Paso, TX, United States
lvsanchez@utep.edu

Received: 14 August 2017 Revised: 6 July 2018

