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On Lagrangian embeddings of
closed nonorientable 3–manifolds

TORU YOSHIYASU

We prove that for any compact orientable connected 3–manifold with torus boundary,
a concatenation of it and the direct product of the circle and the Klein bottle with an
open 2–disk removed admits a Lagrangian embedding into the standard symplectic
6–space. Moreover, the minimal Maslov number of the Lagrangian embedding is
equal to 1 .

53D12; 57N35, 57R17

1 Introduction

In this paper, we study the existence problem of a Lagrangian embedding into the
standard symplectic space R6

st D
�
R6;

P3
jD1 dxj ^ dyj

�
. Starting with M Gromov’s

discovery of the technique of pseudoholomorphic curves [14], a number of necessary
conditions for the existence of a Lagrangian embedding have been proven. A typical
example for the standard symplectic space R6

st is a partial classification of Lagrangian
submanifolds proved by K Fukaya: a closed orientable connected prime 3–manifold L

admits a Lagrangian embedding into R6
st if and only if there exists a nonnegative

integer g such that L is diffeomorphic to the product S1 �†g , where †g is the
closed orientable connected surface of genus g ; see [12]. On the other hand, few
sufficient conditions for the existence of a Lagrangian embedding were known. Recently,
Y Eliashberg and E Murphy established the resolving theory of Lagrangian intersections
and proved the h–principle for Lagrangian embeddings with a concave loose Legendrian
boundary [11]. This h–principle has applications to the existence of a Lagrangian
embedding of closed manifolds. For the standard symplectic space R6

st , T Ekholm,
Eliashberg, Murphy and I Smith gave the following application: for a closed orientable
connected 3–manifold L, there exists a Lagrangian embedding of the connected sum
L # .S1 �S2/ into R6

st [7]. The theory of loose Legendrian embeddings developed by
Murphy [17] played a central role in the resolving theory and in the application. Here
we give another application of the results of [11].
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We introduce some notations and conventions before the statement. For a nonnegative
integer g , we denote by N2g the closed nonorientable connected surface of Euler
characteristic �2g . We fix an embedded closed 2–disk D2

N
in the Klein bottle N0 .

We also fix an identification of the compact surface N0 n Int D2
N

with the compact
surface obtained by the orientation-reversing 0–surgery on the unit closed 2–disk D2 .
This identification induces a diffeomorphism @.S1 � .N0 n Int D2

N
//! @.S1 �D2/

between 2–tori. For a closed orientable connected 3–manifold M and an embedded
2–torus T �M bounding a solid torus with a parametrization S1 �D2 , we denote
by MT the closed nonorientable connected 3–manifold

.M n Int.S1
�D2//[ .S1

� .N0 n Int D2
N //

concatenated along their boundaries by the above diffeomorphism. Our main result is
the following:

Theorem 1.1 Let M be a closed orientable connected 3–manifold and T �M an
embedded 2–torus bounding a solid torus with a parametrization S1 �D2 . Then there
exists a Lagrangian embedding MT !R6

st of minimal Maslov number 1. In particular,
for a closed orientable connected 3–manifold L and a nonnegative integer g , there
exists a Lagrangian embedding L # .S1 �N2g/!R6

st of minimal Maslov number 1.

Our proof is similar to that of the above application [7], concatenating a Lagrangian
filling and a Lagrangian cap. The existence of a Lagrangian cap is a consequence
of the results of [11]. In [7], a Lagrangian filling of a loose Legendrian 2–sphere is
constructed. The new part of this paper is a construction of a Lagrangian filling of a
loose Legendrian 2–torus.

Theorem 1.2 A loose Legendrian 2–torus of vanishing Maslov class in the standard
contact space R5

st admits a Lagrangian filling S1 � .N0 n Int D2
N
/ of minimal Maslov

number 1.

Remark 1.3 By Murphy’s h–principle for loose Legendrian embeddings [17], a loose
Legendrian 2–torus of vanishing Maslov class in the standard contact space R5

st is
unique up to Legendrian isotopy; see [17, Appendix A].
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2 Proof of the theorems

2.1 Construction of a Lagrangian filling

In this section, we prove Theorem 1.2. First, we recall some background on Lagrangian
cobordisms.

Definition 2.1 Let .Y; ˛/ be a coorientable contact manifold and R�Y its symplecti-
zation equipped with the symplectic structure d.et˛/, where t is the coordinate of R.
For Legendrian submanifolds ƒ� and ƒC of .Y; ˛/, a Lagrangian cobordism from
ƒ� to ƒC is a properly embedded Lagrangian submanifold L in the symplectization
R�Y such that

L\ .�1; t���Y D .�1; t���ƒ� and L\ ŒtC;1/�Y D ŒtC;1/�ƒC

for real constants t� and tC with t� < tC . A Lagrangian cobordism is exact if the
Lagrangian submanifold L is exact, ie the 1–form et˛jL is exact. A Lagrangian
cobordism is called a Lagrangian cap if ƒC D∅ and a Lagrangian filling if ƒ� D∅,
respectively. Immersed Lagrangian cobordism, cap and filling and their exactness are
defined in a similar way.

In the rest of the paper, we identify a Lagrangian cobordism L with its restriction
L\ Œt�; tC��Y . In the case that the constants t˙ are fixed, we also call L a Lagrangian
cobordism from ft�g �ƒ� to ftCg �ƒC .

Definition 2.2 Let L0 be a Lagrangian cobordism from ft0g �ƒ0 to ft1g �ƒ1 and
L1 a Lagrangian cobordism from ft1g �ƒ1 to ft2g �ƒ2 . A concatenation of L0

and L1 along ft1g�ƒ1 is a Lagrangian cobordism from ft0g�ƒ0 to ft2g�ƒ2 defined
by the union L0[L1 . A concatenation of immersed Lagrangian cobordisms is defined
in a similar way.

For integers mD 1 and 2, we denote by R2mC1
st the standard contact space�

R2mC1; ˛st D dz�
mP

jD1

yj dxj

�
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and by R�R2mC1
st its symplectization equipped with the symplectic structure d.et˛st/.

We fix the parametrizations of the standard Legendrian unknot

K1W S
1
!R3

st; � 7!
�
sin �;�sin 2�; 2

3
cos3�

�
;

and its stabilization

K2W S
1
!R3

st; � 7!
�
sin �; sin 4�; 4

3
cos3� � 8

5
cos5�

�
I

see Figure 1.

Figure 1: The fronts of the standard Legendrian unknot and its stabilization.

The following construction of a Lagrangian filling of K2 is the main part of the proof
of Theorem 1.2.

Proposition 2.3 There exists a Lagrangian filling N0 n Int D2
N
!R�R3

st of K2 of
minimal Maslov number 1.

Proof First, we construct an immersed Lagrangian cobordism from K1 to K2 with
exactly one double point in R �R3

st as follows. We pick a smooth cutoff function
�1W Œ0; 1�! Œ0; 1� such that

� �1.s/D 0 and �1.1� s/D 1 if 0� s � 1
3

, and

� �0
1
.s/ > 0 if 1

3
< s < 2

3
.

Then, for a positive integer n, we define another cutoff function �2W Œ0; n�! Œ0; 1� by
�2.t/D �1

�
t
n

�
. Using the cutoff function �2 , we consider the homotopy

kfrW Œ0; n��S1
!R2; .t; �/ 7!

�
sin �; 2

3
cos3� C �2.t/

�
2
3

cos3� � 8
5

cos5�
��

from the front of K1 to that of K2 . The monotonicity of �1 implies that there is the
unique tangent point .0; 0/D kfr.T; 0/D kfr.T; �/, where T is defined by the equation
�2.T /D

5
7

. Solving the differential equation y D dz
dx

on R3
st , the front homotopy kfr

lifts to the Legendrian regular homotopy f W Œ0; n��S1!R3
st ,

f .t; �/D
�
sin �;�sin 2�C�2.t/.sin 4�Csin 2�/; 2

3
cos3�C�2.t/

�
2
3

cos3��8
5

cos5�
��
:
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Its trace Tr.f /W Œ0; n��S1! R�R3
st , .t; �/ 7! .t; f .t; �//, has exactly one double

point

.T; 0; 0; 0/D Tr.f /.T; 0/D Tr.f /.T; �/

corresponding to the tangent point .0; 0/. We can check that its self-intersection number
is equal to �1. Perturbing the trace Tr.f /, we construct the Lagrangian immersion
zf�1W Œ0; n��S1!R�R3

st ,

zf�1.t; �/D
�
t; sin �;�sin 2� C �2.t/.sin 4� C sin 2�/;

2
3

cos3� C .�2.t/C �
0
2.t//

�
2
3

cos3� � 8
5

cos5�
��
:

Choosing the integer n sufficiently large, the derivative �0
2

can be arbitrarily small, and
hence there is one-to-one correspondence between the double point of zf�1 and that of
Tr.f / preserving the self-intersection number. We denote by q the double point of self-
intersection number �1 of the Lagrangian immersion zf�1 . The image zf�1.Œ0; n��S1/

is an immersed Lagrangian cobordism from K1 to K2 , since zf�1.Œ0; "/ � S1/ D

Œ0; "/�K1 and zf�1..n� "; n��S1/D .n� "; n��K2 for a sufficiently small positive
constant ".

We recall that the standard Legendrian unknot f0g �K1 admits a Lagrangian filling
by 2–disk in .�1; 0��R3

st . Concatenating this Lagrangian filling and the immersed
Lagrangian cobordism zf�1 along f0g �K1 , we construct an immersed Lagrangian
filling zh�1W D

2 ! R�R3
st of K2 with exactly one double point q . Resolving the

double point q by Polterovich’s Lagrangian surgery [18], we obtain a Lagrangian filling
zh0W N0 n Int D2

N
! R �R3

st of K2 . Although there are two choices of the surgery
depending on an order of the two sheets at the double point q , each choice yields the
same result in this dimension; see [18].

Next, we compute the difference of Maslov potentials on the two sheets at the double
point q of the Lagrangian cobordism zf�1 and then show the minimal Maslov number
of the Lagrangian filling zh0 is equal to 1. A similar computation was made in [9,
Section 2.2]. It suffices to consider the case �1W Œ0; 1� ! Œ0; 1� is the identity and
n D 7. In fact, although the identity is not a cutoff function, the linear homotopy
from the cutoff function �1 to the identity can be realized by a Lagrangian regular
homotopy of the Lagrangian immersion zf�1 . Moreover, a change of the integer n

can also be realized by a Lagrangian regular homotopy of zf�1 . A straightforward
computation shows that the Lagrangian immersion zf�1 has exactly one double point
qD zf�1.4; 0/D zf�1.4; �/ if �1 is the identity and nD 7. In this case, the Lagrangian
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immersion zf�1W Œ0; 7��S1!R�R3
st is of the form

zf�1.t; �/D
�
t; sin �;�sin 2� C 1

7
t.sin 4� C sin 2�/;

2
3

cos3� C 1
7
.t C 1/

�
2
3

cos3� � 8
5

cos5�
��
:

For the computation, we choose the path l W Œ0; 1� ! Œ0; 7� � S1 , s 7! .4; �s/, the
reference Lagrangian subspace P0 D . zf�1/�T.4;0/.Œ0; 7��S1/, the symplectic struc-
ture d.et˛st/ D et .dt ^ .dz � ydx/ C dx ^ dy/ on the symplectization R � R3

st ,
and its symplectic 4–frame

˚
@
@t
; @
@z
; @
@x
C y @

@z
; @
@y

	
. Then the Lagrangian 2–frame˚

. zf�1/�
@
@t
; . zf�1/�

@
@�

	
along the path . zf�1 ı l/.Œ0; 1�/ is of the form

. zf�1/�
@

@t
D
@

@t
C

1
7

�
2
3

cos3.�s/� 8
5

cos5.�s/
� @
@z
C

1
7
.sin.4�s/C sin.2�s//

@

@y
;

. zf�1/�
@

@�
D

1
7

cos.�s/.sin.4�s/C sin.2�s//
@

@z
C cos.�s/

�
@

@x
Cy

@

@z

�
C

2
7
.8 cos.4�s/� 3 cos.2�s//

@

@y
:

Taking their components, we define the paths of matrices

X.s/D

�
1 0

0 cos.�s/

�
;

Y .s/D

�
1
7

�
2
3

cos3.�s/� 8
5

cos5.�s/
�

1
7
.sin.4�s/C sin.2�s//

1
7

cos.�s/.sin.4�s/C sin.2�s// 2
7
.8 cos.4�s/� 3 cos.2�s//

�
:

The difference of Maslov potentials on the two sheets at the double point q for the
reference Lagrangian subspace P0 is computed by counting points through the angle

arg
�
det.X.0/C iY .0//2

�
D 2 arg

�
det.X.0/C iY .0//

�
on the path det.X.s/C iY .s//2W Œ0; 1�!C n f0g. This counting is invariant under a
homotopy of paths Œ0; 1�!C nf0g relative to the boundary. In order to count, we look
at the path det.X.s/C iY .s//W Œ0; 1�!C n f0g of the form

1
49

�
704

5
cos9.�s/� 640

3
cos7.�s/C 1388

15
cos5.�s/� 32

3
cos3.�s/C 49 cos.�s/

�
C

i
7

�
�

8
5

cos6.�s/C 386
3

cos4.�s/� 140 cos2.�s/C 22
�
:

Using this expression, we can show that

(1) det.X.0/C iY .0//D 1
105
.115C 136i/,

(2) det.X.1
2
/C iY .1

2
//D 22

7
i ,

(3) det.X.1/C iY .1//D 1
105
.�115C 136i/,
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(4) Re det.X.s/C iY .s//D�Re det.X.1� s/C iY .1� s// if 0� s � 1
2

,

(5) Im det.X.s/C iY .s//D Im det.X.1� s/C iY .1� s// if 0� s � 1
2

, and

(6) Re det.X.s/C iY .s// > 0 if 0� s < 1
2

.

Actually, the equalities (1)–(5) are straightforward. The inequality (6) can be shown by
using the inequality of arithmetic and geometric means to estimate the first three terms.
These properties (1)–(6) imply that there exists a homotopy of paths Œ0; 1�!C n f0g

from det.X.s/C iY .s// to the counterclockwise circular arc, from det.X.0/C iY .0//

to det.X.1/CiY .1//, relative to the boundary. Moreover, its rotation angle '1 satisfies
�
4
<'1<

�
2

; see Figure 2. This homotopy induces a homotopy of paths Œ0; 1�!Cnf0g

from det.X.s/CiY .s//2 to the counterclockwise circular arc, from det.X.0/CiY .0//2

to det.X.1/C iY .1//2 , relative to the boundary. Furthermore, its rotation angle 2'1

satisfies �
2
< 2'1<� . Therefore, the difference of Maslov potentials on the two sheets

at the double point q for the reference Lagrangian subspace P0 is equal to 1
2

.

Figure 2: The path det.X.s/C iY .s// in C n f0g .

Combining the above discussion with the construction of Polterovich’s Lagrangian
1–handle Œ0; 1��S1 [18], we can see that the minimal Maslov number of the Lagrangian
filling zh0 is equal to 1. In fact, Polterovich’s Lagrangian surgery [18] resolves the
double point q of zf�1 and creates two loops. The one is the meridian loop f0g �S1

of the Lagrangian 1–handle whose Maslov index is equal to zero. The other one is
the orientation-reversing loop obtained by smoothing the path zf�1 ı l along the path
Œ0; 1��fptg of the Lagrangian 1–handle. By this smoothing, the path det.X.s/CiY .s//2

extends to a loop S1!Cnf0g. The rotation angle '2 of the extended part of this loop

Algebraic & Geometric Topology, Volume 19 (2019)



1626 Toru Yoshiyasu

S1!C n f0g is coming from the path Œ0; 1�� fptg of the Lagrangian 1–handle, and
hence satisfies �2� < '2 < 2� ; see [18, Section 2]. Therefore, we obtain the estimate

�
3
2
� < 2'1C'2 < 3�:

We recall that the Maslov index of a loop is odd if and only if the loop is orientation-
reversing, so we also have

2'1C'2 2 f2�.2kC 1/ j k 2 Zg.

We conclude that the rotation angle 2'1C'2 of the orientation-reversing loop is equal
to 2� , and thus its Maslov index is equal to 1.

Proof of Theorem 1.2 We claim that the front S1 –spinning [13] of the Lagrangian
filling zh0 constructed in Proposition 2.3 is the desired one. First, composing a parallel
transformation on the x–coordinate direction by a sufficiently large positive constant, we
modify the Lagrangian filling zh0W N0nInt D2

N
!R�R3

st , p 7!.zt.p/; zx.p/; zy.p/; zz.p//,
to satisfy zx > 0. Applying the front S1 –spinning construction [13] to zh0 , we obtain
the Lagrangian filling F W S1 � .N0 n Int D2

N
/!R�R5

st ,

F.�;p/D .zt.p/; zx.p/ cos �; zy.p/ cos �; zx.p/ sin �; zy.p/ sin �; zz.p//:

Then the Legendrian torus boundary †S1K2 D F.S1 � @D2/� fng �R5
st is the front

S1 –spinning [8] of K2 , and hence is loose [5] in the sense of [17]. Moreover, its
Maslov class vanishes. In fact, the Maslov index of the loop F.S1 � fptg/ is equal
to zero [8]. For the loop F.fptg � @D2/DK2 , the vanishing of the Maslov index is
straightforward.

Remark 2.4 The Lagrangian fillings zh0 and F are nonexact since the Legendrian
boundary of zh0 is stabilized [3; 6] and that of F is loose [17].

2.2 Construction of a Lagrangian embedding

In this section, we prove Theorem 1.1. Concatenating the Lagrangian filling in
Theorem 1.2 and a Lagrangian cap, we construct the desired Lagrangian embedding.
We start with a construction of an immersed Lagrangian cap for the particular case.
For a nonnegative integer g , we fix an embedded closed 2–disk D2

g in the closed
surface †g .

Algebraic & Geometric Topology, Volume 19 (2019)
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Lemma 2.5 Let L be a closed orientable connected 3–manifold, g a nonnegative
integer, and M 0 the connected sum

L # .S1
� .†g n Int D2

g//:

Then the 3–manifold M 0 can be realized as an immersed Lagrangian cap of the loose
Legendrian torus †S1K2 and of the self-intersection number zero modulo two.

Proof We note that the existence of a Lagrangian immersion M 0 ! R � R5
st is

equivalent to the triviality of the complexified tangent bundle TM 0˝C by the Gromov–
Lees h–principle for Lagrangian immersions [15; 16]. In this case, the parallelizability
of M 0 implies the latter condition. Moreover, we can choose a Lagrangian immersion
M 0!R�R5

st to be an immersed Lagrangian cap of †S1K2 as follows.

The parallelizability of M 0 allows us to take a Lagrangian homomorphism TM 0!

T .R�R5
st/ such that its Gauss map M 0! U.3/=O.3/ is constant, where U.3/=O.3/

is the Lagrangian Grassmannian. Its restriction on the boundary @M 0 is homotopic
to the Lagrangian homomorphism dF jS1�@D2 defined by the Lagrangian filling F

constructed in Theorem 1.2 as Lagrangian homomorphisms, since the Maslov class of
†S1K2 vanishes. Therefore, there exists a Lagrangian homomorphism ˆW TM 0!

T .Œn;1/�R5
st/ that is an extension of dF jS1�@D2 . We denote by �W M 0! Œn;1/�R5

st

the underlying map of ˆ. Using the contractibility of R�R5
st , we may assume that

the map � is a smooth extension of F jS1�@D2 . Then the relative cohomology class
Œ��d.et˛st/� 2 H 2.M 0; @M 0IR/ vanishes by the property H 2.R�R5

stIR/ D 0. By
the construction, we can choose the formal Lagrangian immersion .�;ˆ/ so that

� d� Dˆ on a small neighborhood U of the boundary @M 0 D S1 � @D2
g ;

� �.U /\ Œn; nC "/�R5
st D Œn; nC "/�†S1K2 for a small positive constant ".

Applying the relative version of the Gromov–Lees h–principle for Lagrangian immer-
sions [15; 16] — see also [10, Theorem 16.3.2] — to the formal Lagrangian immersion
.�;ˆ/, we obtain an immersed Lagrangian cap z�W M 0! Œn;1/�R5

st of †S1K2 .

We show that the Lagrangian immersion z�W M 0 ! Œn;1/ � R5
st can be chosen to

have the self-intersection number zero modulo two. If the self-intersection number
of z� is equal to one modulo two, we modify it as follows. There exists a Lagrangian
immersion G of the 3–sphere to a Darboux ball in R�R5

st of the self-intersection
number zero modulo two [1]. We may assume that

� the image G.S3/ is contained in .n;1/�R5
st ;

� z� and G intersect transversely at exactly two points.
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In fact, we can deform the Lagrangian immersion G to satisfy these conditions by a
parallel transformation and a small perturbation as a Lagrangian immersion. Applying
Polterovich’s Lagrangian surgery [18] to one intersection, we construct the connected
sum z� # GW M 0! Œn;1/�R5

st of the Lagrangian immersions so that

.z� # G/.M 0/\ Œn; nC "0��R5
st D
z�.M 0/\ Œn; nC "0��R5

st

for a small positive constant "0 . Thus the image .z�#G/.M 0/ is an immersed Lagrangian
cap of †S1K2 and its self-intersection number is equal to zero modulo two.

Proof of Theorem 1.1 We first prove the particular case. We denote by z� the
Lagrangian immersion constructed in the proof of Lemma 2.5. We deform the La-
grangian immersion z� to a formal Lagrangian embedding of M 0 into Œn;1/�R5

st

relative to a small neighborhood of the loose Legendrian boundary †S1K2 . Applying
[11, Theorem 2.2] to this formal Lagrangian embedding, we get a Lagrangian cap
z�0W M

0! Œn;1/�R5
st of †S1K2 . Concatenating the Lagrangian filling F and the

Lagrangian cap z�0 along †S1K2 , we obtain a Lagrangian embedding L#.S1�N2g/!

R�R5
st of minimal Maslov number 1. We recall that the symplectization R�S5

st of the
standard contact sphere S5

st is symplectomorphic to the symplectic manifold R6
st n f0g.

The construction is done by composing a symplectic embedding R�R5
st!R�S5

st�R6
st

induced by a contact embedding R5
st! S5

st .

We can similarly prove the general case. In fact, for a closed orientable connected
3–manifold M and an embedded 2–torus T � M bounding a solid torus with a
parametrization S1 �D2 , the 3–manifold M n Int.S1 �D2/ is parallelizable and
its boundary is diffeomorphic to a 2–torus. The proof of Lemma 2.5 depends only
on these properties, so the 3–manifold M n Int.S1 �D2/ can also be realized as an
immersed Lagrangian cap of †S1K2 and of the self-intersection number zero modulo
two. The existence of such an immersed Lagrangian cap allows us to apply the same
construction.

Remark 2.6 Let N be a closed nonorientable connected 3–manifold with trivial
complexified tangent bundle TN ˝C!N and M a 3–manifold as in Theorem 1.1.
Then, the connected sum MT # N also admits a Lagrangian embedding into R6

st .
Actually, we can construct an immersed Lagrangian cap .M n Int.S1 �D2// # N

of †S1K2 by taking the connected sum of the Lagrangian cap M n Int.S1 �D2/

and a Lagrangian immersion N ! R�R5
st in a way similar to the construction of

z� # G in the proof of Lemma 2.5. The rest of the construction is the same to the proof
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of Theorem 1.1. On the other hand, there exists a compact 3–manifold with trivial
complexified tangent bundle and torus boundary that can not be realized as an immersed
Lagrangian cap of †S1K2 . The direct product of the circle and the Möbius band is an
example of such a 3–manifold. In fact, the boundary of the Möbius band is homotopic
to twice the centered orientation-reversing loop, so its Maslov index can not be zero
for any Lagrangian immersion.

Remark 2.7 By [11, Theorem 2.2] we can choose the Lagrangian cap M nInt.S1�D2/

to be exact. In particular, Theorem 1.1 for the case L D S3 gives a Lagrangian
embedding S1�N2g!R�R5

st that is a concatenation of the Lagrangian filling F and
an exact Lagrangian cap along the loose Legendrian torus †S1K2 . The particular case
of Theorem 1.1 is a consequence of the existence of this Lagrangian embedding. On the
other hand, if g � 1 then no Lagrangian embedding S1�†g!R�R5

st can be a con-
catenation of a Lagrangian filling and an exact Lagrangian cap by [4, Proposition 1.4]
and [2, Theorem 1.1].
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