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This is an exposition of homotopical results on the geometric realisation of semi-
simplicial spaces. We then use these to derive basic foundational results about
classifying spaces of topological categories, possibly without units. The topics
considered include: fibrancy conditions on topological categories; the effect on
classifying spaces of freely adjoining units; approximate notions of units; Quillen’s
Theorems A and B for nonunital topological categories; the effect on classifying
spaces of changing the topology on the space of objects; the group-completion
theorem.
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Semisimplicial spaces play an important role in the theory of moduli spaces of manifolds,
beginning with their use by Galatius and Randal-Williams in [7; 28], and continuing
in [8; 10; 11]. In those papers, a number of key properties of semisimplicial spaces
are used. While such results are mostly well known to experts, a consistent exposition
seems to be missing. The first goal of the present note is to give such an exposition; we
hope that it helps to make the basic technology of those papers more understandable
to the nonexpert. Results which are repeatedly used in [7; 8; 10; 11] are stated in this
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paper as Theorem 2.2, Theorem 2.12 and Lemma 2.4. (One piece of semisimplicial
technology from those papers is not explained here, namely [8, Theorem 6.2] and its
elaboration [9], which has been abstracted in Botvinnik and Perlmutter [2, Theorem 6.4].
But these are explained in full detail in the cited papers.)

The second goal of this note is to establish basic foundational results about classifying
spaces of topological categories, possibly without units (we define these in Section 3).
The topics we will consider are: fibrancy conditions on topological categories; the
effect on classifying spaces of freely adjoining units to a nonunital topological category;
approximate notions of units; Quillen’s Theorems A and B; the effect on classifying
spaces of changing the topology on the space of objects of a topological category. In
order to prove Quillen’s Theorems A and B in this setting, in Section 4 we describe
a bisemisimplicial resolution of a semisimplicial map induced by a functor between
topological categories. We use our version of Quillen’s Theorem B (whose formulation
is a mild generalisation, due to Blumberg and Mandell [1], of the usual one) in a crucial
way in our paper [5]; clarifying the details of this foundational result has been our main
motivation for writing this note.

The third goal of this note is to give a proof of the group-completion theorem, which
plays a crucial role in Galatius, Tillmann, Madsen and Weiss [12] and Galatius and
Randal-Williams [7; 8]. The formulation of this theorem which is most convenient for
geometric applications is due to McDuff and Segal [22], but their paper elides many
details. A detailed exposition of McDuff and Segal’s proof has been given by Miller and
Palmer [23], which in combination with Randal-Williams [27] proves a stronger result
than the classical formulation. There are several other proofs of the group-completion
theorem, due to Jardine [17; 14], Moerdijk [24] and Pitsch and Scherer [25]. Our proof
avoids the point–set topological subtleties of [22], and the model categorical subtleties
of [17; 14; 24; 25]; we think it is as elementary as possible.

Finally, we give an elementary proof that for two simplicial spaces there is a natural
weak equivalence k.X � Y /�k ' kX�k � kY�k (this can be extracted from Segal’s
paper [31]). This fact has been implicitly used at some places in the literature.

We have attempted to make this note as self-contained as possible, and a large portion
can be read with relatively little background knowledge. We assume that the reader is
familiar with the language of homotopy theory and with the definition of a simplicial
object and the basic examples, though we repeat the definitions. Some key results on
simplicial sets, namely Lemmas 1.7 and 1.11, are used without proof, but in both cases

Algebraic & Geometric Topology, Volume 19 (2019)



Semisimplicial spaces 2101

there are easily accessible references. For the results of Section 2, we use a fairly simple
but powerful local-to-global principle for highly connected maps — see tom Dieck
[3, Theorem 6.7.9] — and either Mather’s first cube theorem [20] or the Dold–Thom
criterion for quasifibrations [4]. In two proofs (of Theorem 2.16 and Lemma 6.8) we
use spectral sequences. Section 7 is almost elementary.
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1 Semisimplicial spaces

1.1 (Semi)simplicial objects

For n 2 N0 , let us write Œn� for the linearly ordered set f0 < 1 < � � � < ng. Let �
denote the category with objects the linearly ordered sets Œn� with n 2N0 , and with
morphisms Œn�! Œm� the monotone functions, with composition given by composition
of functions. Let �inj �� denote the subcategory containing all objects, but only the
injective monotone maps.

Definition 1.1 A simplicial object in a category C is a functor �op ! C . A semi-
simplicial object in C is a functor �op

inj! C . We denote such a (semi)simplicial object
by X� , and write Xp DX�.Œp�/.

A morphism of (semi)simplicial objects is a natural transformation of functors. In this
way the simplicial objects in a category C form a category sC , and the semisimplicial
objects form a category ssC . There is a functor F W sC! ssC , defined by restricting
functors along �op

inj ��
op .

While the description of (semi)simplicial objects given above is convenient for certain
manipulations, it is often convenient to also have a more hands-on description. The
datum of a semisimplicial object in C is equivalent to giving a collection of objects
Xp 2Ob.C/ for p� 0, together with morphisms di W Xp!Xp�1 for 0� i �p , called
face maps, which satisfy

didj D dj�1di if i < j:

The morphism di is associated to the unique injective monotone map Œp� 1�! Œp�

which does not hit i : any monotone injective map can be written as a composition of
such maps, uniquely up to the identity above.
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Similarly, a simplicial object in C is given by objects Xp 2 Ob.C/, together with
face maps di W Xp!Xp�1 for 0� i � p and degeneracy maps si W Xp!XpC1 for
0� i � p , which satisfy the simplicial identities

didj D dj�1di if i < j;

sisj D sjC1sj if i � j;

disj D sj�1di if i < j;

dj sj D djC1sj D Id;

disj D sjdi�1 if i > j C 1:

In this paper, we usually think of simplicial objects as semisimplicial objects which
are equipped with additional structure, namely the degeneracy maps.

Example 1.2 The simplicial p–simplex �p
�

is the simplicial set �pq WD �.Œq�; Œp�/.
For p D 0, one obtains �0q D �, which is a terminal object in the category sSet.

The semisimplicial p–simplex rp
�

is the semisimplicial set rpq WD �inj.Œq�; Œp�/. It
only has simplices in degrees � p . Note that r0q is a point when q D 0 and empty
when q > 0.

Definition 1.3 An augmented semisimplicial object in C is a triple .X�; X�1; ��/, with
X�1 2 Ob.C/, X� 2 Ob.ssC/ a semisimplicial object and morphisms �pW Xp!X�1

such that �p ı di D �p�1 for all p � 1 and all 0� i � p .

Equivalently, it is a semisimplicial object in the over-category C=X�1 (see Section 3.3
for a reminder of this notion).

Bi(semi)simplicial objects As the (semi)simplicial objects in C form a category in
their own right, we may consider (semi)simplicial objects in this category. By adjunction,
this leads to the following definition:

Definition 1.4 A bisimplicial object in C is a functor X�;�W .� ��/op ! C and a
bisemisimplicial object in C is a functor X�;�W .�inj ��inj/

op! C . In either case we
write Xp;q DX�;�.Œp�; Œq�/.

One can think of a bisimplicial object in C as a simplicial object in sC in two ways,
namely as

Œp� 7! .Œq� 7!Xp;q/ and Œq� 7! .Œp� 7!Xp;q/;
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and similarly for bisemisimplicial objects. The diagonal simplicial object ıX� is
the composition of X�;� with the diagonal functor � ! � ��, and similarly for
bisemisimplicial objects. Hence ıXp DXp;p .

If the category C has finite products, we can form the exterior product X�˝Y� of two
simplicial objects X�; Y� 2 sC ; it is

.X�˝Y�/.Œp�; Œq�/ WDX.Œp�/�Y.Œq�/:

The interior product of two simplicial objects is then X��Y� WD ı.X�˝Y�/; concretely,

.X� �Y�/.Œp�/ WDX.Œp�/�Y.Œp�/:

Parallel notions can be defined for semisimplicial objects, but are not very useful.

Freely adding degeneracies If the category C has finite coproducts, then the forgetful
functor F W sC! ssC has a left adjoint E, which has the following explicit description.
For a semisimplicial object X� 2 ssC , define

EXp WD
a

˛W Œp��Œq�

Xq:

Let ˇW Œr� ! Œp� be a morphism in �. For a surjection ˛W Œp� ! Œq�, we factor
˛ ıˇW Œr�! Œq� as Œr� ˛0

�� Œs�
ˇ 0
,�! Œq�, and define ˇW EXp!EXr on the summand

indexed by ˛ as the map ˇ0�W Xq!Xs �EXr .

From this adjunction, we obtain the counit cW EFY�! Y� for each Y� 2 sC , and the
unit uW X�! FEX� for each X� 2 ssC . Concretely, the counit is the map

EFYp D
a

˛W Œp��Œq�

Yq! Yp

which on the summand indexed by ˛ is given by ˛� . Similarly, the unit is the map

Xp! FEXp D
a

˛W Œp��Œq�

Xq

which sends Xp identically to the component indexed by IdW Œp�! Œp�. Further details
may be found in [6, page 166].

1.2 Semisimplicial spaces and their geometric realisation

Convention 1.5 Throughout this paper, we work in the category of compactly gener-
ated spaces as defined in [33] (the difference to the category considered by Steenrod
in [32] is that we do not require the Hausdorff condition). All products of spaces
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are understood to be taken in the category of compactly generated spaces. One key
advantage of compactly generated spaces is that taking quotients commutes with taking
products in full generality, by [33, Propositions 2.1 and 2.20]. Slightly abusing notation,
we shall denote this category by Top and call its objects topological spaces.

We think of the category Set of sets as a full subcategory of Top, namely that of spaces
with the discrete topology. A similar convention applies to (semi)simplicial sets.

Recall that the standard p–simplex is the space

�p D

�
.t0; t1; : : : ; tp/ 2RpC1

ˇ̌̌ pX
iD0

ti D 1 and ti � 0 for each i
�
:

To a morphism 'W Œp�! Œq� in � there is an associated continuous map '�W �p!�q

given by '�.t0; t1; : : : ; tp/D .s0; s1; : : : ; sq/ where sj D
P
i2'�1.j / ti . In particular,

let d i W �p�1!�p be given by .t0; t1; : : : ; tp/ 7! .t0; t1; : : : ; ti�1; 0; ti ; : : : ; tp/, and
si W �p!�p�1 be given by .t0; t1; : : : ; tp/ 7! .t0; t1; : : : ; ti�1; tiCtiC1; tiC2; : : : ; tp/.

The geometric realisation of a semisimplicial space X� is the quotient space

kX�k D

�a
p

Xp ��
p

�.
�

by the equivalence relation .x; '�t /� .'�x; t/, where ' is a morphism in �inj . This
equivalence relation is generated by the requirement that .x; d i t / � .dix; t/. The
n–skeleton kX�k.n/ of kX�k is the image of

`n
pD0Xp ��

p under the quotient map.
The natural map

colim
n!1

kX�k
.n/
!kX�k

is a homeomorphism.

Example 1.6 The geometric realisation of the semisimplicial p–simplex rp
�

is the
topological p–simplex, krp

�
k Š�p .

The (thin) geometric realisation of a simplicial space X� is the quotient space

jX�j D

�a
p

Xp ��
p

�.
�;

with the equivalence relation .x; '�t /� .'�x; t/, where ' is a morphism in �. In
addition to imposing the relation � above, the relation � imposes .x; si t /� .six; t/.
The fat geometric realisation of a simplicial space X� is by definition kX�k WDkF.X�/k,
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and it has a canonical map to jX�j. Skeleta of jX�j are defined as above, and jX�j is
again the colimit of its skeleta.

Lemma 1.7 For each simplicial set Y� , the quotient map kY�k! jY�j is a homotopy
equivalence.

The proof can be found in [29, Proposition 2.1]. It also follows from Proposition A.1(iv)
of [31] as simplicial sets are “good”. The following lemma allows us to compare the
geometric realisation of a semisimplicial set with the geometric realisation of the
simplicial set obtained by freely adding degeneracies. Later, in Lemma 2.6, we will
prove the analogue for semisimplicial spaces.

Lemma 1.8 For each semisimplicial set X� , the map kX�k! kEX�k is a homotopy
equivalence.

Proof We will show that the composition

kX�k! kEX�k! jEX�j

is a homeomorphism, whence the claim follows from Lemma 1.7. For any simplicial
set Y� , each point in jY�j.n/njY�j.n�1/ may be uniquely represented by a .� I t0; : : : ; tn/
with � 2 Yn a nondegenerate simplex. As the nondegenerate simplices of EXn are
precisely given by Xn �EXn , we may describe jEX�j.n/ as the pushout

Xn � @�
n //

��

Xn ��
n

��

jEX�j
.n�1/ // jEX�j

.n/

Now kX�k.n/ is obtained from kX�k.n�1/ by precisely the same pushout description,
which proves by induction that kX�k.n/ ! jEX�j.n/ is a homeomorphism. Taking
colimits over n gives the required result.

If X�;� is a bisemisimplicial space, we define its geometric realisation as the quotient
space

kX�;�k WD
a
p;q

Xp;q ��
p
��q=�
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by the equivalence relation ..' � /�x; t; s/� .x; '�t;  �s/ for morphisms ' � in
�inj ��inj . There are homeomorphisms

(1:9) kX�;�k Š
Œp� 7! kŒq� 7!Xp;qk

Š Œq� 7! kŒp� 7!Xp;qk


and

(1:10) kX�˝Y�k Š kX�k� kY�k;

which use that we are working in the category of compactly generated spaces.

The singular simplicial set The singular simplicial set of a topological space X is
the simplicial set with p–simplices SingpX WD Top.�p; X/, the set of continuous
maps from the standard p–simplex to X, where 'W Œp�! Œq� acts via Top.'�; X/.
The evaluation maps

Top.�p; X/��p!X; .�; t/ 7! �.t/;

assemble to a map jSing
�
X j !X.

Lemma 1.11 The maps

kSing
�
Xk ��! jSing

�
X j ��!X:

are weak homotopy equivalences.

Proof The first map is a weak homotopy equivalence by Lemma 1.7. The second map
is shown to be a weak equivalence in eg [21, Theorem 16.6] or [6, Theorem 4.5.30].

1.3 Extra degeneracies and semisimplicial (null)homotopies

If .Y�; Y�1; �/ is an augmented semisimplicial space, then there is an induced map
k��kW kY�k!Y�1 . There is a standard technique for easily showing that such maps are
homotopy equivalences, which goes under the name of “having an extra degeneracy”.

Lemma 1.12 Let .Y�; Y�1; �/ be an augmented semisimplicial space, and suppose
there are maps hpC1W Yp! YpC1 for p � �1 such that

dpC1hpC1 D IdYp
;

dihpC1 D hpdi for 0� i < pC 1;

�0h0 D IdY�1
I

then k��kW kY�k! Y�1 is a homotopy equivalence.
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Dually, if there are maps gpC1W Yp! YpC1 for p � �1 such that

d0gpC1 D IdYp
;

digpC1 D gpdi�1 for 0 < i � pC 1;

�0g0 D IdY�1
;

then the same conclusion holds.

In the first case the conditions on the maps hpC1 are formally identical to the condi-
tions relating face maps di to degeneracy maps si , except that hpC1 behaves like a
hypothetical degeneracy map spC1 , whereas in the definition of a simplicial object
there are only degeneracy maps s0; s1; : : : ; spW Yp ! YpC1 . For this reason such a
collection of maps hpC1 is often called an extra degeneracy. (Similarly, gpC1 behaves
like a hypothetical degeneracy map s�1W Yp! YpC1 .)

Proof Let us just consider the first case. We have h0W Y�1 ! Y0 � kY�k and
k��k ı h0 D IdY�1

. The maps Œ0; 1� � Yp ��p ! YpC1 ��
pC1 ! kY�k, defined

by
.sI xI t0; : : : ; tp/ 7! .hpC1.x/I .1� s/t0; : : : ; .1� s/tp; s/;

respect the equivalence relation used in the definition of the geometric realisation. Since
taking products and taking quotients commutes in compactly generated spaces, this
yields a homotopy H W Œ0; 1��kY�k! kY�k, and one verifies that H.0;�/D IdkY�k
and that H.1;�/D h0 ı k��k.

Any semisimplicial space Y� is augmented over a point � in a unique way. The data
of an extra degeneracy in this case gives in particular a point y0W � ! Y0 , and the
homotopy in the proof gives a contraction of kY�k to the point fy0g � Y0�kY�k. This
can be generalised to maps of semisimplicial spaces, as follows.

Lemma 1.13 Let f�W X� ! Y� be a map of semisimplicial spaces and y0 2 Y0 .
A semisimplicial nullhomotopy from f� to y0 is a collection of continuous maps
hpC1W Xp! YpC1 such that

dpC1hpC1 D fp;

dihpC1 D hpdi for 0� i � p and p � 1;

d0h1 � y0:
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Such a semisimplicial nullhomotopy induces a homotopy from kf�k to the constant
map kX�k! fy0g � Y0 � kY�k.

Proof Use the same formula as in the proof of Lemma 1.12 to obtain a homotopy
H W Œ0; 1��kX�k ! kY�k with H.0;�/D kf�k and H.1;�/ the constant map with
value y0 .

Example 1.14 The fat geometric realisation of the simplicial n–simplex �n
�

is con-
tractible (it is not homeomorphic to �n ). Recall that �np D �.Œp�; Œn�/ and let
hpC1W �.Œp�; Œn�/! �.ŒpC 1�; Œn�/ be the map that sends �W Œp�! Œn� to the map
�0W ŒpC1�! Œn� which is defined by �0.i/D �.i/ for i � p and �0.pC1/ WD n. This
is a simplicial nullhomotopy from Id�n

�
to the vertex n 2 �n0 , and hence the claim

follows from Lemma 1.13.

More generally, we have the notion of a semisimplicial homotopy between semi-
simplicial maps.

Lemma 1.15 Let f�; g�W X�!Y� be maps of semisimplicial spaces. A semisimplicial
homotopy from f� to g� is a collection of continuous maps hpC1;i W Xp! YpC1 for
i D 0; 1; : : : ; p such that

dihpC1;i D dihpC1;i�1 for 0 < i � p;

dihpC1;j D hp;j�1di for 0� i < j;

dihpC1;j D hp;jdi�1 for j C 1 < i � p;

d0hpC1;0 D fp;

dpC1hpC1;p D gp:

Such a semisimplicial homotopy induces a homotopy from kf�k to kg�k.

Proof Consider the maps

 pC1;i W �
pC1
!�1 ��p;

pC1X
jD0

tj ej 7!

iX
jD0

tj .0; ej /C

pX
jDi

tjC1.1; ej /;

for i D 0; 1; : : : ; p , giving the standard decomposition of the prism into simplices. The
maps

 pC1;i .�
pC1/�Xp!�pC1 �YpC1 � kY�k; . pC1;i .t/; x/ 7! .t; hpC1;i .x//;
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glue to maps �pW Œ0; 1���p �Xp!kY�k (using the first set of identities) which in
turn glue to a map �W Œ0; 1��kX�k!kY�k (using the second and third set of identities).
This gives the required homotopy (using the fourth and fifth set of identities).

1.4 Spectral sequences

The space kX�k is filtered by its skeleta kX�k.n/ , where kX�k.0/ DX0 and

(1:16) kX�k
.n/
D kX�k

.n�1/
[Xn�@�n Xn ��

n:

This filtration has the property that each map K!kX�k from a compact Hausdorff
space K factors through some finite stage; see eg [15, Proposition A.1] for a related
argument, or [33, Lemma 3.6] for a general argument.

Recall that a local coefficient system on a space Y is a functor L from the fundamental
groupoid …1.Y / to the category of R–modules for a commutative ring R . If Y is
semilocally simply connected then we may also consider a local coefficient system
on Y to be a bundle L! Y of R–modules.

For any system of local coefficients L on kX�k, the skeletal filtration yields a spectral
sequence

E1p;q DHpCq.kX�k
.q/; kX�k

.q�1/
IL/)HpCq.kX�kIL/;

which is strongly convergent as each map from a simplex to kX�k lands in some finite
skeleton. Let LjXq��q be the pullback of L along Xq ��q!kX�k, and Lq be the
restriction of LjXq��q to Xq ŠXq�bq , where bq 2�q is the barycentre. The natural
map

HpCq.Xq ��
q; Xq � @�

q
ILjXq��q /!HpCq.kX�k

.q/; kX�k
.q�1/

IL/

is an isomorphism, using the description (1.16) and excision. The contraction of �q to
bq 2�

q determines an isomorphism LjXq��q Š ��1Lq , and the Künneth map

Hp.XqILq/ŠHp.XqILq/˝Hq.�q; @�qIZ/!HpCq.Xq ��
q; Xq � @�

q
I��1Lq/

is an isomorphism (as the homology of .�q; @�q/ is free). Thus we obtain the descrip-
tion

E1p;q ŠHp.XqILq/)HpCq.kX�kIL/

for this spectral sequence. Associated to each face map di W Xq ! Xq�1 there is a
unique homotopy class of path in �q from d i .bq�1/ to bq , monodromy along which
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gives a preferred map of local coefficient systems �i W Lq! Lq�1 covering di . One
may show (see [30, Section 5]) that the d1–differential is

d1 D

qX
iD0

.�1/i .di ; �i /�W Hp.XqILq/!Hp.Xq�1ILq�1/;

the alternating sum of the maps induced on homology by the face maps.

More generally, if .X�; X�1; �/ is an augmented semisimplicial space then (replacing
X�1 by the mapping cylinder of k��kW kX�k!X�1 and) setting F�1 D .X�1; X�1/
and Fq D .X�1; kX�k.q// for q � 0 gives a filtration of pairs, and hence for each local
coefficient system L on X�1 a spectral sequence with E1p;q ŠHp.XqILq/ for p � 0
and q � �1, which converges to HpCqC1.X�1; kX�kIL/.

2 Results on the homotopy type of the geometric realisation

In this section we shall collect results which allow one to deduce homotopical statements
about geometric realisation of a map f�W X� ! Y� of semisimplicial spaces from
homotopical statements about the maps fpW Xp! Yp . One says that a semisimplicial
map f� has a certain property levelwise if each map fp has that property. As a basic
technical tool for gluing together k–connected maps, we will take Theorem 6.7.9 of
tom Dieck’s book [3].

Lemma 2.1 For m � n the inclusion kX�k.n/! kX�k.m/ is n–connected, and the
inclusion kX�k.n/!kX�k is n–connected.

Proof For the first claim, it is enough to prove that the inclusion kX�k.n/!kX�k.nC1/

is n–connected. To see this, let b 2�nC1 be the barycentre and consider the covering
of kX�k.nC1/ by the open sets

UX0 D kX�k
.nC1/

n .XnC1 � fbg/' kX�k
.n/;

UX1 DXnC1 � int.�nC1/'XnC1;

with intersection UX0 \U
X
1 ' XnC1 � @�

nC1 . Applying [3, Theorem 6.7.9] to the
map

.UX0 ; U
X
0 ; U

X
1 \U

X
0 /! .kX�k

.nC1/; UX0 ; U
X
1 /

shows that kX�k.n/ ��! UX0 !kX�k
.nC1/ is n–connected, as required. The second

claim follows from the first one and the fact that a map from a compact Hausdorff
space to kX�k factors through a skeleton.
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Theorem 2.2 Let f�W X�! Y� be a map of semisimplicial spaces which is a level-
wise weak homotopy equivalence. Then kf�kW kX�k ! kY�k is a weak homotopy
equivalence.

Proof By Lemma 2.1, it is enough to show that kf�kW kX�k.n/!kY�k.n/ is a weak
equivalence for each n, and this may be shown by induction on n. The case nD 0 is
trivial. For the induction step, consider the open sets UX0 ; U

X
1 � kX�k

.nC1/ from the
proof of Lemma 2.1 and the analogous U Y0 ; U

Y
1 �kY�k

.nC1/ . By induction hypothesis,
the restriction of kf�k to UX0 ! U Y0 is a weak equivalence, and so is the restriction
UX1 ! U Y1 and UX0 \ U

X
1 ! U Y0 \ U

Y
1 . The inductive step then follows using

[3, Theorem 6.7.9].

Remark 2.3 Theorem 2.2 is false in general for the thin geometric realisation of
simplicial spaces. This is the main reason why — even for simplicial spaces — it is
often preferable to consider the fat geometric realisation. A concrete counterexample
was given by Lawson in response to a question on MathOverflow [19].

Theorem 2.2 has the following useful generalisation:

Lemma 2.4 Let f�W X�! Y� be a map of semisimplicial spaces. If fpW Xp! Yp is
.k�p/–connected for all p , then kf�k is k–connected.

Proof By Lemma 2.1 it is enough to show that kf�k.n/W kX�k.n/! kY�k.n/ is k–
connected for each n. The case n D 0 is trivial. For the induction step, we may as
well suppose that Xi D Yi D ∅ for i > n and that kf�k.n�1/ is k–connected. We
factorise f� as

(2:5) X�
j�
�!W�

g�
�!Z�

h�
�! Y�

as follows. The semisimplicial space W� has Wi DYi for i <n, WnDXn and Wi D∅
for i > n. The face maps Wn!Wn�1 are the compositions fn�1 ıdi D di ıfn , and
the other face maps are the same as those for X� . The map jn is the identity, and
ji D fi for i < n.

Then factorise fn as
fnW Xn

gn
�!Zn

hn
�! Yn;

where hn is a weak homotopy equivalence, and Zn is obtained from Xn by attaching
cells of dimension at least k�nC1. For i < n let Zi D Yi , and for i > n let Zi D∅.
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The map gi is the identity for i < n, and hi W Zi ! Yi is the identity as well. This
yields the factorisation (2.5).

The map h� is a levelwise weak equivalence, and so kh�k is a weak equivalence by
Theorem 2.2. Moreover, kW�k.n�1/ D kZ�k.n�1/ , and the pair .Zn ��n; Zn � @�n/
is obtained from the pair .Wn ��n; Wn � @�n/ by attaching cells of dimension at
least kC 1, so kZ�k.n/ is obtained from kW�k.n/ by attaching cells of dimension at
least kC1; in particular, kg�kW kW�k.n/!kZ�k.n/ is k–connected. By the inductive
hypothesis, kj�k.n�1/W kX�k.n�1/!kW�k.n�1/ is k–connected and jn is the identity.
Using the notation introduced in the proof of Theorem 2.2, we get that UX0 ! UW0 is
k–connected, while UX1 !UW1 and UX0 \U

X
1 !UW0 \U

W
1 are weak equivalences.

From [3, Theorem 6.7.9], it follows that kj�k is k–connected.

Using this we can now prove the analogue of Lemma 1.8 for semisimplicial spaces,
rather than semisimplicial sets.

Lemma 2.6 For each semisimplicial space X� , the map kX�k ! kEX�k is a weak
homotopy equivalence.

Proof Consider the bisemisimplicial set Singp.Xq/, with Singp.EX�/DE.SingpX�/
so giving a commutative square

kSing
�
X�k

��

// kE.Sing
�
X�/k kSing

�
.EX�/k

��

kX�k // kEX�k

The vertical maps are weak equivalences by Lemma 1.11 and Theorem 2.2, and the
top map is a weak equivalence by Lemma 1.8 and Theorem 2.2; hence the bottom map
is a weak equivalence.

Definition 2.7 A commutative square

X1

f

��

k1
// Y1

g

��

X0
k0
// Y0

is called homotopy cartesian if for each basepoint x 2 X0 , the map hofibx.f /!
hofibk0.x/.g/, induced by k0 and k1 , is a weak homotopy equivalence.
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Remark 2.8 Equivalently, one can express this condition by saying that for all y 2 Y1 ,
the induced map hofiby.k1/! hofibg.y/.k0/ is a weak homotopy equivalence.

More symmetrically, one can express this condition by saying that the canonical map
from X1 to the homotopy fibre product

X0�
h
Y0
Y1 WD

˚
.x0; y1; /2X0�Y1�map.Œ0; 1�; Y0/ j .0/D k0.x0/; .1/D g.y1/

	
is a weak homotopy equivalence.

Let us record the 2-out-of-3 properties enjoyed by homotopy cartesian squares. If we
have adjacent commutative squares

X1
k1
//

f

��

Y1
l1
//

g

��

Z1

h
��

X0
k0
// Y0

l0
// Z0

then

(i) if the left and right squares are homotopy cartesian, the outer square is homotopy
cartesian;

(ii) if the right and outer squares are homotopy cartesian, the left square is homotopy
cartesian;

(iii) if the left and outer squares are homotopy cartesian and k0 is 0–connected, the
right square is homotopy cartesian.

Definition 2.9 A map f�W X� ! Y� of semisimplicial spaces is called homotopy
cartesian if for each p � 1 and each 0� i � p , the square

(2:10)

Xp

fp

��

di
// Xp�1

fp�1

��

Yp //
di
// Yp�1

is homotopy cartesian.

Such maps are occasionally known as equifibred. For each p there are pC1 conditions
to be checked. The next lemma shows that the number of conditions to be checked can
be drastically reduced.
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Lemma 2.11 To prove that f�W X�! Y� is homotopy cartesian, it is enough to verify
that (2.10) is homotopy cartesian for those .p; i/ with i D 0 and for .p; i/D .1; 1/.
Dually, it is enough to verify that (2.10) is homotopy cartesian for those .p; i/ with
i D p and for .p; i/D .1; 0/.

Proof We treat only the first case. Consider the commutative cube

Xk

fk

��

dk

||

dk�1
0

// X1

f1

��

d1~~

Xk�1

fk�1

��

dk�1
0

// X0

f0

��

Yk
dk

||

dk�1
0

// Y1

d1~~

Yk�1
dk�1

0
// Y0

By hypothesis the front, back and right faces are homotopy cartesian, so the left face is
too. But each structure map Xp!X0 can be written as the composition of maps of
the form d0 and dk W Xk!Xk�1 . Therefore, for each �W Œ0�! Œp�, the square

Xp

fp

��

��
// X0

f0

��

Yp //
��
// Y0

is homotopy cartesian. The result then follows easily.

The following is due to Segal [31, Proposition 1.6]:

Theorem 2.12 Let f W X�!Y� be a homotopy cartesian map of semisimplicial spaces.
Then the square

X0

f0

��

// kX�k

kf�k

��

Y0 // kY�k

is also homotopy cartesian.

Algebraic & Geometric Topology, Volume 19 (2019)



Semisimplicial spaces 2115

First proof We prove the result by induction on skeleta. There are commutative cubes

Xp � fv0g

fp�fv0g

��

yy

d
p
0

// X0

{{

f0

��

Xp � @�
p

yy

//

fp�@�
p

��

kX�k
.p�1/

kf�k
.p�1/

��

yy

Xp ��
p //

fp��
p

��

kX�k
.p/

kf�k
.p/

��

Yp � fv0g

yy

d
p
0

// Y0

{{

Yp � @�
p

yy

// kY�k
.p�1/

yy

Yp ��
p // kY�k

.p/

Consider first the back cube. If p D 1 then the front face is homotopy cartesian by
hypothesis. If p > 1 then the right-hand face is homotopy cartesian by inductive
assumption, the left-hand face is homotopy cartesian, the back face is homotopy
cartesian by hypothesis, and Yp � fv0g ! Yp � @�

p is 0–connected; thus by the
2-out-of-3 property of homotopy cartesian squares the front face of the back cube is
homotopy cartesian.

Consider now the front cube. The left-hand face is homotopy cartesian and by the
above the back face is too. The top and bottom faces are homotopy cocartesian, so this
cube satisfies the hypotheses of Mather’s first cube theorem [20]. Thus the right-hand
face of the front cube is homotopy cartesian, and hence the right-hand face of the outer
cube is also homotopy cartesian, as required.

Second proof First consider the case where each fp is a fibration. In this case, the
lemma follows from the fact that the geometric realisation kf�kW kX�k ! kY�k is
a quasifibration, which in turn follows from applying the Dold–Thom criterion [4,
Satz 2.2, Hilfssatz 2.10 and Satz 2.12] (a convenient reference is [15, Lemma 4.K.3]).

In the general case, we factor fp functorially as a composition Xp
hp
�! Zp

gp
�! Yp

with a weak equivalence hp and a fibration gp . Then Z� is a semisimplicial space,
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and h� and g� are semisimplicial maps. In the diagram

Xp

di

��

hp
// Zp

di

��

gp
// Yp

di

��

Xp�1
hp�1

// Zp�1
gp�1

// Yp�1

the maps hp and hp�1 are weak homotopy equivalences, and it follows that the right
square is homotopy cartesian. The lower square in

X0 //

h0

��

kX�k

kh�k
��

Z0 //

g0

��

kZ�k

kg�k
��

Y0 // kY�k

is homotopy cartesian by the first part of the proof, and the upper square is homotopy
cartesian as h0 and kh�k are both weak equivalences, by Theorem 2.2.

Lemma 2.13 Let �W X� ! X�1 and �W Y� ! Y�1 be augmented semisimplicial
spaces and let .f�; f /W .X�; X�1/! .Y�; Y�1/ be a map of augmented semisimplicial
spaces. If for each p � 0 the square

Xp
fp

//

�p

��

Yp

�p

��

X�1
f
// Y�1

is homotopy cartesian, then so is the square

kX�k
kf�k

//

k��k
��

kY�k

k��k
��

X�1
f
// Y�1

Proof The diagram

Xp

fp

��

di
// Xp�1

fp�1

��

�p�1
// X�1

f

��

Yp
di
// Yp�1

�p�1
// Y�1
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has right-hand and outer squares homotopy cartesian by hypothesis, so the left-hand
square is also homotopy cartesian. Thus the map f� is homotopy cartesian and we can
apply Theorem 2.12, which shows that the left-hand square in

X0
�
//

f0

��

kX�k

kf�k
��

k��k
// X�1

f

��

Y0
�
// kY�k

k��k
// Y�1

is homotopy cartesian. As k��k ı � D �0 the outer square is homotopy cartesian by
hypothesis, and �W Y0!kY�k is 0–connected, so the right-hand square is also homotopy
cartesian, as required.

Lemma 2.14 Let ��W X� ! X�1 be an augmented semisimplicial space such that
each �pW Xp!X�1 is a quasifibration. Then for each x 2X�1 , the natural map

k��1
�
.x/k! hofibxk��k

is a weak homotopy equivalence.

Proof The diagrams

��1p .x/

��

// Xp

�p

��

fxg // X�1

form a map of augmented semisimplicial spaces, and by assumption this map is
homotopy cartesian. The statement then follows from Lemma 2.13.

Corollary 2.15 Let X be a topological space and consider the constant semisimplicial
space X� (that is, Xp WD X and all face maps are the identity). Then the inclusion
�W X D kX�k

.0/!kX�k is a weak equivalence.

Proof The identity map(s) Xp ! X form an augmentation ��W X� ! X and the
composition k��k ı � is the identity. The semisimplicial space ��1

�
.x/ is the terminal

semisimplicial space and hence has contractible geometric realisation. It then follows
from Lemma 2.14 that k��k is a weak homotopy equivalence, whence the claim follows.
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The following result is due to Segal [31, Proposition 1.5], though we have generalised
the formulation a little. It plays a key role in his theory of � –spaces, and is also a key
ingredient in [7].

Theorem 2.16 Let X� be a semisimplicial space and assume that:

(i) X0 ' �.

(ii) The map �pW Xp! .X1/
p given by .��1; : : : ; �

�
p/, where �j W Œ1�! Œp� is the map

0 7! j � 1 and 1 7! j , is a weak homotopy equivalence.

Then

(iii) If X1 is k–connected, then kX�k is .kC1/–connected.

(iv) If the squares

X2
d1
//

d2

��

X1

d1

��
and

X2
d1
//

d0

��

X1

d0

��

X1
d1
// X0 X1

d1
// X0

are homotopy cartesian and X1 ¤∅, then the tautological map

X1! z�kX�k

(the target is the space of paths that begin and end in the contractible subspace
X0 � kX�k) is a weak homotopy equivalence.

If X� is simplicial, and not just semisimplicial, then the statement of this theorem and
its proof can be simplified, which we shall explain in Remark 2.17 below.

Under assumption (ii) we can form the morphism

�W X1 �X1 '

d0�d2
 ���X2

d1
�!X1

in the homotopy category, which makes X1 into a nonunital homotopy associative
H –space. Assumptions (i) and (ii) should be thought of as saying that X� is a model
for the nerve of this H –space.

The assumption in (iv) can be expressed, by taking vertical homotopy fibres, as ask-
ing that for each x 2 X1 the maps �.x;�/; �.�; x/W X1! X1 be weak homotopy
equivalences. That is, it models the H –space X1 being grouplike. In particular,
� induces an associative product � � �W �0.X1/ � �0.X1/ ! �0.X1/ for which
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Œx� ��; ��Œx�W �0.X1/!�0.X1/ are bijections for all Œx�. As X1¤∅ we may choose
an Œx� 2 �0.X1/ for which there is a unique Œe� 2 �0.X1/ such that Œx� � Œe�D Œx�. But
then for any y we have

Œx� � Œy�D .Œx� � Œe�/ � Œy�D Œx� � .Œe� � Œy�/;

so Œe� � Œy�D Œy� for any Œy� as Œx� � � is injective. But then

.Œy� � Œe�/ � Œy�D Œy� � .Œe� � Œy�/D Œy� � Œy�

and so Œy� � Œe�D Œy� as � � Œy� is injective. Hence Œe� is an two-sided identity element
for � � �, making .�0.X1/; � ; Œe�/ an associative unital monoid. As each Œy� � � is
a bijection, it is easy to see that this is in fact a group. One consequence is that
the map �.e;�/W X1!X1 satisfies �.e; �.e;�//' �.�.e; e/;�/' �.e;�/, so is
homotopy-idempotent, but it is also a weak equivalence, so is weakly homotopic to the
identity.

Proof The first part is an immediate consequence of Lemma 2.4: the map Xp!� is
.kC2�p/–connected for each p , and hence kX�k! k��k is .kC2/–connected. But
the geometric realisation of the terminal semisimplicial space is contractible, and so
kX�k is .kC1/–connected.

For the second part, we use the semisimplicial path space PX� . This is the semi-
simplicial space PXp WDXpC1 , with face maps di W PXp! PXp�1 given by those
of X� having the same names. The maps dpC1W PXp!Xp define a simplicial map
PX� ! X� and we will prove that it is homotopy cartesian. To verify this, we use
Lemma 2.11. The condition for .p; i/D .1; 1/ holds by hypothesis, so it remains to
prove that the diagrams

XpC1
d0

//

dpC1

��

Xp

dp

��

Xp
d0
// Xp�1

are homotopy cartesian. Under the weak equivalences �i (for p� 1� i � pC 1), this
diagram becomes

X
pC1
1

prf2;:::;pC1g
//

prf1;:::;pg

��

X
p
1

prf1;:::;p�1g

��

X
p
1

prf2;:::;pg
// X

p�1
1
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which is obviously homotopy cartesian. Therefore

X1 //

d1

��

kPX�k

��

X0 // kX�k

is homotopy cartesian, by Theorem 2.12.

We will now show that kPX�k is weakly contractible. Using the simplicial identities,
one quickly checks that the maps �p D d

pC1
0 W PXp DXpC1!X0 form an augmen-

tation PX�! PX�1 WD X0 . We shall show this is a weak equivalence by showing
that H�.PX�1; kPX�kIZ/D 0 and then showing that kPX�k is simply connected;
the claim then follows from Whitehead’s theorem.

To see that the homology of the pair .PX�1; kPX�k/ vanishes, consider the morphism

gqC1W Xq
�q
�!X

q
1
e�Id
��!X

qC1
1 '

�qC1
 ��XqC1

in the homotopy category, where e 2 X1 represents the identity element of �0.X1/
as discussed above. This satisfies the identities of Lemma 1.12 up to weak homotopy.
Thus in the spectral sequence

E1p;q DHp.PXqIZ/)HpCq.PX�1; kPX�kIZ/

the maps gqC1 give a chain contraction of .E1p;�; d
1/, as we have

.gq/�d
1
C d1.gqC1/� D

� qX
iD0

.�1/i .gq/�.di /�

�
C

� qC1X
jD0

.�1/j .dj /�.gqC1/�

�

D .d0/�.gqC1/�C

qX
iD0

.�1/i ..gq/�.di /�� .diC1/�.gqC1/�/

D Id:

Thus E2�;� D 0 and hence H�.PX�1; kPX�kIZ/D 0, as claimed.

To show that kPX�k is simply connected, let PX 0
�

be obtained by collapsing down
the 0–simplices of PX� to a point. Consider the map of homotopy cofibre sequences

X1

��

// kPX�k

��

// kPX 0
�
k

��

�0X1 // k�0PX�k // k�0PX
0
�
k
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The map X1 ! �0X1 is 1–connected. The map PX 0p ! �0.PX
0
p/ is .2�p/–

connected, so kPX 0
�
k! k�0PX

0
�
k is 2–connected by Lemma 2.4. The semisimplicial

set �0PX� is in bijection with �0.X1/pC1 in degree p , and can be identified with
E��0.X1/ for the group �0.X1/, so k�0PX�k ' �. Now the map X1 ! kPX�k
is nullhomotopic (it is homotopic to x 7! �.x; e/ 2 X1 � kPX�k, which in turn is
homotopic to x 7! �2.x; e/D e 2X1 � kPX�k), so the middle map is a retract of the
right-hand map, so is also an isomorphism on fundamental groups. Thus kPX�k is
simply connected.

Remark 2.17 If X� is a simplicial space satisfying (i) and (ii) of Theorem 2.16, then
instead of the hypothesis of (iv) it is enough to just ask for the square

X2
d1
//

d2

��

X1

d1

��

X1
d1
// X0

to be homotopy cartesian for the same conclusion to hold. This is because the maps
hpC1D spC1W PXp DXpC1!PXpC1DXpC2 form a system of extra degeneracies,
so Lemma 1.12 shows that the augmentation map kPX�k!X0 is a weak homotopy
equivalence, and we have assumed that X0 ' �.

3 (Nonunital) topological categories

Definition 3.1 A nonunital topological category C consists of an object space C0 D
Ob.C/, a morphism space C1 DMor.C/ and three maps

s; t W C1! C0 and mW C1 �C0
C1 WD f.f; g/ 2 C1 � C1 j t .f /D s.g/g ! C1;

such that

m.m.f; g/; h/Dm.f;m.g; h//; t.m.f; g//D t .g/; s.m.f; g//D s.f /

for all f , g and h for which these expressions are defined.

One thinks of s as the map associating to a morphism its source, t as the map associating
to a morphism its target, and m as the composition of morphisms, whence we write
g ıf WDm.f; g/. We write C.b0; b1/ WD .s; t/�1.b0; b1/ for the space of morphisms
from b0 to b1 . A functor F W C!D between nonunital topological categories is a pair
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of continuous maps Fi W Ci ! Di for i D 0; 1 such that sF1 D F0s , tF1 D F0t and
mı .F1�F1/D F1 ım. The set Fun.C;D/ of functors is endowed with a topology as
a subspace of map.C0;D0/�map.C1;D1/.

Definition 3.2 A unital topological category is a nonunital topological category C to-
gether with a map uW Ob.C/!Mor.C/ such that tıuD sıuD Id and m

�
f; u.t.f //

�
D

m
�
u.s.f //; f

�
D f for all f 2Mor.C/.

We shall say, slightly informally, that C has units if there is the structure of a unital
topological category on it.

Definition 3.3 Let C be a nonunital topological category. The (semisimplicial) nerve
N�C D C� of C is the semisimplicial space whose space of p–simplices is the space
Fun.Œp�; C/. For a morphism ˛W Œq� ! Œp�, the map ˛�W NpC ! NqC is given by
precomposition with ˛ .

The classifying space BC of C is by definition the geometric realisation of its nerve,
BC WD kC�k. A functor F W C ! D induces a semisimplicial map F�W C� ! D� of
semisimplicial spaces and hence a map BF W BC! BD of classifying spaces.

More explicitly, N0CD C0 , N1CD C1 , d1D s and d0D t W C1! C0 . For higher values
of p , NpC is the space Cp WD C1�C0

C1�C0
� � ��C0

C1 (with p factors) with face maps
given by composition, and even more explicitly, the points of NpC are the sequences

c0
f1
�! c1! � � � ! cp�1

fp
�! cp

of composable morphisms in C , and the face maps are given by

di .f1; : : : ; fp/ WD

8<:
.f2; : : : ; fp/ if i D 0;
.f1; : : : ; fiC1 ıfi ; fp/ if 0 < i < p;
.f1; : : : ; fp�1/ if i D p:

From this point of view, the data of a nonunital topological category is captured
precisely by spaces of 0–, 1– and 2–simplices of C� and the face maps between them:
the source and target maps are given by d1W C1! C0 and d0W C1! C0 , respectively,
and composition of morphisms is given by d1W C2! C1 . For this reason we shall freely
confuse the target and source maps with d0; d1W C1! C0 .

Lemma 3.4 If �W F)GW C!D , is a natural transformation, then there is an induced
homotopy BF ' BGW BC! BD , of maps on classifying spaces.
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Proof We apply Lemma 1.15 with

hpC1;i .f1; f2; : : : ; fp/D .F.f1/; F .f2/; : : : ; F .fi /; �ci
; G.fiC1/; : : : ; G.fp//;

where the hypotheses are immediately verified.

3.1 Fibrancy conditions

We shall only be able to make homotopical statements about the classifying spaces
of (nonunital) topological categories when some of the structure maps involved are
fibrations.

Remark 3.5 We wish to record a technical point about the meaning of the term
“fibration” here and in later sections. While we have in mind the class of Serre fibrations,
what will be used in the arguments is: Hurewicz fibrations are “fibrations”; “fibrations”
are preserved under pullback; composition of “fibrations” are “fibrations”; “fibrations”
are quasifibrations. For example, this allows one to take the class of Dold fibrations or,
even more generally, Dold–Serre fibrations (ie maps which have the weak covering
homotopy property with respect to discs).

Definition 3.6 A nonunital topological category C is called left fibrant if the source
map d1W C1! C0 is a fibration. It is called right fibrant if the target map d0W C1! C0
is a fibration.

Moreover, C is called fibrant if .d0; d1/W C1! C0 � C0 is a fibration.

If C is fibrant then it is both left and right fibrant, but the converse need not hold:
consider the topological category with objects and morphisms a space X, and all
structure maps the identity; this is always left and right fibrant, but is fibrant only if
there are no nonconstant paths in X.

Lemma 3.7 If C is left fibrant, then dpW Cp! Cp�1 is a fibration. If C is right fibrant,
then d0W Cp! Cp�1 is a fibration.

Proof This follows because the squares

Cp

dp

��

d0���d0
// C1

d1

��

Cp

d0

��

d2���dp
// C1

d0

��

Cp�1
d0���d0

// C0 Cp�1
d1���dp�1

// C0
are cartesian.
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3.2 The unitalisation

If C has units, then the semisimplicial space N�C has the structure of a simplicial
space [30]. Just as we can freely add degeneracies to a semisimplicial object to form a
simplicial one, we can freely add units to a nonunital topological category to form a
unital one.

Definition 3.8 The unitalisation of a nonunital topological category C is the topologi-
cal category CC with object space Ob.CC/DOb.C/ and morphism space Mor.CC/D
Mor.C/tOb.C/. The source and target maps are extended by the identity on Ob.C/.
The composition map mC for CC is defined so that c 2Ob.C/�Mor.CC/ behaves as
the identity morphism at c .

The category CC is never fibrant unless the object space Ob.C/ has no nonconstant
paths. However, CC is left (or right) fibrant if C is left (or right) fibrant. This limits
the use of the unitalisation. But unitalisation has one very pleasant property, which we
learnt from M Krannich [18, Lemma 1.3.11]:

Proposition 3.9 Let C be a nonunital topological category. Then the natural map
BC! BCC is a weak homotopy equivalence.

Proof There is an isomorphism N�CC ŠE.N�C/ of simplicial spaces such that the
inclusion N�C!N�CC corresponds to the unit map N�C!EN�C . Apply Lemma 2.6.

3.3 Soft units

From the point of view of the homotopy theory of classifying spaces of (unital, discrete)
categories, such as Quillen’s Theorems A and B, an important role is played by over-
categories C=c (and dually under-categories cnC ).

Recall that for an object c 2 Ob.C/, the over-category C=c has objects the arrows
f W b! c , and morphisms .gW a! c/! .f W b! c/ given by a morphism hW a! b

such that f ıhD g . This definition can be made equally well for nonunital topological
categories, by topologising both objects and morphisms as subspaces of C1 . Dually
(by reversing arrows), one defines the under-category cnC .

If C is a unital topological category then C=c has an object Idc W c ! c which is
terminal: there is a natural transformation from IdC=c to the constant functor to Idc .

Algebraic & Geometric Topology, Volume 19 (2019)



Semisimplicial spaces 2125

By Lemma 3.4 this gives a contraction of B.C=c/. Similarly, B.cnC/ is contractible if
C is unital.

If C is a nonunital topological category then B.C=c/ need not be contractible; for
example, it can be empty. Instead, we axiomatise this property as follows:

Definition 3.10 A nonunital topological category C has soft left units if for each c 2 C0
we have B.C=c/' �. It has soft right units if for each c 2 C0 we have B.cnC/' �.

We will describe a convenient property, more general than having units, which implies
that a nonunital topological category has soft left or right units. This property arises
naturally for nonunital topological categories such as cobordism categories.

Lemma 3.11 Let C be a nonunital topological category and let f 2 C.c; c0/ be a
morphism in C . Then the induced functor f�W C=c! C=c0 given by postcomposition
with f induces a nullhomotopic map on classifying spaces.

Therefore, if an object c 2 C0 is either the source or target of a morphism f which
induces a weak equivalence on over-categories, it follows that B.C=c/ ' �. The
analogous statement holds for under-categories.

Proof We consider the case of the over-categories. There are maps hpW Np.C=c/!
NpC1.C=c0/, given by sending a p–tuple of composable morphisms c0! c1! � � �!

cp! c in C=c to the .pC1/–tuple of composable morphisms c0! c1! � � �! cp!

c
f
�! c0 in C=c0. These form a semisimplicial nullhomotopy from N�f� to the constant

map to .c f
�! c0/. Then apply Lemma 1.13.

This observation may be applied to many nonunital topological categories arising
in practice, because while they do not have units they do have many morphisms
composition with which induce weak equivalences on morphism spaces, as follows.

Definition 3.12 Let C be a topological category. We say that C has weak left units if
for each object b 2 C0 , there is a morphism uW b! b0 in C such that the map

C.�; b/ WD d�10 .b/
uı�
��! C.�; b0/

is a weak homotopy equivalence. Dually, C has weak right units if for each object
b 2 C0 , there is a morphism uW b0! b in C such that

C.b;�/ WD d�11 .b/
�ıu
��! C.b0;�/

is a weak homotopy equivalence.
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Remark 3.13 If C is left fibrant, then uı�W C.�; b/! C.�; b0/ is a weak equivalence
if and only if u ı�W C.a; b/! C.a; b0/ is a weak equivalence for each a 2 C0 .

Lemma 3.14 If C has weak left units and is right fibrant, then it has soft left units.
Dually, if C has weak right units and is left fibrant, then it has soft right units.

Proof We only treat the first case. Let u 2 C.c; c0/ be a weak left unit. The squares

Np.C=c/
Np.u�/

//

d
p
0

��

Np.C=c0/

d
p
0

��

// Np.C/

d
p
0

��

N0.C=c/
N0.u�/

// N0.C=c0/ // N0.C/

are both cartesian. By Lemma 3.7 the right-hand vertical map is a fibration, and so
all the vertical maps are fibrations and hence both squares are homotopy cartesian.
We now consider the left-hand square: Since the bottom horizontal map is a weak
equivalence by assumption, it follows that the upper horizontal one is as well. Therefore,
the functor u�W C=c! C=c0 induces a levelwise equivalence on nerves. But the map
Bu�W B.C=c/! B.C=c0/ is also nullhomotopic by Lemma 3.11, so B.C=c/' �.

4 Quillen’s Theorems A and B and bisemisimplicial
resolutions

Let F W C!D be a functor of discrete and unital categories. Quillen’s Theorem A [26] is
a classical and well-known criterion to show that BF W BC!BD is a weak equivalence.
Similarly, Quillen’s Theorem B [26] is a device to identify the homotopy fibre of BF .
In this section, we prove generalisations of Quillen’s theorems for topological and
nonunital categories. Those are stated as Theorems 4.7, 4.8 and 4.9 below, but before
we can state them precisely, we need to introduce a construction that is used in the
proofs.

Definition 4.1 Let F W C! D be a continuous functor between nonunital topological
categories. Let .F=D/p;q be the space of all pairs in NpC � NqC1D of the form
.a0! � � � ! ap; F .ap/! b0! � � � ! bq/ (of course, the unnamed arrows are part
of the data). The .F=D/p;q form, in an evident way, a bisemisimplicial space. It has
augmentation maps

�p;qW .F=D/p;q!Cp; .a0!� � �!ap; F .ap/!b0!� � �!bq/ 7! .a0!� � �!ap/;
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and

�p;qW .F=D/p;q!Dq; .a0!� � �!ap; F .ap/!b0!� � �!bq/ 7! .b0!� � �!bq/:

Dually, let .D=F /p;q be the space of all pairs in NpC �NqC1D of the form

.a0! � � � ! ap; b0! � � � ! bq! F.a0//:

The .D=F /p;q form, in an obvious way, a bisemisimplicial space. It has augmentation
maps

�p;qW .D=F /p;q!Cp; .a0!� � �!ap; b0!� � �!bq!F.a0// 7! .a0!� � �!ap/;

and

�p;qW .D=F /p;q!Dq; .a0!� � �!ap; b0!� � �!bq!F.a0// 7! .b0!� � �!bq/:

For the rest of this section we shall makes statements about both constructions, but
only prove them in the first case: the second is dual.

Lemma 4.2 The diagrams
k.F=D/�;�k

k��;�k

yy

k��;�k

%%

kC�k
kF�k

// kD�k
and

k.D=F /�;�k
k��;�k

yy

k��;�k

%%

kC�k
kF�k

// kD�k

are (naturally) homotopy commutative.

Proof For p; q � 0, we define a map

Hp;qW I � .F=D/p;q ��p ��q!kD�k

by sending .t I a0! � � � ! ap; F .ap/! b0! � � � ! bqI r; s/ to

.F.a0/! � � � ! F.ap/! b0! � � � ! bqI t r; .1� t /s/ 2 DpCqC1 ��pCqC1:

This respects the simplicial relations and hence descends to a map H W I�k.F=D/�;�k!
kD�k (we have used that taking products preserves quotient maps in the category
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of compactly generated spaces). This satisfies H.0;�/ D k��;�k and H.1;�/ D

kF�k ı k��;�k.

Lemma 4.3 If D is unital, then

k��;�kW k.F=D/�;�k! kC�k and k��;�kW k.D=F /�;�k! kC�k

are weak homotopy equivalences.

Proof By Theorem 2.2, it is enough to prove that k.F=D/p;�k ! Cp is a weak
homotopy equivalence for all p . We show that the augmented semisimplicial space
�p;�W .F=D/p;�! Cp has an extra degeneracy of the second type described in Lemma
1.12. Define g0W Cp! .F=D/p;0 by

.a0! � � � ! ap/ 7! .a0! � � � ! ap; F .ap/
Id
�! F.ap//

and gqC1W .F=D/p;q! .F=D/p;qC1 by

.a0! � � � ! ap; F .ap/! b0! � � � ! aq/

7! .a0! � � � ! ap; F .ap/
Id
�! F.ap/! b0! � � � ! aq/:

These satisfy the conditions in Lemma 1.12, showing that k.F=D/p;�k ! Cp is a
homotopy equivalence.

For nonunital categories, the conclusion of Lemma 4.3 does not hold without further
hypotheses. If we do not have units then, rather than the explicit homotopy coming
from an extra degeneracy used in the proof of the last lemma, note that for a D
.a0! � � � ! ap/ 2 Cp , we have

��1p;�.a/DN�.F.ap/=D/
and

��1p;�.a/DN�.D=F.a0//;

the semisimplicial nerves of over- and under-categories. We have axiomatised the
contractibility of these as soft left or right units, and we will show that under appropriate
fibrancy conditions this is enough to get the conclusion of Lemma 4.3.

Lemma 4.4 If D is left fibrant, then the augmentation map �p;qW .F=D/p;q! Cp is
a fibration. If D is right fibrant, then the augmentation map �p;qW .D=F /p;q! Cp is a
fibration.
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Proof Observe that both squares

.F=D/p;q
�p;q

��

d
p
0
// .F=D/0;q


//

�0;q

��

DqC1

d1���dqC1

��

Cp
d

p
0

// C0
F0

// D0

with .a0; F .a0/! b0! � � � ! bq/ WD .F.a0/! b0! � � � ! bq/ are cartesian, and
use Lemma 3.7.

Corollary 4.5 If D is left fibrant and has soft right units, then k��;�kW k.F=D/�;�k!
BC is a weak equivalence. Dually, if D is right fibrant and has soft left units, then
k��;�kW k.D=F /�;�k! BC is a weak equivalence.

Proof By Lemma 4.4 the maps �p;qW .F=D/p;q! Cp are fibrations, so Lemma 2.14
applies to �p;�W .F=D/p;�! Cp and so for each aD .a0! � � � ! ap/ 2 Cp the map

B.F.ap/=D/D k��1p;�.a/k! hofibak�p;�k

is a weak equivalence. But, as D has soft right units, the source of this map is
contractible, and hence k.F=D/p;�k ! Cp is a weak equivalence. The claim then
follows by geometrically realising in the p–direction and using Theorem 2.2.

To make use of these resolutions, we shall also need to know that the maps �p;q
and �p;q are fibrations, and the final result of this section is a criterion for this to hold.

Lemma 4.6 (i) If �p;0 is a fibration, then so is �p;q for all q � 0.

(ii) If �0;0 is a fibration and C is right fibrant, then �p;0 is a fibration for all p � 0.

(iii) If F0W C0! D0 is a fibration and D is right fibrant, then �0;0 is a fibration.

Dually:

(iv) If �p;0 is a fibration, then so is �p;q for all q � 0.

(v) If �0;0 is a fibration and C is left fibrant, then �p;0 is a fibration for all p � 0.

(vi) If F0W C0! D0 is a fibration and D is left fibrant, then �0;0 is a fibration.
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Proof The square

.F=D/p;q
d1���dq

//

�p;q

��

.F=D/p;0
�p;0

��

Dq
d1���dq

// D0

is cartesian, which proves (i). For part (ii), use that

.F=D/p;0
�p;0

//

d0���d0

��

Cp

d0���d0

��

.F=D/0;0
�0;0

// C0

is cartesian, Lemma 3.7, and that �p;0D �0;0ı.d0/p . For part (iii), let  W .F=D/0;0!
D1 be given by .a; F.a/! b/D .F.a/! b/. The diagram

.F=D/0;0

//

�0;0

��

D1

d1

��

C0
F0

// D0

is cartesian, so  is a fibration, hence so is d0 ı  D �0;0 .

We can now state and prove our version of Quillen’s Theorems A and B for nonunital
topological categories.

Theorem 4.7 (Quillen’s Theorem A) Let F W C!D be a continuous functor. Assume
that

(i) B.F=b/ is contractible for each b 2 D0 ,

(ii) k��;�kW k.F=D/�;�k! BC is a weak equivalence,

(iii) �p;0W .F=D/p;q!NqD is a fibration for each p � 0.

Then BF W BC! BD is a weak homotopy equivalence.

Conditions (ii) and (iii) are satisfied if either

(iv) C is right fibrant, D is left fibrant and has soft right units and �0;0 is a fibration, or

(v) C is right fibrant, D has units and �0;0 is a fibration.

There is a dual version, with a parallel proof:
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Theorem 4.8 (Quillen’s Theorem A, dual version) Let F W C! D be a continuous
functor. Assume that

(i) B.b=F / is contractible for each b 2 D0 ,

(ii) k��;�kW k.D=F /�;�k! BC is a weak equivalence,

(iii) �p;qW .D=F /p;q!NqD is a fibration for each p; q � 0.

Then BF W BC! BD is a weak homotopy equivalence.

Conditions (ii) and (iii) are satisfied if either

(iv) C is left fibrant, D is right fibrant and has soft left units and �0;0 is a fibration, or

(v) C is left fibrant, D has units and �0;0 is a fibration.

In the case of discrete (unital) categories, this is a classical result of Quillen [26]. A
version for (unital) simplicial categories was proven by Waldhausen [34, Section 4].

Proof of Theorem 4.7 That conditions (iv) or (v) imply conditions (ii) and (iii) follows
from Lemmas 4.3 and 4.6 and Corollary 4.5.

By Lemma 4.2, it is enough to prove that k��;�kW k.F=D/�;�k ! kD�k is a weak
equivalence. Since each �p;0 is a fibration, it follows by Lemma 4.6 that �p;q is a
fibration for all p; q � 0, so by Lemma 2.14 for each b D .b0! � � � ! bq/ 2 Dq the
natural map

B.F=b/D k��1
�;q.b/k! hofibbk��;qk

is a weak equivalence. The source is contractible by assumption, so k��;qk is a weak
equivalence.

Quillen’s Theorem B [26] gives a criterion for identifying the homotopy fibre of a
functor between ordinary categories. We now state and prove a version of this for
nonunital topological categories; in fact we give a mild generalisation, due to Blumberg
and Mandell [1, Theorem 4.5]. In this case we only state one version; it has a dual
version which we leave to the reader.

Theorem 4.9 (Quillen’s Theorem B) Let

A J
//

G
��

C

F
��

B H
// D

be a commuting square of nonunital topological categories. Assume that:
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(i) B and D are left fibrant and have soft right units.

(ii) A and C are right fibrant, and the maps

�0;0W .G=B/0;0! B0 and �0;0W .F=D/0;0! D0

are fibrations.

(iii) For each morphism uW d ! d 0 in D, the functor u�W F=d ! F=d 0 induced by
composition with u induces a weak equivalence on classifying spaces.

(iv) For each object b 2 B0 , the functor G=b! F=H.b/ induced by J and H is a
weak equivalence.

Then the square
BA BJ

//

BG
��

BC

BF
��

BB BH
// BD

is homotopy cartesian.

Proof Using the resolutions of the functors F and G, by assumption (i) and Corollary
4.5 it is enough to show that the square

k.G=B/�;�k //

k�G
�;�k

��

k.F=D/�;�k

k�F
�;�k

��

BB BH
// BD

is homotopy cartesian. Arguing as in the proof of Theorem 4.7, which requires assump-
tion (ii), we see that the maps

k�F
�;qkW k.F=D/�;qk! Dq; k�G�;qkW k.G=B/�;qk! Bq

are quasifibrations. In the commutative square

(4:10)

k.F=D/�;qk
di
//

k�F
�;qk

��

k.F=D/�;q�1k

k�F
�;q�1k

��

Dq
di

// Dq�1

the fibre over x D .d0
u1
�! � � �

uq
�! dq/ 2 Dq is B.F=d0/, and the induced map on

fibres is either the identity (if i > 0) or it is the fibre transport map .u1/�W B.F=d0/!
B.F=d1/, which is a weak equivalence by assumption (iii). Therefore, by Theorem 2.12,
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the squares

(4:11)

B.F=d/

��

// k.F=D/�;0k

��

// k.F=D/�;�k

k�F
�;�k

��

fdg // D0 // BD

are both homotopy cartesian. For each morphism f W b! b0 in B , the induced map
f�W B.G=b/!B.G=b0/ is a weak equivalence, since it fits into a commutative diagram

B.G=b/
'
//

f�
��

B.F=Hb/

H.f /�'

��

B.G=b0/
'
// B.F=Hb0/

in which all other maps are weak equivalences by assumptions (iii) and (iv). Therefore,
in the analogue of the diagram (4.11) for the functor G both squares are also homotopy
cartesian. For b 2 B0 the composition

B.G=b/ '�! hofibbk�
G
�;�k

BJ
�! hofibHbk�

F
�;�k

is equal to the composition

B.G=b/ '�! BF=.Hb/ '�! hofibHbk�
F
�;�k:

Therefore, BJ W hofibbk�G�;�k! hofibHbk�F�;�k is a weak equivalence for each b 2 B0 ;
since the inclusion �W B0! BB is 0–connected, this finishes the proof.

5 Base changing spaces of objects

For a nonunital topological category C and a continuous map f W X ! C0 , we may
form a new nonunital topological category CX as follows. We let CX0 be X, and
F0W CX0 ! C0 be f . Then we define CX1 as the pullback

(5:1)

CX1
F1

//

��

C1

s�t

��

CX0 � CX0
F0�F0

// C0 � C0

The left-hand maps define s; t W CX1 ! CX0 , and the universal property of the pullback
provides a map cW CX1 �CX

0
CX1 ! CX1 ; this defines a nonunital topological category,

and the Fi define a continuous functor F W CX! C . (If C has units, then CX does too.)
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Theorem 5.2 If C is fibrant and has weak right (or left) units , and f is 0–connected ,
then BF W BCX ! BC is a weak equivalence.

Proof We consider the resolution .F=C/�;� of the functor F . As C is left fibrant and
has weak right (say) units, it has soft right units by Lemma 3.14, and so Corollary 4.5
applies and shows that k��;�kW k.F=C/�;�k! BCX is a weak equivalence. It remains
to show that k��;�kW k.F=C/�;�k! BC is a weak equivalence.

The space .F=C/0;0 fits into a cartesian square

.F=C/0;0 //

�0;0��0;0

��

C1

s�t

��

CX0 � C0
F0�id

// C0 � C0

and as C is fibrant the right-hand vertical map is a fibration, and so �0;0 is a fibration
too. Furthermore, as C is fibrant, (5.1) shows that CX is too. Hence, by applying
(ii) then (i) of Lemma 4.6 , each �p;q is a fibration. Hence, by Lemma 2.14, for each
b D .b0! � � � ! bq/ 2 Cq the map

B.CX=b0/D k��1�;q.b/k! hofibbk��;qk

is a weak equivalence, so it is enough to show that the over-categories B.CX=b0/
are contractible for some object b0 2 C0 in each path component. As f W X ! C1 is
0–connected, we may suppose that b0 D F.x0/, but in this case CX=F.x0/D CX=x0 ,
by (5.1), so it is enough to show that CX has soft right units. As C has weak right
units, so does CX (by Remark 3.13 and because both categories are fibrant), so by
Lemma 3.14, CX has soft right units, as required.

A typical application of this result is to take XDCı0 to be the set of objects of C with the
discrete topology, and f W Cı0! C0 to be the identity function (which is 0–connected).
This yields a category Cı with discrete space of objects but the same space of maps
between any two objects, which has a homotopy equivalent classifying space under the
conditions given above.

6 The group-completion theorem

We shall take care to formulate and prove the group-completion theorem, and the main
technical result underlying it, for homology with local coefficients. We therefore make
the following definitions:
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Definition 6.1 Let L be a local coefficient system of R–modules on a space X.

(i) The monodromy of L at x 2X is the homomorphism

�x W �1.X; x/! AutR–Mod.L.x//
induced from L.

(ii) L is called constant if all monodromy homomorphisms are trivial.

(iii) L is called abelian if the images of all monodromy homomorphisms are abelian
groups.

Assumptions 6.2 In the sequel, let A be either

(i) the class of constant local coefficient systems of R–modules,

(ii) the class of abelian local coefficient systems of R–modules, or

(iii) the class of all local coefficient systems of R–modules.

We say a map f W X ! Y is an A–equivalence if for every local coefficient system L
on Y in the class A, the map

f�W H�.X If
�L/!H�.Y IL/

is an isomorphism.

In case (iii) with R D Z, the A–equivalences are precisely the acyclic maps; see
eg [16].

Definition 6.3 A commutative square of spaces

W //

g

��

X

f
��

Z
h
// Y

is called A–cartesian if the induced map hofibz.g/!hofibh.z/.f / is an A–equivalence
for all z 2Z .

Remark 6.4 Unlike for homotopy cartesian diagrams, the symmetry explained in
Remark 2.8 does not generally hold for A–cartesian diagrams (though it does in
case (iii)). A counterexample in case (i) is R D Z when W D Z D Y D � and
X D BG is the classifying space of an infinite acyclic group.

The following homological analogue of Theorem 2.12 is the technical heart of the
“group-completion theorem” and is due to McDuff and Segal [22]. The notion of an
A–cartesian map f�W X�! Y� is defined in analogy to Definition 2.9.
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Theorem 6.5 If f�W X�! Y� is an A–cartesian map of semisimplicial spaces, then
the diagram

(6:6)

X0 //

f0

��

kX�k

kf�k

��

Y0 // kY�k

is A–cartesian.

The presentation of McDuff and Segal omits many details, to say the least. A more
detailed exposition of the proof, with some imprecisions fixed, can be found in [23].
These proofs involve some fairly complicated point–set topology. There are proofs of an
analogous result in the context of bisimplicial sets by Jardine [17; 14], Moerdijk [24] and
Pitsch and Scherer [25]. These proofs use heavy machinery from simplicial homotopy
theory (either model structures on the category of bisimplicial sets, or (unpublished)
results for manipulating homotopy colimits). The proof we shall give is essentially that
of McDuff and Segal, but our argument replaces the point–set topology considerations
with simplicial arguments.

6.1 Proof of Theorem 6.5

The main portion of the proof of Theorem 6.5 will be to prove the following version
for simplicial spaces; the last step is the generalisation to semisimplicial spaces. We
shall say that a map f�W X�! Y� of simplicial spaces is A–cartesian if the underlying
map of semisimplicial spaces has this property.

Proposition 6.7 Let f�W X�! Y� be an A–cartesian map of simplicial spaces. Then
the diagram (6.6) is A–cartesian.

The proof will be sequence of lemmas, each of which extends the class of base spaces Y�
for which the conclusion of Proposition 6.7 holds. To this end, let us say that a simplicial
space Y� is basic if for every A–cartesian map of simplicial spaces f�W X�! Y� the
diagram (6.6) is A–cartesian. Given this definition, the statement of Proposition 6.7 is
that every simplicial space is basic.

Lemma 6.8 If Y� is a simplicial set with contractible geometric realisation then it is
basic.
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Proof The proof only uses the semisimplicial structure. Let y 2 Y0 be a basepoint.
Since kY�k is contractible, the natural map �W hofiby.kf�k/!kX�k is a weak equiv-
alence. Hence any coefficient system L0 on hofiby.kf�k/ is of the form ��L for a
coefficient system on kX�k, and if L0 lies in the class A, then so does L. Therefore,
we have to prove that for each point y 2 Y0 , the inclusion map j W f �10 .y/! kX�k

induces an isomorphism H�.f
�1
0 .y/I j �L/!H�.kX�kIL/.

The spectral sequence of the semisimplicial space X� with coefficients in L discussed
in Section 1.4 takes the form

E1p;q DHq.XpILp/)HpCq.kX�kIL/:

Since Yp is discrete, we can write the E1–term as

Hq.XpILp/D
M
s2Yp

Hq.f
�1.s/ILpjf �1.s//:

To simplify notation, we write Hq.f
�1.s/ILp/ WD Hq.f

�1.s/ILpjf �1.s//. Be-
cause the map f� is A–cartesian, the map Hq.f �1.s/ILp/!Hq.f

�1.dis/ILp�1/
induced by the face map di is an isomorphism. Hence s 7! Hq.f

�1.s/ILp/ is
a locally constant coefficient system Hq.f IL/ on the simplicial set Y� . Hence
E2p;q DHp.kY�kIHq.f IL//. Because kY�k is contractible, it follows that E2p;q D 0
for p > 0. If y 2 Y0 is a basepoint, the induced map �0

�
! Y� of simplicial sets gives

a comparison diagram

f �1.s/ //

��

X�

f�

��

�0
�

y
// Y�

It induces an isomorphism on the E2–term of the spectral sequence, and therefore
f �1.y/ ! kX�k induces an isomorphism in homology with coefficients in L, as
claimed.

The next step is a discretisation argument. For a simplicial space Y� , we consider the
bisimplicial set .p; q/ 7! SingqYp and the associated diagonal simplicial set ıYp WD
SingpYp . By Theorem 7.1, Lemma 1.11 and Theorem 2.2, the maps

kıY�k
D
�! kSing

�
Y�k! kY�k

are weak equivalences.
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Lemma 6.9 If Y� is a simplicial space such that ıY� is basic, then Y� is basic.

Proof The proof uses the simplicial structure in an essential way. As in the second
proof of Theorem 2.12 we may assume that fpW Xp ! Yp is a fibration for each p .
Let Yp;q WD SingqYp , giving a bisimplicial set Y�;� , and define a bisimplicial space
X�;� and a map f�;�W X�;�! Y�;� as follows. Let Xp;q WD

`
�2Yp;q

Lift.�; fp/, where
Lift.�; fp/ is the space of all maps hW �q ! Xp with fp ı h D � , equipped with
the compact–open topology. The simplicial structure in the p direction is given by
h 7! di ı h and in the q–direction by h 7! h ı d j (similarly for the degeneracy
maps). The evident maps fp;qW Xp;q! Yp;q are the components of a bisimplicial map.
Because fp is a fibration, the map f �1p;q .�/! f �1p;q�1.di�/ is a weak equivalence for
each q and i . Hence the simplicial map fp;�W Xp;�! Yp;� is homotopy cartesian.

Analogous to the evaluation map kYp;�k ! Yp , let upW kXp;�k ! Xp be the map
which sends .h; t/ 2Xp;q ��q to h.t/ 2Xp . These are the components of a map of
simplicial spaces, and the diagram

Xp;0

fp;0

��

// kXp;�k
up
//

kfp;�k

��

Xp

fp

��

Yp;0 // kYp;�k // Yp

commutes. As fp;� is homotopy cartesian, it follows from Theorem 2.12 that the left-
hand square is homotopy cartesian. The space Yp;0 is Yp with the discrete topology, and
f �1p;0 .y/D f

�1
p .y/. Therefore, the outer rectangle is homotopy cartesian. Moreover,

Yp;0! kYp;�k is 0–connected, so it follows that the right-hand square is homotopy
cartesian as well. The bottom right-hand map is a weak equivalence by Lemma 1.11,
so the map up is also a weak equivalence.

So far, we set the stage for the following diagonal argument. Consider the commutative
square

X0;0

f0;0

��

// kıX�k

ıf�
��

'
// kX�;�k

kf�;�k

��

ku�k

'
// kX�k

kf�k

��

Y0;0 // kıY�k
'
// kY�;�k

'
// kY�k

where the weak equivalences in the middle come from Theorem 7.1.

Since fp is a fibration, and the original map f� was A–cartesian, it follows that f�;�
is A–cartesian (in the obvious sense: we require that the diagrams in Definition 2.9 to
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be A–cartesian in both simplicial directions), and hence that ıf� is A–cartesian. By
the hypothesis of the lemma, ıY� is basic and so the left square is A–cartesian. Since
the other horizontal maps are weak equivalences, it follows that the outer rectangle is
A–cartesian, which concludes the proof.

The next step is to show that the property of being basic descends along homotopy
cartesian maps.

Lemma 6.10 Let h�W Z�! Y� be a homotopy cartesian map of simplicial spaces and
assume that h0 is 0–connected. If Z� is basic then Y� is basic.

Proof The proof only uses the semisimplicial structure. Let f�W X�! Y� be a A–
cartesian map of simplicial spaces. As in the second proof of Theorem 2.12 we may
assume that each fp is a fibration. We form the levelwise pullback

(6:11)

Wp
kp
//

gp

��

Xp

fp

��

Zp
hp
// Yp

and this diagram is homotopy cartesian, because fp is a fibration. The map g� is
A–cartesian. To see this, let z 2Zp be a point and consider the commutative diagram

hofibz.gp/

'

��

// hofibdiz.gp�1/

'

��

hofibhp.z/.fp/
// hofibdihp.z/.fp�1/

and use that A–equivalences satisfy the 2-out-of-3 property. A similar argument (using
also Remark 2.8) shows that k� is homotopy cartesian. The square

kW�k
kk�k

//

kg�k

��

kX�k

kf�k

��

kZ�k
kh�k

// kY�k

is homotopy cartesian. This follows by applying Theorem 2.12 to both h� and k� ,
using that (6.11) is homotopy cartesian for p D 0 and using Remark 2.8. Since (6.11)
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for p D 0 is homotopy cartesian, comparing homotopy fibres gives a commutative
square

hofibz.g0/

��

'
// hofibh0.z/.f0/

��

hofib�.z/.kg�k/
'
// hofib�.z/.kf�k/

in which the horizontal maps are weak equivalences. Since g�W W�!Z� is A–cartesian,
and by assumption Z� is basic, it follows that the left vertical map is an A–equivalence.
Therefore, the right vertical map is also an A–equivalence. This holds for any z 2Z0 ,
but the map h0 is 0–connected, which finishes the proof.

The next lemma provides an appropriate resolution of a simplicial set by a contractible
simplicial space.

Lemma 6.12 Let Y� be a 0–connected simplicial set. Then there is a simplicial space
QY� with kQY�k ' � and a homotopy cartesian morphism f�W QY�! Y� such that
f0 is 0–connected.

The same statement is true for semisimplicial sets, with the same proof.

Proof Fix a vertex y 2 Y0 . For each simplex � 2 Yp , we let �� W �p!kY�k denote
its characteristic map. Furthermore, we view �p ��pC1 as the last face, ie the face
opposite to epC1 . We let

QYp WD
a
�2Yp

f.�; h/ j hW �pC1!kY�k; hj�p D �� ; h.epC1/D yg;

topologised as a subspace of Yp �kY�k�
p

. Define di W QYp!QYp�1 by di .�; h/ WD
.di�; h ı d

i / (and the degeneracy maps in an analogous way) and fpW QYp! Yp by
fp.�; h/ WD � . Then f�W QY�! Y� is a map of simplicial spaces.

This should be viewed as an analogue of the path fibration, and we now verify that
indeed it has the characteristic properties of that construction. The maps di W f �1p .�/!

f �1p�1.�/ are homotopy equivalences, so f� is homotopy cartesian. It remains to show
that kQY�k ' �.

First observe that the fibre f �10 .y/ is the based loop space �ykY�k. Let PykY�k
denote the path space, that is, the space of all paths in kY�k with endpoint y . The map

gW kQY�k! PykY�k; .�; h; t/ 7!
�
s 7! h..1� s/t; s/

�
;
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makes the diagram

�ykY�k //

��

kQY�k
g
//

kf�k

��

PykY�k

ev0

��

fyg // kY�k kY�k

commute, by inspection. Since f� is homotopy cartesian, the left-hand square is
homotopy cartesian. The outer rectangle is also homotopy cartesian, as it is cartesian
and ev0 is a fibration. Thus the map between vertical homotopy fibres over y of
the right-hand square is an equivalence; this holds for all y , so the right-hand square
is homotopy cartesian, and hence g is a weak equivalence. Thus kQY�k ' �, as
desired.

The deduction of Proposition 6.7 is fairly easy.

Proof of Proposition 6.7 We have to show that every simplicial space Y� is basic. It
is no loss of generality to assume that kY�k is 0–connected. Using the construction
from Lemma 6.12, we consider the simplicial set ı.Q.ıY //� . This is contractible
(by Lemma 6.12 and Theorem 7.1) so, by Lemma 6.8, ı.Q.ıY //� is basic. By
Lemma 6.9, it follows that Q.ıY /� is basic. As the map f�W Q.ıY /�!ıY� provided by
Lemma 6.12 is homotopy cartesian and f0 is 0–connected, it follows from Lemma 6.10
that ıY� is basic. Finally, using Lemma 6.9 again, it follows that Y� is basic.

Proof of Theorem 6.5 By Proposition 6.7, every simplicial space is basic. We
will make use of the functor EW ssTop ! sTop which freely adds degeneracies.
Let f�W X� ! Y� be an A–cartesian map of semisimplicial spaces, giving a map
Ef�W EX�!EY� of simplicial spaces. It follows from the description of the simplices
and face maps of EY� that Ef� is also A–cartesian. Consider the commutative diagram

X0

f0

��

// kX�k

kf�k

��

// kEX�k

kEf�k

��

Y0 // kY�k // kEY�k

The simplicial space EY� is basic by Proposition 6.7, so as EX0DX0 and EY0D Y0
we have that the outer rectangle is A–cartesian. As the two rightmost horizontal maps
are weak equivalences, by Lemma 2.6 it follows that the left-hand square is A–cartesian,
as claimed.
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6.2 Group-completion

Let us describe the application of Theorem 6.5 to group-completion. Let M be a
(topological) monoid acting on the left on a space X and on the right on a space Y .
One may form the two-sided bar construction B�.Y;M;X/, the semisimplicial space
having p–simplices Y �Mp �X, with face maps

d0.y;m1; : : : ;mp;x/D .y �m1;m2; : : : ;mp;x/;

di .y;m1; : : : ;mp;x/D .y;m1; : : : ;mi�1;mi �miC1;miC2; : : : ;mp;x/ for 0 < i < p;

dp.y;m1; : : : ;mp;x/D .y;m1;m2; : : : ;mp � x/:

Now let Y D� and suppose that M acts on X by A–equivalences. Then the projection
map B�.�;M;X/! B�.�;M;�/ is A–cartesian, and so by Theorem 6.5 the square

(6:13)

X //

f0

��

kB�.�;M;X/k

kf�k

��

f�g // kB�.�;M;�/k BM

is A–cartesian.

We apply this as follows. Suppose that the set of path components of M is countable
and let m1; m2; m3; : : :2M be a sequence of points with infinitely many lying in each
path component. We may form the homotopy colimit

M1 D hocolim.M
��m1
��!M

��m2
��!M

��m3
��! � � � /

over right multiplication in the monoid M by the mi ; this has a residual left M –action.
If the monoid M is homotopy commutative, then H�.M IZ/ has the structure of a
commutative ring, and we can identify

H�.M1IZ/Š colim.H�.M IZ/
.��m1/�
����!H�.M IZ/

.��m2/�
����!H�.M IZ/

.��m3/�
����!� � � /

with the localisation H�.M IZ/Œ�0.M/�1� of the ring H�.M/ at the multiplicative
subset �0.M/�H0.M IZ/. In particular, the map m � �W M1!M1 given by left
multiplication by m induces an isomorphism on homology. We may thus apply the
above observation to the left action of M on M1 . Now B�.�;M;M/ has an extra
degeneracy (as in Lemma 1.12), so kB�.�;M;M/k ' � and hence

kB�.�;M;M1/k ' hocolim.kB�.�;M;M/k
��m1
��! kB�.�;M;M/k! � � � /' �:
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The homology-cartesian square (6.13) therefore gives a map

(6:14) M1! hofib�.kB�.�;M;M1/k! kB�.�;M;�/k/'�BM

which is an integral homology equivalence; in particular,

H�.M IZ/Œ�0.M/�1�ŠH�.�BM IZ/:

Remark 6.15 In fact, the argument of [27] shows that in the situation above the
monoid M acts on M1 by abelian homology equivalences, and so the map (6.14) is
an abelian homology equivalence, but the fundamental group of the target is abelian,
so it follows that (6.14) is in fact an acyclic map.

There is also a group-completion theorem for categories, rather than monoids: it can
also be deduced immediately from Theorem 6.5; we refer the reader to [12, Section 7]
for a formulation.

7 Products of simplicial spaces

Let X�;� be a bisimplicial space and let ı.X�;�/ be the diagonal simplicial space. To
define the diagonal map DW kı.X�;�/k ! kX�;�k, take the diagonal map d W �p !
�p ��p and

.IdXp;p
� d/W Xp;p ��

p
!Xp;p ��

p
��p:

This respects the equivalence relations used for the definition of the fat geometric
realisation and so induces a map D as indicated.

Theorem 7.1 The diagonal map D is a weak equivalence.

This is false if one considers bisemisimplicial spaces instead: if Y� is an arbitrary
semisimplicial space and X�;� D r0� ˝ Y� , then kX�;�k D kY�k and kı.X/�k D Y0 .
Let us note an application of Theorem 7.1.

Theorem 7.2 Let X� and Y� be simplicial spaces. Then the map

k.X �Y /�k! kX�k� kY�k;

induced by the two projection maps .X � Y /�! X� and .X � Y /�! Y� , is a weak
homotopy equivalence.
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Proof The diagram
k.X �Y /�k // kX�k� kY�k

kı.X ˝Y /�k
'

// kX�˝Y�k

Š

OO

commutes, and the indicated homeomorphism and weak equivalence are true by
Theorem 7.1 and (1.10).

Theorem 7.2 is important when one applies Segal’s theory of � –spaces to deloop
spaces which arise as geometric realisations of simplicial spaces. This will be done
in [5] and has been done at various places in the literature.

One could derive Theorem 7.1 from the classical result [13, Theorem I.3.7] that for a
bisimplicial set one has a homeomorphism jı.X�;�/j Š jX�;�j and [31, Proposition A.1].
However, it seems to be easier to give an argument from scratch. The main bulk of
work for the proof of Theorem 7.1 is the proof for bisimplicial sets, and the proof of
that case resembles in some sense the proof of the classical Eilenberg–Zilber theorem
in singular homology, using the method of acyclic models. The first step is to prove
that the “models” are contractible.

Lemma 7.3 Let �n;m
�;� WD�

n
�
˝�m

�
be the “bisimplicial .n;m/–simplex”. The spaces

k�n;m
�;� k and kı.�n;m/�k are contractible. In particular, Theorem 7.1 is true when

X�;� D�
n;m
�;� .

Proof By (1.10) and Example 1.14, we have

k�n;m
�;� k Š k�

n
�
k� k�m

�
k ' �:

To prove that kı.�n;m/�k'�, consider the ordered set Œn� as a (unital) category. Then
�n
�

is the nerve of Œn�. Moreover, ı.�n;m/� is the nerve of the category Œn�� Œm�. This
category has a terminal object, namely .n;m/, so a natural transformation from the
identity functor to a constant functor. It follows from Lemma 3.4 that kı.�Œn;m�/�k
is contractible.

It is in this step that the degeneracies are used. The analogous claim for bisemisimplicial
sets is false. The role of �n;m

�;� is then taken by rn;m
�;� WD r

n
�
˝rm

�
. While krn;m

�;� k

is contractible, kı.rn;m/�k usually is not. This may be seen by calculating the Euler
number of these finite complexes.

Algebraic & Geometric Topology, Volume 19 (2019)



Semisimplicial spaces 2145

The identity IdŒn� defines an element �n 2 �nn and its characteristic map y�nW �n !
k�n
�
k.n/ � k�n

�
k. The restriction to the topological boundary @�n goes into the

.n�1/–skeleton k�n
�
k.n�1/ and is denoted by @y�n . In a similar vein, the tautological

element �n;m D .�n; �m/ 2 �
n;m
n;m induces a map y�n;mW �n ��m! k�n;m�;� k

nCm with
boundary @y�n;mW .�n�@�m[@�n��m/DW @.�n��m/!k�n;m�;� k

nCm�1 . Moreover,
composition with the diagonal map d W �n!�n ��n (whose restriction to @�n goes
into @.�n ��n/) defines a map y�n;n ı d W �n ! kı.�n;n/�k.n/ , with boundary map
@.y�n;n ı d/W @�

n!kı.�n;n/�k
.n�1/ .

Note that X�;� 7! kı.X/�k and X�;� 7! kX�;�k are functors from the category of
bisimplicial sets to Top and the diagonal map D is a natural transformation. Moreover,
both kı.X/�k and kX�;�k are naturally filtered spaces; their 0–skeleta are equal, that is,

kı.X/�k
.0/
D kX�;�k

.0/
DX0;0I

and D restricts to the identity between the 0–skeleta.

Lemma 7.4 (i) There is a natural map F W kX�;�k!kı.X/�k which is the identity
on the 0–skeleton.

(ii) The map D ıF W kX�;�k! kX�;�k is naturally homotopic to the identity.

(iii) The map F ıDW kı.X/�k! kı.X/�k is naturally homotopic to the identity.

In particular, D is a homotopy equivalence for each bisimplicial set.

One can add the statements that the maps F and D are unique up to natural homotopy
among those natural maps which are the identity on the 0–skeleton. These statements
will not enter the proof of Theorem 7.1 and so we do not prove them, but the method
of proof can easily be adapted.

Proof We shall construct the map F and the homotopies inductively on skeleta. More
precisely, we shall construct natural maps

Fn D F
X
n W kX�;�k

.n/
!kı.X/�k

and natural homotopies

hnW F ıDnÝ Id; knW D ıFnÝ Id:

We begin with the construction of Fn . The map F0 is the identity, and we assume that
F0; : : : ; Fn�1 are already constructed. Let pCqD n, and we first construct a suitable
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map �p;qW k�p;q�;� k
.n/!kı.�p;q/�k. The inclusion map k�p;q

�;� k
.n�1/!k�p;q

�;� k
.n/ is

a cellular inclusion. By Lemma 7.3, the space kı.�p;q/�k is contractible. Hence there
exists a solution �p;q to the extension problem

k�p;q
�;� k

.n�1/
F�p;q

n�1
//

��

kı.�p;q/�k

k�p;q
�;� k

.n/

�p;q

77

Now we construct FXn for a bisimplicial set X. Observe that

Xp;q D bisSet.�p;q
�;� ; X�;�/;

the set of morphisms of bisimplicial sets (this is an instance of the Yoneda lemma). For
each s 2 Xp;q , we have the characteristic map ysW �p ��q ! kX�;�kpCq , and if we
view s as a map of bisimplicial sets, we obtain ksk W k�p;q

�;� k! kX�;�k. The relation
between these two maps is that ksk ıy�p;q D ys . The following diagram is a pushout
diagram: `

pCqDn
s2Xp;q

@�p;q
'
//

inc
��

kX�;�k
.n�1/

��`
pCqDn
s2Xp;q

�p;q
�
// kX�;�k

.n/

where the map � is

� D
a

pCqDn
s2Xp;q

ys D
a

pCqDn
s2Xp;q

ksk.n/ ıy�p;q

and similarly

' D
a

pCqDn
s2Xp;q

ksk.n�1/ ı @y�p;q:

We claim that the two maps

F
X�;�
n�1 ı';

a
pCqDn
s2Xp;q

kı.s/�k ı�p;q ıy�p;q ı inc W
a

pCqDn
s2Xp;q

k�p;q
�;� k

.n�1/
!kı.X/�k
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are equal, and so they induce a map from the pushout, ie FXn W kX�;�k
.n/!kı.X/�k,

which finishes the inductive construction of Fn (it is obvious that Fn becomes a natural
map). To verify this claim, it is enough to check that for each s 2Xp;q , the diagram

k�p;q
�;� k

.n�1/ ksk
.n�1/

//

��

kX�;�k
.n�1/

FX
n�1

''

k�p;q
�;� k

.n/
�p;q

// kı.�p;q/�k
kı.s/k

// kı.X/�k

commutes. But this is clear because Fn�1 is a natural transformation:

FXn�1 ı ksk
.n�1/

D kı.s/�k ıF
�p;q

n�1 ;

and we constructed �p;q so that �p;q ı incD F�
p;q

n�1 . This finishes the construction
of F .

Now we turn to the construction of natural homotopies hnW I �kı.X/�k.n/!kı.X/�k
from F ıDn to the “identity” (ie inclusion map). We can take h0 to be the constant
homotopy. Assume that h0; : : : ; hn�1 are already constructed. As before, we first
construct a certain map �nW I �kı.�n;n/�k.n/!kı.�n;n/�k. The inclusion map

I �kı.�n;n/�k
.n�1/

[f0; 1g � kı.�n;n/�k
.n/
! I �kı.�n;n/�k

.n/

is a cellular inclusion. We define a map

I �kı.�n;n/�k
.n�1/

[f0; 1g � kı.�n;n/�k
.n/
!kı.�n;n/�k

by taking the homotopy h�
n;n

n�1 on the first part, F ıDn on f0g � kı.�n;n/�k.n/ and
the “identity” on f1g � kı.�n;n/�k.n/ . Those fit together by assumption and so define
a continuous map. It can be extended to a map

�nW I �kı.�
n;n/�k

.n/
!kı.�n;n/�k;

because the target space is contractible by Lemma 7.3. There is a pushout diagram`
s2Xn;n

I � @�n
'
//

inc

��

I �kı.X/�k
.n�1/

��`
s2Xn;n

I ��n
�
// I �kı.X/�k

.n/
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whose horizontal maps are given by

' D IdI �
� a
s2Xn;n

kı.s/k.n�1/ ı @y�n

�
and

� D IdI �
� a
s2Xn;n

kı.s/k.n/ ıy�n

�
:

Let  W
`
s2Xn;n

I ��n!kı.X/�k be the mapa
s2Xn;n

ksk ı�n ı .IdI �y�n/:

Then  ı incD hXn�1 ı ' by construction, and so these maps together induce a map
hXn from the pushout I �kı.X/�k.n/ to kı.X/�k which extends hXn�1 and is natural.

The construction of the homotopies kn is very similar and left to the reader.

Proof of Theorem 7.1 Consider the trisimplicial set .p; q; r/ 7! SingrXp;q . The
following diagram commutes:

kp 7!Xp;pk
D

// k.p; q/ 7!Xp;qk

p 7! kr 7! SingrXp;pk
 D

//

OO

Š

��

.p; q/ 7! kr 7! SingrXp;qk


OO

Š

��r 7! kp 7! SingrXp;pk
 D

//
r 7! k.p; q/ 7! SingrXp;qk


The upper vertical maps are weak equivalences, by Lemma 1.11 and Theorem 2.2. The
lower vertical maps are the homeomorphisms from (1.9). The bottom horizontal map is
a weak equivalence by Lemma 7.4 and Theorem 2.2. Hence so is the upper horizontal
map, which proves the claim.
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