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Seifert surfaces for genus one hyperbolic knots
in the 3–sphere

LUIS G VALDEZ-SÁNCHEZ

We prove that any collection of mutually disjoint and nonparallel genus one orientable
Seifert surfaces in the exterior of a hyperbolic knot in the 3–sphere has at most 5

components and that this bound is optimal.
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1 Introduction

Any knot K in the 3–sphere S3 bounds orientable Seifert surfaces S 0 � S3 , and the
smallest genus among such surfaces is the genus of K . For any minimal genus Seifert
surface S 0 for K the once-punctured surface S D S 0\XK �XK is incompressible
in the exterior XK D S3 n int N.K/ of K , with boundary slope the standard longitude
J D @S � @XK of K .

The knot K is hyperbolic if its complement S3 nK admits a complete hyperbolic
structure of finite volume, or equivalently, by Thurston’s work [17], if any properly
embedded annulus or closed torus in its exterior XK is compressible or parallel to @XK ,
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in which case there are at most finitely many exceptional slopes r � @XK for which
the surgery manifold XK .r/DXK [@ .S

1 �D2/, where r bounds a meridian disk in
S1 �D2 , is not hyperbolic.

Regarding a question of K Motegi, of whether there is a universal bound on the number
of pieces in the JSJ decomposition of the surgery manifolds XK .r/ for hyperbolic knots
K � S3 , the family of genus one hyperbolic knots is an interesting test case. In this
direction, Y Tsutsumi [19] proved that for r D J the exterior of any genus one hyper-
bolic knot in S3 contains at most 7 mutually disjoint and nonparallel genus one Seifert
surfaces, providing a potential bound for the number of pieces in the JSJ decomposition
of the surgery manifold XK .J /, and gave an example of a genus one hyperbolic knot
K0 � S3 whose exterior contains three genus one Seifert surfaces that produce the JSJ
decomposition of XK0

.J / consisting of three pieces, one of them hyperbolic.

In this paper we establish the optimal bound of 5 for the number of genus one Seifert
surfaces in the exterior of any hyperbolic knot in S3 .

Theorem 1 The exterior of any genus one hyperbolic knot in S3 contains at most 5

mutually disjoint and nonparallel genus one Seifert surfaces.

We point out that replacing the once-punctured tori in Theorem 1 with nonisotopic
once-punctured Klein bottles of common boundary slope produces a similar bound
(see Theorem 1.1 of Valdez-Sánchez [20]).

Denote by T a collection of mutually disjoint and nonparallel once-punctured tori
properly embedded in the exterior XK of a genus one hyperbolic knot K � S3 . A
complementary region of T � XK is the closure of a component of XK n T if T

separates XK , and otherwise the manifold XK cut along T. The collection T �XK is
maximal if it has the largest possible number of components among all such collections
in XK .

By Theorem 1, any maximal collection T has at most 5 components, and the next
result shows that the bound of 5 is achieved by infinitely many hyperbolic knots.

Theorem 2 There is a family of genus one hyperbolic knots

K DK.1/.p1; q1;p3; ı3;p6; q6/� S3

parametrized by infinitely many choices for the integers p1;p3;p6; q6�2 and q1; ı3�

f˙1g each of whose exterior XK contains a maximal collection of 5 mutually disjoint
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and nonparallel once-punctured tori, such that the JSJ decomposition of XK .J / consists
of 5 Seifert fiber spaces over the annulus with one singular fiber and any exceptional
surgery on K is an integral homology 3–sphere.

All the complementary regions of T �XK for the knots in Theorem 2 are genus two
handlebodies; in fact, in Lemma 4.1 we prove that for any collection T at most one
complementary region may not be a genus two handlebody, and if such a nonhandlebody
region is present then T has at most 4 components. Also, by Lemma 8.1 the property of
any exceptional surgery on K being an integral homology 3–sphere holds for arbitrary
hyperbolic knots with a 4– or 5–component collection T in their exterior.

The paper is organized as follows. The proofs of the main results are given in Sections 4,
7 and 8, with Sections 2, 3, 5 and 6 containing supporting technical material.

The first approximation to Theorem 1 is given in Lemma 4.3, which states that any
collection T � XK has at most 6 components. Its proof relies on certain features
of the complementary regions of a maximal collection T obtained by analyzing the
properties of the disk faces of the graphs of intersection produced by T and a Gabai
meridional planar surface for the knot. The complementary regions of T that are
handlebodies play a crucial role throughout the paper, and we model them by pairs
.H;J / consisting of a genus two handlebody H and a separating circle J � @H which
is nontrivial in H and stands for the longitudinal slope of K , and in particular by
simple pairs, which arise from boundary compressing an incompressible separating
once-punctured torus in a genus two handlebody. The basic properties of pairs needed
in the proof of Lemma 4.3 are presented earlier in Section 3.

In the case of a collection T with exactly 6 components we have that all complementary
regions are genus two handlebodies; disposing of this case requires a detailed analysis
of how these complementary regions fit together to form a knot exterior in S3 , and to
this end we further develop the properties of pairs in Section 6, along with some useful
properties of once- and twice-punctured tori in knot exteriors given in Section 5 and
aimed at distinguishing satellite knots.

In Section 6.1 we show that any simple pair identifies a unique “core knot” of its
handlebody. The results of Sections 5 and 6 along with the classification of hyperbolic
knots with nonintegral toroidal surgeries — see Gordon and Luecke [9] — are then used
to establish a mechanism in Section 7.1 by which the “core knot” of a simple pair
complementary region of T can be identified as a hyperbolic Eudave–Muñoz knot,
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whose surgery properties lead to the construction in Section 7.2 of genus two Heegaard
splittings of S3 associated to any 6–component collection T �XK , with the knot K

embedded as a separating circle in the corresponding genus two Heegaard surface. The
picture obtained at this point is that of each complementary region of T being a simple
pair, with the collection of associated core knots “orbiting” around the knot K (see
Figure 12).

These Heegaard splittings are translated in Section 7.3 into Heegaard diagrams and
further into presentations of the fundamental group of the 3–manifold corresponding
to each splitting. Two nonequivalent families of Heegaard diagrams are obtained and
discussed in detail in Sections 7.4 and 7.5. A theorem of T Kaneto [15] on the structure
of the relators of a group presentation of �1.S

3/ obtained from a genus two Heegaard
diagram provides the final contradiction that proves Theorem 1 at the end of Section 7.5.

Section 8 is devoted to the construction of the family of genus one hyperbolic knots
K.1/.p1; q1;p3; ı3;p6; q6/�S3 with exterior containing a 5–component collection T

and the proof of Theorem 2. These examples are constructed by adapting some of
the Heegaard splittings obtained in Section 7 so as to produce the manifold S3 and
using a criterion from Lemma 8.1 to establish their hyperbolicity, a strategy that also
allows the construction of examples of hyperbolic knots with maximal 4–component
collections T.

Interestingly, for the examples of knots where T has 5 components, in Lemma 8.3 we
prove that the “core knot” of at least one of the complementary regions is a hyperbolic
Eudave–Muñoz knot, while conversely E Ramírez-Losada (personal communication)
has independently constructed infinite families of hyperbolic knots that bound 5 genus
one Seifert surfaces starting from a tangle decomposition whose double branched cover
is a hyperbolic Eudave–Muñoz knot.

Acknowledgements

The author is grateful to E Ramírez-Losada for bringing Tsutsumi’s paper [19] to
his attention and for many helpful discussions, and to the referees for their many
suggestions which greatly improved the original text.

2 Preliminaries

We work in the PL category. Standard definitions, constructions and results of 3–
manifold topology can be found in [10; 11], and information on JSJ decompositions of

Algebraic & Geometric Topology, Volume 19 (2019)



Seifert surfaces for genus one hyperbolic knots in the 3–sphere 2155

3–manifolds in [11; 13; 14]. If A is a set or a space then jAj denotes its cardinality or
the number of its connected components.

Unless otherwise stated, all manifolds are assumed to be compact and orientable, and
submanifolds to be properly embedded. If A is a submanifold of a manifold M then
N.A/, int.A/, cl.A/ and fr.A/ denote its regular neighborhood, interior, closure and
frontier in M, respectively; the components of @A are denoted by @1A; @2A; : : : ; @kA.
Any two submanifolds can be isotoped so as to intersect minimally, that is, transversely
and in the smallest possible number of components.

For circles ˛ and ˇ in a surface S, ˛ is nontrivial if it does not bound a disk in the
surface, the isotopy class of ˛ in the surface is called its slope (relative to the surface),
�.˛; ˇ/ denotes their minimal geometric intersection number and ˛ �ˇ their integral
algebraic intersection number whenever the surface S is orientable.

Let S be a surface in a 3–manifold M which is not a disk or 2–sphere. The surface S

is compressible if some nontrivial circle in S bounds a disk in M, called a compression
disk for S ; otherwise S is incompressible. Such a surface S is boundary compressible
in M if there is an arc ˛ in S which is not boundary parallel and an arc ˇ in @M
with ˇ\S D @˛ and not parallel in @M into @S such that the circle ˛[ˇ bounds
a disk in M with interior disjoint from S ; otherwise S is boundary incompressible.
The surface S is essential in M if it is incompressible, boundary incompressible and
not parallel to any component of @M.

A 3–manifold M is irreducible if every 2–sphere in M bounds a 3–ball, and bound-
ary irreducible if @M is an incompressible surface in M ; M is atoroidal if any
incompressible torus in M is parallel to @M, and toroidal otherwise. For ƒ � @M
a 1–submanifold, M.ƒ/ denotes the 3–manifold obtained by attaching 2–handles
to M along the components of ƒ and capping off any resulting 2–sphere boundary
components with 3–balls. If S is a surface in M with @S ¤∅, yS denotes the surface
in M.@S/ obtained by capping off the circles @S with disjoint disks in M.@S/. We
denote by M jS the manifold clŒM nN.S/��M obtained by cutting M along S.

If K � S3 is a knot with exterior XK � S3 then the slopes in @XK correspond
homologically to circles in @XK of the form p�C q�, where p; q 2 Z are relatively
prime integers and � and � are a standard meridian–longitude pair of K ; we also say
that p�Cq� has slope p=q 2Qtf1g, with 1 corresponding to the slope 1=0 of �;
thus a slope r � @XK is integral if and only if �.r; �/D 1. The knot K is simple if
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its exterior XK is atoroidal, and a satellite knot otherwise; by [17] a simple knot is
either a torus knot or a hyperbolic knot.

S.n1; : : : ; nk/ denotes a Seifert fiber space over the surface S with k � 1 singular
fibers of indices ni � 2. Usually S will be the 2–sphere S2 , the disk D2 or the
annulus A2 . We write S.�; : : : ;�/ when the specific values of the ni are not relevant.
We use Lp , with p � 0, to denote a lens space with fundamental group Z=pZ, so
L0 D S1 �S2 and L1 D S3 .

2.1 Graphs of intersection

Let M be an irreducible 3–manifold with boundary and P and Q compact surfaces
(orientable or not) properly embedded in M. After isotoping P in M so as to intersect
Q minimally, each component of @P intersects each component of @Q minimally
in @M and no circle component of P \Q is trivial in both P and Q.

We call GP D P \Q� P and GQ D P \Q�Q the graphs of intersection between
P and Q, where we take the boundary circles of, say, P, as the fat vertices of GP and
the arc components of P \Q as the edges of GP .

If F is a face of GP then each boundary component of F which is not a circle in P\Q

is an alternating union of edges of GP and arcs in @M ; F is a k –sided face if its
boundary contains a total of k edges.

A disk face D of GP is trivial if it is 1–sided. An edge of GP is trivial if it is part of
a trivial disk face of GP , and essential otherwise. The graph GP is essential if it has
no trivial edges.

The faces of the graphs of GP and GQ can be used to find information about the
complementary regions of P or Q in M ; we have for instance the following well-
known facts:

Lemma 2.1 (1) If P is boundary incompressible then the graph GQ is essential.

(2) If P is incompressible then any circle component of P \Q is nontrivial in Q.

(3) Suppose that P is a separating surface. Let R be the closure of some component
of M nP and D a k –sided disk face of GQ properly embedded in R. If the
graph GP is essential then @D intersects @P � @R minimally in 2k points; in
particular , D is a compression disk for @R in R.
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2.2 Essential surfaces in knot exteriors

Let K be a nontrivial knot in S3 and P an essential surface (not necessarily orientable
nor connected) in the exterior XK � S3 of K with boundary slope r ¤ �, where
�� @XK is the meridional slope of K .

In this context, using thin position, D Gabai proved in [7] the following result:

Lemma 2.2 [7, Lemma 4.4] There is a planar surface Q � XK with meridional
boundary slope which intersects P minimally so that each arc component of P \Q is
essential in P and Q and each circle component of P \Q is essential in Q.

We call the surface Q in the above lemma a Gabai meridional planar surface for P.

2.3 Planar graphs

A planar graph is a graph in a many-punctured 2–sphere Q� S2 .

Let G be a planar graph consisting of a set V of vertices and a set E of edges.
For convenience, we also denote by V and E the cardinalities of the sets V and E,
respectively, and by d the number of disk faces of G ; we thus have the Euler relation
E � V C d � 2.

A bigon is a 2–sided disk face of G. A graph without bigons is called reduced.
We denote by G the reduced graph of G obtained by amalgamating each maximal
collection of mutually parallel edges of G into a single edge. Thus each edge xe of G

corresponds to some collection of mutually parallel edges e1; : : : ; ek of G, in which
case we say that xe has size jxej D k .

Following [21], we will say that a component � of G is extremal if � is contained in
a disk D � S2 which is disjoint from G n� , and that a vertex v is an interior vertex of
the extremal component � if v is a vertex in � and there is no arc in D that connects
v to @D and whose interior is disjoint from � . Notice that any graph G has at least
one extremal component, and that any face of G which is incident to an interior vertex
of an extremal component is a disk.

Lemma 2.3 If G is a reduced essential planar graph such that each vertex has degree
at least 3 then

(1) any extremal component of G has at least one interior vertex,

(2) if no disk face of G is 3–sided or 5–sided then G has vertices of degree 3 and
4–sided disk faces.
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Proof Part (1) is the content of [21, Lemma 3.2]. For part (2), let k be the smallest
degree of the vertices of G and l the smallest number of edges around a disk face of G.
By hypothesis we have that k � 3 and l D 4 or l � 6, and from Euler’s relation for G

that kV �2E�2VC2d�4 and ld �2E�2VC2d�4. Therefore .k�2/V <2d and
.l�2/d < 2V , which implies that .k�2/.l�2/< 4 and hence that kD 3 and l D 4.

3 Genus two handlebodies and pairs

In this section we present several properties of circles in the boundary of a genus two
solid handlebody H and their relations to annuli and once-punctured tori in H, and
introduce the notion of a pair .H;J /.

3.1 Companion annuli and power circles in genus two handlebodies

Let M be a 3–manifold with boundary and 
 � @M a circle which is nontrivial in M.
We say that a separating annulus A properly embedded in M is a companion annulus
of 
 if A is not parallel into @M and the circle components of @A cobound an annulus
A
 � @M with core isotopic to 
 in @M. If the region cobounded by A and A
 in M

is a solid torus V , we say that V is a companion solid torus of 
 in M and denote the
components of M jA by MA and V .

The following result gives conditions for the uniqueness in M of circles in @M that
have companion annuli:

Lemma 3.1 Let M be an irreducible 3–manifold with boundary and 
 � @M a
separating circle that is nontrivial in M such that @M D T1[
 F, where T1 � @M is
a once-punctured torus. Then T1 is incompressible in M and there is, up to isotopy, at
most one circle in T1 which has a companion annulus in M.

Proof Any compression of T1 in M yields a disk in M bounded by 
 , contradicting
the nontriviality of the circle 
 ; therefore T1 is incompressible in M.

Suppose that a and b are nontrivial circles in T1 with incompressible companion
annuli A;B �H, respectively. Isotope A and B so as to intersect minimally, keeping
@.A[B/� T1 , and suppose that @A\ @B ¤∅. Since T1 is a once-punctured torus,
each component @iA intersects each component @j B in �.@iA; @j B/D j@iA � @j Bj

points; therefore the parity rule in [16, Lemma 2.2] applies and so any arc of A\B
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has opposite parities with respect to A and B. In particular, some arc c of A\B is
positive in, say, A, and negative in B ; thus c is boundary parallel in A, essential in B,
and may be assumed to be outermost in A, hence to cobound with @A a boundary
compression disk D�A for B. Boundary compressing B along D produces a disk E

properly embedded in M with @E � T1 a nontrivial (separating) circle, contradicting
the incompressibility of T1 . Therefore @A and @B are disjoint in T1 , so a and b are
isotopic in T1 .

We now show that each boundary component of an “essential” annulus in a handlebody
is always a nonseparating circle.

Lemma 3.2 If H is a handlebody of genus at least two and A � H is an incom-
pressible and not boundary parallel annulus then there is a nontrivial disk E � H

disjoint from A, with A and E both separating or both nonseparating in H and each
component of @A a nonseparating circle in @H.

Proof Boundary compressing the annulus A in H yields a properly embedded
nontrivial disk E �H homologous to A which can be isotoped away from A. Thus
A and E are both separating or both nonseparating in H and A is isotopic to an
annulus constructed by adding a band in @H to E along some arc ˛ � @H with both
endpoints on the same side of @E and otherwise disjoint and not parallel into @E,
so the disk E must be nontrivial in H. As H has genus at least 2, there is a circle
ˇ � @H n @E which intersects ˛ minimally in one point, which implies that each
boundary component of @A is a nonseparating circle in @H.

Let 
; 
 0 � @H be mutually disjoint and nonparallel circles. We say that

� 
 is a primitive circle in H if 
 represents a primitive element in the free group
�1.H /; geometrically, this is equivalent to the presence of a disk in H which
intersects 
 minimally in one point;

� 
 is a power circle in H if 
 represents a nontrivial power in �1.H /, that is, if

 represents a power p � 2 of some nontrivial element in �1.H / (eg the circle
L in the handlebody H1 of Figure 5, left);

� 
; 
 0 � @H are coannular if they cobound an annulus in H, and separated if
there is a separating nontrivial disk (a waist disk) in H separating 
 and 
 0 ;
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� 
; 
 0 � @H are basic circles in H if they represent a basis of the group �1.H /

(relative to some basepoint), in which case, by the 2–handle addition theorem
[12; 2] applied to 
 0 � @H n 
 , 
 and 
 0 must be separated circles (eg the
circles !0

1
and !3 in the handlebody R2;3 of Figure 16, top).

The concepts above are related to Casson and Gordon’s discussion in [2] of roots in the
fundamental group of a compression body. The following lemmas present the results
we need here in the context of genus two handlebodies and through the properties of
companion annuli, which will become increasingly relevant in the sequel.

Lemma 3.3 Let H be a genus two handlebody and 
 �@H a circle which is nontrivial
in H. Then

(1) the surface @H n 
 compresses in H if and only if 
 is a primitive or a power
circle in H, in which case

(a) @H n 
 compresses along a waist disk Dw � H which cuts H into two
solid tori V;V 0 �H with 
 � @V ,

(b) @H n 
 compresses along a nonseparating disk in H, which is unique up to
isotopy;

(2) 
 has a companion annulus in H if and only if 
 is a power circle in H, in
which case 
 represents a nontrivial power of some primitive element of �1.H /;
more precisely,

(a) the companion annulus A of 
 is unique up to isotopy and cobounds with
@H a companion solid torus of 
 , of whose core 
 represents a nontrivial
power in �1.H /,

(b) H jA consists of a genus two handlebody HA and a solid torus , and the core
of A is a primitive circle in HA .

Proof That @H n 
 compresses in H if and only if 
 is a primitive or a power circle
in H, and that 
 has a companion annulus in H if and only if 
 is a power circle
in H, follow from [20, Lemma 5.2].

Suppose that D�H is a compression disk for @Hn
 . If @D�@Hn
 is a nonseparating
circle then there is a circle ˛ � @H n 
 which intersects @D transversely in one point,
hence D is nonseparating and the waist disk Dw D fr N.D[˛/�H is a compression
disk for @H n 
 which cuts H into two solid tori V;V 0 � H with, say, 
 � V , so
(1)(a) and the first part of (2) hold.
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If @D � @H n 
 is a separating circle then we can take Dw D D as the waist disk
for H in the above argument, so that H D V [Dw

V 0 with 
 � @V , whence @H n 

compresses along some meridian disk D0 of the solid torus V 0, which is nonseparating
in H. It is not hard to see that D0 is unique in H up to isotopy, so (1)(b) holds.

In (2), any companion annulus A of 
 can be isotoped away from D0 and into the
solid torus H jD0 , so the uniqueness of A and the fact that it cobounds with @H a
companion solid torus of 
 follow from the uniqueness of D0. Since H D V [Dw

V 0

and 
 � @V , A may also be isotoped in H away from Dw so that A � V runs
p � 2 times around V , whence 
 represents the pth power of the core circle of V ,
which is primitive in �1.H /. We also have the decomposition V jAD V1[A V2 for
some solid tori V1;V2 � V with 
 � V1 and A � @V2 running once around V2 ; as
HA D V2[Dw

V 0, it follows that HA is a genus two handlebody and that the core of
A� @V2 is isotopic to the core of V2 , which is primitive in HA . Therefore (2) holds.

In light of Lemma 3.3(2),

� we will say that a circle 
 � @H is a power p circle for some integer p � 2 if

 is a power circle in H that represents the power p of some primitive element
of �1.H /, or, equivalently, if 
 runs p times around its companion solid torus
in H ;

� we extend this notation so that a circle 
 � @H is a power p D 1 circle if and
only if 
 is a primitive circle in H.

Regarding separated or coannular circles we have the following result:

Lemma 3.4 Let 
; 
 0 � @H be disjoint and nonparallel circles in @H which are
nontrivial in a genus two handlebody H, and let S D @H n .
 [
 0/� @H. Then S has
at most one compression disk in H up to isotopy , and the following conditions hold :

(1) The surface S compresses in H along a separating disk if and only if 
 and 
 0

are separated in H, in which case each circle 
 and 
 0 is a primitive or power
circle in H.

(2) The surface S compresses in H along a nonseparating disk if and only if 
 and

 0 are coannular circles in H, in which case 
 and 
 0 are both primitive or both
power circles in H.

(3) If 
 is a primitive or power circle and 
 0 is a power circle then S compresses
in H along a separating disk.
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(4) If 
 and 
 0 are coannular in H and D is the nonseparating compression disk
for S, then

(a) up to isotopy, the annulus bounded by 
 t 
 0 is unique in H when 
 is a
primitive circle, and there are exactly two such annuli when 
 is a power
circle;

(b) if 
 is a power circle with companion annulus B � H then B can be
isotoped into H jD, in which case 
 0 and the core circle 
B of B are
coannular and primitive in the genus two handlebody HB �H jB.

Proof If the circles 
 and 
 0 are separated by a waist disk D � H then D is a
compression disk for S in H. If 
 and 
 0 cobound an annulus A � H then, by
Lemma 3.2, each circle 
 and 
 0 is nonseparating in @H, so A is nonseparating and
there is a nonseparating disk E �H disjoint from A, which is then a compression
disk for S. In either case the surfaces @H n 
 and @H n 
 0 compress in H and so by
Lemma 3.3 each circle 
 and 
 0 is a primitive or a power circle in H, and it is not
hard to see that D and E are unique up to isotopy.

Since the circles 
 and 
 0 are not parallel in @H, if S compresses in H along a
separating disk D �H then 
 and 
 0 are separated by D in H ; thus (2) holds.

If 
 is a primitive or power circle and 
 0 is a power circle in H then, by Lemma 3.3(1),
the surface F D @H n 
 compresses in H and contains 
 0 ; since, by Lemma 3.3(2),
if B0 and V 0 are the companion annulus and solid torus of 
 0 then the manifold
H.
 0/DHB.


0/[ yB0 V
0.
 0/ is a connected sum of a solid torus and a lens space, it

follows by the 2–handle addition theorem that the surface S D F n 
 0 compresses
in H. Thus (3) holds.

Suppose now that there is a nonseparating compression disk D � H for S. Then
H jD is a solid torus with 
 t 
 0 � @.H jD/, so the closures of the components of
@.H jD/ n .
 t 
 0/ are two annuli A and A0 and so 
 and 
 0 are coannular in H jD,
hence in H. Thus (1) holds.

Let A�H be any properly embedded annulus with boundary 
 t 
 0. By Lemma 3.2,
the annulus A is incompressible and nonseparating in H, so S compresses in H along
a unique nonseparating disk D � H disjoint from A; therefore A lies in the solid
torus H jD and hence it is parallel to A or A0 in H jD.

Let p � 1 be the number of times that 
 runs around H jD, so that 
 is a power p

circle in H. If p D 1 then A and A0 are parallel in H jD and so, up to isotopy, A is
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the unique annulus in H cobounded by 
 and 
 0. If p � 2 then A and A0 are not
parallel in H jD and so there are two possible such annuli A.

Now, if p � 2 and B �H is the companion annulus of 
 then B can be isotoped so
as to intersect D minimally and hence, by a standard innermost–outermost intersection
argument, to be disjoint from D. Since the circles 
 and 
 0 are not parallel in @H,
necessarily the core circle 
B of B and 
 0 are not parallel in the genus two handlebody
HB � H jB. Therefore, by Lemma 3.3(2), 
B is a primitive circle in HB , and by
part (2) the circles 
 0 and 
B are coannular in HB . Thus (4) holds.

The following result gives conditions for the manifold obtained by attaching one or
two solid tori to a genus two handlebody to be a handlebody.

Lemma 3.5 Let H be a genus two handlebody and 
; 
 0 � @H a pair of disjoint
circles.

(1) If M DH [
 V is a manifold obtained by gluing a solid torus V to H along
an annular neighborhood A D @H \ @V of 
 such that A runs at least twice
around V , then M is a genus two handlebody if and only if 
 is a primitive
circle in H.

(2) If M D V [
 H [
 0 V
0 is a manifold obtained by gluing solid tori V and V 0 to

H along disjoint annular neighborhoods AD @H \ @V and A0 D @H \ @V 0 of

 and 
 0, respectively, where each annulus A and A0 runs at least twice around
V and V 0, respectively, then M is a genus two handlebody if and only if 
 and

 0 are basic circles in H.

Proof For part (1), if M is a genus two handlebody then by Lemma 3.3 the annulus
A�M is a companion annulus of some power circle in @M, so by Lemma 3.3(2)(b)
the circle 
 is primitive in H. Conversely, if 
 � @H is primitive in H then by
Lemma 3.3 there is a waist disk of H disjoint from 
 which cuts H into solid tori W

and W 0 with 
 �W a circle that runs once around W ; therefore V [A W is a solid
torus, so M D V [A .W [Dw

W 0/D .V [A W /[Dw
W 0 is a genus two handlebody.

For part (2), if M is a genus two handlebody then A and A0 are companion annuli
of some disjoint power circles ˛ and ˛0 in @M, respectively; since A and A0 are
disjoint, by [20, Lemma 5.1] the circles ˛ and ˛0 are not mutually parallel in @M.
Therefore, by Lemma 3.4(1), (3), the circles ˛ and ˛0 are separated in M by some
waist disk D �M, which can be isotoped in M to be disjoint from AtA0 to become
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a separating disk for 
; 
 0 � @H. The argument for part (1) now shows that 
 and 
 0

are primitive and hence basic circles in H. The converse follows in a similar way.

3.2 Pairs

A pair .H;J / consists of a genus two handlebody H and a separating circle J � @H

which is nontrivial in H. If .H;J / is a pair then the closures T1 and T2 of the
components of @HnJ are once-punctured tori with @T1DJ D@T2 and @H DT1[J T2 .

A pair .H;J / is

� trivial if it is homeomorphic to the pair .T1�I; @T1�f0g/ with T1 corresponding
to T1 � f0g;

� minimal if any once-punctured torus T in H with @T D J is parallel to T1

or T2 , so in particular any trivial pair is minimal;

� if !i � Ti is a power circle in H with companion annulus Ai � H, where
the circles @Ai cobound an annulus A0i � Ti , then isotoping .Ti nA0i/[Ai

slightly off Ti produces a once-punctured torus T 0i properly embedded in H

with @T 0i D J, and we say that T 0i is the once-punctured torus in H induced by
the power circle !i .

The next result establishes the uniqueness of power circles in a couple of related
situations.

Lemma 3.6 Let H be a genus two handlebody and 
 � @H a nontrivial circle in H.

(1) If 
 separates @H into once-punctured tori T1 and T2 , then each Ti is incom-
pressible in H and contains, up to isotopy, at most one power circle.

(2) If the circle 
 is nonseparating in @H and neither a primitive nor power circle
in H then any two circles in @H n 
 which are power circles in H are isotopic
in the torus @H.
 /.

Proof Part (1) follows from Lemma 3.1. For part (2), by Lemma 3.3(1) the surface
@H n 
 is incompressible in H, hence by the 2–handle addition theorem the manifold
H.
 / is irreducible with incompressible torus boundary. So if a; b � @H n 
 are any
power circles in H with corresponding companion annuli A;B �H then the annuli
A and B are essential in H.
 / and so, by an argument similar to the one used in the
proof of Lemma 3.1, their minimal intersection A\B must be empty, whence a and b

are isotopic in @H.
 /.
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It follows from Lemma 3.6(1) that the once-punctured torus induced by a power circle
in Ti � @H is unique up to isotopy. We will say that a pair .H;J / is simple if, for
some fi; j g D f1; 2g, Tj is parallel in H to the once-punctured torus induced by some
power circle in Ti .

We will see below that the pair .H;J / in Figure 9, top, is simple.

The next result establishes several basic facts about pairs.

Lemma 3.7 Let .H;J / be a pair with @HDT1[J T2 and T �H any once-punctured
torus with @T D J. Then

(1) H.J / is an irreducible manifold with incompressible boundary yT1 t
yT2 ;

(2) T is incompressible and separates H into two components whose closure are
genus two handlebodies H1 and H2 with @Hi D T [J Ti ;

(3) T boundary compresses in H towards some Ti , in which case the pair .Hi ;J /

is either trivial or simple;

(4) the pair .H;J / is trivial if and only if H.J /� yT1 � I.

Proof By Lemma 3.6, T1 and T2 are incompressible in H and hence (1) holds by
the 2–handle addition theorem. Similarly, T is incompressible in H. Since H can be
embedded in S3 , the closed surface T [T1 is orientable and separates S3 , hence T

separates H into two components whose closures H1;H2�H satisfy H DH1[T H2 .
That H1 and H2 are handlebodies follows now as in [19, Lemma 2.3].

Suppose now for definiteness that T boundary compresses in H towards T1 . Then
T boundary compresses into an annulus A�H with @A nonseparating circles in T1

that cobound an annulus A1 � T1 . The once-punctured torus T can be recovered by
adding a band to the annulus A along an arc in T1 with one endpoint in @1A and the
other in @2A, that is, T is parallel in H to the once-punctured torus .T1 nA1/[A.
If A is parallel to A1 then T is parallel to T1 , so H1 � T1 � I and hence the pair
.H1;J / is trivial. If A is not parallel to A1 then A is a companion annulus of the
core circle !1 of A1 , in which case, by Lemma 3.3(2), the circle !1 is a power p � 2

circle in H, which implies that T is parallel in H1 to the once-punctured torus in H1

induced by the power circle !1 � T1 . Thus (3) holds.

For part (4), if H.J / is homeomorphic to yT1�I then J is the boundary of the cocore
disk for some tunnel arc t of yT1 � I. As H is a handlebody, by [6, Lemma 1.1] the
arc t is isotopic in yT1� I to a vertical arc fxg� I and so .H;J / is homeomorphic to
the trivial pair .T1 � I; @T1/. The converse follows by definition of trivial pair.
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J

D1


1


2

Dw

D2

F � I

Figure 1: The genus two handlebody F � I.

We now construct a special family of pairs described in [19, Section 4]. Let F

be a once-punctured torus and ˛1; ˛2 � F properly embedded circles that intersect
transversely in one point. The manifold F � I is a genus 2 handlebody with boundary
.F � f0g/ [ ..@F / � I/ [ .F � f1g/, and the circles 
1 D ˛1 � f0g � F � f0g and

2 D ˛2 � f1g � F � f1g form a basis of the rank two free group �1.F � I/. We
denote by J the separating circle .@F /�

˚
1
2

	
� @.F � I/. Figure 1 shows the 4–tuple

.F � I;J; 
1; 
2/ up to homeomorphism.

Let H be the manifold obtained by gluing solid tori V1 and V2 to F �I along annular
regular neighborhoods of the circles 
1 and 
2 , respectively, so that 
i is the fiber of a
fibration of type .ai ;pi/ in Vi for some pi � 1 (whence 
i runs pi times around Vi ).
By Lemma 3.5(2), H is a genus two handlebody.

We will call a pair .H;J / constructed as above a pair of type .a1;p1I a2;p2/, or in
short of type .p1;p2/; clearly, any pair of type .p1;p2/ is also of type .p2;p1/.

Remarks 3.8 (1) A pair is trivial if and only if it is of type .1; 1/.

(2) A pair is simple if and only if it is of type .p; 1/ or .1;p/ for some p � 2 (see
Figure 9, top).

For, if .H;J / is a .p; 1/ pair with H D .F � I/[V1 and J D .@F /�
˚

1
2

	
as

above, then the core !1 � T1 of the annulus @V1 n .F � f0g/ is a power p � 2

circle in H with companion annulus @V1\ .F � f0g/; thus the once-punctured
torus T 0

1
induced by !1 � T1 in H can be identified with F � f0g, which is

parallel to T2DF �f1g in H, whence the pair .H;J / is simple. Conversely, if
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.H;J / is simple then we may assume that there is a circle !1 � T1 which is a
power p � 2 circle in H, with companion annulus A�H and companion solid
torus V �H, such that T2 is parallel in H to the once-punctured torus T 0

1
�H

induced by !1 . Thus the region in H cobounded by T 0
1

and T2 is homeomorphic
to T2� Œ0; 1�, with T2 corresponding to T2�f0g, T 0

1
to T2�f1g, and J to the

circle .@T2/�f0g; as H is homeomorphic to the handlebody obtained by adding
the companion solid torus V of !1 to the core of the annulus A� T2 �f1g, by
definition .H;J / is a .p; 1/ pair.

(3) A pair of type .p1;p2/ with p1;p2 � 2 will be called a double pair.

The following result summarizes the content of Lemmas 4.2, 4.3 and 4.4 of [19].

Lemma 3.9 [19] For any pair .H;J /,

(1) if .H;J / is simple then it is minimal ;

(2) H contains at most two once-punctured tori with boundary slope J which are
mutually disjoint and nonparallel , and not parallel into @H.

In light of Lemma 3.9, we will say that a pair .H;J / is maximal if H contains two
disjoint, mutually nonparallel once-punctured tori T 0

1
;T 0

2
�H with boundary slope J

which are not parallel to T1 or T2 .

In such a case, by Lemma 3.7, T 0
1
[T 0

2
cuts H into handlebodies H0 , H1 and H2 with

@H0 D T 0
1
[T 0

2
and H DH1[T 0

1
H0[T 0

2
H2 . The following result is an immediate

consequence of Lemmas 3.7(3) and 3.9(1).

Corollary 3.10 If .H;J / is a maximal pair with H DH1[T 0
1

H0[T 0
2

H2 then the
pairs .H1;J / and .H2;J / are simple.

The construction of maximal pairs will be discussed in more detail in Remarks 7.7.
The last result of this section provides a useful classification of trivial or simple pairs.

Lemma 3.11 A pair .H;J / is of type .1;p/ for some p � 1 if and only if there is a
disk in H which intersects J minimally in 2 points.

Proof Suppose that .H;J / is a .1;p/ pair obtained from the pair .F � I;J / in
Figure 1 by gluing a solid torus V2 along the circle 
2 � @.F � I/, so that 
2 runs p
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T1

ˇ1

ı1

J

ˇ2

@H

˛1 ˛2

T2

Figure 2: The circle ı1 � T1 .

times around V2 . Then the disk D1 � F � I shown in Figure 1 is properly embedded
in H and intersects J � @H minimally in 2 points.

Conversely, suppose D �H is a nontrivial disk which intersects J � @H minimally
in 2 points, and let @H D T1 [J T2 . Then, for each i D 1; 2, ˛i D Ti \ @D is a
nontrivial — hence nonseparating — arc in Ti , and so D is a nonseparating disk in H.

Let ˇi be the core circle of the annulus obtained by cutting Ti along the arc ˛i � Ti .
Then ˇ1 and ˇ2 are disjoint from the circle @D D ˛1[˛2 , and hence from D, so by
Lemma 3.4 the circles ˇ1 and ˇ2 are coannular power p � 1 circles in H. We also
let ı1 � T1 be any circle that intersects the arc ˛1 � T1 and the circle ˇ1 � T1 each
transversely in one point, so that ı1 is primitive in H. The situation is represented in
Figure 2.

If p � 2 then by Lemma 3.4(4) the power circle ˇ2 has a companion annulus B �H

and companion solid torus VB �H disjoint from D, with core circle ˇ0
2
�B such that

ˇ0
2

and ˇ1 are coannular and primitive circles in the genus two handlebody HB �H jB.

If p � 2, we let H 0 DHB , and, if p D 1, we set H 0 DH. Thus H 0 is a genus two
handlebody with J; ˇ1; ˇ

0
2
; ı1 � @H

0 and D �H 0, where D intersects J minimally
in two points and is disjoint from the coannular primitive circles ˇ1; ˇ

0
2
� @H 0.

Now, the disk D0D fr N.ı1[D/�H 0 is a waist disk of H 0 that separates the primitive
circles ı1; ˇ02 � @H

0 and intersects J � @H 0 minimally in 4 points. Therefore the
4–tuple .H 0;J; ı1; ˇ02/ is homeomorphic to the 4–tuple .F �I;J; 
1; 
2/ of Figure 1;
since H DH 0 for pD 1 and H DH 0[B VB for p� 2, it follows that the pair .H;J /
is of type .1;p/.
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N.K/ T1

T2

Ti

TiC1

R1;2

Ri;iC1

Tn

Rn;1

�

Figure 3: The once-punctured tori Ti �XK .

4 Genus one hyperbolic knots in S3

In this section we assume that K � S3 is a genus one hyperbolic knot and T D

T1 t � � � t TN a collection of N D jT j � 1 mutually disjoint and nonparallel once-
punctured tori properly embedded in XK with boundary slope the longitude J of K ,
where the Ti are labeled consecutively around @N.K/ following some fixed orientation
of the meridian slope �� @N.K/, as in Figure 3.

4.1 Complementary regions of T �XK

For any 1� i; j �N with i ¤ j denote by Ri;j �XK the region cobounded by Ti

and Tj that contains the oriented arc of � with �\@Ti as initial point and �\@Tj as
terminal point (see Figure 3), so that Ri;j \Rj ;i DTitTj and XK DRi;j [Rj ;i . For
i D j we let Ri;i D clŒXK nN.Ti/� be the manifold obtained by cutting XK along Ti .

Since the surface T is essential in XK , by Lemma 2.2 there is a Gabai meridional planar
surface Q for T which intersects T minimally in essential graphs GQ DQ\T �Q

and GT DQ\T � T such that each circle component of Q\T is essential in Q.
We denote the subgraph Q\ .Ti1

t � � � tTik
/�Q of GQ by G

i1;:::;ik

Q
.

The next result establishes connections between properties of the graph GQ and the
regions Ri;j .
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Lemma 4.1 Each boundary cycle of any face of GQ has an even number of edges,
and for any i and j either Ri;j is a genus two handlebody or an atoroidal irreducible
and boundary irreducible manifold. In particular , the following regions are genus two
handlebodies:

(1) at least one of the regions Ri;j or Rj ;i for any i ¤ j ;

(2) any region Ri;j that contains a disk face of G
i;j
Q

(with i D j allowed);

(3) any region Ri;iC1 if GQ is connected or each vertex of GQ has degree at
least 3, and if some region Ri;iC1 is not a handlebody then jT j � 4 and any
other region Rj ;jC1 is a handlebody.

Proof That each boundary cycle of any face of GQ is even-sided follows from the
fact that each component Ti of T has one boundary component. As K is a hyperbolic
knot, its exterior XK � S3 is irreducible and atoroidal, and since Ti and Tj are
incompressible in XK each region Ri;j is irreducible and atoroidal too.

Since the boundary slope J of Ti and Tj is a longitude of K , in S3 the surfaces @Ri;j

and @Rj ;i for i ¤ j or @Ri;i and @N.Ti/ for i D j are mutually parallel and hence
compressible. If, say, @Ri;j compresses in Ri;j then the maximal compression body
W of @Ri;j in Ri;j with @CW D @Ri;j (see [1]) is nontrivial and so either @�W D∅
or @�W is a collection of incompressible closed tori in Ri;j . As Ti and Tj are
incompressible surfaces in XK , any torus component of @�W must be incompressible
in XK , contradicting the hyperbolicity of K ; therefore @�W D∅, so W DRi;j is a
genus two handlebody, and so (1) holds.

Part (2) follows now from Lemma 2.1 and the argument above. If GQ is connected then
all its faces are disks, while if each vertex of the reduced graph GQ has degree at least 3

then by Lemma 2.3 any extremal component of GQ has an interior vertex v0 , whence
all faces of GQ incident to v0 must be disks; in either case we have that necessarily
each region Ri;iC1 contains a disk face of GQ , so the first part of (3) follows from (2),
and the second part is now a consequence of (1) and Lemma 3.9(2).

Lemma 4.2 If for some i ¤ j the region Ri;j contains a bigon disk face of G
i;j
Q

then Ri;j is a handlebody and the pair .Ri;j ;J / is simple. In particular, jxej � 2 for
each edge xe of GQ .

Proof Suppose that D �Ri;j is a bigon face of G
i;j
Q

; in particular, D may be the
bigon disk face D in GQ cobounded by the outermost edges ei � Ti and ej � Tj of
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some edge xe D fei ; eiC1; : : : ; ej g of GQ with jxej � 2. By Lemma 4.1(2) the region
Ri;j is a handlebody and so .Ri;j ;J / is a nontrivial pair, while by Lemma 2.1 the disk
D �Ri;j is nontrivial and intersects @Ti t @Tj minimally in 4 points, and hence J

minimally in two points. Therefore, by Lemma 3.11, the pair .Ri;j ;J / is simple and
hence minimal by Lemma 3.9(1), which in the case of D DD implies that j D i C 1

and hence that jxej D 2.

We now establish a first approximation to Theorem 1.

Lemma 4.3 If K � S3 is a genus one hyperbolic knot and T D T1t � � �tTN �XK

is a collection of N � 1 mutually disjoint and nonparallel once-punctured tori then
N � 6, and if N � 5 then each complementary region Ri;iC1 is a handlebody.

Proof By Lemma 2.2, there is a Gabai meridional planar surface Q � XK for T

which intersects T minimally in essential graphs GQ � Q and GT � T such that
each vertex of the graph GQ has degree N and, by Lemma 4.1, each disk face of GQ ,
and hence of its reduced graph GQ , has an even number of edges around its boundary.
Therefore, by Lemma 4.2, each vertex of GQ has degree at least 1

2
N . If N � 5

then each vertex of GQ has degree at least 3 and so, by Lemma 2.3(2), GQ has a
vertex of degree 3 � 1

2
N , so N � 6, and each region Ri;iC1 is a handlebody by

Lemma 4.1(3).

In the next couple of sections we digress to present the supporting results needed for the
analysis in Section 7 of the case jT j D 6 and the construction in Section 8 of examples
of hyperbolic knots for the cases jT j D 4; 5.

5 Toroidal surfaces in knot exteriors

The results in this section analyze the interaction between once- or twice-punctured tori
in a satellite knot exterior in S3 and the companion annuli of circles in such surfaces,
and will be used in Section 7.1 to establish the connection between hyperbolic knots
in S3 with 6–component collections T and the family of hyperbolic Eudave–Muñoz
knots.

5.1 Once-punctured tori in XK

We extend the definition of companion annulus given in Section 3.1 to include the case
of circles in nonseparating orientable surfaces.

Algebraic & Geometric Topology, Volume 19 (2019)



2172 Luis G Valdez-Sánchez

B
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.@1B/ � I

.@2B/ � I

b
V

K0

Figure 4: The knot K0 as a boundary component of the pair of pants P D

.@B/� I [ b � V .

Let F be a properly embedded orientable surface in the exterior XK of a knot K � S3

and F � Œ�1; 1� a thin regular neighborhood of F in XK with F D F � f0g. A
surface S in XK is said to locally lie on one side of F if @S �F, F \ int.S/D∅ and
either S \ .F � Œ�1; 0//D∅ or S \ .F � .0; 1�/D∅; that is, near @S, S intersects
only one side F � Œ0; 1� or F � Œ�1; 0� of F � Œ�1; 1�.

A companion annulus for a nontrivial circle 
 � F is an annulus A that locally lies on
one side of F and is not parallel into F, with the circles @A isotopic to 
 in F.

Examples of genus one knots K0 � S3 with a once-punctured torus F � XK that
contains a nonseparating circle 
 with companion annuli on either side of F can be
constructed as follows. Let L�S3 be a cable knot with solid torus regular neighborhood
V �S3 and essential annulus B�XLDS3nint.V /. Using a thin regular neighborhood
.@V /� Œ0; 1� � V of @V D .@V /� f0g, extend B slightly into int.V / to an annulus
zB D B [ ..@B/ � Œ0; 1�/. Construct a pair of pants P embedded in V by suitably

attaching a band b � int.V / to the annuli .@B/� Œ0; 1�� V connecting the boundary
circles .@B/�f1g, in such a way that the circles @1P t@2P DP \@V (D @B ), when
oriented relative to P, end up with opposite orientations relative to @V , and the circle
K0 D @3P is nontrivial in V (see Figure 4). It follows that the knot K0 is a satellite
of L with winding number zero in V and F D P [ B is a once-punctured torus
bounded by K0 ; moreover, the core 
 of B is a circle in F with companion annuli
the closures of the components of @V n @B, which lie on either side of F.

In fact, the argument of the next result shows that any such knot K0 � S3 is obtained
in this way.
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Lemma 5.1 Let K � S3 be a genus one knot and F � XK a properly embedded
incompressible once-punctured torus. If there is a nontrivial circle 
 � F which has
companion annuli locally on either side of F then 
 is nonseparating in F and K is a
satellite knot.

Conversely, if an essential torus in XK intersects F minimally in a nonempty collection
of circles then there is a nonseparating circle in F which has companion annuli locally
on either side of F.

Proof Let A and A0 be companion annuli for 
 � F that locally lie on opposite
sides of F. Without loss of generality, we may assume that A and A0 have been
isotoped so as to intersect minimally with the circles @AD @A0 cobounding an annular
neighborhood B � F of 
 . Let V;V 0 � XK be the regions in XK bounded away
from @XK by the closed tori A[B and A0 [B, respectively, and let r denote the
slope of 
 in @V and @V 0.

Suppose that 
 is parallel to @F in F, and consider the companion annulus A of 
 .
Then A can be isotoped in XK so that its boundary lies in @XK , whence A becomes
an essential annulus in XK . It follows that either A is a cabling annulus for K , in
which case XK .@F / has a lens space connected summand, or K is a composite knot
with A a decomposing annulus having meridional boundary slope, neither of which is
the case since @F is a longitude of K . Therefore 
 is not parallel to @F and so 
 is a
nonseparating circle in F.

Recall that F \ int.A/D∅D F \ int.A0/. If A\A0 ¤∅ then each component in a
minimal intersection of A and A0 is a core circle in A and A0 and so it is possible to
construct a closed surface S in XK which intersects F transversely in the circle 
 out
of the annular components of AnA0 and A0nA. As 
 is nonseparating in F, it follows
that S is a nonseparating closed torus or a Klein bottle in XK �S3 , which is impossible.

Therefore A\A0 D∅ and so V \V 0 D∅, hence V [B V 0 is a manifold with torus
boundary which contains B as an essential annulus. Thus V [B V 0 is not a solid torus,
so VL D S3 n int.V [B V 0/ is a solid torus whose core L is a nontrivial knot in S3

with exterior XLD V [B V 0 and N.K/� VL . Since B is an essential annulus in XL ,
the boundary slope r � @XL of B relative to the solid torus VL is either meridional or
integral.

Now, the surface P D F \VL is an incompressible pair of pants in VL with @0P D

@F � @N.K/ and @1P t @2P � @VL oppositely oriented circles of slope r relative
to VL . Thus K has zero winding number in VL and is therefore not a core of VL .
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Suppose K is disjoint from some meridian disk D of VL . If the slope r is meridional
in VL then the circle 
 � F bounds a disk in XK and so F is not �1 –injective
in XK , contradicting the incompressibility of F. Therefore r is an integral slope
in VL , so if D and P are isotoped so as to intersect minimally then an outermost disk
of D \P �D boundary compresses P in VL towards @VL into an annulus whose
boundary component in @VL is a trivial circle; thus @0P D @F bounds a disk in VL ,
so K bounds a disk in VL , contradicting the nontriviality of K in S3 .

It follows that K is a nontrivial knot in the solid torus VL , and hence that K is a
satellite of the nontrivial knot L in S3 .

Conversely, suppose that T is an essential torus in XK which intersects F minimally in
a nonempty collection of circles T \F. Then T \F consists of at most two parallelism
classes of circles in F : a class corresponding to the slope of some nonseparating circle

 � F, and a class of circles parallel to @F.

Since T separates XK , T \F cannot consist of a single copy of the nonseparating
circle 
 in F, hence the closure P of the component of F nT that contains @F is not
equal to F.

Suppose that P is an annulus. If T bounds a solid torus V � S3 with N.K/ � V

and VK D V n int N.K/ is the exterior of K in V , then the annulus P is properly
embedded in VK and so K is a cable of the core of V with @P \ @N.K/ the slope
m=1 in @N.K/ of the cabling annulus of K , where necessarily m¤ 0, contradicting
the fact that @F D @P \ @N.K/ is the longitude of K .

Therefore P is not an annulus, which implies that all circles T \F have slope 
 in F,
and hence that 
 has companion annuli on both sides of F.

5.2 Twice-punctured tori in XK

In this section we assume that K�S3 is a knot whose exterior XK contains a properly
embedded incompressible, separating, twice-punctured torus F with boundary slope
r � @XK such that the closures FB and FW of the components of XK nF are genus
two handlebodies.

We consider the following auxiliary conditions:

(C1) There is a nonseparating circle in F which is a power circle in FB and FW .
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(C2) For some f�;��g D fB;W g there are two mutually disjoint and nonisotopic
nonseparating circles in F which are power circles in F� and primitive and
coannular circles in F�� .

Lemma 5.2 If the knot K�S3 is a satellite then either (C1) or (C2) holds and K is a
satellite of a torus knot, and if (C2) holds then K is a genus one knot and the boundary
slope r of F is the longitude of K .

Proof Let K � S3 be a satellite knot and T � XK an essential closed torus that
bounds a solid torus V � S3 with K � N.K/ � V whose core is a nontrivial knot
with exterior X D S3 n int.V /�XK .

Isotope T so as to intersect F minimally. Since FB and FW are handlebodies, we
must have that T \F ¤∅. By the incompressibility of T and F and the minimality
of T \F, each component of T \F is a circle which is nontrivial in both T and F ;
thus for � 2 fB;W g each component of T \F� is an incompressible annulus in F�

which is not parallel into F.

Suppose A1 is a component of, say, T \FB which is parallel in FB into @FB. By
minimality of T \F, A1 must be parallel in FB to the annulus FB \N.K/, that
is, the circles @1A1 and @2A1 must be parallel in F to the circles @1F and @2F. If
A2 is the component of T \FW with @1A2 D @2A1 then @1A2 is neither a primitive
nor power circle in FW and so, by Lemmas 3.3 and 3.4, A2 is parallel into @FW . By
minimality of T \F, it then follows that T DA1[A2 , hence that T is parallel in XK

to @N.K/, contradicting the hypothesis on T .

Therefore no annulus component of T \ F� is parallel in F� into @F� , so again,
by Lemmas 3.2, 3.3 and 3.4, in @F� each component of T \F is a nonseparating
primitive or power circle in F� , and so in F the circles T \ F form at most two
parallelism classes, neither one parallel to @F.

If some component of T \F is a power circle in both FB and FW then (C1) holds.
If some component 
1 of T \F is not a power circle in, say, FB, then 
1 is primitive
in FB and by Lemma 3.3 it has no companion annulus in FB ; hence the component AB

of T \FB with 
1 � @A
B must be a nonseparating annulus in FB. It follows that

T \F has two parallelism classes in F, represented by the circles @AB D 
1t
2 �F.

Any component AW of T \FW that is a nonseparating annulus in FW can be isotoped
in FW so that @AB D @AW , thus producing a closed Klein bottle or nonseparating
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Figure 5: The .p1;p2/–torus knot L in H1 and V1 (with .p1;p2/D .2; 3/).

torus AB [@ AW �XK � S3 , which is impossible. Therefore T \FW is a union of
a family of disjoint companion annuli for 
1 and another family of disjoint companion
annuli for 
2 . By Lemma 3.3(2), 
1 and 
2 must be power circles in FB and so
(C2) holds. Moreover, in this case the circles @AB D 
1 t 
2 cut the surface F into
two pairs of pants, hence the frontier of N.AB [F / in XK consists of two disjoint
once-punctured tori, each with boundary slope r , and so K is a genus one knot with
longitudinal slope r .

We remark that the converse of Lemma 5.2 holds, that is, if one of the conditions (C1)
or (C2) is satisfied then K is a satellite knot, though we shall not make use of this fact.

Examples of knots K � S3 with such a twice-punctured incompressible torus F �XK

satisfying condition (C1) or (C2) can be constructed, not exhaustively, as follows. We
begin by constructing two distinct genus two Heegaard splittings of S3 associated
to any .p1;p2/–torus knot L � S3 with p1;p2 � 2. Figure 5, left, shows a genus
two handlebody H1 standardly embedded in S3 , which produces a Heegaard splitting
H1 [H2 of S3 , where the knot L is embedded in @H1 in the “bottom-half” solid
torus part of H1 . Thus, for i D 1; 2, L is a power pi circle in Hi .

Figure 5, right, shows the knot L in the boundary of a solid torus V1 which is part
of a genus one Heegaard splitting V1 [V2 of S3 . Let N.L/ � S3 be a thin regular
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neighborhood of L, and for iD1; 2 let 
i be a core of the annulus Vi\@N.L/�@N.L/,
so that 
i runs pi times around Vi . As the arc � � @V1 with endpoints in L shown in
Figure 5, right, is a tunnel for L, the genus two handlebody H1 DN.L[ �/� S3 is
part of a Heegaard splitting H1[H2 of S3 . After a small isotopy if necessary, we may
assume that the circles 
1 t 
2 lie in @H1 D @H2 , whence 
1 and 
2 are coannular
primitive circles in H1 while 
i is a power pi circle in H2 for i D 1; 2.

Clearly, if K is any circle embedded in @H1 nL or @H1 n .
1 t 
2/ which is neither
a primitive nor a power circle in H1 and H2 (any “sufficiently complicated” such
embedding will do), then by Lemma 3.3(1) the knot K and the twice-punctured torus
F D .@H1/\XK satisfy condition (C1) or (C2), respectively.

6 Structure of pairs

We now take a closer look at the structure of pairs. We begin with a classification of
pairs .H;J / of type .p1;p2/, which include all simple and double pairs, in terms of
the number of intersections of J with nontrivial disks in H. Each simple pair .H;J /
is shown to have a distinguished core knot in H, and double pairs are shown to be
obtained as a union of two simple pairs. Basic and primitive pairs are introduced in
order to classify maximal pairs and to discuss properties of more general pairs .H;J /,
including the relationship between primitive, power and Seifert circles in @H nJ. These
properties will be used in later sections in the analysis of knot exteriors in S3 that can
be decomposed as a union of nontrivial pairs.

Lemma 6.1 A pair .H;J / is of type .p1;p2/ for some p1;p2 � 1 if and only if
there is a disk in H which intersects J minimally in 4 points.

Proof Let .H;J / be a pair of type .p1;p2/. By construction, the pair is obtained
by attaching solid tori to the genus two handlebody F � I shown in Figure 1 along
the circles 
1; 
2 � F � I ; clearly the waist disk Dw � F � I shown in Figure 1 lies
in H and intersects J minimally in 4 points.

Conversely, suppose that .H;J / is a pair with @H D T1 [J T2 and E �H is disk
which intersects J minimally in 4 points. Then, for i D 1; 2, Ti \ @E consists of 2

arcs such that either (1) for i D 1; 2, the arcs Ti \@E are parallel in Ti , in which case
E is a separating disk, or (2) for some fi; j g D f1; 2g, the arcs Ti \ @E are parallel
in Ti and the arcs Tj \ @E are nonparallel in Tj , in which case E is a nonseparating
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Figure 6: The unique circle 
2 � T2 with �.
2; @E/D j
2 � @Ej D 2 .

disk. Notice that, by connectedness of @E, the case where the arcs Ti \E are not
parallel in Ti for i D 1; 2 does not occur.

In case (1) E is a waist disk for H. Let 
i � Ti be the unique circle in Ti which is
disjoint from the arcs Ti \ @E. Then the circles 
1 and 
2 are separated in H by E

and so, for each i D 1; 2, 
i is a power pi circle for some pi � 1, which implies that
.H;J / is a pair of type .p1;p2/.

In case (2) we may assume that .i; j /D.1; 2/, and Figure 6 shows the triple .@H;J; @E/
up to homeomorphism. Since the arcs T2\@E are not parallel in T2 , there is a unique
circle 
2 � T2 which intersects the arcs T2 \ @E each minimally in one point with
algebraic intersection number 
2 � @E D˙2 (see Figure 6). If E0 is a disjoint parallel
copy of E and ˛ is any arc component of 
2 n.@E[@E

0/ not in the parallelism region
between E and E0, then E0 D fr N.E [ ˛ [E0/ is a waist disk of H which can
be isotoped so as to intersect J minimally in 4 points and be disjoint from E [ 
2 .
Therefore, by case (1) the pair .H;J / is of type .p1;p2/ for some p1;p2 � 1. In fact,
since E and D form a complete disk system for H , it follows that 
2 is a power 2

circle in H and hence that p2 D 2.

6.1 Cores of simple pairs

The next result classifies simple pairs via power circles and summarizes some of their
properties.

Lemma 6.2 Let .H;J / be a pair with @H D T1[J T2 . Then .H;J / is a simple pair
of type .1;p/ for some p � 2 if and only if the pair .H;J / is minimal and there is a
circle in T1 or T2 which is a power p circle in H, in which case
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(1) there are power p circles !i � Ti which are coannular in H and such that
@H n .!1 t!2/ compresses along a nonseparating disk D �H that intersects
J minimally in 2 points;

(2) any power circle in Ti is isotopic to !i ;

(3) any disk in H which intersects J minimally in 2 points is isotopic to D ;

(4) H.J / D A2.p/ with singular fiber of index p represented by the core K of
the solid torus H jD and regular fibers the circles !i �

yTi � @H.J /; moreover ,
if .H;J / is a simple pair of type .0; 1I a;p/ then there are essential annuli
A1;A2 � H n N.K/ with @1Ai D !i and @2Ai � @N.K/ a circle of type
.a;p/ in N.K/ (see Figure 7);

(5) if a nonseparating circle ˛ � Ti intersects !i and D minimally then j˛\!i j D

j˛\Dj; in particular, ˛ � Ti is primitive in H if and only if j˛\!i j D 1D

j˛\Dj, and if q D j˛\!i j D j˛\Dj then

H.˛/DH.J /.˛/D

8<:
.S1 �D2/ # Lp if q D 0;

S1 �D2 if q D 1;

D2.p; q/ if q � 2:

Proof Suppose that .H;J / is a simple pair of type .1;p/ for some p � 2. Thus
H D .F � I/[V for some once-punctured torus F, where J � @H is the core of the
annulus .@F /�I and V is a solid torus glued to F �I along an annular neighborhood
of some nonseparating circle 
 � F � f0g such that 
 runs p times around V . If

0 � F � f0g nV is a circle parallel to 
 in F � f0g and ı0 � F � f0g is an essential
arc in F �f0g disjoint from V t
0 , then the annulus B D 
0� I � F � I is properly
embedded in H with boundary a pair of coannular power p circles !1 D @1B D


0�f0g�F�f0g�T1 and !2D@2BD
0�f1g�F�f1g�T2 in H, and DD ı0�I

is a nonseparating disk properly embedded in H which intersects J minimally in two
points and is disjoint from !1 t!2 . That !i is the only power circle in Ti follows
from Lemma 3.6, while, by Lemma 3.3(1), the disk D �H is the unique compression
disk for @H n!1 ; thus (1), (2) and (3) hold.

As 
 is a primitive circle in F � I, 
 is also primitive in the solid torus F � I jD

and so the core of V and the core K of the solid torus H jD D .F � I jD/[
 V are
isotopic in H jD �H. From the identity

H.J /D .F � I/.J /[
 V D . yF � I/[
 V
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Figure 7: The core knot K and power circles !1 � T1 and !2 � T2 of a
simple pair .H;J / .

it follows that the manifold H.J / is a Seifert fiber space A2.p/ over the annulus with
singular fiber K �H of index p and regular fibers !i �

yTi and so (4) holds.

Finally, let ˛�T1 be any nonseparating circle, and consider the arc ı1DT1\@D�D.
After isotoping ˛ in T1 so as to intersect !1 [ ı1 � T1 minimally we must have
q D j˛ \ !1j D j˛ \ ı1j D j˛ \Dj. Since J bounds a disk in H.˛/ we have the
identity H.˛/DH.J /.˛/DA2.p/.˛/; therefore,

˛ is primitive in H () H.˛/DA2.p/.˛/ is a solid torus () j˛\!1j D 1;

and the rest of (5) follows in a similar way.

We will call the knot K �H in Lemma 6.2(4) the core of the simple pair .H;J /, and
say that K and the pair .H;J / have index p � 2.

Lemma 6.3 Let .H;J / be a simple pair with @H D T1 [J T2 , core knot K � H,
power circles !1�T1 and !2�T2 , and incompressible annuli A1;A2�H nint N.K/

as shown in Figure 7. Then the solid torus V1 DN.A1/[N.K/�H has core K and
is the companion solid torus of the power circle !1 , and there is a homeomorphism

H 0 D clŒH nV1�D clŒH n .N.A1/[N.K//�� T2 � I

such that T2 �H 0 corresponds to T2�f0g � T2�I and the circle A2\N.K/� @H 0

to !2 � f1g � T2 � f1g.

In particular, if .H�;J�/ is a pair with @H� D T �
1
[J � T �

2
and M DH [T1DT �

1
H�

then M is a handlebody if and only if !1 � T1 D T �
1

is primitive in H� .

Proof V1 D N.A1/ [ N.K/ � H is indeed a solid torus with core K , with the
power p � 2 circle !1 running p times around V1 by Lemma 6.2(4). Therefore
fr.N.A1/ [ N.K// is a companion annulus for !1 in H with companion solid
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torus V1 , both of which are unique up to isotopy in H by Lemma 3.3, and so
the first part follows from the definition of a simple pair. As the homeomorphism
H 0D clŒH n.N.A1/[N.K//��T2�I induces a homeomorphism M �H�[!1

V1 ,
the second part now follows from Lemma 3.5(1).

Lemma 6.4 Let .H;J / be a simple pair with @H D T1[J T2 , core knot K �H of
index p�2, and power circles !1�T1 and !2�T2 . Denote by XHK DHnint N.K/

the exterior of K in H, and by r the slope in @N.K/ corresponding to the circles @2Ai

(see Figure 7).

If ˛1 � T1 and ˛2 � T2 are primitive circles in H, then there is a unique slope
s � @N.K/ such that the circles ˛1 and ˛2 are coannular in the handlebody XHK .s/,
and the following conditions hold :

(1) �.s; r/D 1 and the pair .XHK .s/;J / is trivial.

(2) There is a unique circle s0 � @H n .˛1 t˛2/ which cobounds an annulus A in
XHK with s � @N.K/; s0 intersects each circle !1; !2 � @H minimally in one
point.

(3) The circles ˛1 t˛2 � @H and s � @N.K/ cobound a pair of pants P in XHK

disjoint from the annulus A.

(4) The slope s is integral in N.K/ if and only if ˛1 and ˛2 are basic circles in H

if and only if s0 is a primitive circle in H, in which case each circle ˛1 and ˛2

runs once around the solid torus H.s0/.

Proof By Lemma 6.2 there is a unique disk D �H which intersects J minimally
in two points, is disjoint from !1 t!2 and intersects each primitive circle ˛1 and ˛2

minimally in one point. Thus the frontier Dw of a thin regular neighborhood of ˛1[D

is a waist disk of H which minimally intersects J in 4 points and the circle ˛2 in 2

points.

The waist disk Dw separates H into two solid tori V and V 0 with V \ V 0 D Dw

and D a meridian disk of V . Since the solid tori H jD and V 0 are isotopic in H, the
core knot K of the pair .H;J / can be identified with the core circle of V 0. Therefore
the exterior V 0

K
D V 0 n int N.K/ of K in V 0 is a product of the form .@N.K//� I

and V 0
K
.s/ is a solid torus with @V 0

K
.s/D @V 0 for each slope s � @V 0. In particular

we have that XHK .s/D V [Dw
V 0

K
.s/ is a handlebody, and each slope s � @N.K/
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Figure 8: The circles ˛1 , ˛2 , !1 and !2 in @H and @XHK .s/ .

cobounds an annulus A in V 0
K

with a unique slope s0 � @V 0 nDw , so that s0 bounds a
meridian disk D0s in the solid torus V 0

K
.s/.

We also have that !2 � @V
0 nDw and that t2 D ˛2 \ @V

0 is a single arc which, by
Lemma 6.2(5), intersects !2 minimally in one point. The situation is represented in
Figure 8, top, where for simplicity we have used p D 2 and a specific primitive circle
˛2 � T2 ; the circle ˛1 is not shown in this figure.

For any slope s � @N.K/, as D0s is disjoint from ˛1 , by Lemmas 3.3(1)(b) and 3.4 the
circles ˛1 and ˛2 are coannular in XHK .s/ if and only if D0s is disjoint from ˛2 , that
is, if and only if the circle s0 D @D0s is disjoint from the arc t2 . Since, up to isotopy,
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there is a unique such circle s0 � @V 0 nDw , namely the circle obtained as the union
of t2 and a component of @Dw n t2 , it follows that there is a unique slope s � @N.K/

such that ˛1 and ˛2 are coannular in XHK .s/, in which case �.s; r/ D 1 since
js0\!2j D jt2\!2j D 1, and the corresponding meridian disk D0s � V 0

K
.s/ is disjoint

from ˛2 and intersects !2 minimally in one point; thus D0s intersects J D @N.˛1[!2/

minimally in two points and so the pair .XHK .s/;J / is of type .1; 1/, that is, trivial.
Moreover, the circles ˛1 , ˛2 and s0 are necessarily mutually nonparallel in @H and
hence separate @H into two pairs of pants, so ˛1 , ˛2 and the slope s cobound a pair
of pants P in XHK disjoint from A.

Finally, let D0 be a meridian disk of V 0 which is disjoint from Dw � @V 0 and
intersects ˛2 minimally, and let x;y �H be circles dual to D and D0, respectively,
which represent a basis for �1.H /. Then there is a nonzero integer m such that, in
�1.H /D hx;y j �i, ˛1 D x and ˛2 D xym . It follows from the above construction
(see Figure 8, top) that s0D ym in �1.H /, hence that s runs jmj times around N.K/,
and hence that

the slope s is integral () jmj D 1

() ˛1 and ˛2 are basic circles in H

() s0 is primitive in H;

in which case H.s0/ is a solid torus and the circles ˛1 and ˛2 run once around H.s0/.

6.2 Basic simple pairs and Seifert circles

A pair .H;J / with @H D T1 [J T2 is a basic pair if there are circles ˛1 � T1 and
˛2 � T2 which are basic in H. Any trivial pair is basic, and the next result classifies
the simple pairs that are basic. The construction of general basic pairs will be discussed
in Remarks 7.7.

Lemma 6.5 Let .H;J / be a simple pair of type .0; 1I a;p/ with @H D T1 \J T2

and unique meridian disk D �H with jD\J j D 2. Then .H;J / is a basic pair if and
only if a�˙1 mod p , in which case if ˛1 � T1 is any primitive circle in H then

(1) there is a circle ˛2 � T2 such that ˛1 and ˛2 are basic circles in H ;

(2) up to isotopy in T2 , the circle ˛2 � T2 is unique if p � 3, and there are exactly
2 such circles if p D 2;
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(3) for each pair of basic circles ˛1 � T1 and ˛2 � T2 there is a unique complete
disk system D0, D00 of H disjoint from D such that jD00\˛1j D 1D jD0\˛2j

and jD00\˛2jD0DjD0\˛1j; moreover , the 7–tuple .H;J;D;D0;D00; ˛1; ˛2/

is homeomorphic to the one shown in Figure 9, bottom (where p D 2 is used for
simplicity).

Proof By Lemmas 3.11 and 6.2(3), (5) there is a unique disk D�H which intersects J

minimally in two points such that a circle in T1 or T2 is primitive in H if and only if
it intersects D minimally in one point.

If ˛1�T1 is any primitive circle in H then the frontier Dw of a regular neighborhood of
˛1[D is a waist disk of H which intersects J minimally in 4 points. Therefore the 5–
tuple .@H;J; @D; @Dw; ˛1/ is homeomorphic to the 5–tuple .@.F�I/;J;D1;Dw; 
1/

of Figure 1, which implies that the 5–tuple .H;J;D;Dw; ˛1/ is homeomorphic to
the one shown in Figure 9, top (where p D 2 is used for simplicity).

We construct a circle 
 � T2 which intersects !2 minimally in one point as follows.
The waist disk Dw separates H into two solid tori V and V 0 with V \ V 0 D Dw

and meridian disks D � V nDw and D0 � V 0 nDw such that !2 � @V
0 represents a

circle of type .a;p/ in V 0, RD V \T2 is a rectangle intersected by one arc of @D,
and A0 D V 0\T2 is an annular neighborhood of !2 in T2 .

Let t �A0 be any properly embedded arc with endpoints in @Dw which intersects !2

minimally in one point. Then t along with an arc of @Dw produces a closed circle
yt � @V 0 of type .c; q/ in V 0 for some integers c and q such that jqj D jD0\ t j and
aq�pc D˙1; thus a�˙q�1 mod p .

The union of the arc t with a core arc in the rectangle RD V \T2 which intersects
@D\R minimally in one point produces the desired circle 
 (see Figure 9, bottom).
Since 
 and !2 form a basis for the integral first homology group of T2 , if ˛2 � T2 is
any circle which intersects !2 minimally in one point then, homologically, the identity
˛2 D 
 C n!2 holds in T2 for some integer n.

Therefore, if x and y represent the basis of �1.H / dual to the complete disk system
D;D0 �H, respectively, then, in �1.H /D hx;y j �i, under some orientation scheme,
we can write ˛1D x and ˛2D x � .yp/m �yq D x �ympCq for some m 2Z. Hence ˛1

and ˛2 are basic circles in H if and only if mpC q D˙1, so q �˙1 mod p , and so
a�˙q�1 D˙1 mod p .

Now, there is at most one solution m for each equation mpC q D˙1, and there are
integers m1 and m2 with m1pC q D 1 and m2pC q D�1 if and only if p D 2 and
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Figure 9: A basic simple pair .H;J / of index p D 2 .

q is odd, in which case m1�m2 D 1. Hence ˛2 D 
 Cm!2 is unique up to isotopy
if p � 3, and there are two such circles ˛2 if p D 2.

Since D0 is disjoint from ˛1 , if ˛1 and ˛2 are basic circles in H then, by Lemma
3.3(1)(b), D0 is the unique nonseparating compression disk of @Hn˛1, while jD0\˛2jD

jmpCqj D 1. As jD\˛1j D 1D jD\˛2j, cutting @H along @D[˛2[@D
0 produces

an annulus A � @H which intersects ˛1 minimally in one spanning arc. Thus the
core of A is a circle in @H disjoint from D [ ˛2 [D0 that bounds a nonseparating
disk D00 in H, hence, by Lemma 3.3(1)(b), D00 must be the unique compression disk
for @H n˛2 . Therefore the 7–tuple .H;J;D;D0;D00; ˛1; ˛2/ is homeomorphic to the
one shown in Figure 9, bottom (where pD 2 for simplicity and one of the two possible
circles ˛2 is shown).
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Conversely, if a�˙1 mod p then the 4–tuple .H;J;D;Dw/ is homeomorphic to
the one shown in Figure 9, bottom, and so a circle ˛2 � T2 representing xy˙1 in
�1.H / can be easily constructed, in which case ˛1 D x and ˛2 D xy˙1 are basic
circles in H.

A circle ˛� @H in a genus two handlebody H is a Seifert circle if the manifold H.˛/

is a Seifert fiber space of the form D2.�;�/.

In the following result, we use the structure of the annuli obtained by 2–handle addition
on a 3–manifold given in [4, Theorem 1] in order to characterize the Seifert circles
˛�@H in terms of properties of the surface @Hn˛ or the pair .H; ˛/. Its statement uses
the concept of a primitive pair .H;J /, a nontrivial pair that contains a nonseparating
annulus whose boundary components are primitive circles in H separated by J ; the
properties of primitive pairs will be developed in Section 6.4.

Lemma 6.6 Let H be a genus two handlebody and ˛ � @H a circle such that @H n˛
is incompressible in H. If H.˛/ contains an essential annulus A0 with @A0 � @H n˛
then one of the following conditions holds:

(1) there is a circle in @H n˛ which is a power circle in H (necessarily , its compan-
ion annulus is essential in H.˛/),

(2) ˛ separates @H and the pair .H; ˛/ is trivial or primitive ,

(3) ˛ is nonseparating in @H and H.˛ t @A0/DLp for some p ¤ 1.

Proof If H.˛/ contains an essential annulus A0 then, by [4, Theorem 1] and Remark
(d) after its statement, there is an essential annulus A � H.˛/ satisfying condition
(a) or (b) of that theorem whose boundary is parallel in @H to one or both of the
components of @A0.

Suppose first that part (a) of [4, Theorem 1] holds, that is, the annulus A lies in H

with @A�H n˛ , which by [4, Theorem 1] is the case if ˛ separates @H. Necessarily
A is incompressible and not boundary parallel in H, so by Lemma 3.2 each component
of @A is a nonseparating circle in @H, and by Lemmas 3.3(2) and 3.4 both components
of @A are primitive or both are power circles in H. In the latter case, (1) holds, so
assume that the circles @A are primitive in H. Since A is not boundary parallel in H, by
Lemma 3.3(2) A must be a nonseparating annulus and so the circles ˛ , @1A and @2A

are mutually disjoint and nonparallel in @H, and H.@1A/ is a solid torus with meridian
circle @2A. If ˛ � @H is a separating circle then by definition the pair .H; ˛/ is either
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Figure 10: The manifold H.˛/ and the disk D �H2 � T (p D 1).

trivial or primitive, so (2) holds, while if ˛ is nonseparating then the circles @2A and ˛
are parallel in @H.@1A/ and hence H.˛t@A0/DH.@A/DS1�S2DL0 , so (3) holds.

Suppose now that part (b) of [4, Theorem 1] holds but not part (a), so that ˛ is a
nonseparating circle in @H and no circle in @Hn˛ is a power circle in H. By Remark (b)
after the statement of [4, Theorem 1], there is an incompressible, nonboundary parallel
pair of pants P �H with two boundary components @1P; @2P � @H n˛ which are
nonseparating and mutually parallel, and a third boundary component @3P � @H n˛

which separates @1P t @2P from ˛ such that the surface yP � H.˛/ obtained by
capping off @3P with a disk in H.˛/ is an essential separating annulus with the same
boundary slope as A0. Moreover, yP separates H.˛/ into two components N and T ,
where T is a solid torus such that if � �H.˛/ is the cocore of the 2–handle attached
to H along ˛ , then � can be slid over itself to form the union of an arc �2 and a core �1

of T , where �2\T is a straight arc in T from @T to �1 ; the situation is represented
in Figure 10. Therefore H D clŒH.˛/ nN.�1 [ �2/�, and in @H the meridian circle
of N.�1/� T is isotopic to ˛ while the meridian circle of N.�2/ is isotopic to @3P.

The circle @3P separates @H into two once-punctured tori T1 and T2 , with

@1P t @2P � T1; ˛ � T2 and @T1 D @3P D @T2;

while the incompressible surface P separates H into two genus two handlebodies H1

and H2 (see [19, Lemma 2.3]), where the notation is chosen so that ˛ � T2 � @H2

and hence H2.˛/D T .

Since the annulus yP is not boundary parallel in H.˛/ and H.˛/DH1.@3P /[ yP H2.˛/,
yP must run p � 2 times around the solid torus T DH2.˛/. Thus there is a disk D
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properly embedded in H2 which is disjoint from @1P t @2P and intersects P in one
arc, @3P minimally in two points, and ˛ minimally and coherently in p points; the
disk D is shown in Figure 10 (in the case p D 1 for simplicity).

Boundary compressing P in H along D produces 2 nonseparating annuli B1;B2�H,
where @1B1D @1P, @1B2D @2P, and @2B1 and @2B2 are parallel circles in T2� @H

with �.˛; @2B1/DpD�.˛; @2B2/. By Lemma 3.4 and our hypothesis on @H n˛ not
containing any power circles in H, @1B1 and @1B2 are primitive circles in H. There-
fore the pair .H; @3P / is primitive and H.@1B1/ is a solid torus with meridian disk yB1

such that �.˛; @ yB1/D�.˛; @2B1/D p , whence H.˛ t @A0/DH.˛ t @1B1/DLp ,
so (3) holds.

Lemma 6.7 Let H be a genus two handlebody and ˛ � @H a nonseparating circle.
Then ˛ is a Seifert circle in H if and only if the surface @H n˛ is incompressible in H

and contains a power circle ˇ with companion annulus B � H such that (1) ˛ is a
primitive circle in the handlebody HB �H jB, in which case (2) ˇ is a regular fiber
of H.˛/, and any power circle in @H n˛ satisfies (1) and (2).

Proof If ˛ is a Seifert circle in H then by Lemma 3.3 and the 2–handle addition
theorem the surface @H n˛1 �H is necessarily incompressible and contains a power
p � 2 circle by Lemma 6.6 applied to the unique separating essential annulus A0 in
H.˛/DD2.�;�/.

Let B �H and VB �H be the companion annulus and solid torus of ˇ , respectively.
From the identity H.˛/DHB.˛/[B VB DD2.�;�/ it follows that the annulus B is
essential in HB.˛/ and hence that HB.˛/ is a solid torus. Therefore ˛ is a primitive
circle in HB and the circles @B, and hence ˇ , are regular fibers of H.˛/DD2.�;�/.
The converse holds by a similar argument.

6.3 Double and maximal pairs

Lemma 6.8 Let .H;J / be a pair with @H D T1[J T2 .

(1) Suppose that !1 � T1 and !2 � T2 are , respectively , power p1 and p2 circles
in H that induce disjoint once-punctured tori T 0

1
and T 0

2
in H with boundary

slope J. Then T 0
1
tT 0

2
cut H into 3 genus two handlebodies H0 , H1 and H2

as shown in Figure 11, top , such that
(a) .H1;J / and .H2;J / are simple pairs of types .1;p1/ and .1;p2/, respec-

tively;
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(b) .H0;J / is a basic pair; specifically, the power circles !0
1
� T 0

1
in H1 and

!0
2
� T 0

2
in H2 are basic circles in H0 , with !0

1
and !0

2
primitive circles in

H0[H2 and H0[H1 , respectively;

(c) if .H0;J / is a simple pair with power circles 
1 � T 0
1

and 
2 � T 0
2

then,
for each i 2 f1; 2g, �.!0i ; 
i/D 1 and 
i is a primitive circle in Hi ;

(d) if the pair .H0;J / is nontrivial then any nonseparating circle ˛1�T1 which
is not isotopic to !1 in T1 is neither a primitive nor a power circle in H ;
in particular , the surface @H n˛1 is incompressible in H and the manifold
H.˛1/ is irreducible with incompressible boundary , with ˛1 a Seifert circle
in H if and only if ˛1 is primitive in H0[H1 .

(2) .H;J / is a double pair of type .p1;p2/ if and only if there is a once-punctured
torus T � H with @T D J that separates H into simple pairs .H1;J / and
.H2;J / of types .1;p1/ and .1;p2/, respectively (see Figure 11, bottom), in
which case

(a) any once-punctured torus in H bounded by J is parallel to T , T1 or T2 ;

(b) if !0
1
� T � H1 and !0

2
� T � H2 are the power circles in H1 and H2

then �.!0
1
; !0

2
/D 1, !0

1
is a primitive circle in H2 , and !0

2
is a primitive

circle in H1 ;

(c) if ˛1 � T1 is any nonseparating circle which intersects !1 minimally in q

points , then

H.˛1/DH2.J /[ yT H1.˛1/

D

8̂̂̂<̂
ˆ̂:
.S1 �D2/ # Lp1

if q D 0;

S1 �D2 if q D 1 and ˛1 is primitive in H;

D2.p2; r/ for some r � 2 if q D 1 and ˛1 is not primitive in H;

A2.p2/[ yT D2.p1; q/ if q � 2:

Proof For part (1), that the manifolds H0 , H1 and H2 are genus two handlebodies
follows from Lemma 3.7, so the pairs .H1;J / and .H2;J / are simple by definition
and so (1)(a) holds.

By a similar argument both H0[H1 and H0[H2 are handlebodies. Now, if V1�H1

and V2 �H2 are companion solid tori of the power circles !0
1
� T 0

1
and !0

2
� T 0

2
(see

Figure 11, top) then, by Lemma 6.3, H 0D V1[H0[V2 is homeomorphic to H, so by
Lemma 3.5(2) the circles !0

1
and !0

2
are basic circles in H0 . Similarly, by Lemma 6.3

!0
1

is primitive in H2[H0 and !0
2

is primitive in H1[H0 , and if the pair .H0;J /
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Figure 11: Once-punctured tori in a genus two handlebody H.

is simple and 
i � T 0i is a power circle in H0 then �.!0i ; 
i/D 1 by Lemma 6.2(5),
and we also have that 
i is primitive in Hi . Therefore parts (1)(b) and (1)(c) hold.

For part (1)(d), if ˛1 is not isotopic to !1 then by Lemma 3.6 ˛1 is not a power circle
in H. If ˛1 is a primitive circle in H then by Lemma 6.3 the manifold H [˛1

V

obtained by gluing a solid torus to H along an annular neighborhood of ˛1 in T1 , so
that ˛1 runs p � 2 times around V , is a genus two handlebody which, as .H0;J / is a
nontrivial pair, contains three mutually disjoint nonparallel and not boundary parallel
once-punctured tori with boundary slope J, contradicting Lemma 3.9. Therefore ˛1 is
also not primitive in H, so by Lemma 3.3(1) the surface @H n ˛1 is incompressible
in H, and so by the 2–handle addition theorem the manifold H.˛1/ is irreducible with
incompressible torus boundary. The remaining part of (1)(d) follows from Lemma 6.7.

For part (2), if .H;J / is a double pair of type .p1;p2/ then, by construction, there
are power pi circles !i � Ti and so the hypothesis of part (1) is satisfied with
.H0;J /D .T

0
1
� I;J / a trivial pair; therefore by (1)(a) the torus T D T 0

1
separates H

into simple pairs .H1;J / and .H2;J / having the claimed types. Conversely, if a
once-punctured torus T �H exists that separates H into simple pairs .H1;J / and
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.H2;J / of types .1;p1/ and .1;p2/, respectively, then again T1 and T2 contain
power p1 and p2 circles, so by (1) and (1)(a), along with Lemma 3.9(1), we have that
the induced once-punctured tori T 0

1
and T 0

2
are parallel in H to T , so .H0;J / is a

trivial pair and so .H;J / is a double pair of type .p1;p2/. In particular, (2)(a) holds.

Since for any two nonseparating circles ˛; ˇ � T , in H0 � T � Œ�1; 1� the circles
˛� f�1g � T � f�1g and ˇ� f1g � T � f1g are basic circles if and only if ˛ and ˇ
intersect transversely in T in one point, (2)(b) follows from (1)(b) and (1)(c), while
(2)(c) follows from the identity H.˛1/DA2.p2/[ yT H1.˛1/.

6.4 Primitive pairs

Recall that a nontrivial pair .H;J / with @H DT1[J T2 is primitive if there are circles
˛1 � T1 and ˛2 � T2 which are primitive and coannular in H. In this section we
use primitive pairs to analyze the structure of nonminimal pairs with power or Seifert
circles.

Lemma 6.9 If .H;J / is a primitive pair with @H DT1[J T2 , A�H is any annulus
with boundary a pair of primitive circles ˛1 � T1 and ˛2 � T2 , and ˇi � Ti is any
nontrivial circle with �.ˇi ; ˛i/� 1, then

(1) the manifold H.ˇi/ is irreducible and boundary irreducible , and if �.ˇi ; ˛i/� 2

then H.ˇi/ is toroidal ;

(2) any incompressible , nonboundary parallel annulus in H with boundary in @H nJ
is isotopic to A, and any circle in Ti which is primitive in H is isotopic to ˛i .

Proof Assuming (1) holds, if ˇi � Ti is a primitive or power circle in H then H.ˇi/

has compressible boundary by Lemma 3.3(1)(b), hence ˇi must be isotopic to ˛i ; also
any incompressible and nonboundary parallel annulus B�H with boundary in @H nJ
is either a companion or a nonseparating annulus in H, hence each component of @B
is a primitive circle in H by Lemmas 3.2 and 3.3 and the argument above, and so B

must be isotopic to A in H by Lemma 3.4(4). Thus part (2) follows from part (1).

Suppose now for definiteness that ˇ1 � T1 is any nontrivial circle with �.ˇ1; ˛1/� 1.
By Lemma 3.7(1) the manifold H.J / is irreducible with incompressible boundary
yT1 t

yT2 . Set H.J /.˛1/ D H.J /[ V1 , where V1 is a solid torus attached to H.J /

along yT1 so that ˛1 bounds a disk in V1 . Then H.J /.˛1/DH.˛1/ is a solid torus
with meridian disk yA�H.˛1/ which intersects the core K1 of V1 minimally in one
point, so in H.˛1/ the knot K1 has wrapping number one and exterior H.J /�H.˛1/.
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Since the pair .H;J / is not trivial, by Lemma 3.7(4) the knot K1 is not a core
of H.˛1/. Therefore K1 is a locally knotted core of the solid torus H.˛1/, that is, the
torus yF �H.J / obtained as the frontier of M DN.A[@H.J //�H.J / is essential
and separates H.J / into two components X and M, where X is the exterior of a
nontrivial knot in S3 (ie of the local knot tied along the core of H.˛1/), and M can be
identified with a Seifert fiber space of the form P�S1 , with P a pair of pants, such that
@M D yT1 t

yT2 t
yF and the annulus A�M is fibered. Thus H.ˇ1/DX [ yF M.ˇ1/

is irreducible and boundary irreducible.

Since M.ˇ1/� A2.q/ for q D�.˛1; ˇ1/ � 1 and @M.ˇ1/D yT2 t
yF, if q � 2 then

yT2 and yF are not mutually parallel in M.ˇ/ and so the torus yF is essential in H.ˇ/.
Therefore (1) holds.

In the following result we determine the structure of a general pair .H;J / for which
there is a circle 
 � @H nJ which is either a power circle (eg if .H;J / is a simple,
double or maximal pair) or whose complement @H n 
 contains a power circle (eg if

 is a Seifert circle).

Lemma 6.10 Let .H;J / be a pair with @H D T1 [J T2 and T � H any once-
punctured torus with @T D J which separates H into nontrivial pairs .H1;J / and
.H2;J / with @Hi D T [Ti .

(1) If !1 � T1 is a power circle in H then either !1 is a power circle in H1 or the
pair .H1;J / is primitive with !1 a primitive circle in H1 and coannular in H1

to some circle !0
1
� T which is a power circle in H2 .

(2) If ˛1 � T1 is a nonseparating circle such that the surface @H n ˛1 � H is
incompressible and contains a circle ˇ which is a power circle in H, as is the
case when ˛1 is a Seifert circle in H, then either ˇ � T2 or each pair .H1;J /

and .H2;J / is a simple or double pair; in particular ,
(a) there is a circle in T2 which is a power circle in H,

(b) if ˛1 is a Seifert circle in H then ˛1 is a primitive circle in H1 and there is
a circle in T2 which is a power circle in H2 .

Proof For part (1), by Lemma 3.3(2) there is a companion annulus A for !1 in H. As
A and T are incompressible in H, A can be isotoped so as to intersect T minimally,
so that A\ T consists of circles which are nontrivial in A and T . If A\ T D ∅
then !1 is a power in H1 by Lemma 3.3(2), so assume that A \ T ¤ ∅. Then
A\H1 has an annulus component A1 with @1A1 D !1 and @2A1 D !

0
1
� T , and the
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component A2 of A\H2 with @1A2 D !
0
1

is, by minimality of A\T , a companion
annulus for !0

1
in H2 ; thus !0

1
is a power circle in H2 by Lemma 3.3(2). If T 0 �H2

is the once-punctured torus induced by !0
1

then, by Lemma 3.7(2), H2jT
0 consists

of two handlebodies H 0
2

and H 00
2

, say with T 0 � @H 0
2

, such that the pair .H 0
2
;T 0/ is

simple. Similarly, H jT 0 consists of two handlebodies H1[T H 0
2

and H 00
2

and so, by
Lemma 6.3 applied to the pairs .H1;J / and .H 0

2
;J /, the circle !0

1
, and hence !1 ,

are primitive circles in H1 ; therefore the pair .H1;J / is primitive.

For part (2), let ˇ� @H n˛1 be a power circle in H. Notice that if ˛1 is a Seifert circle
in H then by Lemma 6.7 the surface @H n ˛1 � H is incompressible and contains
such a power circle ˇ ; in particular, by Lemma 3.3(1) ˛1 is neither a primitive nor
power circle in H.

We assume that ˇ has been isotoped in @H n˛1 so as to intersect J minimally. As ˛1

is not a power circle in H, if ˇ\J D∅ then ˇ � T2 .

Suppose now that ˇ\J ¤∅, and let B �H be a companion annulus for ˇ which
is disjoint from ˛1 and intersects T minimally, so that the graphs of intersection
GT DB\T �T and GBDB\T �B are nonempty. Since @H n˛1 is incompressible
in H, the minimality of B\T implies that if e �B\T is an arc that bounds a trivial
disk face D in B (resp. T ) then e is essential in T (resp. B ) and so D is a boundary
compression disk for T (resp. B ) in H.

If the graph GT D B \T � T has a trivial disk face DT then boundary compressing
B along DT produces a nontrivial separating disk in H with boundary in @H n ˛1 ,
contradicting the incompressibility of @H n˛1 in H ; therefore the graph GT has no
trivial disk faces.

If the graph GB D B \ T � B has a trivial disk face DB and DB � Hi , then DB

intersects J minimally in 2 points by Lemma 2.1(3) and so the pair .Hi ;J / is simple
by Lemma 3.11. If DB � H1 then, as ˛1 is disjoint from @B, ˛1 is disjoint from
DB �B and so, by Lemma 6.2(5), ˛1 is disjoint and hence isotopic in T1 to the power
circle of the simple pair .H1;J /, which is not the case. Therefore DB �H2 and so the
pair .H2;J / is simple, whence T2 contains a power circle in H2 by Lemma 6.2(1).

Otherwise the graphs GT and GB are essential, so GB consists of spanning arcs
that cut B into a collection of 4–sided disk faces, alternately lying in H1 and H2 .
By minimality of B \ T any such disk face of GB in H2 intersects J minimally
in 4 points; therefore each pair .H1;J / and .H2;J / is a simple or double pair by
Lemma 6.1, so again T2 contains a power circle in H2 . Thus (2)(a) holds.
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Figure 12: The complementary regions Ri;iC1 of T �XK .

Observe now that H.˛1/D H2.J /[ yT H1.˛1/, where H2.J / is an irreducible and
boundary irreducible manifold by Lemma 3.7. If ˛1 is a Seifert circle in H then
H.˛1/DD2.�;�/ is an irreducible and atoroidal manifold, hence yT bounds a solid
torus in H.˛1/ and so H1.˛/ must be a solid torus, so ˛1 is primitive in H1 . By
(2)(a) there is a circle 
 � T2 which is a power circle in H. If 
 is not a power circle
in H2 then by (1) the pair .H2;J / is primitive, with 
 � T2 a primitive circle in H2

and coannular to a circle 
 0 � T which is a power q � 2 circle in H1 . By Lemma 3.4
the circles ˛1 and 
 0 are separated in H1 , hence the meridian disk of the solid torus
H1.˛1/ intersects 
 0 minimally in q � 2 points, which by Lemma 6.9(1) implies
that H.˛1/DH2.J /[ yT H1.˛1/D D2.�;�/ is a toroidal manifold, a contradiction.
Therefore 
 � T2 is a power circle in H2 and so (2)(b) holds.

7 The case jT j D 6

In this section we assume that K � S3 is a hyperbolic knot and T D T1 t � � � tTN a
collection of N mutually disjoint and nonparallel once-punctured tori in XK , initially
considering several special cases with N � 5 before discussing the case N D 6 in detail.

For the rest of this section we extend each once-punctured torus Ti �XK up to the knot
K via annuli in N.K/ with disjoint interiors, so that @TiDK and int.Ti/\int.Tj /D∅
for i ¤ j ; for simplicity we will continue to say that the Ti are mutually disjoint.
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Using the notation set up in Section 6.1, we represent and label the regions Ri;iC1 as
in Figure 12 (where we take N D 6), each of which is a handlebody by Lemma 4.3. In
particular, if a pair .Ri;iC1;K/ is simple then its core Ki has index pi�2 and its power
pi circles !i � Ti and !0i � TiC1 cobound annuli Ai ;A

0
i �Ri;iC1 n int N.Ki/ with

@1Ai D !i and @1A0i D !
0
i and circles @2Ai ; @2A0i � @N.Ki/ of slope ai=pi relative

to N.Ki/, where gcd.ai ;pi/D 1, so that .Ri;iC1;K/ is a pair of type .0; 1I ai ;pi/.

7.1 Core knots and hyperbolic Eudave–Muñoz knots

The next result establishes a connection between the core knots Ki produced by the
collection T and the family of hyperbolic Eudave–Muñoz knots under some conditions.

Lemma 7.1 Let K�S3 be a hyperbolic knot that bounds a collection TDT1[T2[T3

of mutually disjoint and nonparallel once-punctured tori such that R1;2 is a handlebody
and .R1;2;K/ a simple pair with core knot K1 , and the regions R1;3 and R3;2 are
not handlebodies. Let V1 D N.K1/[N.A1/ �R1;2 be a solid torus neighborhood
of K1 and identify XK1

with S3 n int V1 , so that !1 is a nonintegral slope in @XK1
of

the form a1=p1 . Then

(1) the twice-punctured torus F D cl.T1[T3 nV1/�XK1
is essential in XK1

;

(2) XK1
.!1/ is an irreducible manifold and yF � XK1

.!1/ is an incompressible
separating torus;

(3) if Ta �R2;3 and Tb �R3;1 are once-punctured tori bounded by K which are
not parallel to T2 , T3 and T1 , T3 , respectively, then

(a) K1 is a hyperbolic Eudave–Muñoz knot of index p1 D 2;

(b) there are circles 
 0; 
 00 � T3 with �.
 0; 
 00/¤ 0 which are power circles in
Ra;3 and R3;b , respectively; in particular , if any of the pairs .Ra;3;K/ or
.R3;b;K/ is minimal then it is simple;

(c) the regions R1;a and Rb;2 are handlebodies;

(d) if each of the pairs .R2;a;K/ and .Rb;1;K/ is simple of index 2 then the
region Rb;a is a handlebody.

Proof Let FB;FW � XK1
be the closures of the components of XK1

n F, with
FW DR3;1 ; the situation is represented in Figure 13. By Lemma 6.3 FB is homeo-
morphic to R2;3 , while by Lemma 4.1(1) the regions R2;3 and R3;1 are handlebodies;
therefore FB and FW are handlebodies.
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K

T1

T2

Tb

Ta

T3 K1

!1

! 0

1

V1

FW

FB

A0

1

K2

A2

Kb

A0

b

!2

! 0

b

Figure 13: The regions FB and FW in XK1
D S3 n int V1 .

By Lemmas 5.1 and 6.3, the circle !1 � T1 is neither primitive nor a power in R3;1 .
Therefore the surface F is incompressible in R3;1 by Lemma 3.3(1) and so, by the
2–handle addition theorem, FW .!1/ D R3;1.!1/ is an irreducible manifold with
incompressible boundary the torus yF.

Using the solid torus neighborhood V 0
1
DN.K1/[N.A0

1
/�R1;2 of K1 , it follows

in a similar way that !0
1

is neither a primitive nor power circle in R2;3 , and hence that
@R2;3 n!

0
1

is incompressible in R2;3 and R2;3.!
0
1
/ is an irreducible and boundary

irreducible manifold.

Since the homeomorphism between FB and R2;3 identifies F with the surface
@R2;3 n int N.!0

1
/ and the slope !1 of the core of the annulus V1 \ FB with !0

1
,

we have that F is incompressible in XK1
and

XK1
.!1/D FW .!1/[ yF FB.!1/�R3;1.!1/[@ R2;3.!

0
1/

is irreducible with yF �XK1
.!1/ an incompressible separating torus, so (1) and (2) hold.

In particular, K1 is not a torus knot, so by [17] K1 is either a satellite or hyperbolic
knot.

For part (3) observe that, by Lemma 3.7(2), .R2;a;K/, .Ra;3;K/, .R3;b;K/ and
.Rb;1;K/ are all nontrivial pairs. As the boundary slope !1�@XK1

of F is nonintegral,
if K1 is a satellite knot then by Lemma 5.2 there is a circle 
 � F, not parallel to @F,
which is a power circle in FB and FW . Via the homeomorphism FB � R2;3 ,

 corresponds to a circle in @R2;3 n !

0
1

which is a power circle in R2;3 , so by
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Lemma 6.10(2)(a) there is a circle 
 0 � T3 which is a power circle in FB �R2;3 . A
similar argument applied to FW DR3;1 shows that there is a circle 
 00 � T3 which
is a power circle in FW . However, by Lemma 3.6, the circles 
 and 
 0 are isotopic
in @FB.!0

1
/, while 
 and 
 00 are isotopic in @FW .!1/. But then 
 0 and 
 00 must be

isotopic in T3 , which by Lemma 5.1 cannot be the case since K is a hyperbolic knot.

Therefore K1 must be a hyperbolic knot, so by [9, Theorem 1.1] K1 is a hyperbolic
Eudave–Muñoz knot and the slope a1=p1 of @F1 is half-integral, whence p1 D 2.
By [5, Theorem 2.1] and the invariance argument used in [5, Proposition 2.2], the
closed torus yF � K1.!1/ is unique up to isotopy and separates XK1

.!1/ into two
Seifert fiber spaces FB.!1/ and FW .!1/ of type D2.�;�/ (the uniqueness of the
torus yF � K1.!1/ also follows from the fact [9] that the regular fibers of the two
Seifert fiber spaces D2.�;�/ in K1.!1/ intersect transversely in one point). Therefore,
by Lemma 6.10(2)(b), there are circles 
 0; 
 00 � T3 which are power circles in Ra;3

and R3;b , respectively, where �.
 0; 
 00/ ¤ 0 by Lemma 5.1. And whichever pair
.Ra;3;K/ or .R3;b;K/ is minimal must, by Lemma 6.2, be simple.

Moreover, as !1 is a Seifert circle in FW D R3;1 , by Lemma 6.10(2)(b) the circle
!1 is primitive in Rb;1 and so Rb;2 is a handlebody by Lemma 6.3. Since FB.!1/

corresponds to R2;3.!
0
1
/, in a similar way it follows that !0

1
is primitive in R2;a and

R1;a is a handlebody. Therefore (3)(a), 3(b) and 3(c) hold.

For (3)(d), if each of the pairs .Rb;1;K/ and .R2;a;K/ is simple of index 2 then each
circle @2A2 � @N.K2/ and @2A0

b
� @N.Kb/ (see Figure 13) bounds a Möbius band

B2 �N.K2/ and Bb �N.Kb/. By (3)(c) and Lemma 3.5(1) the circles !1 D @1A0
b

and !0
1
D @1A2 are primitive in R1;2 and so by Lemma 6.4(3) there is a slope s1 in

@N.K1/ which along with !0
b
t!2 cobounds a pair of pants P1 in R1;2 n int N.K1/.

Thus the slope s1 � @N.K1/ bounds the once-punctured Klein bottle B2[P1[Bb in
the exterior S3 n int N.K1/ of the hyperbolic knot K1 and so by [8, Theorem 1.3] the
slope s1 is integral; therefore the circles !0

b
and !2 are basic in R1;2 by Lemma 6.4(4)

and hence Rb;a is a handlebody by Lemma 3.5(2).

7.2 Heegaard splittings of S3

For the rest of Section 7 we consider the case N D 6 exclusively. In this section we
prove that some pair of complementary regions Ri;iC3 and RiC3;i form a Heegaard
splitting of S3 . For convenience we summarize below a number of properties of the
regions Ri;j .
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Lemma 7.2 (1) Each region Ri;iC1 is a handlebody and each pair .Ri;iC1;K/ is
minimal and nontrivial.

(2) For some i 2 f1; 2g each pair .Ri;iC1;K/, .RiC2;iC3;K/ and .RiC4;iC5;K/

is simple.

(3) Each region Ri;iC2 is a handlebody.

(4) No pair .Ri;iC1;K/ is a double pair, and if a region Ri;iC3 is a handlebody
then .Ri;iC3;K/ is neither a simple nor a double pair and .RiC1;iC2;K/ is a
basic nonprimitive pair.

(5) The region Ri;iC3 is a handlebody if and only if the pair .Ri;iC1;K/ is simple
and the power circle !0i � TiC1 of Ri;iC1 is primitive in RiC1;iC3 , and if
Ri;iC3 is a handlebody then .RiC2;iC3;K/ is also a simple pair. Thus, if all
regions Ri;iC3 are handlebodies then all pairs .Ri;iC1;K/ are basic and simple,
and if .Ri;iC1;K/ is not a simple pair then the regions Ri;iC3 and Ri�2;i are
not handlebodies.

Proof Part (1) follows directly from Lemma 4.3 since the degree of each vertex of GQ

is 6. Also, by Lemmas 2.3(1) and 4.2 there is a vertex v in GQ of degree 3 around
which there are 3 incident bigon disk faces of GQ located in alternating regions; thus
(2) holds. We also have that for each i the region Ri;iC2 contains no bigon disk faces
of G

i;iC2
Q

, so the graph G
i;iC2;iC4
Q

is reduced with each vertex of degree 3 and so by
Lemma 4.1(3) the region Ri;iC2 �XK is a handlebody; therefore (3) holds.

If the region Ri;iC3 is a handlebody then by Corollary 3.10 the pairs .Ri;iC1;K/

and .RiC2;iC3;K/ are simple, and by Lemma 6.8(1)(b) the power circles !0i � TiC1

and !iC2 � TiC2 are basic in RiC1;iC2 . Therefore, in RiC1;iC2 , the circles !0i and
!iC2 are primitive but not homotopic to each other, hence not coannular, which by
Lemma 6.9(2) implies that the pair .RiC1;iC2;K/ is not primitive. The remaining
parts of (4) and (5) follow from (1) and Lemmas 3.7(3) and 6.8.

Lemma 7.3 At most one pair .Ri;iC1;J / may not be simple.

Proof Suppose, for definiteness, that the pair .R1;2;K/ is not simple. Then the region
R1;4 is not a handlebody by Lemma 7.2(5), so R4;1 is a handlebody by Lemma 4.1(1).
By Lemma 7.2(4), neither .R1;2;K/ nor .R4;1;K/ is a simple or double pair; as the
pair .R2;4;K/ is not minimal, by Lemma 3.9 it is not simple. Therefore by Lemma 4.2
the graph G

1;2;4
Q

has no bigon disk faces, and by Lemma 6.1 it has no 4–sided disk
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faces in R1;2 or R4;1 . It follows that G
1;2;4
Q

is a reduced planar graph with each
vertex of degree 3, which by Lemma 2.3 must have 4–sided disk faces, all of which
must lie in the region R2;4 . Therefore .R2;4;K/ is a double pair by Lemma 6.1 and
so the pair .R3;4;K/ is simple by Lemma 6.8(2).

A similar argument applied to the graph G
1;2;5
Q

shows that the pair .R5;6;K/ is also
simple. Since by Lemma 7.2(2) the pairs .R2;3;K/, .R4;5;K/ and .R6;1;K/ must
be simple, the lemma follows.

Lemma 7.4 If the region R1;4 is not a handlebody then

(1) all the pairs .Ri;iC1;K/ are simple,

(2) the core knots K1 �R1;2 and K3 �R3;4 are hyperbolic Eudave–Muñoz knots
of indices p1 D 2D p3 ,

(3) all regions Ri;iC3 ¤R1;4 are handlebodies.

Proof Recall that if the region Ri;iC3 is a handlebody then by Lemma 7.2(5) the
pairs .Ri;iC1;K/ and .RiC2;iC3;K/ are simple.

Since R1;4 is not a handlebody, by Lemma 4.1(1) the region R4;1 is a handlebody,
hence the pairs .R4;5;K/ and .R6;1;K/ are simple. By Lemma 7.3 we may assume
that one of the pairs .R1;2;K/ or .R3;4;K/, say .R1;2;K/, is simple. Thus at most
one of the remaining pairs .R2;3;K/, .R3;4;K/ or .R5;6;K/ may not be simple.

Now, by Lemma 7.2(3) the region R2;4 is a handlebody, while by Lemma 3.9 R4;2 is
not a handlebody. Therefore, by Lemma 7.1(3) applied to the simple pair .R1;2;K/

and the collection of tori T1 , T2 and T4 with Ta D T3 and Tb D T5 , the knot K1

is a hyperbolic Eudave–Muñoz knot of index p1 D 2, the minimal pair .R3;4;K/

is simple, so the core knot K3 is defined, and R5;2 is a handlebody and so the pair
.R5;6;K/ is simple. By symmetry, K3 is also a hyperbolic Eudave–Muñoz knot of
index p3 D 2 and R3;6 is a handlebody.

If R2;5 is not a handlebody then applying the argument above to the simple pair
.R4;5;K/ shows that .R2;3;K/ is a simple pair and the core knots K2 �R2;3 and
K4�R4;5 are hyperbolic Eudave–Muñoz knots of indices p2D 2Dp4 , contradicting
Lemma 7.1(3)(d) applied to the simple pair .R3;4;K/ and the tori T1 , T3 and T4 with
TaD T2 and Tb D T5 . Therefore R2;5 is a handlebody, so .R2;3;K/ is a simple pair,
and in a similar way R6;3 is also a handlebody.

We now combine the results above to obtain a genus two Heegaard splitting of S3 .
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Proposition 7.5 All the pairs .Ri;iC1;K/ are simple and, without loss of generality,
we may assume that all the regions R1;4 , R4;1 , R5;2 and R3;6 are handlebodies. In
particular, R1;4 [@ R4;1 is a genus two Heegaard splitting of S3 and !1 � T1 and
!0

3
� T4 are Seifert circles in R4;1 .

Proof That all pairs .Ri;iC1;K/ are simple follows from Lemma 7.2(5) if all the
regions Ri;iC3 are handlebodies, and otherwise from Lemma 7.4, which also implies
that at most one region Ri;iC3 is not a handlebody, so we may assume that R1;4 , R4;1 ,
R5;2 and R3;6 are handlebodies.

Since R3;6 is a handlebody, by Lemma 7.2(5) the circle !0
3
� T4 is primitive in R4;6

and hence a Seifert circle in R4;1 by Lemma 6.8(1)(d), disjoint from the power circle
!0

6
� T1 � @R1;4 . In a similar way, !1 � T1 is a Seifert circle in R4;1 since R5;2 is

a handlebody.

7.3 Heegaard diagrams

In this section we construct the Heegaard diagrams of the genus two Heegaard splittings
R1;4[@ R4;1 of S3 provided in Proposition 7.5. To this end we first obtain specific
homeomorphic representations of basic simple pairs and more general pairs with the
help of the following result:

Lemma 7.6 Let S be a closed genus two surface and a1; b1; a2; b2; a0; b0; c0 � S

nontrivial circles which intersect minimally as shown in Figure 14, top, where c0

separates S into two once-punctured tori S1 and S2 with ai [ bi � Si . Then

(1) any nontrivial separating circle ca � S which is disjoint from a1 t a2 and
intersects a0 minimally in 2 points is obtained by Dehn twisting c0 along b0 ,
that is, by connecting the endpoints of 2n nontrivial arcs in S1 n a1 and 2n

nontrivial arcs in S2 n a2 in one of the two ways shown in Figure 14, center;

(2) any nontrivial separating circle cb � S which is disjoint from b1 t b2 and
intersects b0 minimally in 2 points is obtained by Dehn twisting c0 along a0 ,
that is, by connecting the endpoints of 2n nontrivial arcs in S1 n b1 and 2n

nontrivial arcs in S2 n b2 in one of the two ways shown in Figure 14, bottom.

Proof Let A0 � S be a thin annular neighborhood of c0 ; we will refer to the
components of S n int A0 as S1 and S2 , correspondingly, so that @S1 t @S2 D @A0 .
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Figure 14: The separating circles ca; cb � S.

Suppose ca � S is a nontrivial separating circle disjoint from a1 t a2 . Then ca may
be isotoped so as to intersect c0 minimally, hence to intersect A0 � S minimally
into a collection of parallel spanning arcs. The arcs ca\Si , being disjoint from the
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@T1

a0 \ A0

@T2

2n

1

2

a0 \ A0

3

4

ca ca

Figure 15: Generators of the arcs ca\A0 in the annulus A0 .

circle ai � Si , form a disjoint family of mutually parallel nontrivial arcs in Si . Since
ja0 \ ai j D 1 it is possible to isotope ca , if necessary, so that the arcs ca \ Si are
disjoint from the arc a0\Si , that is, so that the points ca\ a0 lie in the annulus A0 .
Also, as ca separates S, we must have jca \Si j D 2n for some integer n � 1. The
situation so far is represented in Figure 14, center.

In the annulus A0 the endpoints of the spanning arcs ca\A0�A0 are distributed around
@A0 D @S1 t @S2 and separated by the two arcs a0\Ac as shown in Figure 15. Now,
the collection of arcs ca\A0 is uniquely determined by one spanning arc connecting
a point of ca\S1 with a point of ca\S2 . It is not hard to see that the only collections
ca\A0 which intersect a\Ac minimally in two points are the ones generated from
the arc connecting the points 1 and 2 or the arc connecting the points 3 and 4 indicated
in Figure 15, each of which in fact produces a separating circle ca in S as shown in
Figure 14, center. Therefore part (1) holds, and (2) follows in a similar way.

We now construct a diagram for the Heegaard splitting R1;4 [@ R4;1 as follows.
Since R1;4 D R1;2 [T2

R2;3 [T3
R3;4 is a handlebody, by Lemma 6.8(1)(b) the

circles !0
1
� T2 and !3 � T3 are basic circles in R2;3 ; therefore, as the pair

.R2;3;K/ is simple, by Lemma 6.5(3), there are unique disks D;D0;D00 � R2;3

such that the 7–tuple .R2;3;D;D
0;D00; !0

1
; !3;K/ is homeomorphic to the 7–tuple

.H;D;D0;D00;˛1;˛2;J / in Figure 9, bottom (where p2DpD2 is used for simplicity).

Since j!0
1
\D00j D 1, by Lemma 3.4 E2;3D fr N.!0

1
[D00/�R2;3 is the unique disk

that separates the primitive circles !0
1

and !3 ; moreover E2;3 intersects D minimally
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in one arc and the separating circle K � @R2;3 minimally in 4p2 points (see Figure 9,
bottom, with J DK ).

Therefore, by Lemma 7.6(2) with a1 D @D
00, a2 D @D

0, b0 D @D, b1 D !
0
1

, b2 D !3 ,
c0 D @E2;3 and cb DK , the 7–tuple .R2;3;D;D

0;D00; !0
1
; !3;K/ is homeomorphic

to the 7–tuple shown in Figure 16, top, where there are two choices for the circle K ,
while the 6–tuple .@R2;3; @D; !

0
1
; !3; @E2;3;K/ is homeomorphic to the 6–tuple in

Figure 16, center, by Lemma 7.6(1), where there are two choices for the circle @E2;3 .

Remarks 7.7 (1) If .H;J / is any basic pair and ˛1 � T1 and ˛2 � T2 are basic
circles in H then, by the 2–handle addition theorem and Lemma 3.4, ˛1 and ˛2

are separated in H and so the compression disk of @H n˛i intersects j̨ minimally
in one point. It is not hard to see by the argument above that the pair .H;J / must
therefore be homeomorphic to the pair .R2;3;K/ in Figure 16, top, obtained by any
valid connecting pattern between the endpoints of the arcs K\S1 and K\S2 , and that
.H;J / is simple if and only if it is constructed using the specific connecting schemes
in Figure 16, top.

(2) By Corollary 3.10 and Lemmas 3.5 and 6.3, any maximal pair .H;J / is homeo-
morphic to a manifold obtained by attaching solid tori V1 and V2 along annular
neighborhoods of basic circles ˛1�T 0

1
and ˛2�T 0

2
, respectively, of a nontrivial basic

pair .H0;J / with @H0 D T 0
1
[J T 0

2
, in such a way that each circle ˛i runs at least

twice around Vi .

By Lemmas 3.5(2) and 6.3, attaching the companion solid tori V 0
1
�R1;2 and V3�R3;4

to R2;3 along the circles !0
1

and !3 , respectively, yields a handlebody homeomorphic
to R1;4 such that the 5–tuple .@R1;4; !1; !

0
3
; @E2;3;K/ is homeomorphic to the 5–

tuple .@R2;3; !
0
1
; !3; @E2;3;K/ in Figure 16, center.

Notice that E2;3 � R2;3 becomes a waist disk in R1;4 which cuts R1;4 into two
solid tori V1;V3 �R1;4 , and such that @E2;3 cuts @R1;4 into two once-punctured tori
S1� @V1 and S4� @V3 , with !1�S1 and !0

3
�S4 , and meridian disks D1�V1 and

D3�V3 with @D1�S1 and @D3�S4 . Thus D1 and D3 are the compression disks in
R1;4 of @R1;4n!

0
3

and @R1;4n!1 , respectively, which are unique by Lemma 3.3(1)(b).
Since in @R1;4 the circles !1 and !0

3
are disjoint from K[ @E2;3 while !4 and !0

6

are disjoint from K with j!1 \ !
0
6
j D 1 D j!4 \ !

0
3
j, it follows that the 7–tuple

.@R1;4; !1; !
0
3
; !4; !

0
6
; @E2;3;K/ is homeomorphic to the one shown in Figure 16,

bottom.
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Figure 16: The circles K and @E.i/
2;3

in @R2;3 and @R1;4 .

Let @E.1/
2;3

and @E.2/
2;3

be the versions of the circle @E2;3 shown in Figure 16, bottom,
obtained by connecting the endpoints 1 and 2 or 3 and 4 in Figure 16, center, re-
spectively. It is not hard to see that the automorphism of @R1;4 obtained by reflecting
the surface @R1;4 across the plane that contains the circles !0

6
t!4 maps @E.i/

2;3
onto

@E
.j/
2;3

for fi; j g D f1; 2g.

Algebraic & Geometric Topology, Volume 19 (2019)



Seifert surfaces for genus one hyperbolic knots in the 3–sphere 2205

Therefore in the sequel we will assume for definiteness that @E2;3 D @E
.1/
2;3

, as shown
in Figure 17, top (where p2 D 2).

In order to obtain the first half of the Heegaard diagram for R1;4[R4;1 , it remains
to identify the circles @D1 � S1 and @D3 � S4 in the version of @R1;4 D S1 [@ S4

shown in Figure 17, top, where p2 D 2 is used for simplicity. We do this with the help
of a specific homological frame for S1 and S4 .

The oriented circles a1; b1 indicated in Figure 17, center, lie in T1 and have the
minimal intersections ja1\b1j D ja1\!1j D jb1\!

0
6
j D 1 and jb1\!1j D 0. Since

a1 and b1 are disjoint from @E
.1/
2;3

and j!1\@D1j D p1 , homologically in S1 we can
write @D1 D p1a1C q1b1 for some integer q1 with gcd.p1; q1/D 1.

This and future arrangements can be described as follows: An oriented circle with a
box k on top represents a collection of jkj mutually disjoint, parallel circles, oriented
in the direction given by the arrows on the circle if k > 0, and in the opposite direction
if k< 0; thus @D1 is the circle obtained as the homological sum of the circle collections
with boxes p1 and q1 in Figure 17, center. The circle @D3 is constructed in a similar
way as the homological sum of the collection of circles with boxes p3 and q3 with
gcd.p3; q3/D 1, shown in Figure 17, bottom.

The second half of the Heegaard diagram for R1;4 [R4;1 is obtained similarly: A
waist disk E5;6 �R4;1 is constructed that separates R4;1 into solid tori that contain
the power circles !4 and !0

6
and have meridian disks D4 and D6 with minimal

intersections jD4\!4j D p4 , jD6\!
0
6
j D p6 and jD4\!

0
6
j D 0D jD6\!4j. We

then use the method of Lemma 7.6(2) (see Figure 14, bottom) to represent the circle
@E5;6 � @R4;1 on top of the diagrams for @R1;4 D @R4;1 of Figure 17.

We will call the diagram for @R4;1 obtained by constructing the circle @E5;6 D @E
.1/
5;6

using the endpoints labeled 1 and 2 in Figure 14, bottom, a type 1 diagram, and a
type 2 diagram if @E5;6 D @E

.2/
5;6

is constructed using the endpoints labeled 3 and 4

in Figure 14, bottom.

The Heegaard diagrams are now uniquely determined up to some number n 2 Z of
Dehn twists along the annulus AK � @R1;4 , which we consider in more detail in the
sequel. In the meantime, for nD 0, Figure 18, top, shows the circle @E.1/

5;6
of a type 1

diagram for R4;1 with p5 D 2, and the circles @D4 and @D6 appear in Figure 18,
center and bottom, as obtained from the construction above.

We summarize our findings in this section in the following result:
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K

!1 ! 03

T1 T4

! 06 !4

@R1:4

2p2

@E
.1/

2;3

!1

! 03

T1 T4

! 06 !4
@D1

!1

! 03

T1 T4

! 06 !4 @D3

p3

K

K

q1

p1

q3

p2

p2 � 1

a1

b1

p2
p2 � 1

Figure 17: The circles (top) @E2;3D @E
.1/
2;3

(p2D 2) and (center and bottom)
@D1 and @D3 in @R1;4 .

Lemma 7.8 If K � S3 is a genus one hyperbolic knot whose exterior XK contains
6 mutually disjoint and nonparallel once-punctured tori , then S3 admits a genus two
Heegaard splitting R1;4[@ R4;1 of type 1 or 2 with K � @R1;4 D @R4;1 a separating
circle.
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K!1 ! 0

3

T1
T4

! 0

6 !4

@R4;1 D @R1;4

@E
.1/

5;6

2p5

!1 ! 0

3

T1
T4

! 0

6
!4

q6

p6

!1 ! 0

3

T1
T4

! 0

6
!4

q4

p4

@D4

@D6

AK

Figure 18: The circles @E.1/
5;6 (p5 D 2) and @D4 and @D6 in @R4;1 D @R1;4

for nD 0 .
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7.4 The type 1 Heegaard diagrams for R1;4[@ R4;1

The identification of @R1;4 and @R4;1 is completely determined by the images of the
circle pairs !1 t!

0
6

and !0
3
t!4 up to some number n 2 Z of Dehn twists along the

annular neighborhood AK � @R1;4 of K shown in Figure 19, top; the Dehn twists
are applied only to the arcs AK \ .@D4 t @D6/, where n> 0 is taken as the direction
indicated by the arrows along the arcs 
 and ı in AK shown in Figure 19, top.

Figure 19, top, shows the embeddings of the circles @D1 and @D3 in @R1;4 obtained
with p2 D 2, and the embeddings of @D4 and @D6 are shown in Figure 19, center and
bottom, respectively, with nD 0 and p5 D 3.

7.4.1 Fundamental group presentations, I In order to analyze the fundamental
group of the manifold R1;4[@R4;1 and properties of the words represented by circles
in the Heegaard surface @R1;4 , we consider here the situation in more general terms.

Let H be a genus two handlebody; its fundamental group is isomorphic to the rank 2

free group F2 . For i D 1; 2, let 
i � @H be disjoint separated power pi circles with
p1 � 1 and p2 � 2, where if p1 D 1 then 
1 is taken to be a primitive circle. Thus
there is a waist disk D that cuts H into two solid tori V1 and V2 with 
i � @Vi nD,
and by Lemma 3.3(1)(b) the meridian disks D1 � V1 nD and D2 � V2 nD are the
unique compression disks of @H n
2 and @H n
1 , respectively. Let xi be a core circle
of Vi dual to Di , so that �1.H; q/D hx1;x2 j �i for q 2D .

By Lemma 3.3(2) the companion annulus A2�H of 
2 is unique and can be isotoped
away from D and into V2 , hence D lies in the handlebody HA2

�H jA2 as a waist
disk; since by Lemma 3.5(1) the core circle t2 � @HA2

of A2 is primitive in HA2
, we

have that �1.HA2
; q/D hx1; t2 j �i for q 2D .

The next result now follows from van Kampen’s theorem.

Lemma 7.9 The map �1.HA2
; q/ ! �1.H; q/ (q 2 D ) induced by the inclusion

HA2
� H is an injection given by x1 7! x1 and t2 7! x

p2

2
. In particular, if a circle


 � @H n 
2 is represented by the words w.x1; t2/ 2 �1.HA2
; q/ D hx1; t2 j �i and

W .x1;x2/ 2 �1.H; q/D hx1;x2 j �i for q 2 
 \D, then W .x1;x2/D w.x1;x
p2

2
/.

Determining which words in the free group F2 of rank two are primitive will be useful
in the sequel. The next result from [3] gives a simple condition satisfied by such words.
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@R1;4AK

@D1
@D3

p1

q1
q3

@D4

@D6

q6

p6

q4




ı

p3

˛
ˇ

u

v

p4

zK2

zK2

Figure 19: The type 1 Heegaard circles for R1;4[R4;1 : @D1 t @D3 (top),
@D4 (center) and @D6 (bottom) (with nD 0 , p2 D 2 , p5 D 3).
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Lemma 7.10 [3] In any cyclically reduced primitive word in F2 D hx1;x2 j �i

different from x˙1
1

or x˙1
2

, for some fi; j g D f1; 2g the exponents in xi are all equal
to 1 or all equal to �1, while the exponents in xj are all nonzero of the form m or
mC 1 for some m 2 Z.

7.4.2 Fundamental group presentations, II Recall that D1;D3 � R1;4 are the
compression disks of @R1;4 n !

0
3

and @R1;4 n !1 , respectively. Therefore we have
that �1.R1;4/ D hx1;x3 j �i where the free generators x1 and x3 represent the
circles in R1;4 dual to the disks D1 and D3 constructed in Section 7.4.1, respectively;
similarly, �1.R4;1/ D hx4;x6 j �i, where x4 and x6 represent the circles in R4;1

dual to the disks D4 and D6 , respectively.

Set "i D qi �pi for i D 1; 3; 4; 6.

Lemma 7.11 gcd.pi ; "i/D 1 for i D 1; 3; 4; 6, and "i D qi�pi 2 f˙1g for i D 4; 6.

Proof That gcd.pi ; "i/D 1 follows from the fact that gcd.pi ; qi/D 1.

From Figure 18 we have that, in �1.R4;1/D hx4;x6 j �i,

!1 D .x
p4

4
x

p6

6
/p5�1x

p4

4
x

q6

6
and !03 D .x

p6

6
x

p4

4
/p5�1x

p6

6
x

q4

4

relative to the basepoints !1\!
0
6

and !0
3
\!4 . By Proposition 7.5, !0

3
is a Seifert circle

in R4;1 disjoint from the power circle !0
6
�T1�R4;1 . Therefore, by Lemmas 6.8(1)(d)

and 7.9 the word .x6x
p4

4
/p5�1x6x

q4

4
obtained by replacing x

p6

6
with x6 in the word

that represents !0
3

must be primitive in the free group hx4;x6 j �i. Since p4 � 2, by
Lemma 7.10 we must have q4 D p4˙ 1, and hence that "4 2 f˙1g. That "6 2 f˙1g

follows in a similar way by considering the word for !1 .

For convenience, in the sequel we will denote the generators x1 and x3 of the free group
�1.R1;4/D hx1;x3 j �i and their inverses by x and y , and X and Y , respectively.

Let F2 D hx;y j �i denote the rank two free group generated by x and y , and M2

the monoid generated by x , X , y and Y . Denote the cyclic reduction of any word
w 2 F2 by ŒŒw��. For any two words w1 and w2 in the monoid M2 we denote their
equality in M2 by w1 Š w2 and in the free group F2 by w1 D w2 . Thus w1 Š w2

implies that w1 D w2 , and x2y Š xxy Š ŒŒXx3y�� but x2y ©Xx3y © x3Xy .

Cyclic permutations of a word w in F2 are performed by treating w as an element
in M2 , that is, without performing any cancellations on w .
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For any two words w1 and w2 in F2 , we say that

� w1 is equivalent to w2 and write w1 �w2 if w2 is some cyclic permutation of
w1 or w�1

1
;

� w1 divides w2 if w2 Š a �w1 � b for some (possibly empty) words a and b ;

� w1kw2 if there is a word u such that ŒŒw1�� � u and ŒŒw2�� � u � v , that is, if
some word equivalent to ŒŒw1�� divides some word equivalent to ŒŒw2��.

With this notation the following result follows from Kaneto’s theorem [15]:

Lemma 7.12 [15, Theorem 1] If hx;y j r1; r2i is a presentation of �1.S
3/ obtained

from a genus two Heegaard splitting of S3 then, for some fi; j g D f1; 2g, either
ŒŒri ��� x and ŒŒrj ��� y , or ri krj .

Unlike the division relation, the relation k is not transitive: if w1 D x2y , w2 D x2y2

and w3 D xy2xY then w1kw2 and w2 � xy2xkw3 ; however, none of the cyclic
permutations x2y , xyx or yx2 of w1 divides any of the cyclic permutations xy2xY ,
y2xYx , yxYxy , xYxy2 or Yxy2x of w3 , from which it follows that w1 ¬w3 . We
have however the following restricted version of transitivity for k :

Lemma 7.13 Suppose that w1 and w2 are cyclically reduced words in F2 with
w1kw2 . If each cyclic permutation of w1 is divisible by one of the words s; t 2 F2

then skw2 or t kw2 .

Proof Without loss of generality we may assume that w2 Š u � v for some cyclic
permutation u of w1 , and that s divides u; by definition it follows that skw2 .

7.4.3 Presentations for the group �1.R1;4[@R4;1/ In order to apply Lemma 7.12
to the group presentation

�1.R1;4[@ R4;1/D hx;y j @D4; @D6i

we need to determine the words represented by the circles @D4; @D6 � @R4;1 D @R1;4

in the free group �1.R1;4/D hx;y j �i. At this point we remind the reader that the
bound pi � 2 holds for each 1� i � 6.

We shall see below that some of the circles representing @D4 or @D6 contain disjoint
parallel copies of the oriented arcs 
 and ı shown in Figure 19, top, obtained by
Dehn-twisting once a corresponding spanning arc in the annulus AK � @R1;4 in the
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indicated directions. Reading the oriented intersections of 
 and ı with the disks
D1;D3 �R1;4 produces the words


 D .xp1yp3/p2 � .X p1Y p3/p2 and ı D .Y p3X p1/p2 � .yp3xp1/p2 ;

which will appear as factors in some of the words for @D4; @D6 2�1.R1;4/Dhx;y j�i.

Let ˛ and ˇ be oriented components of the collections with p4 and q4 circles shown
in Figure 19, center, respectively, so that homologically we have @D4Dp4˛Cq4ˇ and
ˇ D�!4 . It follows that @D4 D w4.˛; ˇ/ in �1.R1;4/D hx;y j �i, where w4.˛; ˇ/

is a cyclically reduced primitive word in the free group h˛; ˇ j �i (which is unique up
to cyclic order) with abelianization p4˛C q4ˇ . Since we have by Lemma 7.11 that
q4 D p4C "4 with "4 D˙1, we can take @D4 D @D

C

4
D .˛ˇ/p4 �ˇ if "4 DC1 and

@D4 D @D
�
4
D ˛ � .˛ˇ/p4�1 if "4 D�1.

In a similar way, in �1.R1;4/, we have @D6 D @D
C

6
D .uv/p6 � v if "6 D C1 and

@D6D @D
�
6
D u �.uv/p6�1 if "6D�1, where u and v are oriented components of the

collections in Figure 19, bottom, with p6 and q6 circles, respectively, so that v D !0
6
.

Taking ˛ \ˇ and u\ v as basepoints, the words corresponding to ˛ and ˇ , and u

and v , in �1.R1;4/ after n2Z Dehn twists along the annulus AK , with n> 0 taken as
the direction indicated by the arrows on the arcs 
 and ı in Figure 19, top, are given by
the following expressions obtained with the convention that ˛ , say, reads x whenever
it intersects the oriented circle @D1 from right to left, and x�1 DX otherwise:

˛ D Œınxq1�p1
 nyp3�q3 �p5�1ınxq1�p1
 nxp1 Œyp3xp1 �p2�1

D Œınx"1
 nY "3 �p5�1ınx"1
 nxp1 Œyp3xp1 �p2�1;

ˇ D !�1
4 D .X

p1Y p3/p2�1X p1Y p3C"3 D .X p1Y p3/p2Y "3 ;

˛ˇ D Œınx"1
 nY "3 �p5Y p3 ;

uD Œ
 nyp3�q3ınxq1�p1 �p5�1
 nyp3�q3ınY p3.X p1Y p3/p2�1

D Œ
 nY "3ınx"1 �p5�1
 nY "3ınY p3.X p1Y p3/p2�1;

v D !1 D .y
p3xp1/p2�1yp3xp1C"1 D .yp3xp1/p2x"1 ;

uv D Œ
 nY "3ınx"1 �p5xp1 :

Therefore we obtain the following words for @D4 and @D6 :

@DC
4
D .˛ˇ/p4ˇ D ŒŒınx"1
 nY "3 �p5Y p3 �p4.X p1Y p3/p2Y "3 ;

@D�4 D ˛.˛ˇ/
p4�1

D Œınx"1
 nY "3 �p5�1ınx"1
 nxp1 Œyp3xp1 �p2�1ŒŒınx"1
 nY "3 �p5Y p3 �p4�1;
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@DC
6
D .uv/p6v D ŒŒ
 nY "3ınx"1 �p5xp1 �p6.yp3xp1/p2x"1 ;

@D�6 D u.uv/p6�1

D Œ
 nY "3ınx"1 �p5�1
 nY "3ınY p3.X p1Y p3/p2�1ŒŒ
 nY "3ınx"1 �p5xp1 �p6�1:

There are three cases to consider, depending on the value of n 2 Z.

7.4.4 The case nD 0 We have the identities

@DC
4
D Œ.x"1Y "3/p5Y p3„ ƒ‚ …

s

�p4 � .X p1Y p3/p2Y "3 ;

@D�4 D .x
"1Y "3/p5�1 xp1C"1.yp3xp1/p2�1

� Œ.x"1„ ƒ‚ …
s

Y "3/p5Y p3„ ƒ‚ …
t

�p4�1;

@DC
6
D Œ.Y "3x"1/p5xp1 �p6 � .yp3xp1/p2x"1 ;

@D�6 D .Y
"3x"1/p5�1Y p3C"3 � .X p1Y p3/p2�1

� Œ.Y "3x"1/p5xp1 �p6�1:

It is then not hard to see that

(1) any cyclic permutation of ŒŒ@DC
4
�� is divisible by s D .x"1Y "3/p5Y p3 but

s¬@D˙
6

,

(2) any cyclic permutation of ŒŒ@D�
4
�� is divisible by

s D xp1C"1.yp3xp1/p2�1x"1 or t D Y "3.x"1Y "3/p5�1Y p3

but s; t ¬@D˙
6

.

Observe now that the words @D˙
4

and @D˙
6

are related by the following symmetry:

.S/ For each � 2 f˙g there is a word w.x;y;X;Y I a; b; c; d; e/ in the free group
hx;y;X;Y j �i depending on parameters a; b; c; d; e 2 Z such that

@D�4 D w.x;y;X;Y I "1;p1; "3;p3;p4/;

@D�6 D w.Y;X;y;xI "3;p3; "1;p1;p6/:

Similarly, in items (1) and (2) the words for s and t are each of the form

W .x;y;X;Y I "1;p1; "3;p3/;

that is, independent of p4 and p6 . Therefore, replacing s and t in (1) and (2) above
with the words s0 and t 0 corresponding to the transformation

W .x;y;X;Y I "1;p1; "3;p3/ 7!W .Y;X;y;xI "3;p3; "1;p1/

and using the symmetry .S/ above, statements (1) and (2) transform into the following
equivalent statements:
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.10/ any cyclic permutation of ŒŒ@DC
6
�� is divisible by s0 D .Y "3x"1/p5xp1 but

s0¬@D˙
4

,

.20/ any cyclic permutation of ŒŒ@D�
6
�� is divisible by either

s0 D Y p3C"3.X p1Y p3/p2�1Y "3 or t 0 D x"1.Y "3x"1/p5�1xp1

but s0; t 0¬@D˙
4

.

We therefore have by Lemma 7.13 that ŒŒ@D˙i ��¬ ŒŒ@D˙j �� for each fi; j g D f1; 2g.

In all cases that follow for type 1 or 2 Heegaard diagrams we will explicitly establish
the equivalent version of statements (1) and (2) above, and that the corresponding
equivalent versions of .10/ and .20/ also hold will follow by the argument above.

Remark 7.14 The values pi D 2 for 1 � i � 5, p6 D 4, "1 D C1 and "i D �1

for i D 3; 4; 6 produce an integral homology 3–sphere R1;4 [@ R4;1 which by the
argument above is not homeomorphic to S3 for n D 0. Thus in general integral
homology does not differentiate the manifolds R1;4[@ R4;1 from S3 .

7.4.5 The case n> 0 We have

@DC
4
D
��
Œ.Y p3X p1/p2„ ƒ‚ …

C

.yp3xp1/p2 �nx"1 Œ.xp1yp3/p2 .X p1Y p3/p2 �nY "3
�p5Y p3„ ƒ‚ …

A

�p4

� .X p1Y p3/p2Y "3„ ƒ‚ …
B

;

@D�4 D
�
Œ.Y p3X p1/p2.yp3xp1/p2 �nx"1 Œ.xp1yp3/p2.X p1Y p3/p2 �nY "3

�p5�1

� Œ.Y p3X p1/p2.yp3xp1/p2 �nx"1

� Œ.xp1yp3/p2 .X p1Y p3/p2 �nxp1.yp3xp1/p2�1„ ƒ‚ …
t

�
��
Œ.Y p3X p1/p2.yp3xp1/p2 �nx"1

� Œ.xp1yp3/p2.X p1Y p3/p2 �nY "3
�p5Y p3

�p4�1
;

@DC
6
D
��
Œ.xp1yp3/p2.X p1Y p3/p2 �nY "3 Œ.Y p3X p1/p2.yp3xp1/p2 �nx"1

�p5xp1
�p6

� .yp3xp1/p2x"1 ;

@D�6 D
�
Œ.xp1yp3/p2.X p1Y p3/p2 �nY "3 Œ.Y p3X p1/p2.yp3xp1/p2 �nx"1

�p5�1

� Œ.xp1yp3/p2.X p1Y p3/p2 �nY "3

� Œ.Y p3X p1/p2.yp3xp1/p2 �nY p3.X p1Y p3/p2�1

�
��
Œ.xp1yp3/p2.X p1Y p3/p2 �nY "3

� Œ.Y p3X p1/p2.yp3xp1/p2 �nx"1
�p5xp1

�p6�1
:
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(1) Any cyclic permutation of ŒŒ@DC
4
�� is divisible by s D Y 3p3C"3 (located in AC )

or

t DABC D .X p1Y p3/p2Y p3C"3.X p1Y p3/p2Y "3.Y p3X p1/p2 ;

but s; t ¬@D˙
6

.

(2) Any cyclic permutation of ŒŒ@D�
4
�� is divisible by either

s D Y 3p3C"3 or t D .X p1Y p3/p2xp1.yp3xp1/p2�1

but s; t ¬@D˙
6

.

7.4.6 The case n< 0 We use the identities


 n
D .
�1/jnj D Œ.yp3xp1/p2.Y p3X p1/p2 �jnj;

ın
D .ı�1/jnj D Œ.X p1Y p3/p2.xp1yp3/p2 �jnj

to obtain the words

@DC
4
D
��
Œ.X p1Y p3/p2.xp1yp3/p2 �jnjx"1 Œ.yp3xp1/p2.Y p3X p1/p2 �jnj Y "3

�p5Y p3„ ƒ‚ …
s

�p4

� .X p1Y p3/p2Y "3 ;

@D�4 D
�
Œ.X p1Y p3/p2.xp1yp3/p2 �jnjx"1 Œ.yp3xp1/p2.Y p3X p1/p2 �jnjY "3

�p5�1

� Œ.X p1Y p3/p2.xp1yp3/p2 �jnjx"1 Œ.yp3xp1/p2.Y p3X p1/p2 �jnj �xp1.yp3xp1/p2�1„ ƒ‚ …
A

�
��
Œ.X p1Y p3/p2„ ƒ‚ …

B

.xp1yp3/p2 �jnjx"1 Œ.yp3xp1/p2.Y p3X p1/p2 �jnj Y "3
�p5Y p3„ ƒ‚ …

s

�p4�1
;

@DC
6
D
��
Œ.yp3xp1/p2.Y p3X p1/p2 �jnjY "3 Œ.X p1Y p3/p2.xp1yp3/p2 �jnjx"1

�p5xp1
�p6

� .yp3xp1/p2x"1 ;

@D�6 D
�
Œ.yp3xp1/p2.Y p3X p1/p2 �jnjY "3 Œ.X p1Y p3/p2.xp1yp3/p2 �jnjx"1

�p5�1

� Œ.yp3xp1/p2.Y p3X p1/p2 �jnjY "3 Œ.X p1Y p3/p2.xp1yp3/p2 �jnjY p3.X p1Y p3/p2�1

�
��
Œ.yp3xp1/p2.Y p3X p1/p2 �jnjY "3 Œ.X p1Y p3/p2.xp1yp3/p2 �jnjx"1

�p5xp1
�p6�1

:

(1) Any cyclic permutation of ŒŒ@DC
4
�� is divisible by s D Y p3C"3 but s¬@D˙

6
.

(2) Any cyclic permutation of ŒŒ@D�
4
�� is divisible by either

s D Y p3C"3 or t DAB D .yp3xp1/p2Y p3.X p1Y p3/p2

but s; t ¬@D˙
6

.
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By Lemmas 7.13 and 7.12, we have therefore established the following result:

Lemma 7.15 If the Heegaard diagram of the manifold R1;4[@ R4;1 is of type 1 then
R1;4[@ R4;1 ¤ S3 .

7.5 The type 2 Heegaard diagrams for R1;4[@ R4;1

We follow the outline of the analysis of type 1 Heegaard diagrams given in Section 7.4.

The circles @E.2/
5;6
; @D4; @D6 � @R4;1 D @R1;4 are shown in Figure 20, and the circles

@Di�@R1;4 for iD1; 3; 4; 6 that form the Heegaard diagram of type 2 for R1;4[@R4;1

are shown in Figure 21 (where nD 0, p2 D 2 and p5 D 3).

The circles ˛; ˇ;u; v � @R1;4 are defined and their words in �1.R1;4/D hx;y j �i

computed relative to the basepoints ˛\ˇ and u\ v as in Section 7.4, obtaining the
identities

˛ D .xp1yp3/p2 Œınx"1
 nY "3 �p5yp3C"3 ;

ˇ D Y "3.Y p3X p1/p2 ;

ˇ˛ D ŒY "3ınx"1
 n�p5yp3 ;

uD .Y p3X p1/p2 Œ
 nY "3ınx"1 �p5X p1C"1 ;

v D xq1yp3.xp1yp3/p2�1
D x"1.xp1yp3/p2 ;

vuD Œx"1
 nY "3ın�p5X p1 :

The conclusion of Lemma 7.11 applies in the present context, so we can take @D4 D

@DC
4
D .ˇ˛/p4ˇ if "4 DC1 and @D4 D @D

�
4
D ˛.ˇ˛/p4�1 if "4 D�1, and @D6 D

@DC
6
D .vu/p6v if "6 DC1 and @D6 D @D

�
6
D u.vu/p6�1 if "6 D�1. This yields

the words

@DC
4
D .ˇ˛/p4ˇ D ŒŒY "3ınx"1
 n�p5yp3 �p4Y "3.Y p3X p1/p2 ;

@D�4 D ˛.ˇ˛/
p4�1

D .xp1yp3/p2 Œınx"1
 nY "3 �p5yp3C"3 ŒŒY "3ınx"1
 n�p5yp3 �p4�1;

@DC
6
D .vu/p6v D ŒŒx"1
 nY "3ın�p5X p1 �p6x"1.xp1yp3/p2 ;

@D�6 D u.vu/p6�1

D .Y p3X p1/p2 Œ
 nY "3ınx"1 �p5X p1C"1 ŒŒx"1
 nY "3ın�p5X p1 �p6�1;
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@R4;1 D @R1;4

!1 ! 0

3

T1
T4

! 0

6
!4

!1 ! 0

3

T1
T4

! 0

6
!4

@D4@D6

K
!1 ! 0

3

T1
T4

! 0

6
!4

2p5

@E
.2/

5;6

p4

q4

q6

p6

AK

Figure 20: The circles @E.2/
5;6 (nD 0 , p5 D 2) and @D4 and @D6 in @R4;1 D @R1;4 .
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@R1;4AK

@D1
@D3

p1

q1
q3

@D4

@D6




ı

p3

˛

ˇ

u

v

q4p4

q6

p6

Figure 21: The type 2 Heegaard circles for R1;4 [@ R4;1 (nD 0 , p2 D 2 ,
p5 D 3).
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7.5.1 The case nD 0 We have

@DC
4
D Œ.Y "3x"1/p5yp3 �p4 �Y "3.Y p3X p1/p2

D .Y "3x"1„ ƒ‚ …
B

/p5 yp3 Œ.Y "3„ ƒ‚ …
s

x"1/p5yp3 �p4�1
�Y "3.Y p3X p1/p2„ ƒ‚ …
A

;

@D�4 D .x
p1yp3/p2.x"1 Y "3/p5yp3C"3 Œ.Y "3„ ƒ‚ …

s

x"1/p5yp3 �p4�1;

@DC
6
D Œ.x"1Y "3/p5X p1 �p6x"1.xp1yp3/p2 ;

@D�6 D .Y
p3X p1/p2.Y "3x"1/p5X p1C"1 Œ.x"1Y "3/p5X p1 �p6�1:

(1) Any cyclic permutation of ŒŒ@DC
4
�� is divisible by

s D yp3�"3 or t DAB D x"1Y "3X p1.Y p3X p1/p2�1Y "3x"1

but s; t ¬@D˙
6

.

(2) Any cyclic permutation of ŒŒ@D�
4
�� is divisible by sD yp3�"3 or t D Y "3x"1yp3

but s; t ¬@D˙
6

.

7.5.2 The case n> 0 We have

@DC
4 D

��
Y "3 Œ.Y p3X p1/p2.yp3 xp1/p2 �nx"1 Œ.xp1„ ƒ‚ …

s

yp3/p2.X p1Y p3/p2 �n
�p5yp3

�p4

�Y "3.Y p3X p1/p2 ;

@D�4 D .x
p1yp3/p2

�
Œ.Y p3X p1/p2.yp3 xp1/p2 �nx"1 Œ.xp1„ ƒ‚ …

s

yp3/p2.X p1Y p3/p2 �nY "3
�p5

�yp3C"3
��

Y "3 Œ.Y p3X p1/p2.yp3xp1/p2 �nx"1

� Œ.xp1yp3/p2.X p1Y p3/p2 �n
�p5yp3

�p4�1
;

@DC
6
D
��

x"1 Œ.xp1yp3/p2.X p1Y p3/p2 �nY "3 Œ.Y p3X p1/p2.yp3xp1/p2 �n
�p5X p1

�p6

�x"1.xp1yp3/p2 ;

@D�6 D .Y
p3X p1/p2

�
Œ.xp1yp3/p2.X p1Y p3/p2 �nY "3 Œ.Y p3X p1/p2.yp3xp1/p2 �nx"1

�p5

�X p1C"1
��

x"1 Œ.xp1yp3/p2.X p1Y p3/p2 �nY "3

� Œ.Y p3X p1/p2.yp3xp1/p2 �n
�p5X p1

�p6�1
:

In this case we have that any cyclic permutation of ŒŒ@D˙
4
�� is divisible by sD x2p1C"1

(located in several disjoint sites) but s¬@D˙
6

.
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7.5.3 The case n< 0 We have

@DC
4
D
��

Y "3	

C

Œ.X p1Y p3/p2.xp1yp3/p2 �jnjx"1 Œ.yp3xp1/p2.Y p3X p1/p2 �jnj
�p5yp3	

A

�p4

�Y "3.Y p3X p1/p2„ ƒ‚ …
B

;

@D�4 D .x
p1yp3/p2„ ƒ‚ …

D

�
Œ.X p1Y p3/p2.xp1yp3/p2 �jnjx"1 Œ.yp3xp1/p2.Y p3X p1/p2 �jnjY "3	

A

�p5

�yp3C"3„ ƒ‚ …
A0

��
Y "3	

B

Œ.X p1Y p3/p2.xp1yp3/p2 �jnjx"1

� Œ.yp3xp1/p2.Y p3X p1/p2 �jnj
�p5yp3	

C

�p4�1
;

@DC
6 D

��
x"1 Œ.yp3xp1/p2.Y p3X p1/p2 �jnjY "3 Œ.X p1Y p3/p2.xp1yp3/p2 �jnj

�p5X p1
�p6

�x"1.xp1yp3/p2 ;

@D�6 D .Y
p3X p1/p2

�
Œ.yp3xp1/p2.Y p3X p1/p2 �jnjY "3 Œ.X p1Y p3/p2.xp1yp3/p2 �jnjx"1

�p5

�X p1C"1
��

x"1 Œ.yp3xp1/p2.Y p3X p1/p2 �jnjY "3

� Œ.X p1Y p3/p2.xp1yp3/p2 �jnj
�p5X p1

�p6�1
:

(1) Any cyclic permutation of ŒŒ@DC
4
�� is divisible by either

s DAC D yp3�"3 or t DABC D Y "3.X p1Y p3/p2�1X p1Y "3

but s; t ¬@D˙
6

.

(2) Any cyclic permutation of ŒŒ@D�
4
�� is divisible by

s DAA0B D yp3�"3 or t D CD D yp3.xp1yp3/p2

but s; t ¬@D˙
6

.

By Lemmas 7.13 and 7.12, we have therefore established the following result:

Lemma 7.16 If the Heegaard diagram of the manifold R1;4[@ R4;1 is of type 2 then
R1;4[@ R4;1 ¤ S3 .

We are now ready to give the proof of the first main theorem of this paper:

Proof of Theorem 1 Let K�S3 be a genus one hyperbolic knot and TDT1t� � �tTN

a collection of N � 1 disjoint, mutually nonparallel once-punctured tori in XK . By
Lemma 4.3 we then have that N � 6, and if N D 6 then, by Lemma 7.8, S3 has
a genus two Heegaard splitting of type 1 or 2, contradicting Lemmas 7.15 and 7.16.
Therefore N � 5.
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8 Examples of genus one hyperbolic knots in S3

By Lemmas 4.1 and 5.1, if K � S3 is a hyperbolic knot with a collection T �XK of
once-punctured tori then each complementary region of T is atoroidal and no circle in
any component Ti �T has a companion annulus in XK on either side of Ti . The next
result shows that these two properties essentially characterize genus one hyperbolic
knots and gives properties of some of its surgery manifolds. For notation, a surface S

properly embedded in a manifold M is strongly knotted if the manifold obtained by
cutting M along S is irreducible and boundary irreducible. As usual, J � @XK

denotes the slope of the standard longitude of K .

Lemma 8.1 Let K�S3 be a genus one knot whose exterior XK contains a collection
T D T1 t � � � tTN �XK of N � 1 mutually disjoint and nonparallel once-punctured
tori.

(1) If for each 1 � i � N the region Ri;iC1 is atoroidal and no circle in Ti has
companion annuli in XK on both sides of Ti then either K is a hyperbolic knot
or N D 1 and K is the trefoil knot.

(2) For K a hyperbolic knot and r � @XK any slope such that �.r;J /� 2,

(a) if some component Ti � T is strongly knotted then the manifold XK .r/ is
Haken,

(b) if N � 4 then each component of T is strongly knotted and the manifold
XK .r/ is Haken and hyperbolic.

Proof For part (1), the hypotheses on the regions Ri;iC1 imply that any essential
torus T � XK can be isotoped so as to intersect T minimally with T \ T1 , say, a
nonempty collection of circles which are nontrivial and mutually parallel in T and Ti .

For R1;1D cl.XK nT1� Œ�1; 1�/, each component of T \R1;1 is therefore an annulus
which is either (a) a companion annulus in R1;1 for one of the slopes T \.T1�f�1; 1g/,
or (b) a nonseparating annulus in R1;1 with one boundary component in each of
T1 � f�1g and T1 � f1g. By hypothesis not all the annuli in T \R1;1 can be of
type (a), while any annulus component of type (b) can be extended via an annulus in
T1 � Œ�1; 1� to form a closed Klein bottle or nonseparating torus in XK � S3 , which
is impossible. Therefore K is not a satellite knot, so by [17] K is either a hyperbolic
or torus knot, and in the latter case K must be the trefoil knot and N D 1.
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For part (2)(a), assume for definiteness that T1 is strongly knotted. Let FD@R1;1�XK

and let r � @XK be a slope with �.r;J / � 2. If XK .r/D XK [@ Vr , where Vr is
a solid torus and r bounds a disk in Vr , then the annulus A D N.T1/ \ @XK is
incompressible in the manifold M DN.T1/[A Vr , and we can write

XK .r/D ŒR1;1[N.T1/�[Vr DR1;1[F ŒN.T1/[A Vr �DR1;1[F M:

Since N.T1/�T1�Œ�1; 1� with T1 corresponding to T1�f0g and A to .@T1/�Œ�1; 1�,
if D �M is a compression disk for @M D F then the minimal intersection of A

and D in M is nonempty, with A\D �A consisting of a collection of spanning arcs
of A. Hence if E �D is an outermost disk cut out by an outermost arc of A\D �D

then E lies in N.T1/ or Vr and @E intersects the core J of A minimally in one point,
which is impossible since J, the core of A, runs �.r;J / � 2 times around Vr and
separates @N.T1/. Therefore M is irreducible and boundary irreducible and so the
manifold XK .r/DR1;1[F M is Haken.

For part (2)(b), suppose that N � 4 and there is an incompressible torus yT in XK .r/.
Since the manifold Ri;i contains the collection T nT1 of N � 1� 3 once-punctured
tori, the once-punctured torus T1 is strongly knotted by Lemmas 3.9 and 4.1.

After an isotopy, yT may be assumed to intersect Vr minimally in a nonempty collection
of meridian disks, so that T D yT\XK is an essential punctured torus which intersects T

minimally in essential graphs GT D T \T � T and G D T \T � T.

If p D�.r;J /� 2 then each vertex of GT has degree pN � 8 and so, by the initial
part of Lemma 4.1 and by Lemma 4.2, both of which hold with T in place of the
many-punctured 2–sphere Q, for the reduced graph GT (see Section 2.3) each of its
edges has size at most 2, so each of its V D j@T j � 2 vertices has degree at least
1
2
pN � 4, and each of its d � 0 disk faces has at least 4 edges. Applying Euler’s

relation to the reduced graph GT yields the relations

4V � 2E � 2V C 2d D) V � d;

4d � 2E � 2V C 2d D) d � V;

which imply that d D V , hence that p D 2 and N D 4, and that in GT all vertices
have degree 4, all faces are 4–sided disk faces, and each edge xe is the amalgamation
of two mutually parallel edges from GT .

So if f is a 4–sided disk face of GT that lies in, say, the region R1;2 , then the union
of f and the bigon disk faces of GT incident to each edge around f forms a 4–sided
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Figure 22: The graph GT D T \T � T .

disk face f 3;4 of the graph G
3;4
T
D T \ .T3 t T4/ � T which lies in the region

R4;3 �R1;2 (see Figure 22). Thus by Lemmas 2.1(3) and 4.1(2) the region R4;3 is
a genus two handlebody such that the disk f 3;4 � R4;3 intersects K minimally in
4 points. By Lemma 6.1, .R4;3;K/ must be a simple or double pair, contradicting
Lemma 6.8(2)(a) since the punctured tori T1;T2 �R4;3 are neither boundary parallel
nor mutually parallel in R4;3 . Therefore the Haken manifold XK .r/ is atoroidal, hence
hyperbolic by Thurston’s hyperbolization theorem [17; 18].

The type 1 Heegaard diagrams for the manifold M D R1;4 [@ R4;1 constructed in
Section 7.4 can be adapted to yield knots in M that bound 5 mutually disjoint and
nonparallel once-punctured tori, simply by setting p5 D 1, so that T5 and T6 become
mutually parallel in R4;1 , and 4 and 6 become consecutive labels.

After setting p5 D 1, a simple strategy to obtain M D S3 consists in choosing some
of the parameters pi and qi in such a way that the circle @D4 , say, is primitive in
R1;4 , so that R1;4.@D4/ is a solid torus and hence M DR1;4.@D4 t @D6/ is a lens
space. Choosing the remaining parameters so that the circles @D4 and @D6 represent
an integral homology basis for R1;4 finally yields that M D S3 .

We remark that the symmetry between the words of @D4 and @D6 in �1.R1;4/ dis-
cussed in Section 7.4.4 makes irrelevant which of these two circles is chosen to be
primitive in R1;4 , and also that it does not seem possible to implement this strategy
using a type 2 Heegaard diagram for R1;4[@ R4;1 .

For the rest of this section we will use the notation set up in Section 7.4. We implement
the strategy outlined above by setting the standard parameters

nD0; q1D˙1; p2D2; ı3D˙1; q3D�.p3Cı3/; .p4; q4/D .2; 1/; p5D1

on top of the generic conditions p1;p3;p6 � 2 and gcd.pi ; qi/D 1.
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!2
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!4 ! 0
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!6

A3

Figure 23: The knot K DK.1/.p1; q1;p3; ı3;p6; q6/ .

As in Section 7.4, x and y , and x4 and x6 , denote circles dual to the complete disk
systems D1;D3�R1;4 and D4;D6�R4;1 , respectively, so that �1.R1;4/Dhx;y j�i

and �1.R4;1/D hx4;x6 j �i. Therefore, in �1.R1;4/, we have

˛Dxq1yp3xp1 ; ˇDX p1Y p3X p1Y q3 ; uDY q3X p1Y p3 ; vDyp3xp1yp3xq1

and hence @D4 D @D
�
4
D ˛2ˇ D xq1yp3xq1yp3Cı3 is primitive in �1.R1;4/.

From the proof of Lemma 7.11 we have that, in �1.R4;1/,

!1 D .x
p4

4
x

p6

6
/p5�1x

p4

4
x

q6

6
D x2

4x
q6

6
;

!03 D .x
p6

6
x

p4

4
/p5�1x

p6

6
x

q4

4
D x4x

p6

6
;

while from Figure 19, top, we obtain, in �1.R1;4/,

!4 D .x
p1yp3/p2�1xp1yq3 D xp1yp3xp1Y p3Cı3 ;

!06 D .y
p3xp1/p2�1yp3xq1 D yp3xp1yp3xq1 ;

relative to basepoints at the orientation arrows for !4 and !0
6

indicated in Figure 17,
center. In particular, the circle !0

3
� T4 is primitive in R4;1 .

By construction we still have that !4 � T4 and !0
6
� T1 are power circles in R4;1 , so

T5 and T6 are the tori in R4;1 induced by the power circles !4 � T4 and !0
6
� T1 .

Since the circle !0
3
� T4 is primitive in R4;1 , by Lemma 6.8(1)(d) T5 and T6 are
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indeed mutually parallel in R4;1 and can be identified with one another, whence by
Lemma 6.8(2)(b) we must have �.!0

4
; !6/D 1 in T5 D T6 .

The knot K � @R1;4 �M now depends on 6 parameters and will be denoted by

K DK.1/.p1; q1;p3; ı3;p6; q6/�M;

with the 5 once-punctured tori T D T1 [ T2 [ T3 [ T4 [ T6 � XK and the core
knots Ki of the complementary regions of T represented by the diagram in Figure 23,
obtained by setting T5 D T6 in Figure 12. Homologically, in R1;4 we have

@D4 D 2˛Cˇ D 2q1xC .p3� q3/y D 2q1xC .2p3C ı3/y;

@D6 D p6uC q6v D Œq6.p1C q1/�p1p6�xC Œ2p3q6C ı3p6�y;

and so

M D S3
() @D4 and @D6 form a basis for the first homology of R1;4

() det
�

2q1 2p3Cı3
.p1Cq1/q6�p1p6 2p3q6Cı3p6

�
DAp6CBq6 D " 2 f˙1g;

where AD p1.2p3C ı3/C 2ı3q1 and B D q1.2p3� ı3/�p1.2p3C ı3/.

Lemma 8.2 gcd.A;B/ D 1 for any of the standard values of pi , qi and ı3 ; in
particular, there are infinitely many pairs .p6; q6/ with p6 � 2 such that M D S3 , for
which q6 >

1
2
p6 � 1.

Proof Since ı3; q1 2 f˙1g, we have that A C B D q1.2p3 C ı3/ is odd and
A� q1p1.ACB/D 2ı3q1 D˙2, hence that gcd.A;B/D 1. The estimates

AD p1.2p3C ı3/C 2ı3q1 � 2.2p3� 1/� 2� 4;

�B D p1.2p3C ı3/� q1.2p3� ı3/� p1.2p3� 1/� .2p3C 1/

D .p1� 1/.2p3� 1/� 2� 1

show that q6 � 1. The relations

q6 D
Ap6� "

�B
D

p6.�B/Cp6.ACB/� "

�B

D p6C
q1p6.2p3C ı3/� "

�B
D p6C q1 �

p6.2p3C ı3/� "q1

p1.2p3C ı3/� q1.2p3� ı3/
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imply that q6 > p6 for q1DC1, while for q1D�1, since "� 1< 2p3� ı3 , we have

0<
p6.2p3C ı3/C "

p1.2p3C ı3/C .2p3� ı3/
<

p6.2p3C ı3/C .2p3� ı3/

p1.2p3C ı3/C .2p3� ı3/

�
p6.2p3C ı3/C .2p3� ı3/

2.2p3C ı3/C .2p3� ı3/
�

p6

2

and hence that

q6�
p6

2
�

p6

2
�

p6.2p3C ı3/C "

p1.2p3C ı3/C .2p3� ı3/
> 0:

Let K denote the family of all knots K.1/.p1; q1;p3; ı3;p6; q6/� S3 with standard
parameters such that Ap6CBq6 D " 2 f˙1g.

Proof of Theorem 2 For each knot K 2 K there is a collection

T D T1 tT2 tT3 tT4 tT6 �XK

of 5 mutually disjoint once-punctured tori such that for each i the region Ri;iC1 is
a handlebody and the circles !0

i�1
; !i � Ti are power circles in Ri�1;i and Ri;iC1 ,

respectively, with �.!0
i�1
; !i/D 1. If there is a circle 
 in Ti which is a power in XK

on either side of Ti then, by Lemma 3.1 applied to Ri;i , 
 must be isotopic in Ti to
!0

i�1
and !i , contradicting the fact that �.!0

i�1
; !i/D 1. Therefore, by Lemma 8.1

the knot K is hyperbolic and the slope r D a=b of any exceptional surgery on K

satisfies the condition jaj D�.r;J /� 1, so XK .r/ is an integral homology 3–sphere.

Moreover, each pair .Ri;iC1;J / is simple of index pi � 2 and so, by Lemma 6.2(4),
XK .J / is the union of Seifert fiber spaces of the form A2.p1/, A2.p2/, A2.p3/,
A2.p4/ and A2.p6/, hence the collection yT produces the JSJ decomposition of XK .J /.
As the manifolds A2.p/ and A2.q/ are not homeomorphic for p¤ q (see [11, VI.16]),
if fp1;p3;p6g ¤ fp

0
1
;p0

3
;p0

6
g then for the knots

K DK.1/.p1; q1;p3; ı3;p6; q6/ 2 K and K0 DK.1/.p01; q
0
1;p
0
3; ı
0
3;p
0
6; q
0
6/ 2 K

the surgery manifolds XK .J / and XK 0.J
0/ are not homeomorphic, hence K and K0

are knots of different types and so by Lemma 8.2 the family of knots K is infinite.

The following result establishes a connection between the hyperbolic knots in the
family K and the hyperbolic Eudave–Muñoz knots:
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Lemma 8.3 For each knot KDK.1/.p1; q1;p3; ı3;p6; q6/ 2K the core knot K4 of
the simple pair .R4;6;K/ is a hyperbolic Eudave–Muñoz knot ; if .p1; q1/ ¤ .2; 1/

then K2 is also a hyperbolic Eudave–Muñoz knot , and otherwise it is a trivial or cable
knot.

Proof By construction, the power circles !0
i�1
� Ti �Ri�1;i and !i � Ti �Ri;iC1

intersect minimally in one point, hence each region R1;3 , R2;4 , R3;6 , R4;1 and R6;2

is a handlebody by Lemma 7.2(3).

As !1 D x2
4
x

q6

6
2 �1.R4;1/ and q6 � 2 by Lemma 8.2, !1 is a Seifert circle in R4;1

and so by Lemma 3.5(1) R4;2 is not a handlebody.

Since D1 and D3 are the compression disks of @R1;4 n!
0
3

and @R1;4 n!1 in R1;4 ,
respectively, the setup in Section 7.4.1 applies and so by Lemma 7.9 the circle
!4 D xp1yp3xp1Y p3Cı3 2 �1.R1;4/D hx;y j �i is represented by the word !4 D

zyp3zY p3Cı3 in �1.R2;4/D hz;y j �i, where !0
1
D z . Since p3C ı3 D p3˙1� 1,

the word !4 D zyp3zY p3Cı3 is not primitive in hz;y j �i by Lemma 7.10 and so
R2;6 is not a handlebody by Lemma 3.5(1). Therefore, by Lemma 7.1 applied to the
collection T2;T4;T6 �XK , it follows that K4 is a hyperbolic Eudave–Muñoz knot.

Since !0
6
Dyp3xp1yp3xq1 2�1.R1;4/Dhx;y j�i and q1D˙1, by Lemmas 6.8(1)(d)

and 7.9 we have that

!06 is a Seifert circle in R1;4 () !06D txp1 txq1 is primitive in �1.R1;3/Dhx; t j�i

() .p1; q1/D.2; 1/:

Thus, by Lemma 3.5(1), R6;3 is a handlebody if and only if .p1; q1/D .2; 1/. There-
fore, if .p1; q1/ ¤ .2; 1/ then R6;3 is not a handlebody and so K2 is a hyperbolic
Eudave–Muñoz knot by Lemma 7.1 applied to the collection T2;T3;T6 �XK .

For the case .p1; q1/D .2; 1/, since R1:4 is a handlebody and the pair .R2;3;K/ is
simple, by Lemmas 3.5 and 6.4 the circles !0

1
�T2 and !3�T3 are basic in R2;3 and

there is an integral slope s2 �N.K2/�R2;3 which is coannular in R2;3 n int N.K2/

to a circle s0
2
� @R2;3 n .!

0
1
t!3/ which intersects each of the power circles !2 � T2

and !0
2
� T3 minimally in one point, whence s0

2
intersects K � @R2;3 minimally in

two points; also, s0
2

is a primitive circle in R2;3 and the circles !0
1

and !3 run once
around the solid torus R2;3.s

0
2
/.

By Lemma 6.3, s0
2

can be isotoped in R1;4 onto a circle zK2 in @R1;4 n .!1 t!
0
3
/ so

that it intersects K � @R1;4 minimally in two points, hence each of the circles !4
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and !0
6

minimally in one point. Thus zK2 must be the circle shown in Figure 19, top
or center (where p2 D 2), modulo some number m 2 Z of Dehn twists along the
annulus AK � @R1;4 .

Moreover, by Lemmas 6.3 and 6.4(4) the manifold R1;4. zK2/ is homeomorphic to the
union of the solid torus R2;3.s

0
2
/ and the companion solid tori of the power circles !0

1

and !3 in R1;2 and R3;4 , respectively and hence it is a Seifert fiber space of the form
D2.p1;p4/, so zK2 is a Seifert circle in R1;4 .

In the case of the circle zK2 in Figure 19, top, in �1.R1;4/ D hx;y j �i, the word
represented by zK2 is of the form

w.x2;yp3/D yp3x2ŒX 2Y p3x2yp3x2yp3X 2Y p3 �mŒX 2yp3x2yp3x2Y p3X 2Y p3 �m

and it is not hard to see that if m¤ 0 then the cyclic reduction of the word w.x;yp3/

contains both x and X (and yp3 and Y p3 ) and hence it is not a primitive word by
Lemma 7.10, which by Lemmas 6.8(1)(d) and 7.9 implies that zK2 is not a Seifert
circle in R1;4 , contradicting the above argument. Therefore we must have mD 0 and
so zK2 � @R1;4 is isotopic to the circle shown in Figure 19, top. In the case of the
circle zK2 of Figure 19, center, a similar computation shows that the word w.x;yp3/

is not primitive for any m 2 Z and so this case does not arise.

It follows that the circle @D4D p4˛Cq4ˇD 2˛Cˇ � @R1;4D @R4;1 , obtained from
Figure 19, center, with p5 D 1, intersects zK2 minimally in one point and so zK2 is
a primitive circle in R4;1 . The proof of Lemma 3.3(1) now shows that the unique
compression disk E �R4;1 for the surface @R4;1 n

zK2 can be made disjoint from D4 .

Since zK2 is isotopic in S3 to K2 , we can therefore identify the exterior X2 � S3 of
the knot K2 with the manifold R1;4.@E/, so that @D4 � @X2 is the meridian slope
and zK2 � @X2 has integral slope.

Now, relative to the point zK2 \ @D4 � @R1;4 , the words in �1.R1;4/ D hx;y j �i

represented by the circles zK2 and @D4 (oriented as in Figure 19, top and center) are

zK2 D yp3x2 and @D4 D yp3xY q3x:

If jq3j D p3Cı3D 1 then p3D 2, ı3D�1 and q3D�1, in which case we have that

@D4 � . zK2/
�1
� @D4 D yp3xY 2q3x D .y2x/2

and hence 2 � @D4 �
zK2 � @R1;4 (written homologically) is a power circle in R1;4 ,

while if jq3j � 2 then
. zK2/

�1
� @D4 D .XYx/q3
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and hence @D4�
zK2 � @R1;4 is a power circle in R1;4 . Therefore in all cases there

is a circle 
 � N.@D4 [
zK2/ � @R1;4 which is a power in R1;4 and is disjoint

from @E, hence the companion annulus and companion solid torus of 
 in R1;4 lie in
X2 DR1;4.@E/ and so K2 is either a trivial or cable knot.

Remarks 8.4 (1) Other infinite families of hyperbolic knots K in S3 with a col-
lection T � XK of 5 once-punctured tori can be obtained using variations of the
construction above, for instance, by setting the parameters n D 0, .p4; q4/ D .1; 0/

and

.p1; q1/D .2; 1/; p2 D p5 D 2; p3 6� 0 mod 3; q3 D˙1;

along with the conditions p3;p6 � 2 and gcd.p6; q6/ D 1 on a type 1 Heegaard
diagram, in which case the core knot K5 is always a hyperbolic Eudave–Muñoz knot.

(2) The above process can also be modified to produce examples of hyperbolic knots
in S3 which bound a maximal collection of 4 mutually disjoint and nonparallel once-
punctured tori as follows. On top of the generic conditions p1;p3;p4;p6 � 2 and
gcd.pi ; qi/D 1, set the standard values

nD 0; p2 D 1; .p4; q4/D .2; 1/; p5 D 1;

along with the condition

2q1�p1 D ı1 D˙1 or q3 D˙1:

Then AD�.2q1�p1/q3 and B D q1q3C .2q1�p1/p3 are relatively prime integers,
and an infinite family of hyperbolic knots K DK.1/.p1; q1;p3; q3;p6; q6/ � S3 is
produced by the condition Ap6CBq6D˙1, each of which has exterior that contains a
family of 4 mutually disjoint and nonparallel once-punctured tori T DT1tT2tT4tT6

that separate XK into simple pairs, so that yT produces the JSJ decomposition of XK .J /

consisting of Seifert spaces of the form A2.p1/, A2.p3/, A2.p4/ and A2.p6/.

Now, any incompressible torus in XK .J / can be isotoped away from yT and into the
interior of some atoroidal cable space A2.pk/, whence it must be isotopic to some
component yTl �

yT of @A2.pk/. So if T 0 D T 0
1
t T 0

2
t T 0

3
t T 0

4
t T 0

5
� XK is a

5–component maximal family of once-punctured tori then, for some i ¤ j , yT 0i and
yT 0j must be mutually isotopic, hence parallel, in XK .J /, and hence by Lemma 3.7(4)
T 0i and T 0j must be mutually parallel in XK , which is not the case. Therefore the
collection T is maximal.
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