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On negative-definite cobordisms
among lens spaces of type .m; 1/ and

uniformization of four-orbifolds

YOSHIHIRO FUKUMOTO

Connected sums of lens spaces which smoothly bound a rational homology ball are
classified by P Lisca. In the classification, there is a phenomenon that a connected
sum of a pair of lens spaces L.a; b/ #L.a;�b/ appears in one of the typical cases of
rational homology cobordisms. We consider smooth negative-definite cobordisms
among several disjoint union of lens spaces and a rational homology 3–sphere to give
a topological condition for the cobordism to admit the above “pairing” phenomenon.
By using Donaldson theory, we show that if 1=m has a certain minimality condition
concerning the Chern–Simons invariants of the boundary components, then any
L.m; 1/ must have a counterpart L.m;�1/ in negative-definite cobordisms with a
certain condition only on homology. In addition, we show an existence of a reducible
flat connection through which the pair is related over the cobordism. As an application,
we give a sufficient condition for a closed smooth negative-definite 4–orbifold with
two isolated singular points whose neighborhoods are homeomorphic to the cones
over lens spaces L.m; 1/ and L.m;�1/ to admit a finite uniformization.

57R18, 57R57; 57M05, 57R90

1 Introduction

Lisca [25] classified all connected sums of lens spaces which smoothly bound rational
homology 4–balls. In fact, all of them are connected sums of several pairs of lens
spaces in the list of five typical families of components such as L.a; b/ #L.a;�b/
for coprime a and b . In particular, if a connected sum of s copies of L.m; 1/ and
t copies of L.m;�1/ bounds a rational homology ball then s must be equal to t . In
this classification, a crucial role was played by Donaldson’s theorem on intersection
forms of definite closed smooth 4–manifolds. Motivated by this result, we focus on the
formation of pairs L.a; b/ #L.a;�b/ on the boundaries of compact oriented smooth
4–manifolds W such that the dimension bC2 .W / of a maximal positive subspace for
the cup product (intersection form) on the second real cohomology H 2.W / of W is
zero, called negative-definite cobordisms.
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To be precise, we consider the following problem:

Problem 1.1 Which negative-definite cobordisms between a disjoint union of lens
spaces and a rational homology 3–sphere admit a pair of lens spaces L.a; b/#L.a;�b/?

In this paper, we show the following theorem:

Theorem 1.2 Let Y be a disjoint union of lens spaces Yi DL.ai ; bi / for i D 1; : : : ; s
and a Brieskorn homology 3–sphere †.p; q; r/. Suppose Y bounds a compact oriented
negative-definite smooth 4–manifold W such that

(1) Y1 D L.m; 1/ with mDmaxfaig> pqr and m¤ 4,

(2) the homomorphism

i�W H1.Y IZ/!H1.W IZ/

induced by the inclusion i W Y ,!W is surjective, and

(3) there is no e 2H 2.W IZ/ with rational self-intersection number e2 D�1=m.

Then there exists i ¤ 1 such that Yi D L.m;�1/.

Note that this theorem does not exclude the possibility s D 1, in which case we
immediately see such a cobordism W does not exist and s > 1 must hold. Here we
remark that this Theorem 1.2 is a special case of our main Theorem 4.1, which is a
generalization of Theorem 2.1 in [16] and Theorem 6.1 in [14], both due to M Furuta.

To prove our main result, we make use of a topology of the moduli space of SU.2/–
instantons on an oriented smooth 4–manifold with cylindrical ends.

Remark 1.3 (1) The condition m¤ 4 in Theorem 1.2 is necessary. In fact, without
this condition, the complement W of a tubular neighborhood of a non-singular
quadratic curve in CP 2 would give a counterexample.

(2) The existence of an L.m;�1/ does not necessarily imply the existence of an
L.m; 1/ in negative-definite cobordisms stated in Theorem 1.2, since L.3;�1/
obtained by plumbing of linear chain Œ�2;�2� of length 2 with weight �2
would give a counterexample.

Our main result, Theorem 4.1, and Theorem 6.1 in [14] also state existence of a
reducible flat connection on such negative-definite cobordisms as in Theorem 1.2. As
an application we consider a uniformization problem of 4–orbifolds. The notion of
orbifolds is firstly introduced by I Satake [30] as the name “V –manifold” in his study
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on Siegel’s modular varieties and is also studied by W Thurston [33] as orbifolds in
view of his geometrization program on 3–manifolds. A typical example is a quotient
space X DM=G of a manifold M with respect to a properly discontinuous action of a
(finite) group G, in which case M is called a (finite) uniformization of the orbifold X.
Note that there exist orbifolds which do not admit uniformization; these are called “bad
orbifolds”.

In this paper, we consider a version of the “uniformization problem” proposed by
M Kato [20] in our context. In the complex analytic category, this problem also has
its origin in “Fenchel’s problem” raised by M Namba [26] as a higher-dimensional
generalization of Fenchel’s conjecture about F –groups, solved by S Bundgaard and
J Nielsen [5] and R Fox [13].

Problem 1.4 (see the uniformization problem [20]) Let X be a smooth orbifold with
singular locus †X. Give a good condition on .X;†X/ for the existence of a finite
uniformization .G;M/ of .X;†/.

Here a “good” condition means a condition without referring to the fundamental group
�1.X �†X/ of X �†X.

For a Zm–action on the 4–sphere S4 DC2[f1g defined by � � .z; w/D .�z; ��1w/
on C2 � S4 for � D e2�i=m 2 Zm � U.1/, the quotient space X D S4=Zm is a
4–dimensional orbifold which has a singular point p1 D 0 whose neighborhood U1
is homeomorphic to the cone cL.m;�1/ over the lens space L.m;�1/, and there is
also a singular point p2 D1 whose neighborhood U2 is homeomorphic to the cone
cL.m; 1/ over the lens space L.m; 1/. Conversely, we have the following:

Theorem 1.5 Let X be a closed negative-definite smooth 4–orbifold with two isolated
singular points p1 and p2 , each with a neighborhood Ui homeomorphic to the cone
cL.ai ; bi / over the lens space L.ai ; bi / for i D 1; 2. Suppose H1.X IZ/ D f0g
and that there is no e 2 H 2.X IZ/ with e2 D �1=m for m D maxfa1; a2g ¤ 4. If
U1 � cL.m;�1/ then U2 � cL.m; 1/ and there exists a smooth 4–manifold zX with a
smooth Zm–action such that zX=Zm ŠX as smooth orbifolds.

This paper is organized as follows. In Section 2, we make further remarks on our main
result, Theorem 4.1, and its backgrounds in comparison with other works. In Section 3,
we recall basic definitions and results concerning the moduli space of instantons over
4–manifolds with cylindrical ends. Here we give a setting of moduli space of instantons
and recall basic facts on counting reducible instantons, virtual dimension of the moduli
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space, Uhlenbeck compactness and Chern–Simons invariants. In particular, to describe
the ends of the moduli space, we discuss the moduli space of Zm–invariant instantons
over the cylinder R�S3 , C Taubes’ gluing result and discuss a holonomy perturbation
to deform the ends of the moduli space. In Section 4, we give the full statement of our
main result, Theorem 4.1, and give a proof of the theorem. We also discuss several
examples to demonstrate necessity of the conditions in the theorem. In Section 5,
we prove Theorem 1.5 on a cyclic branched covering of a negative-definite smooth
4–orbifold. In fact, we deduce Theorem 5.1 as a corollary of Theorem 4.1, which gives
a cyclic branched covering of a smooth negative-definite 4–orbifold with boundary
and with isolated singular points whose neighborhoods are homeomorphic to the cones
over lens spaces L.ai ; bi /. The branched covering space is an orbifold itself which
locally uniformizes only a pair of neighborhoods homeomorphic to the cones over lens
spaces L.m; 1/ and L.m;�1/.

Acknowledgements The author thanks Professor Mikio Furuta for many valuable
suggestions and continual encouragement to write down this paper. He would also
like to thank to Nobuhiro Nakamura, Hirofumi Sasahira and Shinichiroh Matsuo for
detailed discussions and valuable comments. The author was a visiting scholar of the
Department of Mathematics at Indiana University Bloomington while most of this work
was carried out. He wishes to thank the department for its hospitality and would like to
thank his hosts, Professor Paul Kirk and Professor Charles Livingston, for illuminating
discussions, many suggestive comments and much encouragement during his stay.

2 Further remarks on the main theorem and background

In this section, we make further remarks on the main theorem and its background. In
addition to Problem 1.1, the main theorem partially answers the following problem:

Problem 2.1 If there exists a negative-definite cobordism between a disjoint union Y
of several lens spaces L.ai ; bi / and a rational homology sphere †, what kind of
constraint for the homomorphism i�W H1.Y IZ/!H1.W IZ/ induced by the inclusion
i W Y ,!W can be expected?

Theorem 4.1 tells us that the pair L.m; 1/ #L.m;�1/ is related through a U.1/ flat
connection on the cobordism W , which implies the existence of a homomorphism
H1.W IZ/! U.1/ whose restrictions are the standard inclusion up to complex conju-
gation on L.m;˙1/ and trivial on the other components of the boundary.
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One typical example is the plumbed homology 3–sphere †D†.�/ associated to a
graph � by taking the connected sum W D .Œ0; 1��L.m; 1// #P.�/ of the cylinder
Œ0; 1��L.m; 1/ and the plumbing P.�/ with negative-definite intersection form. In
this case, the homomorphism �W H1.W IZ/ D H1.L.m; 1/IZ/! U.1/ is given by
the inclusion Zm ,! U.1/.

In [14], Furuta developed an abstract perturbation method to prove Donaldson’s theorem
for intersection forms on closed smooth definite 4–manifolds X with H1.X IZ/Df0g.
As an application, he strengthened Theorem 2.1 of [16], which made an assumption
on the fundamental group of the 4–manifold (orbifold), to prove Theorem 6.1 of [14],
which only makes an assumption on the first homology and proved an existence
of an abelian representation. One major difference between our Theorem 4.1 and
[14, Theorem 6.1] is that our theorem allows for a general rational homology 3–spheres
as components of Y which are not necessarily spherical space forms. One consequence
of this is that we cannot apply Theorem 2.1 of [16] to prove our theorem by simply
coning off the boundary components to obtain closed orbifold.

Theorem 4.1 states that even if there is another rational homology 3–sphere † on the
boundary, the pair L.m; 1/ #L.m;�1/ appears provided m is greater than a positive
number N.†/ associated to †. In fact, we may choose any number N.†/ in the
statement of Theorem 4.1 such that 1=N.†/ is less than or equal to the minimum
Chern–Simons invariant �.†/ of †, and if † is the Brieskorn homology 3–sphere
†.p; q; r/ then we can take N.†/D pqr [15; 12]. By using a method developed by
P Kirk and E Klassen [22], the Chern–Simons invariant can be calculated for many
3–manifolds including graph manifolds. In fact, the Chern–Simons invariants of a large
class of manifolds including Seifert fibered 3–manifolds are explicitly calculated by
D Auckly [4]. Here we mention the following remarks:

Remark 2.2 (1) Theorem 4.1 does not tell us whether � ı .ij /� for j 2 f1; ig is
the inclusion �W Zm ,! U.1/ or its complex conjugate. We shall discuss this
issue and uniformization of 4–orbifolds with more than two isolated singular
points elsewhere.

(2) The condition m>N.†/ cannot be removed. In fact, the singular D2–bundle�W D † �S1 D
2 associated with the Seifert fibration † ! S2 of negative

rational Euler number with the cone over lens spaces removed would give a
counterexample.
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(3) Theorem 1.2 is a special case of the main result, Theorem 4.1, in which we
treat the case that the boundary components are not necessarily lens spaces but
“positive” (or “negative”) spherical space forms. In this case we obtain a not
necessarily reducible flat connection relating the pair of positive and negative
spherical space forms.

(4) Theorems 1.2 and 4.1 can be extended to the case of lens spaces L.a; b/ with a
sufficiently greater than b in place of L.m; 1/. We shall treat this elsewhere.

To prove an existence of a (reducible) flat connection over an oriented smooth 4–
manifold with cylindrical ends under a certain condition on homology, we make use of
the “sliding end” or “bubbling” phenomenon of SU.2/–instantons. The author does
not know how to deduce our theorem from usual applications of the Seiberg–Witten
theory or Heegaard Floer theory since we do not know how to extract information on
flat SU.2/ connections in these theories at least as directly as in the Donaldson theory.

There are several areas in which the Donaldson theory works effectively while the
Heegaard Floer theory or Seiberg–Witten theory alone would be difficult to approach.
It is known that the Seifert fibered integral homology 3–spheres †.p; q; pqk� 1/ for
kD1; 2; : : : are linearly independent in the homology cobordism group �H3 of homology
3–spheres by a result of Furuta [15] and R Fintushel and R Stern [12]. For the Z=2–
homology cobordism group, M Hedden and Kirk [18] showed that d=.dk�1/ surgeries
on the right-handed .p; q/ torus knot are linearly independent. Hedden and Kirk [19]
also showed that the Whitehead doubles of .2; 2n�1/ torus knots are independent in the
smooth knot concordance group. This result is generalized by J Pinzón-Caicedo [27] to
infinite collections of satellite knots. Note that positivity of the R–invariant introduced
by Fintushel and Stern in [10] as the virtual dimension of the moduli space of instantons
plays a crucial role in these arguments. On Ozsváth and Szabó’s Heegaard Floer theory,
S Kim and C Livingston [21] proved that Z1 � Coker

�L
p �

3
ZŒ1=p�! �3Q

�
by using

the d –invariant. Recently, M Stoffregen [32] investigated behaviors of Manolescu
invariants ˛; ˇ;  on Seiberg–Witten Floer homology under connected sums and used
also recent result on Heegaard Floer homology to show that †.p; 2p� 1; 2pC 1/ for
odd p with p � 3 are linearly independent in �H3 . However, this technique does not
detect the family †.p; q; pqk� 1/.

Our result is in a sense opposite to that of A Casson and C Gordon [6], P Gilmer and
Livingston [17] and Fintushel and Stern [11]. In fact, their arguments give a necessary
condition for characters �i W H1.Yi IZ/! Zm � U.1/ of spherical space forms Yi to
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extend over a rational homology cobordism W , which implies a necessary condition
for an existence of a Zm–covering �W !W extending the Zm–coverings zYi ! Yi

associated to the character �i . On the other hand, our result gives a sufficient condition
for Yi and their negative-definite cobordism W with a character �1W H1.Y1IZ/!
Zm � U.1/ to extend over H1.W IZ/, which implies a sufficient condition for the
existence of Zm–covering �W !W extending zY1! Y1 .

In the Casson–Gordon argument, D Ruberman [28] extended their result for spherical
space forms to rational space forms, that is, rational homology 3–spheres divided
by finite group actions, using the moduli space of instantons on 4–manifolds with
cylindrical ends. To extend our result for lens spaces to one for general rational
homology 3–spheres such as rational space forms, we need to know the moduli space
on the cylinder over rational space forms which corresponds to the end of the moduli
space. This deserves further study.

For a simply connected smooth 4–manifold X0 with boundary the Poincaré homology
3–sphere †.2; 3; 5/ and negative-definite intersection form QX0 DE8 , N Anvari [2]
gave a necessary condition for a free Zp –action on †.2; 3; 5/ to extend smoothly to X0
by using the isotropy data of isolated fixed points. This result is proved by considering
the Zp –equivariant moduli space of instantons over the 4–manifold with a cylindrical
end. Furthermore, Anvari and I Hambleton [3] gave infinite families of Brieskorn
homology 3–spheres with free Zp–actions which can be extended locally linearly
but cannot smoothly to smooth contractible 4–manifolds. To study relationships with
their results, we will consider a negative-definite cobordism between the quotient
†.a1; : : : ; an/=Zp and a disjoint union of lens spaces.

H Sasahira [29] defined Floer homology for lens spaces by treating problems on
reducible connections via Furuta’s method using twisted Dirac operators and derived a
gluing formula by Fukaya’s method using loops. To give an interpretation of our argu-
ments in terms of Floer homology for lens spaces will be a subject of our future work.

3 Preliminaries on instantons over 4–manifolds with
cylindrical ends

In this section, we recall basic definitions and results on analysis concerning instantons
over 4–manifolds with cylindrical ends. We discuss a new feature which was not treated
in [16], a perturbation of the moduli space called holonomy perturbation introduced by
Donaldson [7], which we use to prove a key theorem, discussed in Section 4.
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3.1 Instantons over 4–manifolds with cylindrical ends

Let Y be a disjoint union of a finite number of closed oriented 3–manifolds Yi
indexed by i 2 I and W be a compact oriented smooth 4–manifold with boundary Y .
Let X be a smooth oriented 4–manifold obtained by gluing W and half-infinite
cylinders RC � Yi with product orientation along the boundaries f0g � Yi , where
RC D ft 2 R j t � 0g. In what follows we simply describe such a manifold X as a
“4–manifold with cylindrical ends”. Let .P; ˛/ be an adapted SU.2/–bundle over X,
that is, a pair of a principal SU.2/–bundle P over X and a set ˛Df˛ig of flat SU.2/–
connections ˛i on P jRC�Yi . We may assume that ˛i is a pullback p�i ˇi by the
projection pi W RC�Yi ! Yi of a flat connection ˇi on an SU.2/–bundle Qi over Yi
under an identification P jRC�Yi Š p

�
i Qi using parallel transport in the direction RC

with respect to the connection ˛i . We do not distinguish ˛i and ˇi in the sequel.
Two adapted bundles .P; ˛/ and .P 0; ˛0/ are equivalent if and only if there exists
a bundle isomorphism hW P ! P 0 such that ˛i jŒr;1/�Yi D h

�˛0i jŒr;1/�Yi for some
r > 0 for any i 2 I. Let � be the trivial flat connection (the product connection) on the
product bundle X �SU.2/!X. Then the trivial flat connection �i on the restriction
.X � SU.2//jRC�Yi over each ends RC � Yi � X is induced by � and we call the
adapted bundle isomorphic to .X�SU.2/; f�ig/ the trivial adapted bundle. The second
Chern number of .P; ˛/ is defined to be

c2.P; ˛/D
1

8�2

Z
X

Tr.FA ^FA/;

where A is a smooth connection on P with AjŒr;1/�Yi D ˛i jŒr;1/�Yi for some r > 0
for any i 2 I, and it does not depend on a choice of such connections A. If we fix
SU.2/–bundles Qi over Yi and flat connections ˇi on Qi , then the isomorphism
classes of adapted bundles .P; ˛/ with a bundle isomorphism hi W P jRC�Yi Š p

�
i Qi

satisfying ˛i D h�i ˇi are classified by c2.P; ˛/ and if .P 0; ˛/ is another such bundle
then c2.P 0; ˛/� c2.P; ˛/ 2 Z.

Now we identify the gauge equivalence classes of the flat connection ˛i with the
conjugacy classes of representation of �1.Yi / induced by the holonomy of ˛i and
use the same symbol ˛i . Let ad˛i be the adjoint representation of ˛i and place the
non-degeneracy condition H 1.Yi I ad˛i /Df0g on each flat connection ˛i . Note that if
Yi is a spherical space form S3=G for some finite group G acting on S3 with a flat con-
nection ˛i corresponding to a representation �W G! SU.2/, then H 1.S3=GI ad �/D
.H 1.S3IR/˝ su.2//ad� D f0g, and that if Yi is a rational homology 3–sphere † and
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˛i is a trivial flat connection � , then H 1.†I ad �/DH 1.†IR/˝su.2/D f0g, so they
satisfy the non-degeneracy condition.

Fix a Riemannian metric gi on each Yi and choose a metric g on X which matches the
product metrics over ends gjRC�Yi D dt

2Cgi . Let DA be the deformation operator
associated to a connection A on P which restricts to ˛i on Œr;1/�Yi for each i for
some r > 0,

DA D�d
�
A ˚ d

C

A W �
1.gP /!�0.gP /˚�

2
C.gP /;

and let L˛i be the selfadjoint elliptic operator over Yi such that

DA D
d

dt
CL˛i

over Œr;1/�Yi . Let ı > 0 be a positive real number less than the absolute values of
the eigenvalues of the selfadjoint operator L˛i for any i 2 I. Fix a smooth function
wW X!R satisfying w � 1

2
over X and w.t; y/D eıt on each end .t; y/ 2RC�Yi

and define a weighted Sobolev norm k�k
L
2;ı
k

D kw�kL2
k

for an integer k � 0. Fix an
integer l > 2. Take a reference smooth connection A0 on P with A0jRC�Yi D ˛i .
Let A.P; ˛/ be the space of L2;ı

l
–connections on P and G.P; ˛/ be the group of

L
2;ı
lC1;loc –gauge transformations on P defined as follows:

A.P; ˛/D
˚
A0C a j a 2 L

2;ı
l

�V1
.gP /

�	
;

G.P; ˛/D
˚
g 2 �.P �AdG/ j rA0g 2 L

2;ı
l

�V1
.P �AdG/

�	
:

Then G.P; ˛/ is a Hilbert Lie group acting smoothly on the Hilbert manifold A.P; ˛/
by g �ADA�dAg �g�1 for A2A.P; ˛/; g2G.P; ˛/ to define the quotient topological
space B.P; ˛/DA.P; ˛/=G.P; ˛/. Now the condition that rA0g2L

2;ı
l

with weighted
norm forces any gauge transformation g 2 G.P; ˛/ to have a uniform limit along each
cylinder RC � Yi . Let evW G.P; ˛/! �̨ be the evaluation homomorphism to the
stabilizer �̨ D

Q
i2I �̨ i

of ˛ and define the based gauge group G0.P; ˛/ to be the
kernel of the map ev. Then G0.P; ˛/ acts on A.P; ˛/ freely and the quotient

zB.P; ˛/DA.P; ˛/=G0.P; ˛/

is a Hilbert manifold with local model

TŒA� zB.P; ˛/D
˚
AC a j a 2 L

2;ı
l

�V1
.gP /

�
; d
�;ı
A aD 0

	
;
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where d�;ıA Dw�2 �d�A �w
2 . The full quotient B.P; ˛/ is obtained by dividing zB.P; ˛/

with the extra symmetry G.P; ˛/=G0.P; ˛/Š �̨ ,

pW zB.P; ˛/! zB.P; ˛/=�̨ D B.P; ˛/:

A connection A is called an anti-self-dual (ASD) connection or simply an “instanton” if
and only if the curvature FA is anti-self-dual, FCA D

1
2
.FAC?FA/D 0, where ? is the

Hodge star operator with respect to the metric g . Then we have a G.P; ˛/–equivariant
smooth map

ˆW A.P; ˛/! L
2;ı
l�1

�V2
C.gP /

�
; ˆ.A/D FCA for A 2A.P; ˛/:

Let M.P; ˛/ be the moduli space of instantons on .P; ˛/,

M.P; ˛/D fA 2A.P; ˛/ j FCA D 0g=G.P; ˛/;

which can be seen as the quotient of the framed moduli space �M.P; ˛/Dp�1.M.P; ˛//

divided by the free �̨ –action. By non-degeneracy condition H 1.Yi I ad˛i /D f0g, any
instanton A over .P; ˛/ decays exponentially to the flat connection ˛i up to gauge
transformation toward the ends RC �Yi . In particular, for any connection B which
is equal to ˛i over ends, since jFAj decays exponentially along ends, kFAk2L2.X/ DR
X jFAj

2 volX D
R
X jFB j

2 volX D 8�2c2.P; ˛/.

3.2 Enumeration of reducible instantons for SU.2/

If a connection A on the adapted SU.2/–bundle .P; ˛/ has the isotropy subgroup
G.P; ˛/A of the gauge group G.P; ˛/ isomorphic to f˙1g then A is said to be ir-
reducible; otherwise, A is reducible. In particular, reducible instantons, which are
reducible connections on .P; ˛/ whose curvature 2–forms are anti-self-dual, correspond
to the singular points of the moduli space M.P; ˛/.

For later discussion, we need to count reducible instantons for adapted SU.2/–bundles
over 4–manifolds with cylindrical ends. Hedden and Kirk [18] described enumeration
of reducible instantons in the case that the gauge group is SO.3/.

Proposition 3.1 Let .P; ˛/ be an adapted SU.2/–bundle over a 4–manifold X with
cylindrical ends RC � Yj for j 2 I , where Yj are rational homology 3–spheres.
Suppose that the SU.2/ flat connections j̨ are all reducible, so that the corresponding
representation j̨ W �1.Yj /! U.1/ is determined up to complex conjugation. Then
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there exists a one-to-one correspondence between the set of all reducible instantons
Mred.P; ˛/�M.P; ˛/ on .P; ˛/ and the set

C.P; ˛/D fe 2H 2.X IZ/ j e2 D�c2.P; ˛/; i
�
j e D˙e.Lj / for j 2 I g=f˙1g;

where ij W Yj ,! X is the inclusion and Lj is the flat S1–bundle over Yj associ-
ated with j̨ . Note that e.Lj / is determined up to sign because the representation

j̨ W �1.Yj /! U.1/ is determined up to complex conjugation.

Proof The proof goes essentially the same as in the SO.3/ case discussed by Hedden
and Kirk [18]. In our SU.2/ case, the primary obstruction of extending gauge transfor-
mations from the boundary Y to X gives an element of H 2

�
X; Y I�1.SU.2//

�
D f0g.

3.3 Perturbation on a compact part of the moduli space

In this subsection, we state the following proposition, used in the discussion below. Let
X be a smooth oriented 4–manifold with cylindrical ends and .P; ˛/ be an adapted
SU.2/–bundle over X. Fix a Riemannian metric on X with product ends.

Let l be an integer satisfying l > 2 and consider the space B.P; ˛/ of the gauge
equivalence classes of L2;ı

l
–connections on .P; ˛/. We let B�.P; ˛/ be the irreducible

part of B.P; ˛/,

B�.P; ˛/DA�.P; ˛/=G.P; ˛/; A�.P; ˛/D fA 2A.P; ˛/ j G.P; ˛/A D f˙1gg;

and let zB�.P; ˛/D p�1.B�.P; ˛//, where G.P; ˛/A is the stabilizer of A in G.P; ˛/.

Let � be a G.P; ˛/–equivariant smooth map A.P; ˛/! L
2;ı
l

�V2
C.gP /

�
followed by

compact embedding L2;ı
l
� L

2;ı
l�1

, and consider the G.P; ˛/–equivariant map defined
by the formula

ˆ� .A/D F
C

A C �.A/ for A 2A.P; ˛/:

Its derivative

dCA C .D�/AW Ker d�;ıA \L
2;ı
l

�V1
.gP /

�
! L

2;ı
l�1

�V2
C.gP /

�
is a Fredholm operator for each A 2A.P; ˛/.

Then we have the following:
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Proposition 3.2 (see Furuta [16, Proposition 4.2]) Let X be a 4–manifold with
cylindrical ends and with b1.X/D 0 and bC2 .X/D 0, and let M.P; ˛/ be the moduli
space of instantons on an adapted SU.2/–bundle .P; ˛/. Suppose there is a compact
set K in M.P; ˛/ such that

.Dˆ� /AW Ker d�;ıA \L
2;ı
l

�V1
.gP /

�
! L

2;ı
l�1

�V2
C.gP /

�
is surjective for any A 2 p�1.M.P; ˛/�K/. Then there exists an open neighbor-
hood U of K in B.P; ˛/ and a smooth G.P; ˛/–equivariant map � W A.P; ˛/ !
L
2;ı
l

�V2
C.gP /

�
supported in p�1.U / such that the following properties hold:

(1) For any ŒA� 2M�C� .P; ˛/ WD p..ˆ� C �/
�1.f0g//, the derivative of ˆ� C �

at A,

D.ˆ� C �/AW Ker d�;ıA \L
2;ı
l

�V1
.gP /

�
! L

2;ı
l�1

�V2
C.gP /

�
;

is surjective.

(2) The irreducible part M��C� .P; ˛/DM�C� .P; ˛/\B�.P; ˛/ is a finite-dimen-
sional smooth manifold and the tangent space TŒA� �M��C� .P; ˛/ of the framed
moduli space �M��C� .P; ˛/ D �M�C�

.P; ˛/\ zB�.P; ˛/ is isomorphic to the
first cohomology,

H 1
A D Ker dCA =Im dA Š Ker dCA \Ker d�;ıA � L

2;ı
l
;

of the elliptic complex

0! L
2;ı
lC1

�V0
.gP /

� dA
�! L

2;ı
l

�V1
.gP /

� dC

A
�! L

2;ı
l�1

�V2
C.gP /

�
! 0:

(3) For any ŒA� 2Mred.P; ˛/ we have �.A/D 0, and there exists a neighborhood
N of ŒA� in M�C� .P; ˛/ with a homeomorphism 'W N ! cCP d to the cone
cCP d over CP d for some d with '.ŒA�/ the vertex of cCP d whose restriction

'jN�fŒA�gW N �fŒA�g ! cCP d �fh.ŒA�/g

is a C1–diffeomorphism.

(4) M�C� .P; ˛/\U is compact.

Proof Since the second cohomology H 2
A of the complex has finite dimension at each

instanton A, a perturbation can be constructed over a local slice at A. Since A.P; ˛/ is
a Hilbert manifold, we can use a C1 cut-off function ˇW B.P; ˛/!R defined by using
the L2;ı

l
–norm kak

L
2;ı
l

, so that we can take a smooth partition of unity subordinated
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to an open covering of the compact subset K �M.P; ˛/�B.P; ˛/ consisting of local
slices at each A to construct a perturbation � W A.P; ˛/! L

2;ı
l

�V2
C.gP /

�
. This is a

standard argument; see for example [24] and for the L2;ı
l

–norm see [8].

3.4 Equivariant instantons over R � S 3

Next we consider equivariant instantons over R � S3 for the standard sphere S3 .
In what follows, we use an identification C2 Š H given by .z; w/ 7! z C jw , so
that the left multiplication x 7! ax for x 2 H with a 2 H is C–linear, to identify
SU.2/D Sp.1/. We fix an orientation o.H/D 1^ i ^ j ^ k of H . By noting that

x D x0C ix1C jx2C kx3 D x0C ix1C j.x2� ix3/ 2H;

we see that the orientation o.H/ is opposite to that induced from the standard one of C

given by o.C/D1^i and so the identification C˚CŠH defined by .z; w/ 7! zCj Sw

gives an orientation-preserving diffeomorphism.

Definition 3.3 Let . zQ0; �0/ be an adapted SU.2/–bundle over the cylinder R�S3

defined by zQ0 DR�S3 �Sp.1/ with a pair �0 D f��0 ; �
C
0 g consisting of the trivial

flat connection �˙0 over ˙.r;1/�S3 for some r > 0 with respect to the trivialization

�˙W zQ0j˙.r;1/�S3 D˙.r;1/�S
3
�Sp.1/!˙.r;1/�S3 �Sp.1/;

�˙.t; y; q/D .t; y; y
.˙1C1/=2q/ for .t; y; q/ 2 ˙.r;1/�S3 �Sp.1/:

Then . zQ0; �0/ admits an SU.2/�SU.2/–action

g � .t; y; q/D .t; eCye
�1
� ; e�q/

for
.t; y; q/ 2R�S3 �Sp.1/; g D .eC; e�/ 2 Sp.1/�Sp.1/

to define an .SU.2/�SU.2//–equivariant adapted SU.2/–bundle over R� S3 with
c2. zQ0; �0/D 1. Note that under the trivialization �˙ , the SU.2/�SU.2/–action has
the form

g � .t; y; q/D .t; eCye
�1
� ; ˛˙0 .g/q/; where ˛˙0 .g/D e˙;

for

.t; y; q/ 2 ˙.r;1/�S3 �Sp.1/ and g D .eC; e�/ 2 Sp.1/�Sp.1/:

If the action of a finite subgroup zG of SU.2/�SU.2/ on S3 �H is free, we call zG a
pseudofree subgroup of SU.2/� SU.2/. Consider the quotient bundle Q0 D zQ0= zG
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over R � S3= zG with the flat connection ˛˙0 on Q0j˙.r;1/�S3= zG induced by the
trivial flat connection �˙0 on ˙.r;1/� S3 � Sp.1/. The adapted bundle .Q0; ˛0/
with ˛0 D f˛�0 ; ˛

C
0 g and c2.Q0; ˛0/ D 1=j zGj is called the adapted SU.2/–bundle

associated with a pseudofree subgroup zG of SU.2/�SU.2/.

Remark 3.4 Let Y D S3=G be the 3–dimensional spherical space form obtained by
taking a quotient of S3 by a finite group G � SO.4/ acting freely on S3 � R4 by
matrix multiplication. The action .eC; e�/ � x D eCxe�1� for x 2H of Sp.1/�Sp.1/
on H induces the projection � W SU.2/�SU.2/! SU.2/�f˙1gSU.2/Š SO.4/. If we
can take a lift zG of G, which means that zG is the image of an injective homomorphism
�W G ! SU.2/ � SU.2/ with � ı � D idSO.4/ , then zG is a pseudofree subgroup of
SU.2/�SU.2/ acting on S3 �H as above.

Then we have the following proposition:

Proposition 3.5 (see Furuta [16, Lemmas 5.1 and 5.2]) Let .Q0; ˛0/ be the adapted
SU.2/–bundle over R�S3= zG associated to a pseudofree subgroup zG of SU.2/�SU.2/
as in Definition 3.3. Then the moduli space M.Q0; ˛0/ is regular and diffeomorphic
to R.

Proof Let f W S4�f0;1g!R�S3 be the zG–equivariant conformal equivalence.
Then zG–invariant instantons on the zG–equivariant adapted bundle . zQ0; �0/ over
R� S3 with finite energy c2. zQ0; �0/ D 1 have the pullback over S4 � f0;1g and
extends across f0;1g uniquely by Uhlenbeck’s removable singularity theorem [34] to
obtain an zG–invariant instantons on a zG–equivariant SU.2/–bundle zQ over S4 with
c2. zQ/D 1. This correspondence induces a diffeomorphism M zG

. zQ0; �0/!M zG
. zQ/

between moduli spaces of zG–invariant instantons. Then take the quotient by zG to
obtain a diffeomorphism M.Q0; ˛/!M.Q/ and the assertion follows from the fact
that M.Q/ is regular and diffeomorphic to R by Lemmas 5.1 and 5.2 in [16].

Now we introduce a notion of positivity and negativity of spherical space forms, which
was introduced by Furuta in the context of orbifolds [16].

Definition 3.6 (see [16, Definition 2.1]) A closed 3–manifold Y is called a positive
(resp. negative) spherical space form — positive (resp. negative) for short — if Y Š
S3=G with a finite group G � Sp.1/ acting on S3 � H by the left (resp. right)
multiplication,

g �y D gy .resp. g �y D yg�1/ for y 2 S3 �H and g 2G � Sp.1/:
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Definition 3.7 (see [16, Section 5, before Lemma 5.3]) If Y D S3=G is a positive
(resp. negative) spherical space form and G is the corresponding subgroup of Sp.1/,
then G can be embedded into the group SO.4/D Sp.1/�f˙1g Sp.1/ and we regard G
as a subgroup of SO.4/ by the identification

G � Sp.1/� Sp.1/�f˙1g f˙1g � SO.4/D Sp.1/�f˙1g Sp.1/

or
G � Sp.1/� f˙1g �f˙1g Sp.1/� SO.4/D Sp.1/�f˙1g Sp.1/;

respectively, and call G a positive (resp. negative) subgroup of SO.4/. In this case,
we can take a lift

�posW G � Sp.1/! zG DG � f1g � Sp.1/�Sp.1/

or
�negW G � Sp.1/! zG D f1g �G � Sp.1/�Sp.1/;

respectively, to define a G–action on the adapted bundle . zQ0; �0/ by composing
with �pos (resp. �neg ). We denote the representation corresponding to the inclusion
G � Sp.1/ by �W G ,! Sp.1/ acting on fibers Sp.1/ by left multiplication. Then we
call the quotient adapted bundle .Q0; ˛0/ obtained by taking the quotient of . zQ0; �0/
by G the adapted SU.2/–bundle over R� Y of c2.Q0; ˛0/D 1=m associated with
the positive (resp. negative) subgroup G1 .

Remark 3.8 The SO.4/DSU.2/�f˙1gSU.2/–action on S3 DH[f1g is given by

ŒeC; e�� � x D eCxe
�1
� ; x 2 S3; ŒeC; e�� 2 Sp.1/�f˙1g Sp.1/:

Note that we have an identification H 3 x D zC jw 7! .z; w/ 2C˚C , so that Sp.1/
is identified with SU.2/ under the left multiplication. If G D Zm � U.1/� Sp.1/�
Sp.1/�f˙1g f˙1g, where U.1/D fei� j � 2Rg and ŒeC; e��D Œ�; 1� 2G, then

Œ�; 1� � x D �.zC jw/D �zC j��1w:

On the other hand, the orientation o.C2/ induced from the standard one o.C/D 1^ i
is opposite to the orientation o.H/D 1^ i ^ j ^ k of

HDRCRi CRj CRk DC˚ jC ŠC2;

so that �W C2 3 .z; w/ 7! zCj Sw 2H gives the orientation-preserving diffeomorphism
and

.��1 ı Œ�; 1� ı �/.z; w/D .�z; �w/;
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implying S3=G Š L.m; 1/ is positive. Similarly if G D Zm � U.1/ � Sp.1/ �
f˙1g �f˙1g Sp.1/ and ŒeC; e��D Œ1; �� 2G then

Œ1; �� � x D .zC jw/��1 D ��1zC j��1w

and
.��1 ı Œ1; �� ı �/.z; w/D .��1z; �w/;

so that S3=G Š L.m;�1/ is negative.

The following proposition is a key to studying behaviors of flat connections after the
“sliding ends” phenomenon:

Proposition 3.9 (see [16, Lemma 5.3]) Let G be a finite group acting on S3 freely.
Let . zQ1; �1/ be a G–equivariant adapted SU.2/–bundle zQ1!R�S3 with the trivial
flat connections �1 D f�˙1 g over R˙ �S3 , c2. zQ1; �1/D 1, and the G–action on zQ1
defined by representations ˛˙1 W G! SU.2/ with respect to the trivializations of �˙1 .
Suppose there exists a G–invariant instanton zA1 on . zQ1; �1/. Then the following
properties hold:

(1) If ˛C1 D 1, then S3=G is negative and ˛�1 is conjugate to the inclusion �W G ,!
Sp.1/.

(2) If S3=G is positive and ˛C1 is the inclusion �W G ,! Sp.1/ then ˛�1 D " and �
is conjugate to "� for some homomorphism "W G! f˙1g.

Proof The proof is the same as in [16] for the case of G–equivariant instantons on the
G–equivariant SU.2/–bundle zQ1 over S4 under an identification with G–equivariant
instantons on an adapted G–equivariant SU.2/–bundle . zQ1; �1/ over RC�S3 . Note
here that the conformal map

f W R�S3! S4 DH[f1g; f .t; y/D .ety/�1;

is orientation-preserving with respect to the standard orientation o.H/D 1^ i ^ j ^k .
However, the map f sends the positive end RC�S3 to the punctured unit ball B1�f0g,
where B1D fx 2H j jxj � 1g, and the induced orientation on the boundary S3D @B1
of B1 � H is opposite to that of the standard orientation S3 in R � S3 . On the
other hand, self-dual connections change to anti-self-dual connections if we change
the orientation of the 4–manifold. Hence, the “positivity” (resp. “negativity”) in our
proposition coincides with that of Lemma 5.3 in [16].
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3.5 The virtual dimension of the moduli space

To calculate the virtual dimension of moduli spaces of instantons over 4–manifolds
with cylindrical ends, it is easier to use the addition property for indices [8, Section 3.3].
First we recall:

Definition 3.10 Let .Pk; ˛k/ for k D 1; 2 be an adapted SU.2/–bundle over a 4–
manifold Xk with cylindrical ends RC � Yki indexed by i 2 Ik for a finite set Ik
containing 0 and with an identification Y10 D Y D�Y20 for the i D 0th component,
and a fixed bundle isomorphism hW P1jRC�Y10! P2jRC�Y20 such that ˛10 D h�˛20 .
For a fixed parameter T > 0, we define a gluing X1 #.T /X2 of X1� ..2T;1/�Y10/
and X2 � ..2T;1/ � Y20/ under the identification .t1; y1/ � .t2; y2/ if .t2; y2/ D
.2T�t1; y1/ for .t1; y1/2 ŒT; 2T ��Y10 , .t2; y2/2 ŒT; 2T ��Y20 . The gluing P1#.T /P2
is defined naturally by using the isomorphism hW P1jRC�Y10 ! P2jRC�Y20 . Set
˛1 # ˛2 D ˛1 [ ˛2 � f˛10; ˛20g. Then .P1 #.T / P2; ˛1 # ˛2/ defines an adapted
SU.2/–bundle over X1 #.T /X2 .

In fact, the isomorphism class of .P1 #.T /P2; ˛1 #˛2/ does not depend on the parame-
ter T , so we omit the parameter T in the notation #.T / of the gluing if we do not need
to specify it. Then, by additivity of indices of elliptic operators under connected sums,
we have the following:

Proposition 3.11 Let X be a Riemannian 4–manifold with cylindrical ends RC �Yi
for i 2 f1; : : : ; sC1g and b1.X/D 0, bC2 .X/D 0, where YsC1 is a rational homology
3–sphere and the Yi are spherical space forms Yi ŠS3=Gi for i 2 f1; : : : ; sg. Suppose
that Y1 is a positive spherical space form S3=G1 with jG1j D m. Let .Q; ˇ/ be an
adapted SU.2/–bundle over R�Y1 of c2.Q; ˇ/D 1=m associated with the positive
subgroup G1 equipped with flat connections ˇ D fˇ˙g on each ends R˙ �Y1 , where
ˇC D �1 is the inclusion �1W G1 ,! Sp.1/ and ˇ� D � . Let .P0; �/ be the trivial
adapted SU.2/–bundle P0 DX �SU.2/ equipped with trivial connections � D f�ig
on each ends. If .P; ˛/D .P0 #Q; � #ˇ/ is the connected sum of .P0; �/ and .Q; ˇ/
along Y1 . Then we have the following properties:

(1) The virtual dimension of the moduli space M.P; ˛/ is equal to that of M.Q; ˇ/.

(2) If .Q0; ˇ0/ is an adapted SU.2/–bundle over R�Y1 of c2.Q0; ˇ0/D0 equipped
with flat connections ˇ0Dfˇ0

˙
g on each ends R˙�Y1 , where ˇ0

C
corresponds to

a representation "W G1!f˙1g and ˇ0�D � , and let .P 0; ˛0/D .P0#Q0; � #ˇ0/
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be the adapted bundle obtained by the connected sum of .P0; �/ and .Q0; ˇ0/

along Y1 , then the virtual dimension of the moduli space M.P 0; ˛0/ is equal
to �3.

(3) If YiDS3=Gi is a negative spherical space form with jGi jDjG1j for some i¤1
and let .Q00; ˇ00/ be an adapted SU.2/–bundle over R�Yi of c2.Q00; ˇ00/D1=m
associated with a negative subgroup Gi equipped with flat connections ˇ00 D
fˇ00
˙
g on each ends R˙�Yi , where ˇ00

C
D � and ˇ00� D �i is the flat connection

corresponding to the inclusion �i W Gi ,! Sp.1/. Let .P 00; ˛00/ be an adapted
SU.2/–bundle such that the connected sum .P 00 #Q00; ˛00 #ˇ00/ of .P 00; ˛00/ and
.Q00; ˇ00/ along Yi is isomorphic to .P; ˛/. Then the virtual dimension of the
moduli space M.P 00; ˛00/ is �dim��i , where ��i is the stabilizer of �i in the
gauge transformation group of Q00jYi .

Proof The virtual dimension of the moduli space M.P; ˛/ is equal to the index
indC.P; ˛/ of the deformation operator DA D �d�A ˚ d

C

A for a connection A on
.P; ˛/ acting on sections with positively weighted norms,

DA D�d
�
A ˚ d

C

A W L
2;ı
l

�V1
.gP /

�
! L

2;ı
l�1

�V0
.gP /˚

V2
C.gP /

�
;

which can be calculated as the index of the operator DAPS
A over the 4–manifold W with

boundary Y under Atiyah–Patodi–Singer boundary condition (see [8, Section 3.3.2,
Proposition 3.19]). The statements (1) and (3) follows from the addition formula for
indices under the connected sum .P; ˛/D .P 0; ˛0/ # .Q; ˇ/ along the i th component
with flat connection ˛0i D ˇ� and ˛i D ˇC [8, Propositions 3.9 and 3.10],

indC.P; ˛/D indC.P 0; ˛0/C indC.Q; ˇ/C dim �̨ 0
i
;

where �̨ 0
i

is the stabilizer of ˛0i in the gauge transformation group of P jYi . For the state-
ment (2), we now apply (1) to see indC.P 0; ˛0/D indC.Q0; ˇ0/, and indC.Q0; ˇ0/D�3
follows from Proposition 2.6 of [18] by noting that �.Y1; �/ D 0 and �.Y1; "/ D 0
since " is a nontrivial central representation such that ad "D 1.

3.6 Chern–Simons invariants and compactness of the moduli

Instanton moduli spaces on 4–manifolds with product ends in general fail to be compact
due to either “bubbling” (when a divergent sequence of instantons has curvatures
concentrating to a point in the 4–manifold) or “sliding ends” (when the curvatures
recede to infinity along a cylindrical end). These phenomena can be controlled by
Chern–Simons invariants.
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Here we recall the definitions.

Definition 3.12 (see [15]) Let Y be a closed oriented 3–manifold, and Q ! Y

be a principal SU.2/–bundle with a flat connection ˛ on Q . Let X be an oriented
smooth 4–manifold with cylindrical ends R� .Y tY 0/ for some disjoint union Y 0 of
closed oriented 3–manifolds, and .P; z̨/ be an adapted SU.2/–bundle over X such
that .P jRC�Y ; z̨jRC�Y / Š .p

�
YQ;p

�
Y ˛/ for the projection pY W RC � Y ! Y and

.P jRC�Y 0 ; z̨jRC�Y 0/Š .RC �Y 0 �SU.2/; �/ for the trivial flat connection � . Then
the Chern–Simons invariant of .Y; ˛/ is defined to be

cs.Y; ˛/� c2.P; z̨/ .mod Z/:

Note that cs.Y; ˛/ does not depend on the choice of the adapted bundle .P; z̨/!X as
above. In fact, if we take another .P 0; z̨0/!X then the bundle P #P 0 over X[.�X/
obtained by gluing along ends gives c2.P; z̨/� c2.P 0; z̨0/D c2.P #P 0/ 2 Z.

Definition 3.13 [18] Let Q be an SU.2/–bundle over a closed oriented 3–manifold
Y and let R�Q!R�Y be the pullback by the projection R�Y ! Y . Let ˛˙ be
flat connections on Q viewed as flat connection on the ends R˙ �Y of the cylinder
R�Y . Then the relative Chern–Simons invariant cs.Y; ˛�; ˛C/ is defined to be

cs.Y; ˛�; ˛C/D c2.R�Q; f˛�; ˛Cg/ 2R:

Note that cs.Y; ˛�; ˛C/�cs.Y; g�˛�; ˛C/2Z for any g 2Aut.Q/, and cs.Y;�; ˛C/
descends to a locally constant R=Z–valued function on the space R.Y;SU.2// of all
conjugacy classes of SU.2/–representations of the fundamental group �1.Y / of Y .
Since R.Y;SU.2// is compact, the set of all values cs.Y; ; ˛/ .mod Z/ for all flat
connections ˛ and  on Q is finite.

Definition 3.14 [18] Let bW R=Z! .0; 1� be the obvious bijection. For a rational
homology 3–sphere Y and a flat connection ˛ on a SU.2/–bundle Q over Y , we
define its minimum Chern–Simons invariant �.Y; ˛/ by

�.Y; ˛/Dminfb.cs.Y; ; ˛// 2 .0; 1� j  a flat connection on Qg:

Then we have the following compactness result:

Proposition 3.15 Let X be a 4–manifold with cylindrical ends RC � Yi for i 2 I
and .P; ˛/ be an adapted SU.2/–bundle over X with

0 < c2.P; ˛/D � Dminf�.Yi ; ˛i / j i 2 I g � 1
2
:
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Suppose that H 1.Yi I ad /D f0g for any flat SU.2/–connection  over each compo-
nent Yi with cs.Yi ; /� � .mod Z/. Fix a Riemannian metric on X with product ends.
Let M� .P; ˛/ be the moduli space of � –instantons A on .P; ˛/, that is, connections
A satisfying the equation FCA C �.A/D 0, where � W A.P; ˛/! L

2;ı
l

�V2
C.gP /

�
is a

smooth perturbation such that

(1) k�.A/k2
L2.X/

< 4�2� ,

(2) there exists a compact set ��W DX �
`
i .RC �Yi / such that

(a) supp �.A/�� for all A 2A.P; ˛/, and

(b) �.A/D 0 if kFAk2L2.�/ > 4�
2 .

Then, for any sequence fŒAn�g in M� .P; ˛/, there exists a subsequence fn0g of fng
and a sequence of gauge transformations fgn0g such that one of the following holds:

(1) fg�n0An0g converges to a � –instanton A0 on the bundle .P; ˛/ over X in C1loc –
topology.

(2) fg�n0An0g converges to a � –instanton A0 on a limiting adapted bundle .P 0; ˛0/
over X in C1loc –topology, and there exists a unique i 2 I and a sequence
fTn0g with Tn0 > 0 and limn0!1 Tn0 D C1 such that the sequence of the
pullback connections fc�Tn0

.g�n0An0 jRC�Yi /g by the translation cTn0 with Tn0

over Œ�Tn0 ;1/�Yi converges to an instanton B 0i on an adapted bundle .Q0i ; ˇ
0
i /

over the cylinder R�Yi in C1loc –topology such that

c2.P
0; ˛0/D 0; c2.Q

0
i ; ˇ
0
i /D �;

where

˛0j D j̨ for j ¤ i; ˛0i D ˇ
0
i
�
; ˇ0i

C
D ˛i :

Proof Each term of the sequence of � –instanton fŒAn�g �M� .P; ˛/ satisfies the
perturbed equation FCAn C �.An/ D 0. Since the support of the perturbation � is
contained in a compact subset ��W away from the cylindrical ends RC �Yi , we
see as in the proof of Theorem 5.4 in [8] that the sequence fŒAn�g has a weak chain
convergent subsequence. By the condition k�.An/k2L2 < 4�

2� , we have

kFAnk
2
L2
D 8�2�C 2k�.An/k

2
L2
< 8�2�C 2 � 4�2� D 2 � 8�2� � 8�2;

and since �.A/ D 0 for those connections A with kFAk2L2.�/ > 4�
2 , we see that

the perturbation term vanishes for connections with the energy concentrating on �.
Therefore, we can apply Uhlenbeck’s removable singularity theorem [34] to see that

Algebraic & Geometric Topology, Volume 19 (2019)



On negative-definite cobordisms among lens spaces and uniformization of four-orbifolds 1857

the bubbling does not occur. Since �.Yi ; ˛i / � � for all i 2 I, the sequence has a
chain-convergent subsequence [8, Section 5.1] with a limit given by � –instanton A0

on a limiting adapted bundle .P 0; ˛0/ with limn!1 k�.An/kL2 Dk�.A
0/kL2 < 4�

2�

and at most “one-term chain” from ˛0i to ˛i with �.Yi ; ˛i / D � over some R� Yi
(possibly empty). If the limit has a one-term chain, an instanton B 0i is formed on some
limiting bundle .Q0i ; ˇ

0
i / over R�Yi with ˇ0i

�
D ˛0i and ˇ0i

C
D ˛i and satisfies the

conservation of the topological charge

� D c2.P; ˛/D c2.P
0; ˛0/C c2.Q

0
i ; ˇ
0
i /D c2.P

0; ˛0/C �;

so that c2.P 0; ˛0/D 0, which corresponds to (2). The other cases correspond to (1).

3.7 Perturbation on ends of the moduli space

In the following discussion, we need a perturbation which works even after bubbling
or sliding ends occur. In [7], Donaldson used a holonomy of the connections to perturb
(holonomy perturbation) the moduli space of flat connections after bubbling to prove
his Theorem A for smooth negative-definite 4–manifolds with nontrivial fundamental
groups. Here we use a variant of the formulation given by Kronheimer in [23]. It is
easier in our case since we know that the bubbling does not occur.

Let X be a 4–manifold with cylindrical ends RC � Yi for i 2 I and .P 0; ˛0/ be an
adapted SU.2/–bundle over X. Fix a Riemannian metric on X with product ends. Let
B be a smooth embedded ball in X and qW S1�B!X be a smooth submersion with
q.1; x/Dx for all x 2B . Let ! 2�2

C
.X/ be a self-dual 2–form with supp!�B . For

a smooth connection A in P 0!X, we denote by Holqx .A/ 2Aut.P 0x/ the holonomy
of A around the loop qx W S1!X given by qx.z/Dq.z; x/. Then we have a holonomy
map Holq.A/W B! �.glP 0 jB/, where glP 0 D P 0 �Ad gl2 with Ad.g/aD gag�1 for
g 2 SU.2/ and a 2 gl2 , and define !˝Holq.A/ 2�2C.gl2/ by extending by zero.

Let  W glP 0! suP 0 D gP 0 be the orthogonal bundle projection and ��W R! Œ0; 1� be
a smooth cut-off function satisfying ��.x/D 0 for jxj � �, ��.x/D 1 for jxj � 2�
with 0� j�0�.x/j � 1=� for some fixed sufficiently small � which we specify later, in
the proof of Proposition 3.16. Let  �W glP 0 ! gP 0 be the adjoint equivariant cut-off
of the map  ,

 �.g/D ��.j .g/j/ .g/ for g 2 glP 0 ;

and denote the induced maps by  ; �W �.glP 0 jB/! �.gP 0 jB/, respectively. Now
define

V �q;!.A/D !˝ . � ıHolq.A// 2�2C.gP 0/:
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Then, taking l > 2, the map V
�
q;! extends to a smooth map of Hilbert manifolds

(see [23])
V �q;! W AL2;ı

l

.P 0; ˛0/! L
2;ı
l

�V2
C.gP 0/

�
:

For the reference smooth connection A0 there are constants Kn , depending only on q ,
A0 and the cut-off function �� , such that the nth derivative

DnV �q;! jAW L
2;ı
l

�V1
.gP 0/

�n
! L

2;ı
l

�V2
C.gP 0/

�
satisfies

kDnV �q;! jA.a1; : : : ; an/kL2;ı
l;A0

�Knk!kC l

nY
iD1

kaikL2;ı
l;A0

;

which follows from Proposition 7 in [23] since V �q;!.A/ and DnV �q;! jA are compactly
supported in supp! , and L2;ı

l
–norm and L2

l
–norm are equivalent on supp! .

Let � D .fB� ; q� ; !� ; "�gN�D1; �/ be a finite collection consisting of

(1) a 4–ball B� in X, a submersion q� W S1 �B�!X,

(2) a self-dual 2–form !� 2�
2
C
.X/ with supp!� � B� ,

(3) coefficients "� 2R, and

(4) a cut-off parameter � > 0.

Then we call � a perturbation data and define a smooth map of Hilbert manifolds

V� W A.P 0; ˛0/! L
2;ı
l

�V2
C.gP 0/

�
; A 7! V�.A/D

NX
�D1

"�V
�
q� ;!�

.A/:

The perturbed moduli space M�.P 0; ˛0/ with perturbation data � is defined to be

M�.P 0; ˛0/D fA 2A.P 0; ˛0/ j FCA CV�.A/D 0g=G.P
0; ˛0/:

Now we have the following:

Proposition 3.16 Let P 0 be a finite set of nontrivial adapted bundles .P 0; ˛0/ with
c2.P

0; ˛0/ D 0 over a 4–manifold X with cylindrical ends. Suppose there is no
reducible connection in the bundle .P 0; ˛0/ and indC.P 0; ˛0/ < 0 for all .P 0; ˛0/ 2 P 0.
Then there exists a perturbation data � D .fB� ; q� ; !� ; "�gN�D1; �/ such that

M�.P 0; ˛0/D∅

for all .P 0; ˛0/ 2 P 0. If there is no reducible flat connection on the trivial bundle
.X�SU.2/; �0/ except for the trivial flat connection � then M�.X�SU.2/; �0/DfŒ� �g.
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Proof The proof is essentially the same as that of Proposition 2.6 in [7]. Since the
second homology H 2

A of the Atiyah–Hitchin–Singer complex is finite-dimensional for
each flat connection A, we can take a finite number of mutually disjoint embeddings
q� W S

1�B�!X and self-dual 2–forms !� with support inside 4–balls B� such that
f!� ˝ . ıHolq� .A//g� span the space H 2

A for each irreducible flat connection A,
where  W glP 0! suP 0 is the adjoint equivariant map defined above. Since the space of
all flat connections is compact and the trivial flat connection is isolated for b1.X/D 0
and bC2 .X/D 0, the irreducible part V is compact. Then we can take a finite collection
f!�˝. ıHolq� .A//g� to span H 2

A for all irreducible A, so that there is no solution on
an open neighborhood U of V in B.P; ˛/. Note that the Uhlenbeck compactness [35]
holds with small holonomy perturbation due to the fact that (i) there exist constants
"0 > 0 and C > 0 such that for any sufficiently small ball Bx centered at each point x
such that kFAkL2.Bx/ < "0 , there exists a connection matrix zA with respect to a
trivialization such that d� zAD 0 and

k zAkL21.Bx/
� CkFAkL2.Bx/;

and (ii) for each s � 2, there exists a polynomial Rs.Z;W / 2RŒZ;W � and an interior
domain x 2Ds b Bx such that if k zAkL21.Bx/ < "1 and j"j WDmaxfj"� jg then

k zAkL2s .Ds/ �Rs."1; j"j/:

Now take � > 0 to be

�D 1
2

min
˚

min
x2B�

j ıHolq�;x .A/j j � 2 f1; : : : ; N g; ŒA�2M
�.P 0; ˛0/; .P 0; ˛0/2P 0

	
:

Note also that the trivial flat connection is the isolated solution during the holonomy
perturbation. Then we see that there is no solution outside U for sufficiently small
perturbations. Now by definition of � we have  � ıHolq� .A/D  ıHolq� .A/ for
ŒA� 2M�.P 0; ˛0/ and the perturbation V� has the required properties.

Then, by using Propositions 3.15 and 3.16, we obtain:

Proposition 3.17 Let X be a 4–manifold with cylindrical ends RC � Yi for i 2 I.
Let .P; ˛/ be an adapted SU.2/–bundle over X with

0 < c2.P; ˛/D � Dminf�.Yi ; ˛i / j i 2 I g � 1
2
:

Let P 0 be the finite set of all possible limiting adapted SU.2/–bundles .P 0; ˛0/ over
X which come from .P; ˛/ satisfying

(1) c2.P
0; ˛0/D 0,
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(2) indC.P 0; ˛0/ < 0,

(3) there is no reducible instantons on .P 0; ˛0/, that is, Mred.P
0; ˛0/D∅.

Then there exists a holonomy perturbation

V� W A.P; ˛/! L
2;ı
l

�V2
C.gP /

�
; V�.A/D

NX
�D1

��.A/"�V
�
q� ;!�

.A/;

with perturbation data � D .fB� ; q� ; !� ; "�g�D1;:::;N ; �/ satisfying q�.S1 � B�/\
.RC�Yi /D∅ for all i 2 I, � 2 f1; : : : ; N g and G.P; ˛/–invariant smooth functions

�� W A.P; ˛/!R for � 2 f1; : : : ; N g

such that M�.P 0; ˛0/D∅ for all adapted bundle .P 0; ˛0/ 2 P 0 and if .X �SU.2/; �/
admits no nontrivial reducible flat connection then M�.X �SU.2/; �/D fŒ� �g.

Proof By Proposition 3.16, we can take a perturbation � D .fB� ; q� ; !� ; "�g; �/ so
that M�.P 0; ˛0/D∅ for all .P 0; ˛0/ 2 P 0 and if .X �SU.2/; �/ admits no reducible
flat connection then M�.X �SU.2/; �/DfŒ� �g. Here, by taking B� sufficiently small
and qx W S1 � fxg ! X in general position, we may assume q�.S1 �B�/ are inside
W D X �

`
i2I .RC � Yi / and they are all disjoint and take � > 0 to be less than a

half of the distances between them. Then we can take a �–neighborhood U� of the
image q�.S1 �B�/ and set a G.P; ˛/–invariant function

E�.A/D
1

8�2

Z
U�

jFA.y/j
2 volX .y/

to define a G.P; ˛/–invariant smooth map �� W A.P; ˛/! R by composing with a
smooth cut-off function. Then the assertion follows from Propositions 3.16 and 3.15.

3.8 Taubes’ gluing instantons

In our discussion, it is crucial to construct an end of the instanton moduli space and in
particular the moduli space need to be nonempty. We use a result of Taubes concerning
gluing of instantons.

Let .Pk; ˛k/ for k D 1; 2 be an adapted SU.2/–bundle over a 4–manifold Xk with
cylindrical ends RC �Yki indexed by i 2 Ik for a finite set Ik containing 0 and with
an identification Y10 D Y D �Y20 for the i D 0th component, and a fixed bundle
isomorphism hW P1jRC�Y10 ! P2jRC�Y20 such that ˛10 D h�˛20 . Let Ak be an
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instanton on .Pk; ˛k/. For a fixed parameter T > 0, we defined an adapted SU.2/–
bundle .P1 #.T /P2; ˛1 #˛2/ over the glued 4–manifold X1 #.T /X2 in Definition 3.10.
If X1DX DW [

`
i .RC�Y1i / and X2DR�Y , ˛2Df˛20; ˛21g then X1#.T /X2D

X #.T / .R�Y / is diffeomorphic to X1DX. Now we identify Q11DQ21 , ˛11D ˛21
and R�Q21 Š P2 using the parallel translation, P1 #.T / P2 is isomorphic to P1 and
˛1#˛2D .˛1�f˛10g/[f˛21g. Therefore, we have an isomorphism as adapted bundles

.P1 #.T / P2; ˛1 #˛2/Š .P1; .˛1�f˛10g/[f˛21g/:

Fix a Riemannian metric on Xk for k D 1; 2 with product ends. Let M0.P2; ˛2/ be
the (translation-)reduced moduli space, that is, the moduli space of instantons A on
the adapted SU.2/–bundle .P2; ˛2/ over R�Y with the center of mass zero,Z 1

�1

t jFAj
2 volR�Y D 0;

so that M.P2; ˛2/ D R�M0.P2; ˛2/ under the identification .t; A/ 7! c�t A using
translation ct by t . We denote by �̨

10
the stabilizer of ˛10 in the gauge transformation

group of PkjYk0 , and let �M.Pk; ˛k/ be the framed moduli space of instantons on
.Pk; ˛k/ with respect to the stabilizer �̨

10
, so that �M.Pk; ˛k/=�̨ 10

ŠM.Pk; ˛k/.
Then Taubes’ gluing result is the following:

Theorem 3.18 (see [8, Section 4.4]) Let Ak be an instanton on .Pk; ˛k/ for kD1; 2,
Nk �M.Pk; ˛k/ a precompact neighborhood around ŒAk� whose closure consists of
irreducible and regular points and zNk D p�1k .Nk/ the inverse image of the projection
pk W �M.Pk; ˛k/!M.Pk; ˛k/D �M.Pk; ˛k/=�̨ 10

. Then there exists a map

�T W E D zN1 ��̨
10

zN2!M.P1 #.T / P2; ˛1 #˛2/

which is a diffeomorphism onto a neighborhood of the moduli space of instantons on
the adapted bundle .P1 #.T / P2; ˛1 # ˛2/ over the gluing X1 #.T /X2 for sufficiently
large T > 0.

In particular, if X2DR�Y2 , then .P1 #.T /P2; ˛1 #˛2/Š .P1; .˛1�f˛10g/[f˛21g/.
Let N 02 �M0.P2; ˛2/ be a precompact neighborhood around ŒA2� whose closure
consists of irreducible and regular points and zN 02 D p

�1
2 .N 02/ be the inverse image of

the projection p2W �M0.P2; ˛2/!M0.P2; ˛2/D �M0.P2; ˛2/=�̨ 10
, and suppose N1

is isolated and regular in M.P1; ˛1/; then

� W E D zN1 ��̨
10

zN 02 � .T;1/!M.P1; .˛1�f˛10g/[f˛21g/

gives a diffeomorphism onto an end of the moduli space for sufficiently large T > 0.
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Proof This is now a standard result and follows by taking the function spaces with
l > 2,

U D L
2;ı
l�1

�V2
C.gP#.T //

�
; V D L

2;ı
l

��V0
˚
V1�

.gP#.T //
�

in the proof of Theorem 4.17 in [8] and an argument for gluing reducible instantons [8,
Section 4.4.1; 9, Theorem 7.2.62].

We apply Theorem 3.18 to show:

Theorem 3.19 Suppose l > 2. Let X be a Riemannian 4–manifold with cylindrical
ends RC �Yi for i 2 I having the following properties:

(1) b1.X/D 0 and bC2 .X/D 0,

(2) i�W H1.Y IZ/! H1.X IZ/ is surjective, where i W Y D
`
i2I Yi ,! X is the

inclusion,

(3) all Yi are rational homology 3–spheres and Y1 D S3=G1 is positive.

Let .P; ˛/ be the adapted bundle obtained by gluing of the trivial bundle .X�SU.2/; �0/
over X and the adapted bundle .Q; ˇ/ over R�Y1 of c2.Q; ˇ/D 1=m associated with
the positive subgroup G1 of SO.4/D Sp.1/�f˙1g Sp.1/ with ˇ� D � and ˇC D �1
along Y1 , where �1 corresponds to the inclusion �1W G1 ,! Sp.1/. Let

V� W A.P; ˛/! L
2;ı
l�1

�V2
C.gP /

�
be a holonomy perturbation with perturbation data � D .fB� ; q� ; !� ; "�g; �/ such that
the perturbed moduli space M�.X�SU.2/; �0/ consists only of the gauge equivalence
class Œ� � of the trivial flat connection � on X � SU.2/. Then the perturbed moduli
space M�.P; ˛/ of the bundle .P; ˛/ has at least one end component.

Proof Note that the trivial flat connection � over rational homology 3–sphere Yi
is non-degenerate, H 1.Yi ; ad� / D f0g. Since H 1

�
D H 1.X IR/ ˝ g D f0g and

H 2
�
D H 2

C
.X IR/˝ g D f0g, the moduli space M.X � SU.2/; �0/ has an isolated

point Œ� � corresponding to the gauge equivalence class of the trivial flat connection
� on X � SU.2/ and Œ� � is a regular point. Now the set of all reducible instantons
Mred.X �SU.2/; �0/ has a one-to-one correspondence with the set

f� 2 Hom.H1.X IZ/; U.1// j � ı .ij /� D 0 for j 2 I g=��x�;

where ij W Yj ,!X is the inclusion. Since i�W H1.Y IZ/!H1.X IZ/ is surjective we
see that Mred.X �SU.2/; �0/D fŒ� �g. Note that the virtual dimension of the moduli
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space M.X �SU.2/; �0/ is

vir dimM.X �SU.2/; �0/D�3.1� b1.X/C bC2 .X//D�3 < 0:

Let � D .fB� ; q� ; !� ; "�gN�D1; �/ be a perturbation data such that the perturbed moduli
space M�.X �SU.2/; �0/ with respect to the holonomy perturbation

V� W A.P; ˛/! L
2;ı
l

�V2
C.gP /

�
consists only of the gauge equivalence class Œ� � of trivial flat connection � . Let us de-
note A

L
2;ı
l

.P; ˛/ simply by A, and so on. Let Holq.A/2L2l .glP jB/ be the holonomy
function over B of an L2;ı

l
–connection A along the family of loops qW S1 �B!X.

Since L2
l;loc � C

0 , Holq.A/ is continuous on B , so that we have definite values
.Holq.A//.x/ for each x 2B , which we denote by Holqx .A/. Let fqW A!R be the
G–invariant continuous function

fq.A/Dmax
x2B
j ıHolqx .A/j:

We denote the induced map fqW B D A=G ! R by the same symbol by abuse of
notation. Let U be an open set in B defined by

U D

N\
�D1

f �1q� ..�1; �//:

Let zB be the space of gauge equivalence classes of framed connections on .P; ˛/ with
respect to �̨

1
D �� and pW zB! B D zB=�� be the basepoint fibration and take the

intersection zN1 of the open set zU D p�1.U / in zB , and let �M�
.X � SU.2/; �0/ be

the perturbed framed moduli space.

Since V�.A/D 0 for ŒA�2 zU, zN1 is equal to the intersection of zU and the unperturbed
framed moduli space �M.X �SU.2/; �0/ consisting only of the SU.2/–conjugate orbit
of the trivial flat connection � , the fiber p�1.Œ��/ is a single point fŒ� �g and hence

zN1 D zU \ �M�
.X �SU.2/; �0/D zU \ �M.X �SU.2/; �0/D fŒ� �g:

On the other hand, the moduli space M.Q; ˇ/ of the adapted bundle .Q; ˇ/ over R�Y1
of c2.Q; ˇ/D1=m associated with the positive subgroup G1 with ˇ�D � and ˇCD�
which corresponds to the standard representation �W G ,! SU.2/ is diffeomorphic to
the moduli space M. zQ/G1 of G1–invariant instantons on a G1–equivariant SU.2/–
bundle zQ over S4 and hence is diffeomorphic to R and the corresponding reduced
moduli space is a point, M0.Q; ˇ/ D fptg. Note that all instantons on .Q; ˇ/ are
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irreducible. The space M.Q; ˇ/ is regular; see Proposition 3.5. Since the point in
M0.Q; ˇ/ is irreducible, its framed moduli space �M0.Q; ˇ/ is SU.2/, so that we may
take its precompact neighborhood zN 02 to be �M0.Q; ˇ/ itself. Now the stabilizer of the
flat connection � is �� D SU.2/. Then, by Theorem 4.17 in [8] and the argument for
the reducible case [8, Section 4.4.1], the Taubes’ gluing map

� W E D zN1 ���
zN 02 � .T;1/! U \M

�
.X �SU.2// #Q; �0 #ˇ

�
D U \M�.P; ˛/

gives a diffeomorphism onto an end of the perturbed moduli space M�.P; ˛/ of � –
instantons contained in U for a sufficiently long “neck” T � 0. Then the assertion
follows from the diffeomorphism

E D zN1 ���
zN 02 � .T;1/D fŒ� �g ���

�M0.Q; ˇ/� .T;1/
Š fŒ� �g � �M0.Q; ˇ/=�� � .T;1/
Š fŒ� �g �SU.2/=SU.2/� .T;1/Š .T;1/:

4 Main theorem

In this section, we state and prove Theorem 4.1 by using the preliminary result of
Donaldson theory discussed in the previous section.

4.1 Statement of the main theorem

Our theorem is stated with condition only on the homology groups without referring to
the fundamental groups itself, which is our major deviation from a theorem in [16].

Theorem 4.1 Let X be an oriented smooth 4–manifold with cylindrical ends RC�Yi
for i 2f1; : : : ; sCtg, where Yi for i 2f1; : : : ; sg are spherical space forms Yi ŠS3=Gi
and YsCk D†k for k 2 f1; : : : ; tg are rational homology 3–spheres. Suppose that X
satisfies the following conditions:

(1) b1.X/D 0, bC2 .X/D 0.

(2) Cok.H1.Y IZ/!H1.X IZ//D f0g and Y D
`sCt
iD1 Yi .

Set mD maxfjGi j j i 2 f1; : : : ; sgg. Then there exists a positive constant N.†/ > 0,
depending only on † D

`t
kD1†k , such that if m > N.†/ the following property

holds: Let Y1 be a positive spherical space form satisfying the following conditions:

(1) jG1j Dm.
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(2) If G1 is cyclic, then we assume that

� D #
�
e 2H 2.X/

ˇ̌̌
e2 D�

1

jG1j
; i�1 e D˙e.L�/; i

�
j e D 0 for j ¤ 1

�.
f˙1g

is even, where ij W Yj ,! X is the inclusion and L� D S3 �G1 S
1! Y1 is the

S1–bundle associated with the inclusion �W G1 ,! S1 � SU.2/.

(3) The intersection of the images of the two maps

Hom.H1.X IZ/; S1/! Hom.G1; S1/;

Hom.G1=N1; f˙1g/! Hom.G1; S1/

is f1g, where N1 is the normal subgroup of G1 generated by elements g 2G1
of ordg ¤ 4.

Then there exists a negative spherical space form Yi with i ¤ 1 such that the following
holds:

(1) jGi j Dm and there exists a representation

�W �1.X; x0/! SU.2/

such that the induced map � ı .ij /�W Gj ! SU.2/ is conjugate to the inclusion
homomorphism Gj ,! SU.2/ if j 2 f1; ig and is the trivial homomorphism
Gj ! f1g for any j … f1; ig, where .ij /�W �1.Yj ; yj /! �1.X; x0/ is induced
by the inclusion ij W Yj ,!X and a path from yj 2 Yj to x0 2X.

(2) If all Gj with jGj j Dm are cyclic, then Gi D Zm and there exists a character

�W H1.X IZ/! U.1/

such that the induced map � ı .ij /�W Gj ! U.1/ is the inclusion Zm ,! U.1/

up to complex conjugation for j 2 f1; ig and is trivial Gj ! f1g for j … f1; ig,
where .ij /�W H1.Yj IZ/!H1.X IZ/ is induced by the inclusion ij W Yj ,!X.

Remark 4.2 The condition (3) for the group G1 in Theorem 4.1 is automatically
satisfied if G1 is not isomorphic to Z4 or to any binary dihedral groups [16, Lemma 2.1;
14, Section 6].

Remark 4.3 The author does not know whether the character � ı .ij /�W Gj ! U.1/

for j 2 f1; ig in the statement of Theorem 4.1 is equal to the inclusion Gj � U.1/
itself or its complex conjugate.
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Proof of Theorem 1.2 The lens space L.a; b/ is a special case of the spherical
space form S3=G for G D Za and, in particular, L.m; 1/ (resp. L.m;�1/ is the
positive (resp. negative) spherical space form as in Remark 3.8. Then m¤ 4 implies
G1=N1 D f1g in the statement of Theorem 4.1. By the assumption that � D 0 is even,
the assertion follows from Theorem 4.1.

Example 4.4 Let Y D L.m; 1/ and .K;�m/ be the trivial knot K in S3 with
framing �m, so that the .�m/–Dehn surgery along K is Y D ��m.K/, and W D
B4[ .D2�D2/ be the compact oriented 4–manifold obtained by attaching 2–handle
D2 � D2 along K with framing �m. Then W is a simply connected negative-
definite 4–manifold such that i�W H1.Y IZ/D Zm!H1.W IZ/D f0g is surjective.
On the other hand, H2.W IZ/ is generated by the 2–sphere S obtained by gluing
a properly embedded disk in B4 with boundary K and the core of the 2–handle
f0g�D2�D2�D2 . Then, by taking the disk D in D2�D2 with boundary @DD�
the meridian loop of K , the rational intersection pairing is D �D D �1=m and we
have

� D #faD 2H2.W; Y IZ/ j .aD/ � .aD/D�1=m; @�.aD/D˙�g=f˙1g

D #fa 2 Z j a2 D 1; a�˙1 .modm/g=f˙1g D 1:

Since � is odd, we cannot apply Theorem 4.1.

Example 4.5 Let Y D L.m;�1/ D L.m;m� 1/ and .L; Em/ D
Sm�1
iD1 .Li ;�2/ be

a linear chain of m � 1 components of trivial knots Li for i 2 f1; : : : ; m � 1g of
framing �2 and with linking number lk.Li ; LiC1/ D 1 for i 2 f1; : : : ; m� 2g, so
that the corresponding Dehn surgery is Y D � Em.L/. Now denote Vi DD2 �D2 and
let W D B4 [

`m�1
iD1 Vi be the compact oriented 4–manifold obtained by attaching

2–handles Vi along Li to the 4–ball B4 with framing �2 for i 2 f1; : : : ; m� 1g.
Then W is a simply connected negative-definite 4–manifold such that i�W H1.Y IZ/D
Zm ! H1.W IZ/ D 0 is surjective. On the other hand, H2.W IZ/ is generated by
the 2–spheres Si for i 2 f1; : : : ; m� 1g obtained by gluing a properly embedded disk
in B4 with boundary Li and the core of the 2–handle f0g �D2 � Vi D D2 �D2 .
Then, by taking the disk Di in Vi DD2 �D2 with boundary @Di D �i the meridian
loop of Li , the rational intersection pairing

H2.W; Y IZ/�H2.W; Y IZ/!Q

is given by .Di �Dj /DQ.W /�1 , where Q.W /D .Si � Sj / is the intersection matrix
of W .
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In particular, if mD 3 for example, then

.Di �Dj /D
1

3

�
�2 �1

�1 �2

�
;

and we have

� D #
�
aD1C bD2 2H2.W; Y IZ/

ˇ̌̌
.aD1C bD2/

2 D�
1
3
;

@�.aD1C bD2/D˙�1

�.
f˙1g

D #f.a; b/ 2 Z2 j 2.a2C abC b2/D 1; aC 2b �˙1 .modm/g=f˙1g D 0:

Here, we cannot apply Theorem 4.1 despite � being even because L.m;�1/ is not
positive.

4.2 Proof of the main theorem

In this section we give a proof of Theorem 4.1. Let .P; ˛/ be the adapted SU.2/–bundle
over X obtained by gluing the trivial adapted bundle .X �SU.2/; �0/ over X and the
adapted bundle .Q; ˇ/ over R� Y1 defined in Definition 3.3 of c2.Q; ˇ/D 1=jG1j
associated with the positive subgroup G1 of SO.4/D SU.2/�f˙1g SU.2/ and with
ˇ D fˇ˙g, where ˇ� D � and ˇC D ˛1 along Y1 , where ˛1 is the flat connection
over Y1 corresponding to the inclusion �W G1 ,!SU.2/ defined in Definition 3.7. Then
c2.P; ˛/D c2.Q; ˇ/D 1=jG1j. Note that H 1.Y I ad /Df0g for any flat connection 
over any spherical space form Y and H 1.Y0I ad �/Df0g for the trivial flat connection �
over any Q–homology 3–sphere Y0 . Fix a Riemannian metric g on X with product
ends gj.0;1/�Yi D dt

2CgYi . Let M.P; ˛/ be the moduli space of instantons on P,

M.P; ˛/D fA 2A.P; ˛/ j FCA D 0g=G.P; ˛/:

The proof of Theorem 4.1 consists of a somewhat lengthy chain of lemmas. Here we
sketch the main steps of the proof as follows:

(1) The moduli space M.P; ˛/ has virtual dimension one and the number of reducible
instantons is even (Lemma 4.6).

(2) We construct a holonomy perturbation � to obtain the perturbed moduli space
M�.P; ˛/ such that the irreducible part of the moduli spaces M�.P 0; ˛0/ of the
limiting flat bundles .P 0; ˛0/� .P; ˛/ with virtual dimension negative are all empty
except for the trivial one, .X �SU.2/; �0/. Taubes’ gluing construction works in our
setting to see there is at least one end component of M�.P; ˛/.

(3) Take a sequence fŒAn�g in M�.P; ˛/. Since the energy of � –instantons on
.P; ˛/ is nearly 1=m no bubbling occurs and the series converges on .P; ˛/ or chain
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convergent to a � –instanton ŒA0� on some limiting flat adapted bundle .P 0; ˛0/ and a
genuine instanton ŒB 0i � with energy 1=m on a limiting bundle .Q0i ; ˇ

0
i / over R� Yi

for one i 2 f1; : : : ; sg (sliding end).

(4) If i¤1 then we see Yi must be the negative spherical space form Yi DS
3=Gi with

jGi j Dm and the flat connection ˛i D �i changes in the limit to the one corresponding
to the standard inclusion �i W Gi ,! Sp.1/ and the virtual dimension of the moduli
space of the limiting bundle .P 0; ˛0/ is �dim��i . In particular, if Gi is cyclic then
�dim��i D�1. On the other hand, if i D 1 then ˛1D � changes to the flat connection
corresponding to the representation conjugate to "W G1 ,!f˙1g. In this case the virtual
dimension of the moduli space of the limiting bundle .P 0; ˛0/ is �3 and so that " must
be trivial by assumption and the perturbation � . Then we see that the limiting bundle
must be trivial .P 0; ˛0/Š .X �SU.2/; �0/ (Lemmas 4.7, 4.8 and 4.9).

(5) Suppose there is no choice of the limiting bundle .P 0; ˛0/� .P; ˛/ except for the
trivial one, .X � SU.2/; �0/. Then perturbing compact part of M�.P; ˛/, we obtain
a smooth 1–manifold M�C� .P; ˛/ with even number of boundary points and with
one end, which is impossible. Hence, there exists a nontrivial limiting flat bundle
.P 0; ˛0/ corresponding to the representation �W �1.X; x0/! Sp.1/ in the statement of
Theorem 4.1. If all Gj with jGj j Dm are cyclic then we use the proof by contradiction
above to see there exists some limiting flat bundle .P 0; ˛0/ with nontrivial reducible
flat connection corresponding to the character �W H1.X IZ/! S1 we are looking for
(Lemmas 4.10 and 4.11).

Now we start the proof with the following:

Lemma 4.6 The moduli space M.P; ˛/ has virtual dimension one and the number �
of reducible instantons is even.

Proof By Proposition 3.11(1), the virtual dimension of the moduli space M.P; ˛/ is
equal to 1. If G1 is cyclic, then the inclusion G1 ,! Sp.1/ comes from the reducible
one, �W G1 ,! S1 , and all other flat connections ˛i are the trivial one. Hence, by
Proposition 3.1 there is a one-to-one correspondence between the set Mred.P; ˛/�

M.P; ˛/ of all reducible instantons on .P; ˛/ and the set

C.P; ˛/D

�
e 2H 2.X IZ/

ˇ̌̌
e2 D�

1

jG1j
;
i�1 e D˙e.L�/;

i�j e D 0 for j ¤ 1

�.
f˙1g;

where ij W Yj ,!X is the inclusion and L� D S3 �� S1! Y1 . On the other hand, if
G1 � Sp.1/ is not cyclic then there is no reducible instanton, Mred.P; ˛/D∅.
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Take any positive constant N.†/>0 satisfying 1=N.†/�minf�.†k;�/jk2f1; : : : ; tgg.
Then, for any mDjG1jDmaxfjGi jg>N.†/ the adapted SU.2/–bundle .P; ˛/ over X
satisfies

0 < c2.P; ˛/D 1=mDminf�.Yi ; ˛i / j i 2 f1; : : : ; sC tgg � 1
2
:

Note that �.YsCk; ˛sCk/¤ 1=m for k 2 f1; : : : ; tg. Let R.Y;SU.2// be the space of
all conjugacy classes of SU.2/ representations of the fundamental group �1.Y /. Now
YiDS

3=Gi are spherical space form for i 2f1; : : : ; sg and hence #R.Yi ;SU.2//�jGi j
is finite. Let P0 be the set of all adapted bundles .P 0; ˛0/ over X satisfying

(1) c2.P
0; ˛0/D 0,

(2) indC.P 0; ˛0/ < 0,

(3) there are no reducible instantons on .P 0; ˛0/, that is, Mred.P
0; ˛0/D∅, and

(4) ˛0
sCk
D � for k 2 f1; : : : ; tg.

By (1), c2.P 0; ˛0/D 0, the isomorphism class of adapted SU.2/–bundles .P 0; ˛0/ 2
P0 with given flat limit ˛0 is unique. By (4), ˛0

sCk
D � for k 2 f1; : : : ; tg and

#R.Yi ;SU.2// is finite for i 2 f1; : : : ; sg, so there are only finitely many possibilities
for ˛0i , so that the set P0 is finite. Then take a holonomy perturbation with perturbation
data � D .fB� ; q� ; !� ; "�g; �/ as in Proposition 3.17 applied to the case P 0 D P0 and
� D 1=m.

Let fŒAn�g be a sequence in M�.P; ˛/. Then Proposition 3.15 applied to the case
� D 1=m implies that, by taking gauge transformation if necessary, An converges to a
� –instanton A0 on the original bundle .P; ˛/ or converges to a � –instanton A0 on
a limiting bundle .P 0; ˛0/ over X with an instanton B 0i formed on a limiting bundle
.Q0i ; ˇ

0
i / over R�Yi for one i 2 f1; : : : ; sg satisfying

c2.P
0; ˛0/D 0; c2.Q

0
i ; ˇ
0
i /D

1

m
;

where

˛0j D j̨ for j ¤ i; ˛0i D ˇ
0
i
�
; ˇ0i

C
D ˛i :

Now if an adapted SU.2/–bundle .P 0; ˛0/ over X is isomorphic to a limiting bundle
after “bubbling” or “sliding end” of a sequence fŒAn�g of instantons on a bundle .P; ˛/
over X with c2.P 0; ˛0/ < c2.P; ˛/ then we denote .P 0; ˛0/� .P; ˛/.

Then, by Proposition 3.11, we have vir dimM.P 0; ˛0/ < 0, as follows:
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Lemma 4.7 Let .P 0; ˛0/� .P; ˛/ be the limiting flat bundle. Then either one of the
following holds:

(1) There exists i … f1; sC 1; : : : ; sC tg such that Yi must be negative and the flat
connection ˛0i corresponds to a representation conjugate to the standard inclusion
�i W Gi ,! Sp.1/ and ˛0

k
D 1 for all k ¤ i , and

vir dimM.P 0; ˛0/D�dim��i :

In particular, if Gi is cyclic then vir dimM.P 0; ˛0/D�1 < 0.

(2) The flat connection ˛01 corresponds to a representation conjugate to a representa-
tion "W G1! f˙1g and ".g/D 1 for all g 2 G1 with ordg ¤ 4 and ˛0

k
D 1

for k ¤ 1, and in this case vir dimM.P 0; ˛0/D�3 < 0.

Proof Let B 0i be a limiting instanton formed on a limiting adapted SU.2/–bundle
.Q0i ; ˇ

0
i / over R�S3=Gi with

c2.Q
0
i ; ˇ
0
i /D 1=jGi j D 1=jG1j;

which corresponds to a Gi –invariant instanton zB 0i on a Gi –equivariant principal
SU.2/–bundle zQ0i D zQ0 over R�S3 associated with some Gi –action on zQ0 given
by ˇ0i

˙
W Gi ! Sp.1/.

If i … f1; sC 1; : : : ; sC tg then, by definition of the adapted bundle .P; ˛/ at Yi , we
have ˇ0i

C
D 1 and, by Proposition 3.9, Yi is negative,

Gi � f˙1g �f˙1g Sp.1/� Sp.1/�f˙1g Sp.1/

and ˇ0i
� is conjugate to the inclusion �i W Gi ,!Sp.1/. Then the limiting flat connection

˛0i on the i th component of the limiting adapted bundle .P 0; ˛0/ is conjugate to ˇ0i
�

and hence to the inclusion �i . Then, by Proposition 3.11(3), we have

vir dimM.P 0; ˛0/D�dim��i :

In particular, if Gi is cyclic then �i W Gi D Zm ,! S1 for some S1 subgroup of
Sp.1/ and ��i Š S1 , so that the moduli space of the limiting bundle .P 0; ˛0/ has
vir dimM.P 0; ˛0/D�1 < 0.

On the other hand, suppose i D 1. Since Y1 is positive,

G1 � Sp.1/�f˙1g f˙1g � Sp.1/�f˙1g Sp.1/
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and, by definition of .P; ˛/ to Y1 , we have ˇ01
C
D �1 . By Proposition 3.9, we have

ˇ01
�
D " and �1 is conjugate to "�1 . Now evaluate g 2G1 and take the trace; we get

Trg D Tr �1.g/D Tr.".g/�1.g//D Tr.".g/g/ for g 2G1:

Hence, ".g/D 1 for g2G1 with Trg¤ 0. This condition is equivalent to the condition
that ".g/D 1 for ordg¤ 4. The virtual dimension of the moduli space of the limiting
bundle .P 0; ˛0/ is vir dimM.P 0; ˛0/D�3 < 0 by Proposition 3.11(2).

Lemma 4.8 If the limiting bundle .P 0; ˛0/� .P; ˛/ admits no reducible flat connec-
tion and indC.P 0; ˛0/ < 0, then .P 0; ˛0/ belongs to P0 .

Proof As we mentioned before the statement of Lemma 4.7, the limiting bundle
.P 0; ˛0/ satisfies c2.P 0; ˛0/D 0. Suppose .P 0; ˛0/ admits no reducible flat connection,
Mred.P

0; ˛0/D∅, and the virtual dimension of the moduli space M.P 0; ˛0/ is negative,
indC.P 0; ˛0/<0. Since c2.P; ˛/D1=m, Proposition 3.15 applied to the case �D1=m
implies that ˛0

sCk
D � for YsCk D†k for k 2 f1; : : : ; tg with �.†k; �/� 1=N.†/ >

1=mD c2.P; ˛/ and therefore .P 0; ˛0/ 2 P0 .

Lemma 4.9 The representation "W G1! f˙1g in Lemma 4.7(2) must be trivial and
in this case .P 0; ˛0/Š .X �SU.2/; �0/.

Proof By Lemma 4.7(2), the virtual dimension of the moduli space M.P 0; ˛0/ is
negative, indC.P 0; ˛0/<0. Suppose .P 0; ˛0/ admits no reducible flat connection. Then,
by Lemma 4.8, we see that .P 0; ˛0/2P0 . Since c2.P 0; ˛0/D 0 and ˛0i 2R.Yi ;SU.2//
with #R.Yi ;SU.2// is finite for i 2 f1; : : : ; sg and ˛0

sCk
D � for k 2 f1; : : : ; tg, we see

P0 is a finite set so that, by Proposition 3.16, we have M�.P 0; ˛0/D∅. Hence, there is
no divergent sequence in M�.P; ˛/ weakly convergent to a connection in M�.P 0; ˛0/,
which contradicts the assumption that .P 0; ˛0/� .P; ˛/. Therefore, .P 0; ˛0/ admits a
reducible flat connection A0 over X with ˛01 D ". Then the corresponding holonomy
representation Hol.A0/ of A0 has a reduction to a circle subgroup S1 of Sp.1/ and
satisfies Hol.A0/ ı .i1/� D ", and we see that

" 2 Im
�
Hom.H1.X/; S1/! Hom.G1; S1/

�
\ Im

�
Hom.G1=N1; f˙1g/! Hom.G1; S1/

�
D f1g;

where
N1 D hg 2G1 j ordg ¤ 4i;

and therefore " D 1. Now we know that Hol.A0/ ı .ij /� D 1 for all j … f1; ig, so
that Hol.A0/ ı i� D 1 for i�W H1.Y /!H1.X/. Since i�W H1.Y IZ/!H1.X IZ/ is
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surjective, the homomorphism H1.X IZ/! S1 induced by Hol.A0/ is trivial in all
H1.X IZ/, so that the reducible flat connection A0 is trivial and therefore .P 0; ˛0/Š
.X �SU.2/; �0/.

Lemma 4.10 (1) There exists a sequence of instantons on .P; ˛/ which weakly con-
verges to some nontrivial flat SU.2/–bundle .P 0; ˛0/, that is, .P 0; ˛0/� .P; ˛/.

(2) If all Gj with jGj j D m are cyclic then there exists some limiting adapted
flat SU.2/–bundle .P 0; ˛0/� .P; ˛/ which supports a nontrivial reducible flat
connection.

Proof (1) By Theorem 3.19 applied to the case P 0 D P0 and � D 1=m, the
perturbed moduli space M�.P; ˛/ has one end component N ŠRC admitting a diver-
gent sequence weakly converging to the trivial flat connection � on .X � SU.2/; �0/.
Suppose there is no other limiting bundle .P 0; ˛0/� .P; ˛/ except for the trivial bundle
.X � SU.2/; �0/ then the complement K DM�.P; ˛/ nN is compact. In fact, any
sequence in M�.P; ˛/ has a subsequence which converges to an instanton on .P; ˛/
itself or weakly chain convergent to the trivial flat connection � on .X �SU.2/; �0/
up to gauge transformation, and for the latter case, the subsequence must have a
subsequence contained in the component N . Note that b1.X/D 0 and bC2 .X/D 0.
Then, by Proposition 3.2, we take a perturbation � of M�.P; ˛/ with support an open
neighborhood of K such that the perturbed moduli space M�C� .P; ˛/ is a smooth
1–dimensional manifold with one end and even number .D �/ of boundary points and
this is impossible. Therefore, some .P 0; ˛0/ admits a nontrivial flat connection.

(2) Suppose all Gj with jGj j Dm are cyclic, so that ��j Š S
1 and suppose that any

limiting bundle .P 0; ˛0/� .P; ˛/ admits no nontrivial reducible flat connection over X.
If .P 0; ˛0/ is not isomorphic to .X � SU.2/; �0/, then by assumption that there is no
reducible on .P 0; ˛0/, Mred.P

0; ˛0/D∅, and

indC.P 0; ˛0/D�dim��j D�1 < 0;

so, by Lemma 4.8, we have .P 0; ˛0/ 2 P0 , and by Proposition 3.16, M�.P 0; ˛0/D∅.
Hence, the limiting bundle .P 0; ˛0/ must be isomorphic to .X � SU.2/; �0/ and the
perturbed moduli space M�.P; ˛/ has at most one end. Then the rest of the argument
goes as in (1) to get a contradiction, so that some limiting bundle .P 0; ˛0/ admits a
reducible nontrivial flat connection.

Lemma 4.11 (1) There exists some limiting bundle .P 0; ˛0/� .P; ˛/ with a non-
trivial flat connection which induces a representation �W �1.X; x0/ ! Sp.1/
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such that �ı .ij /� is conjugate to the inclusion Gj ,! Sp.1/ for j D 1; i and is
trivial otherwise.

(2) If all Gj with jGj j Dm are cyclic, there is a limiting bundle .P 0; ˛0/� .P; ˛/
with a nontrivial reducible flat connection inducing a character �W H1.X IZ/!
S1 such that � ı .ij /� is conjugate in Sp.1/ to the inclusion Gj ,! S1 for
j D 1; i and is trivial otherwise.

Proof (1) By Lemmas 4.10, 4.7 and 4.9, there exists a limiting bundle .P 0; ˛0/�
.P; ˛/ with a nontrivial flat connection A0 on .P 0; ˛0/, and over each ends RC �Yj
the flat connection limt!1A

0jftg�Yj D ˛
0
j corresponds to the representations

˛01.g/D eC; where g D ŒeC; 1� 2G1;

˛0i .g/D e�; where g D Œ1; e�� 2Gi ;

˛0j D 1 if j ¤ 1; i:

Now the holonomy of A0 gives a representation �W �1.X; x0/! Sp.1/ such that the
composition � ı .ij /� is conjugate to the inclusion Gj ,! Sp.1/ for j 2 f1; ig and is
conjugate to the trivial one otherwise.

(2) If all Gj with jGj j Dm are cyclic, there is a limiting bundle .P 0; ˛0/ � .P; ˛/
with a nontrivial reducible flat connection A0 and the flat connection ˛0j over each
ends RC � Yj as above. Now the holonomy representation of A0 has a reduction
to a subgroup S1 of Sp.1/ and hence factors through the Hurewicz homomorphism
�1.X; x0/!H1.X IZ/ to give a character �W H1.X IZ/! S1 such that the compo-
sition � ı .ij /� is Sp.1/–conjugate to the inclusion Gj ,! S1 for j 2 f1; ig and is
conjugate to the trivial one otherwise.

This completes the proof of Theorem 4.1.

5 Application to a uniformization problem of 4–orbifolds

In this section, we give an application of Theorem 4.1 to a uniformization problem of
smooth 4–orbifolds. Here we recall the notion of orbifolds. For the definitions and
basic facts concerning orbifolds see [30; 33]. A smooth orbifold .X;F/ is a pair of
a Hausdorff space X and a collection F of f zU˛; G˛; '˛g consisting of an open set
zU˛ �Rn , a finite group G˛ acting on zU˛ and a homeomorphism '˛W U˛ � zU˛=G˛

satisfying the property that fU˛g is an open covering of X which is closed under
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finite intersections and if U˛ � Uˇ then there exists an injective homomorphism
hˇ˛W G˛ ,! Gˇ and a smooth embedding �ˇ˛W zU˛ ,! zUˇ equivariant with respect
to hˇ˛ which induces the inclusion U˛ � Uˇ .

An orbifold covering map � W . zX; zF/! .X;F/ is a continuous map � W zX !X such
that each point x 2X has a neighborhood U with a homeomorphism 'W U � zU=G

for some f zU ;G; 'g 2F and each component Vi � p�1.U / admits a homeomorphism
 i W Vi � zU=Gi for some subgroup Gi �G so that f zU ;Gi ;  ig 2 zF and the natural
projection zU=Gi ! zU=G induces � restricted to U. If the covering transformation
group Aut.�/ of � is isomorphic to a group H then � is called an orbifold H –
covering. Suppose a (finite) group G acts on a manifold M properly discontinuously,
then M=G has a natural orbifold structure and the natural projection map � W M !
M=G is an orbifold covering map and M is called a (finite) uniformization of M=G.

Now Theorem 1.5 is a special case of the following:

Theorem 5.1 Let X be an oriented smooth 4–orbifold with finite isolated singu-
lar points p1; : : : ; ps in the interior of X whose neighborhood Ui of the singular
point pi is homeomorphic to the cone cYi over a spherical space form Yi D S

3=Gi

for i 2 f1; : : : ; sg and with boundary a disjoint union of rational homology 3–spheres
f†kg

t
kD1

. Suppose that X satisfies the following conditions:

(1) b1.X/D 0 and bC2 .X/D 0.

(2) Cok.i†�W H1.†IZ/!H1.X IZ//D f0g and †D
`t
kD1†k .

Set mD maxfjGi j j i 2 f1; : : : ; sgg. Then there exists a positive constant N.†/ > 0,
depending only on †, such that for any m>N.†/ the following property holds:

Let U1� cY1 be the cone over a negative spherical space form Y1D S
3=G1 satisfying

the following conditions:

(1) jG1j Dm.

(2) If G1 is cyclic, then we assume that

�D #
�
e 2H 2.X�fp1gIZ/

ˇ̌̌
.�e/2D�

1

jG1j
; i�1 eD˙e.L�/; i

�
†eD 0

�.
f˙1g

is even, where � is the composition

�W H 2.X �fp1gIZ/!H 2.X �fp1gIQ/!H 2.X IQ/;

i1W Y1 ,! X is the inclusion and L� D S3 �G1 S
1 ! Y1 is the S1–bundle

associated with the inclusion �W G1 ,! S1 � SU.2/.
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(3) G1 is not isomorphic to Z4 or a binary dihedral group.

Then Ui � cYi for some positive spherical space form Yi D S
3=Gi for i ¤ 1 with

jGi j Dm and the following holds:

(1) There exists a smooth orbifold finite Galois covering � W zX ! X such that
each connected component Vj of ��1.Uj / is homeomorphic to Vj �C2=Hj ,
where Hj D feg for j 2 f1; ig and Hj D Gj otherwise, and the natural map
C2=Hj !C2=Gj induces � restricted to Vj .

(2) If �1.X; x0/ is generated by .i†k /#�1.†k; zk/ for k 2 f1; : : : ; tg with base-
points x0 2 X, zk 2 †k , where .i†k /# is the homomorphism induced by the
inclusion i†k W †k ,!X, there exists h 2 SU.2/ and a torsion-free finite-index
normal subgroup N 0 of the group � 0 generated by G1 [ hGih

�1 in SU.2/
and a smooth orbifold � 0=N 0–covering � W zX ! X such that each connected
component Vj of ��1.Uj / is homeomorphic to Vj �C2=Hj , where Hj D feg
for j 2 f1; ig and Hj DGj otherwise, and the natural map C2=Hj !C2=Gj

induces � restricted to Vj .

(3) If all Gj with jGj j D m are cyclic, then Gi D Zm and there exists a smooth
orbifold Zm–covering � W zX !X such that each connected component Vj of
��1.Uj / is homeomorphic to Vj � C2=Hj , where Hj D feg for j 2 f1; ig
and Hj D Zm otherwise, and the natural map C2=Hj ! C2=Zm induces �
restricted to Vj .

Proof Let W be a 4–manifold obtained by removing the neighborhoods Ui � cYi of
singular points pi for i 2 f1; : : : ; sg. Then W is a compact smooth 4–manifold
with boundary Y the disjoint union of spherical space forms Yi D �S3=Gi for
i 2 f1; : : : ; sg and t –components of rational homology 3–spheres YsCi D †i for
i 2 f1; : : : ; tg. Since X is negative-definite with respect to the rational intersec-
tion pairing H2.X IQ/�H2.X IQ/! Q as a rational homology manifold, we see
H2.W IQ/ŠH2.X IQ/ and therefore W has a negative-definite intersection pairing
H2.W IQ/ � H2.W IQ/ ! Q. By assumption that i†�W H1.†IZ/ ! H1.X IZ/

is surjective, the homomorphism i�W H1.Y IZ/! H1.W IZ/ induced by inclusion
i W Y ,!W is surjective. Note also that by the assumption

� D
1

2
#
n
e 2H 2.W IZ/

ˇ̌
e2 D�

1

m
; i�1 e D˙e.L�/; i

�
j e D 0 if j ¤ 1

o
is even, Y1D�S3=G1 is a positive spherical space form and mDjG1jDmaxfjGi jg>
N.†/ and G1 is not isomorphic to Z4 or a binary dihedral group. Then by Theorem 4.1
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we see jGi j D jG1j and Yi D �S3=Gi is a negative spherical space form for some
i ¤ 1 and there exists a representation �W �1.W; x0/! SU.2/ such that � ı .ij /� is
the inclusion �W Gj ,! SU.2/ up to SU.2/–conjugation for j 2 f1; ig and is trivial
otherwise, where .ij /� D .xıj /� ı .ij /#W �1.Yj ; yj /! �1.W; x0/ is a homomorphism
obtained by composing the isomorphism .ıj /�W �1.X; x0/! �1.X; yj / induced by a
path ıj from x0 to yj in W and the homomorphism .ij /#W �1.Yj ; yj /! �1.W; yj /

induced from the inclusion ij W Yj ,!W .

(1) Now we have a representation �W �1.W; x0/! SU.2/. Then we can apply an
argument in the proof of Theorem 1.5.10 in [26] due to Namba. Note that the image
�D�.�1.W; x0//�SU.2/�GL.2;C/ is finitely generated and �j D .�ıij�/.Gj /�
SU.2/ is isomorphic to Gj if j 2 f1; ig and �j D feg otherwise. By a lemma of
A Selberg [31, Lemma 8] — or see an elementary proof in [1] due to R C Alperin —
there exists a torsion-free normal subgroup N of � of finite index. Then we take a
quotient �N W �1.W; x0/! �! �=N. Let � W �W !W be the �=N –covering space
associated with the surjective homomorphism �N W �1.W; x0/! �=N. Since �ı .ij /�
is conjugate to �W Gj � SU.2/ for j 2 f1; ig, we see �N ı .ij /� is conjugate to the
induced homomorphism �N W Gj � �! �=N. Since N is torsion-free, N \�j D feg
and so �N ı .ij /� is conjugate to an injection Gj ,! �=N for j 2 f1; ig. Hence, the
group of covering transformations restricted to a single connected component zYj of the
inverse image ��1.Yj / is isomorphic to the image �j of �j in �=N. For j 2 f1; ig,
�j is isomorphic to Gj , and zYj =Gj � S3=Gj so that zYj � S3 , and ��1.Yj / is
a disjoint union of j�=N j=m copies of S3 . For j … f1; j g, � ı .ij /� D 1 implies
�j D feg, so that ��1.Yj / is a disjoint union of j�=N j copies of Yj D S3=Gj for
j 2 f1; : : : ; sg n f1; ig and j�=N j copies of YsCj D †j for j 2 f1; : : : ; tg. Then
the 4–orbifold zX obtained by gluing two B4 along zY1 , zYi � S3 and gluing �=N
copies of cYj along Yj D S3=Gj for each j 2 f1; : : : ; sgn f1; ig and the induced map
� W zX !X satisfies the assertion.

(2) Now set �j D � ı .ij /� ; then, by taking a conjugation if necessary, we may take

�1.�1.Y1; y1//D �1; �i .�1.Yi ; yi //D h�ih
�1;

�j .�1.Yj ; yj //D feg if j … f1; ig

for some h2SU.2/. If �1.X; x0/ is generated by .i†k /��1.†k; zk/ for k 2f1; : : : ; tg,
�1.W; x0/ is generated by .ij /��1.Yj ; yj / for j 2 f1; : : : ; sg and .i†k /��1.†k; zk/
for k 2 f1; : : : ; tg and hence the representation � induces a surjective homomorphism
�W �1.W; x0/! � 0, where � 0 is the subgroup of SU.2/ generated by �1 [ h�ih�1 .

Algebraic & Geometric Topology, Volume 19 (2019)



On negative-definite cobordisms among lens spaces and uniformization of four-orbifolds 1877

Then, by Selberg’s lemma again, there exists a torsion-free finite-index normal subgroup
N 0 of � 0, and we take the quotient �N 0 W �1.W; x0/! � 0! � 0=N 0 to the finite group
� 0=N 0. Since N 0 is torsion-free, N 0\�1Dfeg and N 0\h�ih�1Dfeg, so that the maps
� 0!� 0=N 0 restricted to �1 and h�ih�1 are injective. Let � W �W !W be the � 0=N 0–
covering space associated with the surjective homomorphism �0N W �1.W; x0/!� 0=N 0.
Since � ı .ij /� Š � , �W Gj � SU.2/ for j 2 f1; ig, the group of covering transforma-
tions restricted to a single connected component zYj of the inverse image ��1.Yj / is
isomorphic to the image �j of �j in � 0=N 0. For j 2 f1; ig, �j is isomorphic to Gj ,
and zYj =Gj �S3=Gj , so that zYj �S3 , and ��1.Yj / is a disjoint union of j� 0=N 0j=m
copies of S3 . For j … f1; j g, �N 0 ı .ij /� D 1 implies � 0j D feg, so that ��1.Yj /
is a disjoint union of j� 0=N 0j copies of Yj D S3=Gj for j 2 f1; : : : ; sg n f1; ig and
j� 0=N 0j copies of YsCj D †j for j 2 f1; : : : ; tg. Then the 4–orbifold zX obtained
by gluing j� 0=N 0j=m copies of B4 along zYj � S3 for j 2 f1; ig and gluing j� 0=N 0j
copies of cYj along Yj D S3=Gj for each j 2 f1; : : : ; sg�f1; ig and the induced map
� W zX !X satisfies the assertion.

(3) If all Gj with jGj jDm are cyclic, then by Theorem 4.1 we see Yi DL.m;�1/ for
some i ¤ 1 and there exists a character �W H1.W IZ/!U.1/ such that �ıij� is the in-
clusion �W Zm ,!U.1/ up to complex conjugation for j 2f1; ig and is trivial otherwise.
Since i�W H1.Y IZ/! H1.W IZ/ is surjective, we see the character � induces the
surjective homomorphism �W H1.W IZ/!Zm . Let � W �W !W be the Zm–covering
space associated with the surjective homomorphism �1.W / ! H1.W IZ/ ! Zm
obtained by composing � with the Hurewicz homomorphism. Since � ı ij� D �˙1

and �W Zm � U.1/ for j 2 f1; ig, the group Gj of covering transformations g 2 Zm
is the cyclic group Zm itself and acting on the single connected component zYj of the
inverse image ��1.Yj / with zYj =Zm�L.m;˙1/, so that zY D S3 . On the other hand,
� ı ij� D 1 for j … f1; j g implies that ��1.Yj / is a disjoint union of m copies of
Yj DL.aj ; bj / for j 2f1; : : : ; sgnf1; ig and m copies of YsCj D†j for j 2f1; : : : ; tg.
Then the 4–orbifold zX obtained by gluing two B4 along zY1 , zYi � S3 and gluing
m copies of cL.aj ; bj / along Yj D L.aj ; bj / for each j 2 f1; : : : ; sg n f1; ig and the
induced map � W zX !X satisfies the assertion.
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