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Vanishing theorems for representation homology
and the derived cotangent complex

YURI BEREST
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Let G be a reductive affine algebraic group defined over a field k of characteristic
zero. We study the cotangent complex of the derived G -representation scheme
DRepg (X) of a pointed connected topological space X. We use an (algebraic
version of) unstable Adams spectral sequence relating the cotangent homology of
DRepg (X) to the representation homology HR. (X, G) := m.O[DRepg(X)] to
prove some vanishing theorems for groups and geometrically interesting spaces.
Our examples include virtually free groups, Riemann surfaces, link complements
in R3 and generalized lens spaces. In particular, for any finitely generated virtually
free group I', we show that HR; (BI', G) = 0 for all i > 0. For a closed Riemann
surface X, of genus g > 1, we have HR;(X¢,G) = 0 for all i > dimG. The
sharp vanishing bounds for X, actually depend on the genus: we conjecture that if
g =1, then HR;(Z¢, G) =0 for i > rank G, and if g > 2, then HR; (24, G) =0
for i > dim Z(G), where Z(G) is the center of G. We prove these bounds locally on
the smooth locus of the representation scheme Repg [1 (2 )] in the case of complex
connected reductive groups. One important consequence of our results is the existence
of a well-defined K —theoretic virtual fundamental class for DRepg (X) in the sense
of Ciocan-Fontanine and Kapranov (Geom. Topol. 13 (2009) 1779-1804). We give a
new “Tor formula” for this class in terms of functor homology.
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1 Introduction and main results

Topologically, it is natural to think of discrete groups as homotopy types of aspherical
spaces.! Given some algebraic or combinatorial property of a group, or a group-theoretic
construction, it is then natural to ask whether one can extend it to more general spaces.
A most familiar example is the ordinary homology of spaces: by a classical theorem
of Kan [24], it is an extension of abelianization of groups. Another less-known but
equally important example, which plays a fundamental role in homotopy theory, is
the Bousfield-Kan completion of a space: it extends the operation of pronilpotent
completion on the category of groups (see Bousfield and Kan [7]).

We will study representation homology of spaces, which is a topological extension of
another classical construction from group theory: a representation variety of a group.
Given a discrete group ' and an affine algebraic group G defined over a field &,
one can consider the space Repg(I") of all representations of I' in G. This space
carries a natural structure of an algebraic variety (more precisely, an affine k—scheme)
called the G —representation variety of I'. The geometry of Repg(I') reflects the
properties of the group I', the geometry of G as well as the algebraic structure of
representations of I' in G. The group G acts naturally on Repg (I") by conjugation,
with orbits corresponding to the equivalence classes of representations. The categorical
quotient Charg (I') := Repg (I')// G is called the G —character variety of I'; when k
is algebraically closed and I' is finitely generated, Charg (I") parametrizes the closed
G —orbits in Repg (I') which correspond to the semisimple representations of I" in G
(see eg Lubotzky and Magid [30]).

Representation varieties and associated character varieties play an important role in
many areas of mathematics, most notably in geometry and topology.? It is therefore
natural to ask how to describe these algebrogeometric objects in homotopy-theoretic
terms which would make sense for arbitrary topological spaces. Put concisely, the
question is: What is a “representation variety of a space?”

There is an obvious answer to this question: Given a (pointed) space X, just take
Repg of its fundamental group 71 (X). If 71 (X) is nontrivial, this gives a geometric

1 Recall that a (pointed connected) topological space X is aspherical if all its higher homotopy groups
vanish, ie 7; (X) =0 for i > 1. Assigning to a discrete group I" the homotopy type of its classifying space
BT gives a fully faithful functor Gr — Ho(Topy ) from groups to the homotopy category of pointed
connected spaces. The essential image of this functor comprises precisely the aspherical spaces.

2See, for example, the recent survey papers of Cohen and Stafa [12] and Shalen [44].
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invariant of X that often encodes interesting topological information.? By its very
definition, however, the variety Repg[71(X)] depends only on the fundamental group
and contains no information about the higher homotopy groups of X ; in particular, it
is trivial when X is simply connected.

The first “nonobvious” answer to the above question was proposed — to the best of our
knowledge — by Kapranov [27]. He observed that if X is a finite, pointed, connected
CW-complex, the representation space Repg[71(X)] can be naturally identified with
the moduli space Locg(X) of G-local systems on X (trivialized at the basepoint).
The homotopy type of X can be represented simplicially by its Cech nerve Ny , and the
moduli space Locg (X ) can then be expressed as [Ny, BG], the set of homotopy classes
of simplicial maps from Ny to the simplicial classifying space of G. Replacing BG
in this construction by a simplicial DG scheme RBG, which plays the role of injective
resolution of BG in the category of simplicial DG schemes, Kapranov introduced an
affine DG scheme RLocg(X), which he called the derived moduli space of G —local
systems on X. The homotopy type of RLocg(X) in the category of DG schemes
depends only on the homotopy type of X and, unlike Locg (X), it is sensitive to the
higher homotopy structure of X. Since mo[RLocg (X)] = Locg (X) = Repg[m1(X)],
the DG scheme RLocg(X) can be regarded as a higher homotopical extension of the
representation variety Repg [r1(X)]. Clearly, by replacing Cech nerves with arbitrary
(pointed connected) simplicial sets, one can extend this construction to arbitrary (pointed
connected) spaces. The problem, however, is that the “injective resolution” RBG is
“too big” and complicated, and it is hard to understand RLocg(X) (in particular,
to compute 7;[RLocg(X)] for i > 0) even in the simplest examples. Kapranov’s
definition of the derived moduli space of G —local systems was refined and generalized
within the framework of derived algebraic geometry by Pantev, Toén, Vaquié, Vezzosi,
Pridham and others (see eg [49; 50; 51; 34; 36; 38; 37] and see also Toén [48] for a
general overview);* however, explicit computations seem still to be missing.

A different approach, closer in spirit to classical homotopy theory, was developed by
the authors in [6] (based on the earlier work of Berest, Khachatryan and Ramadoss [4]
and Berest and Ramadoss [5]). Instead of looking for a generalization of representation
variety for a fixed space X by resolving the classifying scheme of the algebraic group G,
mion varieties of fundamental groups are particularly rich and geometrically interesting
objects in the case of surfaces and 3—dimensional manifolds; see eg Goldman [18] and Culler and Shalen
[13; 44].

4We will briefly review the Toén—Vezzosi construction and compare it to Kapranov’s one in the
appendix.
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we fix the group G and construct the derived representation scheme DRepg (X)) by “re-
solving” the space X. More precisely, our starting point is the simple observation that the
functor of points G: Comm Alg; — Gr defining the algebraic group G has a left adjoint

(1-1) (-)G: Gr — Comm Algy

which — when applied to a given group I" —represents the affine scheme Repg (I), ie
I'c = O[Repg (I')]. Therefore we can replace —in an equivalent way — the represen-
tation scheme functor Repg by (1-1), which we call the representation functor in G.

The functor (1-1) extends naturally to the category sGr of simplicial groups, taking
values in the category sComm Alg; of simplicial commutative algebras. Both sGr and
sComm Alg; are (simplicial) model categories, with weak equivalences being the weak
homotopy equivalences of underlying simplicial sets. Although the representation
functor (-)g: sGr — sCommAlg; is not homotopic —it does not preserve weak
equivalences and hence, does not induce a functor between homotopy categories — it
has a well-behaved (total) left derived functor

(1-2) L(-)g: Ho(sGr) — Ho(sCommAlgy,).

The derived functor (1-2) is uniquely determined by (1-1) and provides, in a sense,
the “closest” approximation to the representation functor at the level of homotopy
categories.

Now, for a fixed simplicial group T € sGr, we set®> Ag(I") := L(I')g and formally
define the derived representation scheme DRepg (I') as Spec[Ag (I')], ie the simplicial
algebra Ag (I') viewed as an object of the opposite category Ho(sComm Alg; )°P. Fol-
lowing [6], we call the homotopy groups of DRepg (I') the representation homology
of T' in G and write

HR.« (I, G) := L«(T)g,

where L «(-)g denotes the composition of functors 7« L(-)g = H«[N L(-)g] (see
Section 2.1).

By comparing the universal mapping properties, it is easy to check that, when extended
to simplicial groups, the functor (-)g commutes with g ; hence, for any I' € sGr,
there is a natural isomorphism in Comm Algy,,

(1-3) HRo(T, G) = [r0(D)]g.
5 Abusing notation, we will also write Ag(T") for a specific representative (model) of L(I')g in

sComm Algy .
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In particular, if I" € Gr is a constant simplicial group, we have HRo(I", G) = I,
which justifies our notation and terminology for DRepg (I).

Now, the reason why we choose to work with simplicial groups is the fundamental
theorem of D Kan [25] that identifies the homotopy types of simplicial groups with
those of pointed connected spaces. To be precise, the Kan theorem asserts that the
category of simplicial groups is Quillen equivalent to the category sSetq of reduced
simplicial sets, which is, in turn, Quillen equivalent to the category Top , of pointed
connected (CGWH) spaces. As a result, we have natural equivalences of homotopy
categories

(1-4) Ho(Topy ) = Ho(sSeto) = Ho(sGr).

This leads us to the main definition.

Definition 1.1 For a space X € Top, ,., we define the derived representation scheme
DRepg (X) to be DRepg(T'X), where T'X is a(ny) simplicial group model® of X.
The representation homology of X in G is then defined by

(1-5) HR.(X,G) := L.+(TX)g := n+L(T'X)g.

The advantage of our definition (compared to Kapranov’s) lies in its flexibility in the
choice of simplicial group model I'X. In fact, there are two natural choices (both due
to Kan) that play a role in practical computations: the Kan loop group G X, which
is a “large” semifree simplicial group depending functorially on X, and for finite
CW-complexes, a “small” geometric model I' X, the structure of which reflects the cell
structure of X (see Section 2.2 below).

For a detailed discussion of representation homology we refer the reader to [6]. Here,
we only recall a few basic properties which we will need in the present paper:

(1) HR«(X, G) is a graded commutative algebra, with HRo (X, G) naturally isomor-
phic to [1(X)]g = O[Repg (71(X))], the coordinate ring of the representation
scheme Repg[71(X)]. The last isomorphism is the composition of (1-3) with
the natural isomorphism 7o (T'X) = 71 (X).

(2) If X isa K(I', 1)—space (eg X =BT for a discrete group I'), then HR. (X, G) =
HR (T, G) (see [6, Corollary 4.1]); in general, however, we have HR« (X, G) 2
HR4(71(X), G).

That is, a simplicial group that corresponds to X under the Kan equivalence (1-4).
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(3) If X is simply connected and k = Q, then HR (X, G) is a rational homotopy
invariant of X. In fact, when X has finite rational type, the main theorem of [6]
describes HR4 (X, G) explicitly in terms of Quillen’s Lie algebra model of X
(see [6, Theorem 6.1]).

(4) The derived representation functor (1-2) preserves homotopy pushouts; see
[6, Lemma 4.2]. This implies, in particular, that

HR.(X VY, G) =~ HR4 (X, G) ® HR«(Y, G)

for any spaces X,Y € Top -

(5) For any space X (not necessarily pointed), there is a natural isomorphism of
algebras
HR.(2(X+), G) = HH« (X, O(G)),

where the right-hand side is the higher Hochschild homology of X with co-
efficients in the commutative algebra O(G) as defined in Pirashvili [35] (see
[6, Theorem 5.2]).

The aim of the present paper is to study the linearization of representation homol-
ogy with a view to proving some vanishing theorems for groups and geometrically
interesting spaces. If X is a pointed connected space, any representation of its
fundamental group o: 71(X) — G(k) determines an augmentation Ag(X) — k
of the derived representation algebra Ag(X). The derived linearization functor
L Q: Ho(sComm Algy /i) — Ho(sMody) applied to (Ag(X),0) gives a simplicial k—
module TZDRepG (X), which is called — as suggested by its notation — the derived
cotangent complex of DRepg (X) at o € Repg[m1(X)](k). A fairly straightforward
calculation (see Theorem 3.1) shows
% ip s
Hi[T3DRepg ()] = | 2 (100 Ad0)T 107 =0
i+1(X,Ad"0) if i >0,

where H. (X, Ad*p) is the homology of X with coefficients in the local system associ-
ated to the coadjoint representation Ad*: m1(X) — G(k) — GLg(g*). Perhaps more
interesting is the following simple formula for the Euler characteristic of TZ DRepg (X)
for a finite reduced CW—complex X (see Proposition 3.4):

X[TgDRepg (X)] = [1 — yi0p(X)] dim G.

This formula shows that )([TZDRepG (X)] is independent of @, which may be inter-
preted geometrically as the “absence of singularities” of the derived scheme DRepg (X),
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in agreement with Kontsevich’s “hidden smoothness” philosophy in derived algebraic
geometry (see, for example, Toén [48]).

Now, assume that G is a reductive group over k. Then, it is natural to consider the
G —invariant part of the representation functor (1-1): indeed, for a given space X,
the G —invariant subalgebra [ (X )]g of [m1(X)]g represents the classical character
scheme Charg[71(X)]. Just as the representation functor itself, its invariant subfunctor
(—)g has a left derived functor L(—)g, which one can use to define the derived
character scheme DCharg (X). Computing the cotangent homology for DCharg (X)
is, however, a much more delicate problem than that for DRepg (X). Our first main
result in this paper provides such a computation for certain “good” representations
of m1(X). To be precise, following Johnson and Millson [23] (see also Sikora [45]),
we call a representation o: I' = G good if its G—orbit in Repg(I") is closed and
its stabilizer coincides with the center of G. One can show that, at least when k is
algebraically closed, every good representation in G is irreducible, but the converse is
not always true.

Theorem 4.1 Let G be a connected reductive affine algebraic group over C, and let
X be a space such that 1(X) is finitely generated. Then:

(a) For every completely irreducible representation o: w1(X) — G, there are natural
maps

H;[T,DCharg (X)] — H;+1(X,Ad"0) forall i >0.

(b) If a representation o: w1(X) — G is good, then the above maps are all isomor-
phisms.

We remark that Theorem 4.1 is a natural generalization of the main result of [45] on
tangent spaces of the classical character scheme Charg(I") (see [45, Theorem 53]);
however, for the derived scheme DCharg (X)), the proof is rather more intricate.

Next, we explain the relation between representation homology and the derived cotan-
gent complex. This relation is given in the form of the spectral sequence

(1-6) E2 , = mp1q[Sym? (T;DRepg (X))] = HRp14(X. G),,

which converges to the local m—adic completion of HR. (X, G) at the maximal ideal
corresponding to ¢ € Repg[m1(X)](k). In characteristic zero (Q C k), it is known that
the derived cotangent complex of an augmented simplicial commutative algebra A is a
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stable homotopy invariant, which is represented (in the stable homotopy category of
sComm Algy /i ) by the suspension spectrum X°°A of the unreduced suspension of A4
(see Schwede [43]). From this point of view, one can regard (1-6) as an algebraic
analogue of an unstable Adams spectral sequence in classical topology (see Bousfield
and Kan [8]). In the above form, the spectral sequence (1-6) first appeared in Ciocan-
Fontanine and Kapranov [11] but it essentially goes back to Quillen [41] (see the remark
in Section 2 on page 299).

We will use the spectral sequence (1-6) to prove some vanishing theorems for represen-
tation homology. Our examples include virtually free groups, Riemann surfaces X ¢
for g > 1 as well as some nonaspherical spaces such as link complements in R3 and
lens spaces. We summarize our main vanishing results in the following four theorems.

Theorem 5.1 Let I" be a finitely generated, virtually free group. Then, for any affine
algebraic group G over a field k of characteristic zero,

1-7) HR;(I',G) =0 forall i > 0.
In particular, for any finite group I, the higher representation homology vanishes.

For the next two theorems, we assume that kK = C and G is a complex reductive group.
We will say that a representation g: I' — G is smooth if the corresponding (closed)
point of the representation scheme Repg (') is simple.” If o € Repg [1(X)], we write
HR4 (X, G), for the localization of HR« (X, G) at the maximal ideal of [71(X)]c
corresponding to o.

Theorem 1.2 (see Corollaries 5.7 and 5.8) Let X be a closed connected orientable
surface of genus g > 1. Then:

(1) HR;(2g,G) =0 forall i >dimG.

Q) If g=1,ie Xg = T? is a 2—torus, then for every smooth representation
0: m(T?) - G,

HR;(T?,G), =0 forall i >rankG.
(3) If g > 2, then for every smooth representation o: mw1(Xg) — G,
HR;(24,G)o =0 forall i >dim Z(G),

where Z(G) is the center of G.

TThat is, o belongs to a unique irreducible component of Repg (I') and the dimension of that
component coincides with dimy [ToRepg (I')].
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We remark that parts (2) and (3) of Theorem 1.2 give — although locally — much
sharper vanishing bounds for representation homology than part (1). We expect that
these local bounds are actually global, ie they hold for all representations of 1(Xg).
To be precise, we propose:

Conjecture 1.3 For any complex connected reductive affine algebraic group G,
(i) HR;(T?,G) =0 forall i >rankG;
(i) if g > 2, then HR;(X4,G) =0 for all i > dim Z(G).

Note that part (ii) of Conjecture 1.3 implies that, for any complex semisimple group G,
HR; (24, G)=0 forall i >0. This, in turn, implies that the corresponding K —theoretic
class
[DRepg (T =Y _(—1)'[HR; (Zg, G)],
i>0

called the virtual fundamental class of DRepg (X¢), does not vanish in the rational
Grothendieck group Ko[Repg(X¢)]g of Repg(Xs). We prove that this is indeed the
case (see Corollary 5.10), which can be viewed as indirect evidence for Conjecture 1.3.
As for other evidence — besides Theorem 1.2 — we mention that part (i) is known
to be true for GL, for all n > 1 as a consequence of Berest, Felder and Ramadoss
[3, Theorem 27]; part (ii) has been verified for the surface groups of genus 2 and 3 in
the case of GLy and SL;, using the Macaulay2 computer software, and it also holds
for G = (GL1)" for all r > 1, which is an easy calculation (see Example 5.11).

Next, we consider the link complements in R3. By a link L in R3 we mean a smooth
embedding of a finite disjoint union of copies of S! into R3. The link complement
R3\ L is then defined to be the complement of an (open) tubular neighborhood of the
image of L.
Theorem 5.15 Let X :=R3\ L be a link complement in R3. Then:
(1) HR;(X,G)=0 forall i >M :=max{dimy ToReps[m1(X)]:0€Repg[r1(X)]}.
(2) For every smooth representation g: 71(X) — G,

HR;(X,G), =0 forall i >dimyRepg[m1(X)],

where dim,, is the local dimension of the irreducible component of Repg[m1(X)]
containing Q.
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(3) For every smooth o in the irreducible component of Repg[r1(X)] of the trivial
representation,

HR;(X,G)o, =0 forall i >dim(G)-ng,

where ny is the number of components of the link L.

We note that the maximal dimension M featuring in Theorem 5.15(1) is a familiar
geometric invariant which can be computed explicitly for some simple links (for
example, for (p, g)—torus knots in R3, we have M <2dim G ; see Corollary 5.16).
However, we do not know any general formula for this invariant.

We conclude the introduction by stating one nonvanishing result. Let p,q1,q2,....q9m
be integers such that p > 1 and ¢1,¢2,...,gm are coprimeto p. Let L,(q1.92,...,9m)
denote the (2m—1)—dimensional lens space of type (p;q1,42,-..,qm). Recall that
Lp(41,92; - - - qm) is defined as the orbit space S~ 1/Z,,, where Z, actson S?"~1 C
C™ by complex rotations: (z1,22,...,2Zm) = (A1z1,A222, ..., Amzy) With A; =
e27i4;/P for j =1,2,...,m. We have:

Theorem 5.18 Let G be GL,(C) or SL,(C) forn > 1. Then
HR;(Lyp(q1.92,....9m).G) #0 fori #2(m—1)k, k=1,2,3,...,

and HR; (Ly(q1,92.....9m), G) = 0 otherwise.

The result of Theorem 5.18 should be compared to that of Theorem 5.1: since
m1(Lp) = Zp, the latter theorem implies HR; (71(Lp),G) =0 for all i > 0.

The paper is organized as follows. In Section 2, we introduce notation and review some
basic facts about simplicial sets, simplicial groups and simplicial commutative algebras.
This section contains no new results, except possibly for Theorem 2.5, which we could
not find in the literature in this form and generality (see, however, the remark after this
theorem). In Section 3, we compute the homology of the derived cotangent complex
ToDRepg (X) (Theorem 3.1) and its Euler characteristic (Proposition 3.4). We also give
a natural interpretation of To,DRepg (X) in terms of functor homology (see Section 3.2).
One interesting consequence of this interpretation is a spectral sequence relating the
cotangent homology of DRepg (X) to the Pontryagin ring of X in the case when the
space X is simply connected (Corollary 3.6). In Section 4, we introduce the derived
character scheme DCharg (X ) for a reductive group G and prove our first main result
(Theorem 4.1). In Section 5, we prove our vanishing theorems for virtually free groups,
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closed surfaces, link complements and lens spaces. An interesting consequence of
these theorems is the existence of a well-defined K —theoretic virtual fundamental class
[DRepg (X )]}gr € Ko(Repg[m1(X)]) in the sense of Ciocan-Fontanine and Kapranov
[11]. We give a new “Tor formula” for this class in terms of functor homology
(Corollary 5.9) and show, in particular, that [DRepg (X )]}<ir #0 when X =X, isa
surface of genus g > 2 and G is semisimple (Corollary 5.10).

The paper ends with an appendix, where we clarify the relation of our work to some
earlier work in derived algebraic geometry. Specifically, following a suggestion of the
referee, we compare our construction of DRepg (X) to the Toén—Vezzosi construction
of the derived mapping stack Map(X, BG) of flat G-bundles on X (see Pantev,
Toén, Vaquié and Vezzosi [34]) as well as Kapranov’s original construction of the
derived moduli space of G —local systems, RLocg(X). Strictly speaking, the material
discussed in the appendix is not used and not needed for understanding the main
results of the paper but it puts these results in a proper geometric context and provides
a dictionary that allows one to translate our theorems into the language of derived
algebraic geometry.
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2 Preliminaries

In this section, we fix notation and review some basic facts about simplicial sets,
simplicial groups and simplicial commutative algebras.
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2.1 Simplicial sets

Let A denote the simplicial category whose objects are the finite ordered sets [n] =
{0<1<---<n} for n >0, and morphisms are the (weakly) order-preserving maps. A
contravariant functor from A to a given category ¥ is called a simplicial object in €.
The simplicial objects in ¥ form a category which we denote by s% . In particular, we
write sSet for the category of simplicial sets, and denote by sSet its full subcategory
consisting of reduced simplicial sets. We recall that a simplicial set X is reduced if
Xo := X([0]) is a singleton.

The geometric realization of simplicial sets defines a functor |—|: sSet — Top which
provides the category sSet with the notion of weak equivalence (to wit,amap X — Y
of simplicial sets is called a weak equivalence in sSet if the corresponding map of
spaces |X| — |Y| is a weak homotopy equivalence in the usual topological sense).
By inverting weak equivalences, one defines the homotopy category of simplicial sets,
Ho(sSet), and a classical result of simplicial homotopy theory asserts that |—| induces
an equivalence of categories Ho(sSet) = Ho(Top) (see eg [33, Chapter III, Section 16]).
When restricted to reduced simplicial sets this equivalence becomes

(2-1) Ho(sSeto) = Ho(Topy ),
where Topy , is the full subcategory of Top comprising the pointed connected spaces.

Next, we recall that if ¢ is an abelian category (for example, the category Vecty of k—
vector spaces), the category s¢ is equivalent to the category Ch>((%’) of nonnegatively
graded chain complexes over ¥. This classical equivalence (called the Dold-—Kan
correspondence) is given by a functor N: s¢ — Chx( (%), which is usually called the
normalization functor (see [52, Section 8.4]).

Throughout this paper, we will adopt the following standard notational convention:

Convention A (reduced) simplicial set X and its geometric realization | X | will be
denoted by the same symbol (ie |X| = X ). We shall also not distinguish notation-
ally between a simplicial object V' in an abelian category and its normalized chain
complex N(V') (ie N(V) = V). In particular, if V € sVecty, is a simplicial k—vector
space, we denote the homology of the chain complex N (V) by H« (V).

The category sSet of simplicial sets has a natural model structure, with weak equiva-
lences being the weak homotopy equivalences, cofibrations the degreewise injective
maps, and fibrations the Kan fibrations of simplicial sets [39]. If s% is a simplicial
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category, where the objects have underlying simplicial sets (ie there is a forgetful
functor U: s& — sSet), then s% can be equipped with an induced model structure
by declaring a morphism f in s% to be a weak equivalence (resp. fibration) if U( f)
is a weak equivalence (resp. fibration) in sSet (see [39, Part II, Section 4]). In this
way, the categories of simplicial objects in basic algebraic categories (such as groups,
modules, associative algebras, Lie algebras, commutative algebras) acquire natural
model structures, which allows one to do “homotopy theory” in these categories. In the
present paper, we will be mostly concerned with the category of simplicial groups, sGr,
and the category of simplicial commutative algebras, sComm Alg, . In the next two
sections we will describe basic features of these model categories.

2.2 Simplicial groups

Unlike sSet, the model category sGr is fibrant: by a classical theorem of Moore, every
simplicial group is a Kan complex (see [33, Theorem 17.1]). The cofibrant objects in
sGr are semifree simplicial groups and their retracts. We recall that a simplicial group
I" € sGr is called semifree if all its components I}, for n > 0 are freely generated by
some subsets B, C I};, and the set of all these generators { B, },>0 is closed under the
degeneracy maps of I". The elements of B, which are not the images of degeneracies
si: Bp—1 — B, are called nondegenerate generators of I'; we denote these elements
by Bj.

Semifree simplicial groups arise naturally from reduced simplicial sets via the Kan
construction [25]. Recall that this construction gives a pair of adjoint functors

(2-2) G: sSety = sGr W,

called the Kan loop group functor and the classifying space functor, respectively. For
an explicit definition and basic properties of these functors we refer to [16, Chapter V].
Here, we only recall that the pair (2-2) is a Quillen equivalence: the functor G preserves
weak equivalences and cofibrations, the functor W preserves weak equivalences and
fibrations, and, after inverting the weak equivalences, G and W become inverse to each
other (see [16, Corollary V.6.4]). Thus, in combination with (2-1) we have equivalences
of homotopy categories

Ho(Topy ) = Ho(sSeto) = Ho(sGr).

A simplicial group whose homotopy type coincides (under the above equivalence) with
the homotopy type of a space X is called a simplicial group model of X.
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The topological meaning of the loop group construction is clarified by the fundamental
theorem of Kan, which asserts that for any reduced simplicial set X, there is a (weak)
homotopy equivalence

IGX|~ Q|X],

where Q|X| is the (Moore) based loop space of |X| (see [16, Chapter V, Corol-
lary 5.11]). In particular, we have 7, (X) = 7,—1(GX) forall n > 1.

Now, for a reduced CW-complex X, there is another construction (again due to
Kan [26]) that provides a “small” semifree simplicial group model I'X of X such that
for all n >0, the set B, of nondegenerate generators of I'X in degree n coincides with
the set of (n+1)—cells of X. The simplicial group I'’X can be constructed inductively
as follows: Put a (partial) order on the set {o} of cells of X so that 0 <o’ whenever
dimo <dimo’ in X. Let X4 (resp. X< ) denote the CW—subcomplex of X formed
by the cells less than o (resp. at most equal to o) under the chosen order. Given an
(n+1)—cell o0 of X and given ' X, let x € (' X<¢),—1 denote any representative of
Aemy(X<o) = mp—1(TX<o), where A denotes the homotopy class of the attaching
map of o. Then, a basis of I' (X< ) is given by adjoining [o] (in degree n) and all its
degeneracies to a basis of I' X« . The face maps on the extra generators are determined
by
do([o]) = x, di(lo]) =1d for 1 <i <n.

This construction shows, in particular, that any reduced CW—complex with finitely
many cells in each dimension has a semifree simplicial group model with finitely many
generators in each simplicial degree.

Next, following [39], we describe the homology of a local system on X in terms of
its simplicial group model. Recall that if R is a simplicial ring, the categories of left
and right simplicial R—modules (to be denoted by R—sMod and sMod—R, respectively)
carry standard model structures inherited from sSet. A morphism of simplicial
modules f: M — N is a free extension if there is a subset C,, C N, for each n
with C :=,, Cy, is closed under degeneracies such that f, induces an isomorphism
M, & C,.R, = N, for each n. A morphism f: M — N in sMod—R is a cofibration
if and only if it is a retract of a free extension.

There is a natural bifunctor

—®R —: sMod—R x R—sMod — Z-sMod
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defined by (M @ g N), := M, ®R,, Ny for n > 0. This bifunctor has a total left derived
functor ®L: Ho(sMod—R) x Ho(R—sMod) — Ho(Z—sMod), which can be computed
using resolutions: explicitly, for M € sMod—R and N € R—sMod, M @ LN =~ PQN =~
N ® Q in Ho(sMody) for any cofibrant resolution P —=> M in sMod—R and for any
cofibrant resolution Q => N in R—sMod. Clearly, in this construction we can replace Z
by any field k& and a simplicial ring R by a simplicial k—algebra.

Let X be a space and let M be a discrete simplicial left Z[G X ]-module. Giving such
an M is equivalent to giving a representation of 7o(GX) = 71(X) in abelian groups,
which corresponds to a local system on X. Viewing Z as a constant simplicial right
module with trivial G X —action, we can form the simplicial abelian group Z ®%[G X]
M € Ho(Z—sMod). Then, we have:

Lemma 2.1 There is an isomorphism of graded abelian groups
7 (Z ®F 6 x) M) = Ha(X, M),

where H. (X, M) is the homology of X with coefficients in the local system corre-
sponding to M.

2.3 Simplicial commutative algebras

Recall that sComm Alg; denotes the model category of simplicial commutative algebras
over a field k. When k has characteristic zero (as we always assume in this paper), this
model category is known to be Quillen equivalent to the model category of nonnegatively
graded commutative DG k —algebras, dgComm Alg,‘:, where the weak equivalences are
the DG algebra maps inducing isomorphisms on homology. Specifically, by [40, Part I,
Section 4], the Quillen equivalence between these model categories is given by

(2-3) N*: dgComm Alg,‘cF 2 sCommAlgy :N,

where N is the Dold-Kan normalization functor and N* its left adjoint taking
semifree commutative DG algebras to semifree simplicial commutative algebras (see
[6, Proposition A.2]). Using (2-3), one can prove (see [31, Proposition 3.1.5] or
[54, Section 11.1] for details):

Proposition 2.2 For a simplicial commutative k —algebra A, the following conditions
are equivalent:

(1) mo(A) is a finitely generated k —algebra, and each 1, (A) is a finitely generated
module over mo(A).
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(2) The homotopy type of N(A) € dgComm Alg,Jcr has a representative B which is a
semifree DG algebra with finitely many generators in each homological degree.

(3) The homotopy type of A has a representative in sComm Alg,, such that each A,
is a finitely generated algebra over k .

We say that A is of quasifinite type (or almost of finite presentation) over k if it
satisfies one of the (equivalent) conditions (1)—(3).

Next, we recall that for an algebra A € sComm Alg; , we can define an augmentation
over k in three equivalent ways: either a morphism A — k in sCommAlg; or a
morphism A — k in Ho(sComm Algy, ), or a morphism 79(A4) — k in CommAlg; . We
denote such an augmentation by &, thinking of it as a k—point of the affine scheme
Spec[mo(A)].

Choosing an augmentation of A allows one to “linearize” A. Namely, given &: A — k,
consider the simplicial k—module Q(A) :=m,/m2 where m, := Ker(¢). This defines
a functor on the category of augmented simplicial commutative algebras,

(2-4) Q: sComm Algy /; — sMody,
called the linearization (or abelianization) functor.

The functor Q is left Quillen: it has a right adjoint given by M — k x M, where k x M
is the semidirect product (square-zero extension) of the discrete simplicial algebra k
with a simplicial k—module M. It follows that the linearization functor has a total left
derived functor

(2-5) L Q: Ho(sComm Algy /) — Ho(sMody),

which assigns to (4, ) the linearization Q(P) = Q1 (P) ®p k of a cofibrant replace-
ment P of A in sComm Alg; with respect to the augmentation P —~» A - k. The ob-
ject LO(A, ¢) is isomorphic to L4 ®4k in Ho(sMody ), where L 4 := Q1 (P)®p A
is the classical cotangent complex of A relative to k in the sense of [1; 41]. When the
augmentation on A is fixed, we will often omit it from the notation, writing L Q(A)
instead of LQO(A,¢).

The next proposition is a standard homological result, well known to experts; as we
could not find a suitable reference, we briefly outline its proof for the benefit of the
reader.
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Proposition 2.3 For any augmented simplicial commutative k —algebra A, there is a
convergent homology spectral sequence

E} , =HglLO(Ap)] = Hpiq[LO(A))].

Proof The linearization functor is also defined for augmented DG commutative
algebras. This gives

Q: dgCommAlg;{"/k — Comy, B> m/mz,

where m denotes the DG augmentation ideal of B. There is an isomorphism of functors
from dgComm Alg,j/k to sMody,

QoN*x=N"lo0Q.

Indeed, the right adjoints of the functors on both sides are easily seen to be isomorphic.
Hence, the functors themselves are isomorphic.

Now, if B => N(A) is any semifree resolution, N*(B) gives a semifree simpli-
cial resolution of A. It follows that the homology of LQ(A) is isomorphic to the
homology of Q(B). Taking B to be the canonical resolution® of N(A), we see
that H«[L Q(A)] is isomorphic to the homology of the shifted (reduced) Harrison
chain complex CHarr«(N(A), k)[—1] (see [29, Section 4.2.10]). It is easy to see that
this complex is quasi-isomorphic to the total complex of the (first quadrant) double
complex associated to the simplicial complex which assigns CHarrx(A4,, k)[—1] to the
simplex [n]. The spectral sequence associated with the filtration of the above double
complex by rows is precisely the desired spectral sequence. |

Let A be a simplicial commutative k —algebra of quasifinite type. By Proposition 2.2,
the homotopy type of N(A) has a representative B € dgComm Alg,‘c|r that is semifree
and has finitely many generators in each degree. It follows that the homotopy type A
has the representative N*(B) € sCommAlg; that is semifree and has finitely many
generators in each simplicial degree. Hence, for every &: A — k, the vector spaces
H;[LQ(A,¢)] are finite-dimensional over k. Moreover, dimy H;[L Q(A)] does not
exceed the number of generators of N*(B) in simplicial degree i for any i > 0.

8Namely, the “cobar—bar” resolution obtained by the Quillen adjunction between the category of
(conilpotent) DG Lie coalgebras and the category of commutative DG algebras (see eg [2, Theorem 6.1]
and the subsequent remark therein).
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Fix an augmentation &1 A — k. For ¢ > 0, let 7,(A) denote the completion of 74 (A)
with respect to the m—adic filtration given by powers of the augmentation ideal of 7 (A)
defined by ¢.

Proposition 2.4 Let A be a simplicial commutative k —algebra of quasifinite type.
There is a natural spectral sequence concentrated in the region ¢ > 0, p > —q,

(2-6) E? . :=Hpy4[Sym?(LQ(A))] = Rp14(A).

converging to the completed homotopy groups of A.

Proof Pick a representative B € dgComm Alg,‘c|r of the homotopy type N(A) that is
semifree and that has finitely many generators in each degree (such a choice exists by
Proposition 2.2). The augmentation ¢ on A defines an augmentation ¢: B — k. Let
m:=ker(¢) C B. Let B (resp. m) denote the completion of B (resp. m) with respect
to the m—adic filtration. Consider the increasing filtration F, B, where F_ p§ =m?
for p > 0. Note that B is complete with respect to this exhaustive filtration. Since
m? /mP ! = m? /mPT1 = Sym? (m/m?) forall p, the spectral sequence (concentrated
in the region {(—p,q) | p >0, ¢ > p}) associated with this filtration is

(2-7) El, , =Hy_p[Sym” (m/m?)] = my_,[B].

Since B has finitely many generators in each degree, the spectral sequence (2-7)
is regular and, therefore, converges by the complete convergence theorem (see [52,

Theorem 5.5.10]). A standard décalage argument (see [52, Example 5.4.3]) then yields
the convergent spectral sequence

(2-8) E;,q = Hp14[Sym? (m/m?)] = 7, 14[B]
associated to the shifted filtration fr §n =Fr_y En.

Since Qo N* = N~ 10 Q, we have m/ m2>~L Q(A). It therefore suffices to verify that
n*[ﬁ] =~ 74(A). Let n C By denote the kernel of the augmentation on By. Since the

n-adic and m—adic filtrations on B define the same topology, since each Bn is ﬁmtely
generated as a Bp—module and since By is Noetherian, B~B ® B, BO, where BO
denotes the completion of By with respect to the n—adic filtration. Since the functor
(-) ®B, By is exact, we have
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where 76(}) is the completion of 7o(B) with respect to the adic filtration defined by
the augmentation ideal (the augmentation being induced by ¢). The desired proposition
now follows from the fact that 7« (B) = w«(A4). O

Remark The spectral sequence of Proposition 2.4 may be viewed as “desuspension”
of Quillen’s fundamental spectral sequence for the augmentation map ¢: A — k. Indeed,
when applied to the suspension XA of an augmented simplicial k—algebra A, the
spectral sequence (2-6) becomes (see [41, Theorem 6.3])

(2-9) E2 , =Hpyq[Sym? (L 4)] = Torft, (k. k),

where Ly 4 is the classical cotangent complex associated to the morphism &: A — k.
To see this, we first observe that, by [39, page 1.4.4, Proposition 2], there is a natural
isomorphism in Ho(sMody),

LO(SA) =~ LO(A)[1].

Now, since mo(X A) = k, the completion of 74«(X A) in the limit term of the spectral
sequence (2-6) for X A is trivial, and the limit itself is therefore given by 74 (X A4) =
Torf;1 (k,k) (see eg [15, Section 11.3]).

We note that when k has characteristic zero, the Quillen spectral sequence (2-9)
degenerates for any augmented k—algebra A (see [41, Theorem 7.3]). By contrast, the
spectral sequence (2-6) of Proposition 2.4 is far from being degenerate in general, even
when char(k) = 0.

The following theorem provides sufficient conditions for the vanishing of higher homo-
topy groups of a simplicial commutative algebra in terms of its cotangent homology.
We will use this result repeatedly in our calculations in Section 5.

Theorem 2.5 Let A be a simplicial commutative algebra defined over an algebraically
closed field k. Assume that A is of quasifinite type over k in the sense of Proposition
2.2.

(a) Ifthere is an integer N > 0 such that, for every augmentation ¢: A — k,
dimp H1[LQ(A)] <N and H;[LQ(A)] =0 foralli>1,

then ,(A) =0 forn > N.
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(b) If, for every augmentation ¢: A — k, H;[LQ(A)] = 0 for all i > 0, then
mn(A) = 0 for n > 0. Moreover, Spec[mg(A)] is a smooth k —scheme in this
case.

Proof (a) Let m be any maximal ideal of mo(A). Since k is algebraically closed,
m defines an augmentation &: A — k. Since H;[L Q(A)] =0 for i > 1 and

dimk H1 [L Q(A)] < N,

H,[Sym(L Q(A))] vanishes for n > N. It follows from Proposition 2.4 that 7, (A) =0
for n > N. Since A is of quasifinite type, 7o(A) is a Noetherian k —algebra and 7; (A)
is a finitely generated 7r9(A) module for i > 0. It follows that 7, (A4) = m for
all n, where (/—\) denotes completion with respect to the my—adic filtration. Since
7, (A) =0 for n > N, 7,(A)m = 0 for n > N by Krull’s theorem. This proves (a).

(b) The first claim of part (b) follows immediately from (a) (take N = 0). Thus, if
the condition of (b) holds, then A is weakly equivalent to mwo(A4) in sCommAlgy . In
that case, for any augmentation &: A — k, there are natural isomorphisms

(2-10) H'[LQ(A)*] = D' (mo(A) |k, k) = Harr* (mo(A), k).

where LQ(A)* denotes the graded k—linear dual of LQ(A), D! and Harr?® are
the first André—Quillen and the second Harrison cohomology of 7g(A4) with coeffi-
cients in k (viewed as a mg(A)—module via ¢). The first isomorphism in (2-10) is
induced by the canonical projection A —» mo(A), while the second is the standard
isomorphism relating André—Quillen and Harrison cohomology (see eg [52, Corol-
lary 8.8.9]). Since H;[L Q(A4)] =0, we conclude from (2-10) that Harr? (77 (A), k) =0.
By [20, Corollary 20], the morphism & corresponds then to a smooth k—point of
Spec[mo(A)]. Since ¢ is arbitrary, Spec[mo(A4)] is smooth. O

Remark Theorem 2.5 can be found in the literature in various forms and generality.
For example, the result of (a) appears in (the proof of) [11, Theorem 2.2.2]. Part (b)
is closely related to [51, Proposition 2.2.5.1 and Corollary 2.2.5.3], although these
results are stated in [S51] in a different language and under different assumptions than
our Theorem 2.5. In particular, under the assumptions of Theorem 2.5(b), it follows
that k — A is a strongly smooth morphism in the sense of [51, Definition 2.2.2.3 and
Theorem 2.2.2.6]. We thank the referee for kindly pointing out to us the latter reference.
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3 Linearization of representation homology

3.1 Derived cotangent complex

Let X be a space and let G be an affine algebraic group over a field k with Lie
algebra g. As in the introduction, we denote by Ag(X) the derived representation
algebra of X. Recall that Ag(X) = L(I'X)¢ is an object of Ho(sComm Algy ) defined
by applying the derived representation functor in G to a simplicial group model of X.
Giving an augmentation of Ag (X ) over k is equivalent to giving an augmentation of
HRo (X, G), which, in turn, is equivalent to fixing a representation g: 71(X) — G(k).
Composing such a representation with the adjoint action of G (k) in g, we get the action
Adog: m1(X)— GLg(g). In this way, g acquires the structure of a left 771 (X)-module.
We denote the corresponding local system on X by Ad g, and write Ad* for the dual
local system with fiber g*.

Note that Ag (X) given together with augmentation o is an object of Ho(sComm Algy /z ).
The derived linearization functor L Q applied to the pair (Ag(X), o) gives a simplicial
k—module T;DRepg (X) := L Qo[ A (X)] € Ho(sMody), which may be interpreted
geometrically as the derived cotangent space to DReps (X) at 0. We have:

Theorem 3.1 There are natural isomorphisms of vector spaces

ZY(mi(X),Ado)* ifi =0,

3-1 H; [T*DRepg (X)] =
-1 iTeDRep (12 (X Ad%0)  ifi>o.

To prove Theorem 3.1 we need some notation and a few technical results. First, we
recall one simple fact about extensions of algebraic groups (see [30, Lemma 2.1]).

Lemma 3.2 Let k x V be the square-zero extension of k by a vector space V. Then
GlkxV)=Gk)x(g® V), where the left G(k)-module structure g ® V arises from
the adjoint action of G(k) on g.

Next, we consider the slice category Gr/m of Gr over a fixed group 7. By definition,
the objects of Gr/m are the group homomorphisms I' — 7 and the morphisms are the
obvious commutative triangles over . By the universal property of the representation
functor, any representation ¢: w — G(k) defines an augmentation of the algebra g,
which induces an augmentation on I'g for every I € Gr/x. This last augmentation
is given by the composite map I'g — g 2> k, which corresponds to the pullback
(via the structure map) of o to a representation of I'. Thus, the representation functor
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(-)G may be viewed as a functor (-)g: Gr/7 — CommAlgy ;. and the associated
adjunction becomes

(3-2) (-)g: Gr/m 2 CommAlgy /i 7 X (k) G(-).
Now, given I" € Gr/m, equip g with the left I'—action via the composite map
Ado: T — 7 %5 G(k) 2% GL, (g).

By duality, this defines a right I'—action on g* and hence makes g* a right Z[T']-
module.

Proposition 3.3 For I' € Gr/x, there is a natural isomorphism of k —vector spaces
Q(Ig) = g* ®zr 2(T),
where Q(I") is the augmentation ideal of Z[I'].

Proof For any V € Vecty, there are natural isomorphisms
Homy (Q(Ig), V) = Homcomm a1y T, kx V)

=~ Homg,/ (I', m XGx) G(k x V))  (by (3-2))
=~ Homg, ) (I, 7 x (g ® V)) (by Lemma 3.2)
=~ Der(Ig® V)
=~ Homzr(2(),g® V)
=~ Homy (g™ ®zr (), V).

The desired proposition then follows from the Yoneda lemma. O

Proof of Theorem 3.1 Recall (see [6, Definition B.2]) that a map f: A — B of
simplicial commutative algebras is a smooth extension® if f can be written as an
(infinite) composition

A = sk—1(A) — sko(A) — ski(4) = --- — limsk«(4) = B
such that each map sk;,—1(A) — sk, (A4) is a pushout of the form

IAn] ® C, —— A[n] ® Cy,

I |

skp—1(A4) —— ska(4)

9We warn the reader that our notion of smoothness differs from the standard geometric one used eg
in [51].
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for some smooth commutative k—algebra C,. A simplicial commutative algebra A is
called smooth if the structure map k — A is a smooth extension. Since G X is a semifree
simplicial group and since O(G) is a smooth commutative algebra, the simplicial
commutative algebra (G X)g is smooth. It follows from [6, Proposition B.3] that the
canonical map L Q,[Ag (X)] = Qp[Ag (X)] is an isomorphism in Ho(sMody ). In other
words, L Q,[Ag (X)] is represented in Ho(sMody ) by Q,[(G X)g]. By Proposition 3.3,
there is an isomorphism of simplicial k—vector spaces

9,(GXg) = g* ®z16x] 2AGX),

where the discrete simplicial k—vector space g* acquires its right G X —action via
the homomorphisms GX — m1(X) Ad, GLg(g). Here, m1(X) and GLg(g) are
viewed as constant simplicial groups. Since the categories of (simplicial) left and right
Z|G X]-modules are equivalent, we have

Q,(GXg) = g" ®zi6x] 2AGCX) = QCX) ®zicx]) 0™

Since GX is semifree, Q(GX) is a free GX—-module at every level (see eg [9,
Chapter V.2, Example 3]). Hence, Q(GX) ®zgx] 8* = QGX) ®§[GX] g* in
Ho(sMody). It follows that, in Ho(sMody,),

(3-3) TiDRepg (X) = Q(GX) ®F g x 0™
The exact sequence of simplicial Z[G X ]-modules
0—->QGX)—>ZGX]>7Z—0

gives a distinguished triangle in the derived category 2 (k) of complexes of k—vector
spaces,

QCX)®Y 6 x10" LG X]®F 6 10" 20" > L8 ¢ 410" > AGCX)®F 16 107 [1]-

The associated long exact sequence together with (3-3) and Lemma 2.1 give us the
isomorphisms

H; [TZDRepG (X)] = H;+1(X,Ad*p) for i >0,
as well as the exact sequence
0 — Hy(X, Ad*0) — Ho[T,DRepg (X)] — ¢* — Ho(X, Ad*0) — 0.
This last exact sequence is dual to

0 — H°(X,Ad ) — g — Der(m;(X),Ad o) — H' (X, Ad o) — 0.
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Whence, Ho[T,DRepg (X)] = Der(1(X), Ad 0)*, which proves the desired result
for i =0. O

The next proposition gives an explicit formula for the Euler characteristic of the
cotangent complex of DRep;(X) in terms of the topological Euler characteristic
X top(X ) of X.

Proposition 3.4 Let X be a finite reduced CW-complex. Then, for every representa-
tion o: mw1(X) — G(k), TZDRepG (X) is a bounded complex with finite-dimensional
homology. Its Euler characteristic is given by

1[TEDRepg (X)] = [1 - fip(X)] dim G.

In particular, x[T;DRepg (X)] is independent of ¢.

Proof Recall (see Section 2.2) that X has a semifree simplicial group model T'X
such that n—dimensional cells of X correspond to nondegenerate generators of I'X in
degree n — 1, for n > 1. The representation o extends to representations of the groups
(TX), for all n > 0. This, in turn, gives augmentations on the commutative algebras
O[Repg ((T'X),)] (each of which is isomorphic to a tensor product of copies of O(G))
for each n. Identifying the cotangent space of Reps[(I'X),] at the representation
fixed by o to the cotangent space of Repg [(I'X),] at the trivial representation via right
translation, we see that TZDRepG (X) is a simplicial vector space with nondegenerate
basis elements in degree n corresponding to basis elements of g* labeled with each
(n+1)—cell of X. Since X is a finite cell complex, the first statement follows. Further,
from this description, we see that

x[TaDRepg (X)] = dimy (g*) (n1 —nz +n3z —---),

where n; is the number of i —cells in X. This proves the second assertion. a

3.2 Functor homology interpretation

In [6, Section 4.2], we gave a natural interpretation of representation homology in
terms of abelian homological algebra, specifically, as a derived functor tensor product
over the (small) category of finitely generated free groups. In this section, we extend
this interpretation to the cotangent homology of DRepg; (X). We begin by reviewing
the basic construction of [6].
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Let & denote the full subcategory of Gr whose objects are the free groups (n) based on
the sets n :={x1, X2, ..., X, } for n >0 (where (0) is the identity group by convention).
The category &—Mod (resp. Mod—®) of covariant (resp. contravariant) functors from &
to the category of k—vector spaces is an abelian category with sufficiently many injective
and projective objects. We view the objects of &-Mod (resp. Mod-®) as left (resp.
right) &-modules. There is a natural bifunctor

- ®@ — Mod-® x B-Mod — Vecty,

which is right exact (with respect to each argument), preserves sums and is left balanced
(in the sense of [10]). The derived functors of — ®g — with respect to each argument
are thus isomorphic, and we denote their common value by Tor® (-, -).

It is known (see eg [19]) that any commutative Hopf k—algebra # defines a left &—
module assigning (n) — H®". In particular, if G is an affine algebraic group over k,
the left &—module associated to O(G) can be written in the form (n) — O[Repg ((n))],
which makes the functoriality clear. Dually, a cocommutative Hopf algebra defines
a right &-—module. In particular, the simplicial cocommutative Hopf algebra k[G X ]
defines a simplicial right &-module, and hence a chain complex of right &—-modules.
It was proven in [6, Corollary 4.3] that

HR« (T, G) = Tor® (k[T], O(G)).
This formula is a consequence of a more general fact (see [6, Theorem 4.2]),
HR. (X, G) = H.[k[GX] ®% 0(G)].

The above isomorphisms provide a natural interpretation of representation homology
in terms of classical abelian derived functors.

Now, let /7 denote the slice category of & in Gr over a fixed group 7 € Ob(Gr).
Thus, the objects in & /7 are the pairs ({n}), ¢), where (n) is the free group based
on the set nn := {x1,X2,...,X,} and ¢: (n) — 7 is a group homomorphism, and the
morphisms ((n), ¢) — ((m), ¥) in & /7 are the commutative triangles, in Gr,

{n) ———(m)

N

g

Let G be an affine algebraic group scheme and let o: = — G be a representation
of m into G. The commutative Hopf algebra O(G) defines a functor O(G): & —
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CommAlgy, (n) = O(G)®". Further, for ((n),¢) € &/x, one has the augmentation
maps (depending on @)

0(G)®" = (n)g 2% g 2> k.

This enriches O(G) to a functor O(G)o: &/m — Comm Algy ;. Combining this last
functor with the linearization (2-4), we define the functor

(3-4)  Ad*0:=Qo00(G)y: &/ — Vecty, ((n),¢)+ (Ad*0)®",

which assigns to ((n),¢) € Ob(6/m) the vector space Q((n)) ®zn) g* = (g%)®"
determined by the coadjoint representation

(n) I I A GLx (g™).

In particular, if o: &7 — G is the trivial representation, the functor (3-4) is isomorphic
to (the restriction to & /7 of) the abelianization functor on & tensored with g*; we
denote this functor by

(3-5) g": & > Vecty, (n)> (n)ap®zg" = (g*)®".
Next, an object ({(m), ¥) € Ob(& /) defines a right & /7 —module

k[(m), y]: ((n).$) = k[Home /5 [((n), §). ({m), )]
= kY (@) x - x Y H ().
By Yoneda’s lemma (see [6, Lemma 4.3]), the module k[(m), ¥] is projective, and

k[{(m), V] ®¢/x N = N[({(m), V)] for any left & /7 —module N'. More generally, any
(I, ) € Ob(Gr/m) defines a right &/ —module

(3-6) k[T, y]: ({n). ¢) = k[Homg 7 (((n). $). (I, ¥))]

= k[~ (@) % x Y THp ()],
If T is a based free group, the module k[I', ¥] is flat and K [I', ¥ ]| ® g/ N = NI(T, )],
where the functor on the right-hand side is the left Kan extension of A along the inclu-

sion of &/ into the category of all based free groups equipped with a homomorphism
to .

Now, for a space X, set w := m1(X). Then, GX is naturally a simplicial object
in Gr/m, with the structure map p: GX — m9(G X) being the canonical projection
onto o(G X) = m. Thus, we can associate to X the simplicial right Gr/7—module
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k[GX, p] as in (3-6). The proof of the following theorem is a trivial modification of
that of [6, Theorem 4.2]; we leave its details to the interested reader.

Theorem 3.5 For any representation g: w1(X) — G(k), there is a natural isomor-
phism
H.[T;DRepg (X)] = H[K[G X, p] ®5,,, Ad*ol,

where Ad*p is the left & /m —module defined in (3-4).

By standard homological algebra (see eg [52, Application 5.7.8]), Theorem 3.5 implies
the existence of the spectral sequence

(-7 Epg=Tory)/ " (mg(k[GX. p]). Ad*0) = Hp44[T;DRepg (X)),

where 74 (k[G X, p]) denotes the g™ homotopy group of the simplicial & /7 -module
k[GX, p]. When X is simply connected, the spectral sequence (3-7) can be written
in a more geometric form. In this case, the module k[G X, p] may be identified with
the right &—-module H,(2X; k), which assigns to (m) the degree ¢ component of
the graded vector space Hy(QX;k)®", where QX denotes the (Moore) based loop
space of X (see [6, Theorem 4.3]), and we have:

Corollary 3.6 For simply connected X, there is a first quadrant spectral sequence
E7 , = Tory (Hg(QX: k). g*) = Hp44[TsDRepg (X)],

where g* is the left & —-module defined in (3-5).

On the other extreme, in the case of aspherical spaces, the spectral sequence (3-7)

degenerates giving the following:

Corollary 3.7 For any discrete group T", and for any representation o: I' — G(k),

H.[T:DRepg (I)] == Tory’ * (k, Ad*0).
Proof We need to check that for X = BI" and = = I', the module 74 (k[G X, p]) is
isomorphic to k for ¢ = 0 and vanishes for ¢ > 0. Recall that p: GX — I" denotes

the canonical projection to the discrete simplicial group I' = m9o(G X). Forany y € I,
p~L(y) is then a simplicial set. The &/T'-module G X assigns to ((n), ¢) the simpli-

cial k—vector space k[p~! (¢(x1)) x -+ x p~H (P (xn))] = Qi k[p~" (¢(x:))]. By
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Kiinneth’s theorem, there is an isomorphism of graded k—vector spaces
n
T (k[P (@ (x1) x -+ x p N (xn))]) = @) 7w (k[P (B (x))]).
i=1
It therefore suffices to verify that, for any y € I,
motk[p~ () =k and m(k[p~T'(»)) =0 fori>0.

Indeed, for any space X, the map p: GX — I is a Kan fibration, with p~!(y) being
its homotopy fiber. Hence, we have a long exact sequence of homotopy groups

= T [pT ()] = (G X) = 70 (D) = -+ = wo[p~ ()] = 70(G X) — 70 ().

For X =BT, the fibration GX — I is acyclic, ie 7; (GX) = 7; (") forall i > 0. In
this case, it follows from the above exact sequence that p~!(y) is contractible. |

Comparing the result of Corollary 3.7 to that of Theorem 3.1 for X = BI", we get
ZUT,Ado)* ifi=0,
H;+1(T,Ad*o) ifi >0,

This last isomorphism can be obtained directly by using the canonical resolution of the

Tors/ T (k, Ad*0) =

trivial module k in the category of right &/ I"'—modules.

4 Character homology

Throughout this section we assume, for simplicity, that k = C and G is a complex
connected reductive affine algebraic group with Lie algebra g. Recall that, for any
group I', the algebraic group G acts naturally on the affine scheme Repg(I') by
conjugation. This action induces an action of G on the commutative algebra I'g
representing Reps (I'), and we write FGG for the subalgebra of G —invariants in Ig.
The affine scheme Spec(FGG ) is called the G —character scheme of I' and denoted by
Charg (I'). The assignment [" I‘g defines the subfunctor (—)g: Gr — Comm Alg;
of the representation functor which — when extended to simplicial groups — has a total
left derived functor

4-1) L(—)g: Ho(sGr) — Ho(sComm Algy ).
Now, for a space X € Top ,, we fix a simplicial group model I'X and set

BG(X):= Bg(TX):= L(TX)$.
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Then, we define the derived character scheme of X in G formally by
DCharg (X) := Spec[Bg (X)],

ie Bg(X) viewed as an object of the opposite category Ho(sComm Algy )°P, and refer
to the homotopy groups 7«[Bg(X)] = L«(T'X )g as the character homology of X
in G.

Since G is a reductive algebraic group, the canonical morphism of functors L (—)g —
L (-)g induces an isomorphism L*(—)g ~ [L«(-)G]%, which, applied to a simplicial
group I'X, reads

7+[Bg (X)] = HR« (X, G),

where HR« (X, G)C denotes the G —invariant part of representation homology of X
in G. We will use this last isomorphism to identify the character homology of X in G
with HR« (X, G)C. In particular, we have

70[Bg (X)] = HRo (X, G)® = O[Charg (1 (X))].

Now, given a space X, fixing a representation o: w1(X) — G is equivalent to giving
an augmentation of the commutative algebra HRo(X, G). This, in turn, yields (by
restriction) an augmentation o: HRo(X, G)® — k, which is equivalent to giving a
homomorphism of simplicial commutative algebras o: Bg(X) — k. Applying the
derived linearization functor L Q to the pair (B (X), 0), we obtain a simplicial vector
space

TZDCharG (X) := LQu[Bg(X)],

which may be interpreted geometrically as the derived cotangent complex to DCharg (X)
at the character ¢o. Our goal is to compute the homology of the derived cotangent
complex of the derived character scheme in terms of the homology of the local system
determined by a representation.

To state our main theorem we recall some standard terminology from representation
theory (see eg [30; 45]). If I" is a (discrete) group, a representation o: I' — G is called
irreducible if o(I") is not contained in any parabolic subgroup of G. Further, o is
called completely reducible if for every parabolic subgroup P C G containing o(I"),
there exists a Levi subgroup L C P such that o(I') € L € P. Thus, a fortiori,
any irreducible representation is completely reducible. In the case G = GL,(k), a
representation o: I' — GL,, (k) is irreducible if k" is a simple I'-module (via o) and
completely reducible if k" is a semisimple I'-module. It is known that the preimage in
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Repg (I') of any (closed) point in Charg (I') contains at least one completely reducible
representation (see eg [45, Section 11]). Note that for any representation o: I' — G,
the centralizer of o(I") in G contains the center Z(G) of G. Following [23] (see
also [45]), we call a representation o good if its G—orbit in Repg (I') is closed and
its stabilizer in G (ie the centralizer of o(I")) coincides with the center Z(G). One
can show that every good representation is irreducible (see [45, Theorem 30]), but the

converse is not always true.!°

The following theorem, which is one of the main results of the present paper, is a
natural generalization of [45, Theorem 53].

Theorem 4.1 Let X be a space such that 1(X) is finitely generated. Then:

(i) For every completely irreducible representation o: w1(X) — G(k), there are
natural maps

(4-2) H;[T3DCharg (X)] — Hi+1(X. Ad*0) forall i > 0.

(ii) If a representation o: w1(X) — G(k) is good, then the maps (4-2) are isomor-
phisms.

To prove Theorem 4.1 we need the following lemma:

Lemma 4.2 Let F be a free group and let o: F — G be a good representation that
factors through some finitely generated quotient of F. Then

H;[LQ,(F&) =0 forall i > 0.

Proof Note that F' can be expressed as a direct limit of finitely generated free
subgroups that surject onto o(F). We may therefore assume without loss of generality
that F is a finitely generated free group. In this case, O[Repg (F)] is reduced, which
implies that the representation scheme Repg (F) coincides with the associated variety.
By [45, Proposition 27], the set of irreducible representations of F' is Zariski open
in Repg (F). Since G is reductive, the projection Repg (F) — Charg (F) is a good
categorical quotient, whence the set ChariG (F) of irreducible characters of F is Zariski
open in Charg (F). By [45, Corollary50], the set of characters of good representations is
a smooth (Zariski) open subset of ChariG (F). It follows that the point o of Charg (F)
TG=GL” (k) or SLj (k), every irreducible representation in G of a discrete group I' is good.

However, for G = PSL»(k), SO, (k), Spy, (k) (or any quotient of these groups by a finite subgroup),
there exist discrete groups having “bad” irreducible representations in G (see [45, Section 4]).
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is smooth. It therefore suffices to verify that if B € CommAlgy /; is such that the
augmentation on B defines a smooth point on Spec(B), then H; [L Q(B)] =0 for i > 0.
To see this, note that by the definition of André—Quillen homology,

H;[LQ(B)] = D;(Blk.k),

where D stands for André—Quillen homology, and where the second argument on the
right-hand side is k equipped with B-module structure through the given augmentation.
Now, if m is any maximal ideal of B, by [22, Section 6.5] we have

Di(Blk,k)m = D;i(Bulk.kw) forall i >0.

If m is not the augmentation ideal of B, then k, = 0. Hence, D;(Blk,k)n = 0. On
the other hand, if m is the augmentation ideal of B, then By, is smooth and &k, =k,
which implies that D;(Byl|k, k) vanishes for i > 0 (see eg [22, Theorem 9.6]). Thus,
D;i(Blk,k) =0 for i > 0, as desired. a

Proof of Theorem 4.1 It follows from [45, Theorem 53] (by taking linear duals) that if
I is a finitely generated group and o: I' — G is a completely reducible representation,
then the natural projection of schemes Repg (I') — Charg (I') induces a map of C—
vector spaces

(4-3) T Charg (I') := Qp(I§) — Hi(I", Ad*0)

that is natural in I". If, moreover, o is good, then the map (4-3) is an isomorphism.
Since the functor Q@ commutes with direct limits (as does the functor (-)g ) and since
homology commutes with direct limits, the map (4-3) is defined even if T" is not finitely
generated provided that the completely reducible representation o factors through a
finitely generated quotient of I". This can be seen by representing I' as a direct limit
of finitely generated subgroups that surject onto o(I"). If in addition o is good, the
map (4-3) is an isomorphism.

Next, we note that if T is a free group, the complex 0 — Q(T') <> Z[I'] — 0 is
a free resolution of the trivial module Z in the category Z[I']-modules (see eg [9,
Chapter V.2, Example 3]). Hence, in this case, there is the exact sequence

0 — Hi(I', Ad*0) - Q(I') ®z[r ¢* — ¢" — Ho(I', Ad*0) — 0,

where g* acquires a I'-module structure via the representation Ad*o. As a result, we
have
H; (T, Ad*0) = Ker(a ®zr) 1dy).
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Since the subspace of I'—invariants (g*)T is precisely the Lie algebra 3 of the centralizer
C(p) of o(T"), the projection g* — Ho (T, Ad*p) is the linear dual of the inclusion
3 <> g. The image of the map o ®zr] Id; is therefore the subspace (g/3)* of g*.
Thus, there is an exact sequence of vector spaces

(4-4) 0— K(I') - Q') ®zmr ¢* — (@/3)" =0,

where K(I') := Ker(x ®z[) Id;). Next, observe that since the natural map GX —
mo(GX) = m1(X) is surjective in every simplicial degree, any completely reducible
(resp. good) representation of 1 (X) restricts to a completely reducible (resp. good)
representation of the (free) group (G X), for every n. It follows that for a completely
reducible representation o: m1(X) — G, there is a map of simplicial vector spaces

4-5) Ql(GX)Z] — K(GX),

which is an isomorphism by [45, Theorem 53(2)] when o is good. Since GX is
semifree, K(G X) fits into the long exact sequence of simplicial vector spaces

(4-6) 0— K(GX) - QGX)®zGx] g* — (g/3)" — 0,

where (g/3)* is viewed as a discrete simplicial vector space. By (the proof of)
Theorem 3.1,

Z (w1 (X),Ado)* if i =0,

H;[Q(GX =
iHCX)@zi6x)197] Hit1(X,Ad*0)  if i > 0.

It follows from the long exact sequence of homologies associated with the sequence
(4-6) that

4-7) H;[K(GX)] = H;+1(X,Ad*0).
Therefore, the composition in Ho(sMody),
T4DCharg (X) 2 L Q,[(GX)&] — Qol(GX)E] — K(GX),
induces the map
H; [T,DCharg (X)] — H;+1(X,Ad"0) forall i > 0.

This proves (i). If o is good, then the map (4-5) of simplicial vector spaces is an
isomorphism. Part (ii) therefore follows from (4-7) once we verify that

(4-8) LO,[(GX)E] — Qol(GX)E]
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is an isomorphism in Ho(sModc). Since the group (G X)), is free for each n and since
o induces a good representation on (G X), for each n, we have

H;[LQ,((GX),)] =0 forall i>0

by Lemma 4.2. It follows that, for the pair (GX )g, ©0) € sComm Algy /i , the spectral
sequence in Proposition 2.3 collapses on the E! page. The map (4-8) therefore induces
an isomorphism on homologies, as desired. a

We conclude this section with two examples.

Example 4.3 Consider the Heisenberg manifold X := H3(R)/H3(Z), where the
Heisenberg group H3(R) of aring R is the group of unipotent upper-triangular 3 x 3
matrices with entries in R. Since H3(R) is homeomorphic to the contractible space R3,
X is an aspherical manifold with fundamental group H3(Z). It is well known that
H3(Z)ap 2 72, where (-),p stands for abelianization. Moreover,

Chars, (X) = Charst, (Z%) U {0},

where the first component consists of the characters of representations H3(Z)— SL,(C)
that factor through the abelianization. It is easy to verify that no representation of Z?2
in SL,(C) is good. Hence, none of the characters in the first component are characters
of good representations. On the other hand, H3(Z) has the presentation

H3(Z) = {a. B,y |ap = pa, ay = ya, [y. fl = ).

In terms of the above presentation, the unique character o in the second component of
Chargy , (X)) is the character of the representation

0 0 —1
0: H3(Z) — SL,(C),  a+> —Id, ﬂH(’O _i), yH(l o)'

It can be checked by a direct computation that the representation g is good, and that
the cohomologies H°(X, Ad o) and H!(X, Ad o) vanish. By Poincaré duality, the
homologies Hp (X, Ad*o) and H3(X, Ad*) vanish as well. Since the local systems
Ad o and Ad*p are isomorphic via the Killing form, H' (X,Ado) =0 for i =0, 1.
By universal coefficients, H; (X, Ad*0) = 0 for i = 0,1 as well. It follows from
Theorem 4.1 that

H; [T, DCharsp, (X)] =0 forall i > 0.
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It follows from Theorem 2.5(a) that the localization HR (X, SL2)2L2 of the SL,—
character homology of X vanishes in positive degree. Since O[Charsy, (X)], =k, we
conclude that

HR. (X, SLy)3"2 = k.

Example 4.4 We now illustrate that the map (4-2) in Theorem 4.1 is far from being an
isomorphism in general, even when o is completely reducible. Let X = CP” with r > 1.
Since X is simply connected, 7r1(X) has the unique (trivial) representation o into any
complex reductive group G. Clearly, o is completely reducible, and the local system
Ad*p is the constant local system g*. Let m,...,m; denote the exponents of the Lie
algebra g. Then there is an isomorphism of graded vector spaces

l
4-9)  H.[T:DCharg(CP")] = Pkt ekt @ okl ).
i=1
where the basis element Eé ¢—1 has homological degree 2rm; + 25 — 1. On the other
hand,
*ifi=1,3,5...,2r—1,
(4-10) Hipt(CP7 g0 '
0  otherwise.

Indeed, by [6, Theorem 6.4, Corollary 6.3], there is an isomorphism of graded commu-
tative algebras

4-11) Symp(k £V @@k ED |i=1.2,....1) ~HR.(CP",G)C,

where the generator Eé s—1 has homological degree 2rm; + 2s — 1. From loc. cit. (see
also Section 6.1 therein as well as [2, Section 7]), it is clear that the isomorphism (4-11)
is induced by a quasi-isomorphism of commutative DG algebras between the symmetric
algebra of a complex whose homology is isomorphic to

I
Pt okt @ @kl

i=1

and a commutative DG algebra representing DCharg (CP") in Ho(dgComm Algg) . The
isomorphism (4-9) follows immediately from the above observation. The verification
of (4-10) is an easy exercise, which we leave to the reader.

Remark In order to recover the groups Hy (X, Ad* o) as a cotangent homology for
every representation o, one should replace the derived character scheme DCharg (X)
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in Theorem 4.1 by the derived mapping stack Map(X, BG) (see Section A.1). The
derived stack Map(X, BG) may be viewed as a homotopy quotient of the derived
representation scheme DRepg (X ), and thus — from the derived geometric point of
view — it is a more natural object to consider.

S Vanishing theorems

In this section, we prove vanishing theorems for representation homology of some
classical spaces. One important consequence of these results is the existence of a
well-defined virtual fundamental class of the corresponding derived representation
schemes. The proofs are based on Proposition 2.4 and Theorem 2.5. We begin by
reformulating these results in the form that we will use in this section.

Let X be a CW—space having a cellular model with finitely many cells in each di-
mension. Given an algebraic group G over k, a representation o: w1(X) — G(k)
corresponds to a k—point in Repg [71(X)]. One may therefore consider the localization
of the representation homology at ¢, which we denote by HR«(X, G),. Applying
Proposition 2.4 to the derived representation algebra 4G (X ), we obtain the spectral
sequence (see (1-6))

Eziq = 7Tp+4[Sym? (T;DRepg (X))] = HRp14(X, G)y,

where ﬁﬁ*(X , G), stands for the completion of the local graded ring HR« (X, G),
with respect to the filtration by powers of the maximal ideal of HRo(X, G), de-
fined by o. In this situation, Theorem 2.5(a) asserts: if for every representation
0: m1(X) — G(k) over the algebraic closure k of k, H; [T;DRepg (X)] = 0 for all
i > 2 and dimj H;[T;DRepg (X)] < N, then HR, (X, G) =0 forall n > N.

5.1 Virtually free groups

Recall that a group is called virtually free if it contains a free group as a subgroup of
finite index. The following vanishing theorem is our second main result:

Theorem 5.1 Let I' be a finitely generated, virtually free group. Then, Repg (I') is a
smooth k —scheme, and the natural map Ag (I") — O[Repg (I')] is an isomorphism in
Ho(sComm Algy ). In particular,

HR;(I,G)=0 forall i > 0.
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Proof By Lemma 5.2 below, BI' has a semifree simplicial group model I' with
finitely many generators in each degree (see Section 2.2). Hence, for each n > 0, the
degree n component of the simplicial commutative algebra Ag (") = I'g is isomorphic
to the tensor product of finitely many copies of (the finitely generated algebra) O(G).
It follows then from Proposition 2.2 that Ag (I") is of quasifinite type.

Let g denote the Lie algebra of G (k). Any augmentation o: Ag(I") — k corresponds to
arepresentation o: I' — G (k). Composing this representation with the coadjoint action
of G, we get a group homomorphism Ad*o: T — GLg (g*), which equips g* with the
structure of a I'—representation. By Theorem 3.1, there are natural isomorphisms

(5-1)  H;[LQu(Ag(I)] = Hiy (I, Ad*0) = HH; 41 (k[T']. Ad*0) for i >0,

where Ad* o denotes the k[I']-bimodule g* with the above I'-action on the left
and the trivial I'—action on the right. The last isomorphism in (5-1) is the classical
Mac Lane isomorphism (see eg [29, Proposition 7.4.2]). Now, since I' is finitely
generated virtually free, by [28, Theorem 2] its group algebra k[I'] is quasifree in the
sense of Cuntz and Quillen [14]. It follows then from [14, Proposition 3.3] that k[I"] has
a projective bimodule resolution of length at most two. Hence, HH,, (k[I], Ad* 0)=0
for p > 1, and therefore H; [L Q,(Ag (I'))] =0 for i > 0. The desired result follows
now from Theorem 2.5(b). O

Lemma 5.2 The classifying space BI" of a finitely generated virtually free group has
a reduced CW-model with finitely many cells in each dimension.

Proof First, we note that the classifying space BA of a finite group A has a reduced
simplicial model with finitely many simplices in each degree. It therefore, has a reduced
CW-model with finitely many cells in each dimension.

Next, we recall from [21, Section 1.B] that if 4 <%= C Y Disa diagram of groups,
with both arrows injective, then the classifying space of the amalgamated free product
A xc D is constructed by taking BA, BC, BD and the mapping cylinders of By
and B, identifying the two ends of the mapping cylinder of B¢ with BC and BA
and the two ends of the mapping cylinder of By with BC and BD. If BA, BC
and BD are taken to be reduced CW-models with finitely many cells in each dimension,
this construction gives a CW-model of the classifying space of A xc D with finitely
many cells in each dimension. This CW-complex, however, contains three O—cells that
are part of a contractible 1-dimensional CW—subcomplex: if x, y and z denote the
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O—cells in BA, BC and BD, respectively, this subcomplex has an edge between x
and y and an edge between y and z. Identifying this subcomplex with a single point
gives us the required reduced CW-model for 4 x¢ D.

We also note that given two monomorphisms ¢, y: C — A, the classifying space of
the corresponding HNN extension is constructed from reduced CW-models BC and
BA by gluing cells of dimension two or more to BA Vv S!, the glued cells being the
cells of BC x I that are of dimension two or more (see [21, Example 1.B.13]). It
follows that if BA and BC have finitely many cells in each dimension, the classifying
space of the corresponding HNN extension also has a reduced CW-model with finitely
many cells in each dimension. Finally, we recall that any finitely generated virtually
free group is a fundamental group of a graph of finite groups (see eg [28, Section 2]),
ie can be constructed from a finite collection of finite groups in finitely many steps by
taking (injective) amalgamated free products and (injective) HNN extensions as above.
This proves the desired lemma. |

Since any finite group is virtually free, Theorem 5.1 implies:

Corollary 5.3 If I is a finite group, then Repg (I") is smooth and HR;(I', G) = 0
forall i > 0.

We remark that the smoothness of Repg(I') for a finite group I' is a well-known
result, which follows immediately from A Weil’s classical rigidity theorem [53] (see eg
[45, Corollary 45]). Weil’s theorem, however, doesn’t apply to virtually free groups,
since for such groups H'(T", Ad ¢) # 0 in general.

The following result shows that the higher representation homology also vanishes if
we take G to be a finite group.

Proposition 5.4 Let X be an arbitrary space. If G is a finite algebraic group, then
HR;(X,G) =0 forall i > 0.

Proof Let Y be a CW—complex with finitely many cells in each dimension. Then Y
has a semifree simplicial group model I' with finitely many generators in each degree.
It follows (as in the proof of Theorem 5.1) that Ag(Y') is of quasifinite type. Note that
the Lie algebra g of G(k) = G is zero. It follows that the local system Ado on Y
is zero for any augmentation o: Ag(Y) — k (which corresponds to a representation
o: m11(Y) — G(k) = G). Hence, by Theorem 3.1,

H;[T;DRepg (Y)] =0 forall i >0.

Algebraic & Geometric Topology, Volume 19 (2019)



318 Yuri Berest, Ajay C Ramadoss and Wai-kit Yeung

Theorem 2.5(b) then implies that 7;[Ag(Y)] = 0 for all i > 0. Thus, HR;(Y,G) =0
forall i > 0. Since any space X can be realized as a direct limit of CW—complexes with
finitely many cells in each dimension, and, since representation homology commutes
with direct limits, the desired result holds. m|

Finally, combining Theorem 5.1 with [6, Corollary 4.3], we have:

Corollary 5.5 For any finitely generated, virtually free group I', we have

(5-2) Tor? (k[['], O(G)) =0 forall i > 0.

5.2 Surfaces

Let G be a connected reductive affine algebraic group over C. Recall that a rep-
resentation g: I' — G is called (scheme-theoretically) smooth if the corresponding
(closed) point of the representation scheme Repg (I') is simple, ie belongs to a unique
irreducible component of Repg (I'), the dimension of which is equal to the dimension
of TyRepg (I'). We note that every smooth representation is reduced (ie corresponds
to a reduced point of Repg (I')), and the set of all smooth representations is Zariski
open in Repg (I')red. Since the set of irreducible representations is also Zariski open
in Repg (I')req. “most” irreducible representations are smooth.

For surface groups I' = m1(Xg) with g > 2, a theorem of Goldman [17] implies
that o € Rep (I') is smooth if and only if dim[C(0)/Z(G)] = 0, where C(p) is the
centralizer of o(I') in G. In particular, the good representations of surface groups (ie
the ones for which C(g) = Z(G)) are all smooth. More generally, it is known (see
[45, Proposition 37]) that every irreducible representation of m1(Zg) is smooth.

In this section, we prove:

Theorem 5.6 Let X be a closed connected orientable surface of genus g > 1. Then:
(i) HR;(2g,G) =0 forall i >dimG.
(ii) If o € Repg[m1(Xg)] is smooth, then
HR;(2¢,G)o =0 for i > dimy Repg[m1(Xg)] —(2¢ —1)dim G,

where dim,, is local dimension of the irreducible component of Repg[m1(X¢)]
containing Q.
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Remark Theorem 5.6(i) can also be proven using the description of representation
homology of surfaces in terms of Hochschild homology (see [6, Section 7.1]) along
with the fact that O(G) (viewed as an O(G xG)-module via multiplication) locally
has a projective resolution of length dim G. Part (ii), however, does not appear to be
accessible from these considerations.

In general, (i1) implies sharper vanishing statements than (i), for example:

Corollary 5.7 If G is a simply connected complex reductive group, then, for every
smooth representation o: Z.> — G(C), we have HR; (T2, G), = 0 if i > rank G.

Proof By [42, Theorem C] (which also holds for GL, as the centralizer of any
semisimple element of GL,, is connected), Repg(Z?) = G- (T xT), where T is a
maximal torus of G and T x T is viewed as a subscheme of Repg(Z?). It follows
that Repg (Z?) is irreducible and dim Repg (Z?) = dim[G - (T x T)]. The dimension
of the generic fiber of the projection to the first factor G- (T xT) C G x G — G is
equal to the dimension of the fiber over a regular point in 7. This dimension is easily
verified to be rank G. Thus, dimRepg (Z?) = dim G + rank G. The desired result is
now immediate from Theorem 5.6(ii). |

Remark As noted in the above proof, Corollary 5.7 holds for the groups GL,, for
n > 1 as well. In this case, however, we have a stronger statement: By computations of
[6, Section 7.1], HR4(T 2, GL,,) is isomorphic to the homology of the Koszul complex

(k[X, Y, T)[det(X)" ', det(Y) '], dT =X, Y]).

By [3, Theorem 27], this last homology vanishes in degree > n.

Corollary 5.8 Let X, be a closed connected orientable surface of genus g > 2. Then,
for every smooth representation o: mw1(Xg) — G(C), we have

HR;(2g,G)o =0 if i >dim Z(G).
In particular, if G is semisimple, then HR; (X, G), vanishes for all i > 0.
Proof Let m := m;(Xg). As pointed out in the proof of [18, Theorem 3], the

natural map Repg () — Repg/z(g)() is a principal Repz(g)(7r)-bundle. By
[18, Lemma 1], the dimension of every connected component of Repg,z(g)(7) is
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(2g — 1)dim[G/Z(G)]. Clearly, Repz () = Z(G)?& . Hence, the dimension of
every connected component of Repg () is

(2g — 1) dim G + dim 2(G) = (1 — y10p(Z¢)) dim G + dim Z(G).

The desired result is now immediate from Theorem 5.6(ii). m|

An important consequence of Theorem 5.6 is the existence!! of a K—theoretic virtual
fundamental class of the derived scheme DRepg (2 ), which is formally defined (see
[11, Section 3.2]) by

(5-3) [DRepg (Z)I5 = D _(—1)'[HR; (¢, G)],

i>0
where [HR;(Xg, G)] is the class of the O[Repg (71(Xg))]-module HR; (Z¢, G) in
the Grothendieck group Ko(Repg[71(Zg)]). Our interpretation of representation
homology in terms of functor homology leads to a nice Tor formula for (5-3) similar to
the well-known Serre formula in classical intersection theory.

Corollary 5.9 The class (5-3) is well defined in Ko(Repg [1(X¢)]) and given by the

formula
dim G

[DRepg (Tl = D (=1)! [Torf (k[71(Z¢)]. O(G))].

Proof We have

dim G
[DRepg (Xg)]¥ Juir = Z (—=1)'[HR; (24.G)] (by Theorem 5.6(i))

dim G

= > (=D'[HR;(m1(Zg). G)] (since T is aspherical)
i=0
dim G .

= Z (—l)lTor?(k[m(Eg)], O(G)) (by [6, Corollary 4.3]).
i=0

This proves the assertion. a

Remark The claim of Corollary 5.9 holds for an arbitrary affine algebraic group G
defined over a field k of characteristic 0.

The K —theoretic virtual fundamental class exists for any quasicompact derived scheme, which is
quasismooth in the sense that its cotangent complex is perfect with homology vanishing in degree i > 1.
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The next observation shows that there is an interesting dichotomy between GL,, and
semisimple algebraic groups with regard to representations of the surface groups.

Corollary 5.10 (a) If G=GL,,n > 1, thenforall g>1,

[DRepg (Z)]F =0 in Ko(Repg[m1(Zg)])q-

(b) If G is a semisimple group, then, for every g > 2,

[DRepg (Z)IF #0 in Ko(Repg[m1(Zg)])q-

Proof (a) As shown in [6, Section 7.1], for G = GL, with n > 1, the derived
representation scheme DRepg (Xg) can be represented by the global Koszul complex

K[X1,....Xg, Y1,....Ye,®1det(X1) ™1, ... det(Xg) "L, det(Yy) ™, ... det(Yg) 1]

Here, each of the generic square matrices X; for 1 <i <g, Y; for 1 <j < g and ©

2 commuting variables. The differential d is given by

carries n
g
do =[] x v X'y —1d,.
i=1
It therefore suffices to show that the K—theoretic virtual fundamental class of an
affine DG scheme represented by a global Koszul complex (A ® A*V, d) vanishes in
rationalized K —theory, where A is any smooth k —algebra and V' is a finite-dimensional
k —vector space.

For any homologically graded sheaf F := {F; }o<i<n on a scheme Y, let [F] denote
the class

> (=1D[Fi] € Ko(Y).

i€Z
For the rest of this proof, we follow conventions from [11]; in particular, we switch
from homological to cohomological grading by inverting degrees. Let

X = Spec(A ®x A*V,d).

Then, X° = Spec(A4) and mo(X) = Spec(A/I), where I denotes the ideal generated
by d(V). Consider the sheaf of DG algebras O := Ox ®0,, Ony(x) on 7o(X). In
our case, O = A/I ®; A*V (with trivial differential).
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Let N denote the normal cone of 7o(X) in X°, with i: 7o(X) = N and p: N —
7o(X) denoting the inclusion of the zero section and the canonical projection, respec-
tively. There is a natural action of G, on N, whose locus of fixed points is 7o(X).
The maps i and p are G,,—equivariant. By [11, Lemma 3.3.7],

i.[H*(Ox)] = [H* (p*0)] € KZ™ (N).
Since p*O = Oy Qi A*V,
[H*(p*0,8)] = [p*0] = [On @i A*V] =0.

Thus, i«[H*(Ox)] = 0 in Kg;’” (N). As in [11, Section 3.3], we argue (using the
localization result [47, Theorem 2.1] of Thomason) that i,: K g;’ "(mo(X)) — Kg;’ "(N)
is injective. It follows that [H*(Ox)] = 0 in Kg}’” (mo(X)). Since Kg;’” (mo(X)) =
Ko(mo(X)) ® Cu, '], [H*(Ox)] = 0 in Ko(mo(X)) ® Q as well.

(b) Let j: U — Y denote the natural inclusion, where U denotes the smooth locus
of Y :=Repg[r1(Zg)]. It is well known that the restriction map j*: Ko(¥Y) Q@ Q —
Ko(U) ® Q is surjective. By Corollary 5.8, we then conclude j *[DRepG(Eg)]}ér =
[OU)] # 0. O

Example 5.11 We now show that Conjecture 1.3 holds for k = C and G = (C*)".
In this case, O(G) = (C[tlil, ceeh t,ﬂ:l]. By [6, Section 7.1.2], we have
HR«(S¢. G) = Tory D (k. 0(G*)),

where k is equipped with the O(G)—module structure coming from the canonical
augmentation O(G) — k, and O(G?#) is equipped with the O(G)—module structure
coming from the composite map

O(G) — k — O(G?%).

Here, the first arrow is the canonical augmentation on @(G) and the second arrow is
the unit. Since k has a free O(G)-module resolution given by the Koszul complex

O(G)@kl\*(‘lfl,...,‘[r), d‘lf,'=l‘,'—1,
we have
HR.(Zg. G) = O(G?) @ A (Ty..... ).

It follows that, in this case,

HR;(2g,G) =0 for i >r =dim Z(G).
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‘We now turn to proving Theorem 5.6. We begin by studying the corresponding linearized
representation homologies case by case, starting with the torus.

5.2.1 The 2—-torus The 2—dimensional torus has a simplicial group model given (see
[6, Section 7.1.1]) by
G(T?) ~ hocolim(1 < F; -%> F,),

the map « is defined on generators by ¢ > [a,b] := aba~'b~! and the homotopy
colimit is taken in the category of simplicial groups. It follows from [6, Lemma 4.2]
that

(5-4) DRepg (T?) ~ hocolim[k < O(G) 2 O(G x G)],

where the homotopy colimit is taken in the category of simplicial commutative algebras
and the map oy is induced by « (explicitly, o« () (x, y) = f([x, y]) forall f € O(G)
and x,y € G). A representation o € Repg (T?) is equivalent to a pair (x,y) € G x G
such that [x, y] = Idg. Equipping O(G x G) with the augmentation determined
by (x, y), we obtain an augmentation on DRep (T?), making (5-4) an isomorphism
in the homotopy category Ho(sComm Algy /i) of augmented simplicial commutative
k—algebras. Since the derived linearization functor L Q@ commutes with homotopy
pushouts, and by [6, Proposition B.3] (which applies because O(G) and O(G x G)
are smooth commutative algebras),

(5-5) T:DRepg (T?) ~ cone[g* 2¢ g* @ g*],

where cone is the mapping in the category Comy of complexes of k—vector spaces and
the cotangent space to G X G at (x, y) is identified with the cotangent space to G X G
at the identity (ie g* @ g*) via right translation. The map Q () is dual to the map

gPg—g, (u,v)—> (Id—Ad(y))-u—(Id—Ad(x))-v.
It follows from (5-5) that H; [T, (DRepg (T 2))] =0 for i > 1, while
Ho[T;DRepg (T?)] = Coker[Q(e+)] and Hi[T;DRepg(T?)] == Ker[Q(ax ).

Hence, we have:

Lemma 5.12 For any representation o: m1(T?) — G(k),
dimy Hy [T} (DRepg (T?))] < dim(G),

with equality corresponding to the trivial representation.
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5.2.2 Riemann surfaces Let X be a closed connected orientable surface of genus
g > 1. X has a simplicial group model (see [6, Section 7.1.1])

G(Xg) >~ hocolim(1 < IFy LAN Fag),

where [y and [F»g are free groups generated by ¢ and {a1,b1,...,ag,bg}, respec-
tively, and af is given by

af(c) =[ar,bi]laz, ba] - --[ag. bg].

This implies that
&g
(5-6) DRepg (X¢) ~ hocolim[k < O(G) <> O(G?8)).
It then follows from [6, Lemma 4.2] that, at any representation ¢ of m1(Xg),
* ~ x Q) *\2g
TgDRepg (Xg) = cone[g” —— (g7)°°],

where the cotangent space to G2& at the tuple (x1, y1,... ,Xg,Yg) corresponding to
the representation o is identified with the cotangent space to G2 at the identity via
right translation. As in the case of the torus, H; [TZ (DRepg(X)g)] =0 fori > 1 and

Ho[T; (DRepg ()] = Coker[Q(erf)].  Hi[Tj(DRepg (Zg))] = Ker[Q(er)].

The argument in the torus case works with trivial modifications to give:

Lemma 5.13 For any o: m1(Zg) — G(k),
dimy Hy [T, (DRepg (Xg))] < dim G,

with equality corresponding to the trivial representation.
By [6, Section 7.1.3], a similar result holds for nonorientable surfaces.

5.2.3 Proof of Theorem 5.6 Theorem 5.6(i) follows immediately from Theorem 2.5
and Lemmas 5.12 and 5.13. For (ii), note that for X, as above, H; [T;DRepg (X¢)] =0
for i > 1, and x[T;DRepg(Zg)] = (1 — x10p(Xg)) dim G by Proposition 3.4. Since
dim Ho[T;DRepg (X¢)] = dimRepg [r1(X¢)] for smooth o,

dim HO[TZDRepG(Eg)] = dimRepg[m1(Zg)] — (1 = yop(Zg)) dim G.

The desired statement then follows from Theorem 2.5.
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5.3 Link complements

By alink L in R3 we mean a smooth oriented embedding of a disjoint union S'U- - -LS!
of (a finite number of) copies of S! in R3. The link complement R3\ L is defined
to be the complement of (an open tubular neighborhood of) the image of L. By a
well-known theorem of J W Alexander, every link in R3 can be obtained geometrically
as the closure of some (not unique) braid B in R3 (we write L = E to indicate this
relation). Let B, denote the group of braids on n strands in R3. The group B, is
generated by n — 1 “flips” o1, ..., 0,—1 subject to the relations

ojoj =o0j0; (f |[i—j|>1), oiojo; =0j0;0; (if [i—j|=1).

There is a faithful representation (the Artin representation) B, in Aut(F,). Explicitly,
the generator o; acts of IF,, via

Xj r—>x,-xi+1xi_1, Xi+1 > Xi, xj—>x; for j#i,i+1.

The group B, naturally surjects onto S, (the “flip” o; is mapped to the transposition
(7,i41) under this surjection). We denote the image of 8 under this surjection by B. A
refinement of a classical theorem of Artin and Birman (see [6, Proposition 7.1]) shows
that if L = B for some B € By, then the link complement R3 \ L has the simplicial
group model

(5-7) G(R3\ L) ~ hocolim(F, <"2) g, 1y F, (19, )

where § acts on [, via the Artin representation. Note that the Artin representation
induces an (contravariant) action of B, on Repg (IF,) =G". Let 0: 71 (R3*\ L) — G (k)
be any representation. Such a representation corresponds to an element of G” fixed
by B. In other words, the map B«: O(G"™) — O(G") preserves the corresponding
augmentation of O(G"). The same argument as in Section 5.2.1 (see the discussion
before formula (5-5)) yields:

Lemma 5.14 T%DRepg(R3\ L) = cone[(g*)®" L=2Bx), (gx)n),

Now, let L = ﬁ be a link in R3, where 8 € B, and let X := R3\ L. Denote by M
the maximum dimension of ToRepg)[71(X)] as o runs over all representations
m1(X) — G(k). Denote the number of cycles in a cycle decomposition of a permuta-
tion o by n(o). If L = ,g , then the number n(f) equals the number of components of
the link L.
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Theorem 5.15 With the above notation, we have:

(1) HR;(X,G) =0 for all i > M. In particular, HR;(X,G) = 0 for all i >
n-dim(G).

(ii) For smooth o: m1(X) — G(k),
HR;(X,G)o, =0 for i > dim, Repg[m1(X)],

where dim, Repg [11(X)] denotes the local dimension of the irreducible com-
ponent of Repg (1(X)) containing o.

(iii) For smooth o in the irreducible component of Repg[m1(X)] containing the
trivial representation, HR; (X, G)o, =0 for i > dim(G) -n(B).

Remark The second statement in Theorem 5.15(i) may also be shown using the
description of HR« (X, G) in terms of Hochschild homology (see [6, Theorem 7.1]).
The remaining results in this section do not appear to be easily recovered from that
point of view.

Proof By Lemma5.14, H;[T;DRepg (X)] =0 fori > 1. Also, x[T;DRepg (X)]=0.
Thus,

dimy H[T,DRepg (X)] = dimy Ho[T,DRepg (X)] = dimy ToRepg k) (71(X)).

Again, by Lemma 5.14, this dimension is bounded above by n - dim(G) for all p.
Part (i) of the desired theorem thus follows from Theorem 2.5. For smooth o, we have

dimy Hy[T{DRepg (X)] = dimy ToRepg w1 (X)] = dim[Repg (1 (X))].

Part (ii) thus follows from Theorem 2.5. Part (iii) follows from the fact that at the
trivial representation, Q(B«) is indeed the map given by permuting the n copies of g*

by B. m [T*DRepG (X)] is therefore, the fixed-point space of . The dimension of
this space is easily seen to be dim(G) -n(f). a

The following example illustrates that the number M in Theorem 5.15(i) may be
considerably smaller than # -dim(G), where n is the minimum number of strands such
that there exists a g € B, with L = ,3 . Indeed, let L be a (p, g)—torus knot, where
2 < p<gq and p and g are relatively prime. Then, it is well known that the minimal
presentation of L as a braid closure is given by L = B , where B = (01---0p-1)9 € Bp.
Nevertheless:
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Corollary 5.16 Let X be the complement of a (p, q)—torus knot in R3. Then:
(1) HR;(X,G)=0 fori >2-dim(G).

(ii) For smooth ¢ in the irreducible component of Repg (1(X)) containing the
trivial representation, HR; (X, G) = 0 for i > dim(G).

Proof By Theorem 5.15, part (i) follows once we verify that for any representation
0: m(X) — G(k), dimg ToRepg (71(X)) <2-dim(G). Since L is a knot, m1(X) =
71(S3\ L) = (x,y | x? = y9). Thus, any representation o: 71(X) — G(k) is
determined by a pair (Xo, Yo) in G(k)*? such that Xé) = Yél . The tangent space to
Repg (r1(X)) at such a representation is easily seen to be the space

p—1 g—1
(5-8) {(u, v)EgDg \ D AdXp) W) = ZAd(Y&)(v)}.
i=0 i=0

Clearly, for all o: 71(X) — G(k), dimg ToRepg (7r1(X)) <2-dim(G). This completes
the required verification for (i). For (ii), we note that the tangent space to Repg (71 (X))
at the trivial representation is {(u,v) € g®y | p-u =¢q-v}. This is isomorphic to g as a
vector space. It follows that the corresponding irreducible component of Repg (71 (X))
has dimension at most dim(G). Part (ii) then follows from Theorem 5.15(ii). m|

5.4 Lens spaces

Given an integer p > 1 and m > 1 integers q1, g2, . . ., gm Which are relatively prime
to p, the lens space L = Ly(q1,...,qm) is defined to be the quotient S>"~1 /7, of
the unit sphere S?”~1 C C™ modulo the (free) action of Z p generated by the rota-
tion y(z1,...,zm) = (e2™19/ Pz . ¢2™i4m/Pz ) By definition, L is a compact
connected manifold with universal cover S?”~1 and fundamental group Z,.

Assume, for simplicity, that k = C and G is either GL,, or SL, with n > 1. Then:

Lemma 5.17 For any representation o: Z, — G(C), H; [TZDRepG (L)] =0 for all
i #0,2m—2. Moreover, Hym—2[T;DRepg (L)] # 0.

Proof Following [21, Example 2.43], we construct a Z,—equivariant cell structure
on L := S2™~1 that descends to a cell structure on L as follows. Subdivide the unit
circle C in the m™ C—factor of C™ by taking the points e27//? ¢ C as vertices.
Joining the j™ vertex of C to the unit sphere S2#~3 C C™~! by arcs of great circles in
S2m=1 yields a (2m—2)—dimensional cell szm—z bounded by S2™~3. Specifically,
szm—z consists of the points cos 6 (0,...,0, 62’”7/1’) + siné (z1,...,2zm—1,0) for
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0<6 <7%. Similarly, joining the j™ edge of C to S>3 givesa (2m—1)—dimensional
cell szm_l bounded by BJ-Z"’_2 and Bj.zfl_ 2 the subscripts being taken mod p.
The rotation y takes S2”*73 to itself, while permuting the szm—z and BJ.Z’”_I. It
is easy to check that y’» takes each sz’”_z and szm_l to the next one, where
gmlm =1 (mod p). The lower-dimensional cells in the desired structure are obtained

by repeating the above construction on S2~3 c C™~1,

Thus, as Z[Zp]-modules, we have C (D)y~Z[Z p] for 0 <k <2m—1, with differential

iven b
£ Y B (Zf;éyr)-x if xeCy, 1<k<m-—1,

dx =
(Y —1)-x if x€Cor_1, 1<k <m.

By Theorem 3.1, Hy [TZDRepG (L)] is the homology of the complex
coo = Cr(L) ®z(2,1 8° — Ck—1 (L) @71z, 8 — -+ — C1(L) ®z(z,] ¢* — 0,

where g* is the Z,-representation dual to Ado and Cy (Z) ®z(2,] g* has degree
k —1 for k > 1. The graded linear dual of this complex is the cohomologically graded

complex
80 81 82 52m—4 82m—3
(5-9) 0>g—g—g— - —>g——>g—0
with nonzero terms concentrated in cohomological degrees 0, 1,...,2m —2 and the

differentials given by

p—1
52k — ZX’ for 0 <k <m—2,
r=0

§% 1= xhk+1_1 forl<k<m-—1,

where X := Ado(y). Up to isomorphism, the cohomology of (5-9) depends only on
the conjugacy class of o(y). Since g(y) is an element of order p in G(C), its minimal
polynomial divides x? — 1 and hence factors into distinct linear factors over C. It
follows that o(y) is conjugate to a diagonal matrix, with eigenvalues being p™ roots
of unity (possibly nonprimitive). From the structure of differentials §/ it is easy to see
that the complex (5-9) is acyclic in all degrees, except possibly in degree 0 and 2m —2.
The kernel of §2~3 is nontrivial (it contains, in particular, the diagonal matrices in g);
hence, Im(62™~3) # g, which means that the cohomology in degree 2m — 2 is always
nonzero. This proves the desired lemma. O

Theorem 5.18 Let G be either GL,(C) or SL,,(C) for n > 1. Then

HR;(Lp(q1,....9m),G) #0 ifandonlyif i =0mod(2m—2).
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Proof To simplify the notation we set L := L,(q1,...,qm). Choose a representative
B of Ag(L) in dgComm AlgE that has finitely many generators in each degree. Such a
representative exists since L has a finite cellular model, whence Ag (L) is of quasifinite
type. Let 0: Z, — G(C) be a representation. By Proposition 2.4, one has a convergent
spectral sequence

E2 , :=Hp4q[Sym? (T5DRepg(L))] = HRp1q(L. G)o.

where ﬁﬁ*(L, G), stands for the completion of the local graded ring HR« (L, G),
with respect to the filtration by powers of the maximal ideal of HRo(L, G) defined
by 0. By Lemma 5.17, the E i 4 terms of the above /sgectral sequence are nonzero
if and only if 2m — 2 divides p + ¢q. It follows that HR; (L, G), # 0 if and only if
2m —2|i. By Krull’s intersection theorem, HR; (L, G), # 0 if and only if 2m —2|i.
This proves the desired result. |

Remark Let {g; | i € N} be an infinite sequence of integers coprime to p. Then, one
has the infinite-dimensional lens space Loo := L(¢1,¢2,...). Note that L is the
(homotopy) direct limit of the sequence of lens spaces L(q1,...,qm) for m e N. It
follows from this observation and Theorem 5.18 that HR; (Lo, G) vanishes for i > 0.
This agrees with Theorem 5.1, given that Lo, is a K(Zp, 1) space.

Appendix Relation to derived algebraic geometry

In this appendix, we discuss the relation of the derived representation scheme DRep(X)
to two basic examples of moduli spaces in derived algebraic geometry: the derived
moduli space RLocg (X, *) of G-local systems on a pointed space (X, *) studied
in [27], and the derived stack of flat G —bundles Map(X, BG) on an unpointed space X
introduced in [34, Corollary 2.6] (see also [51, Definition 2.2.6.2] for G = GL,).
Specifically, we will construct below a pointed mapping stack Map((X, x), (BG, %)),
which is equivalent to our derived representation scheme DRepg (X) and fits in the

homotopy cartesian diagram!?

Map((X, %), (BG, *)) —— Map(X, BG)

| |

*x = RSpec(k) ——— BG = Map(*, BG)

12We thank the referee for suggesting us this relation.
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In this way, we realize DRepg (X) >~ Map((X, *), (BG, *)) as a homotopy fiber of
the Toén—Vezzosi derived stack Map(X, BG) over BG, so that Map(X, BG) is, in
fact, the homotopy quotient of DRepg (X) by the natural G —action:

(A-2) Map(X, BG) ~ [DRepg (X)/G].

In a different direction, we will also consider the construction of the derived moduli
space RLocg(X,*) of G-local systems on (X, *) introduced in [27] and recall
from [6] that it is equivalent to the derived representation scheme DRepg (X ). Com-
bined together, these two comparison results establish a connection between Kapranov’s
and Toén and Vezzosi’s constructions, which are given a priori in different languages
(see Corollary A.6 below). This connection is probably well known to experts in derived
algebraic geometry but we could not find an explicit statement in the literature.

A.1 Toén-Vezzosi construction

Recall that the notion of derived stacks [50] can be formalized in terms of simplicial
presheaves on the (model) category dAffy , which is defined as the opposite category
to the category of simplicial commutative algebras (ie dAff; := (sCommAlg; )°P).
More precisely, a derived stack is a simplicial presheaf on dAffy, ie a functor
F: sCommAlg; — sSet, that is objectwise fibrant, preserves equivalences and satisfies
a certain hyperdescent property (see [50, Definition 4.6.6; 51, Definition 2.2.2.14]).

In this appendix, we will only be concerned with derived stacks defined as a global
quotient [Spec(A4)/G] for some A € sCommAlg; acted on by an affine algebraic
group G. To give a precise meaning to [Spec(A)/G], we recall a more elementary
description of derived stacks in terms of simplicial derived affine schemes, as in [38].
Namely, we start with the derived Yoneda functor, which associates a simplicial presheaf
Rhx to each derived affine scheme X € dAff;, defined by

Rhy =Mapgs;, (—. X): dAf£}F — sSet,

where Mapg¢s, (—, —) is a functorial homotopy mapping space in the model category
dAffy. For X = Spec(A), ie the derived affine scheme opposite to A € sCommAlgy,
we will simply denote Rhy by RSpec(A). Now, given a simplicial derived affine
scheme X, € s(dAff;), one can take the derived Yoneda functor levelwise, the result
is a bisimplicial presheaf Rhy,: dAff°P — s(sSet). This allows us to make the
following:
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Definition A.1 The derived stack associated to a simplicial derived affine scheme
X, € s(dAffy) is the stackification of the simplicial presheaf

1X.[Pe: darfP RXe, ((sget) 92, sget

We denote it by | X, [ := (| X, [P)".

Now, given any derived affine scheme X = Spec(A4) with an action of an affine algebraic
group G, or, more precisely, a coaction on A € sComm Alg; by the commutative Hopf
algebra O(G), one can define the nerve of this action in the usual way, which gives
the simplicial derived affine scheme N (G x Spec A) € s(dAff;). This leads us to the
following:

Definition A.2 The quotient stack [Spec(A4)/G] is the derived stack associated to the
simplicial derived affine scheme N(G x Spec(A)).

In particular, if A = k, so that Spec(k) is the final object *, then the quotient stack
[*/G] will be simply denoted as BG. In other words, it is the derived stack associated
to the simplicial derived affine scheme B,G defined in the usual way with B, G the
n—fold product of copies of G.

Notice that the simplicial derived affine scheme B,G satisfies BoG = Spec(k). There-
fore, there is a canonical map RSpec(k) — BG of simplicial presheaves. By choosing
the homotopy mapping spaces Mapgy¢, (—, —) appropriately, we may assume that the
simplicial presheaf RSpec(k)(—) := Mapyys¢, (—, Spec(k)) takes constant value *
(the singleton),! so that each BG(A) is canonically pointed. In other words, BG is
in fact a presheaf

BG: dAff,” — sSet.

with values in pointed simplicial sets. This leads to the following definition:
Definition A.3 For any simplicial set X € sSet define the mapping stack Map(X, BG)
to be the simplicial presheaf
Map(X, BG): dAff;’ — sSet, A+~ map(X, BG(A)),
where map(X, Y) is the simplicial set map(X, Y), := Homgget (X X A", Y).
I3For example, in [50], one defines the derived Yoneda embedding R/ on the model category
C = dAff; by Rhy(X) = Homgss, (I'(X), R(Y)) where I': C — CA is a cofibrant replacement

functor and R: C — C is a fibrant replacement functor. If the fibrant replacement functor R is chosen so
that it is the identity on the final object Spec(k) then this criterion is satisfied.
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Similarly, for a pointed simplicial set (X, %) € sSet, define the pointed mapping
stack Map((X, %), (BG, %)) to be the simplicial presheaf

Map((X, %), (BG, %)): dAff}’ — sSet, A > map((X, %), (BG(A),*)),
where map((X, ), (¥, %)) is the simplicial set
map(X,Y), := Homgget (X x A", x x A™), (Y, x)).

The simplicial presheaves Map(X, BG) and Map((X, *), (BG, x)) are still derived
stacks'# and they clearly sit in a (homotopy) pullback diagram (A-1).

The main result of this appendix compares the derived stack Map((X, *), (BG, %))
with the derived representation scheme, which is a derived affine scheme DRepg (X) €
dAffj associated to a reduced simplicial set X € sSetg. To construct DRepgs (X),
one first takes a simplicial group model G (X) € sGr of X, given by the Kan loop group
function G(—) (see Section 2.2 for details). Then, applying the derived functor (1-2)
to the simplicial group G (X)), one obtains a simplicial commutative algebra G(X)g .
The derived representation scheme DRepg (X) is then defined to be the derived affine
scheme DRepg (X) = Spec(G(X)g). We then have the following:

Proposition A.4 The pointed mapping stack Map((X, x), (BG, x)) is equivalent to
the derived representation scheme DRepg (X)) in the sense that there is an equivalence
of derived stacks

Map((X, *), (BG, *)) = Rhpgep,; (x)-

Proof Recall from [6] that, although the adjunction

(A-3) (-)G: sGr 2 sComm Alg; :G(-)

is not a Quillen adjunction, the total left derived functor
L(—)G: Ho(sGr) — Ho(sComm Algy )

nonetheless preserves homotopy pushouts and (homotopy) coproducts. If we denote by
(—)g: sGr® — sComm Alg?® the associated co—functor, then it preserves co—pushouts
and co—coproducts, and hence arbitrary oo—colimits (see [32, Theorem 4.2.4.1 and

14The simplicial presheaf Map(X, BG) is simply the powering of X € sSet on the fibrant object BG
in the simplicial model category (dAff;, W)™ of derived stacks (see [50]), and is therefore fibrant. The

fact that the pointed mapping space Map((X, %), (BG, %)) is a derived stack follows by writing it as a
homotopy pullback (A-1).
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Proposition 4.4.2.7]). As a result, it has an co—right adjoint (see [32, Proposition
A.3.7.6 and Corollary 5.5.2.9]). Strictify this co-right adjoint, so that it is represented
by a functor G: sComm Alg;, — sGr that preserves weak equivalences. Then this
functor is characterized by the adjunction, expressed as homotopy equivalences

(A-4) Mapgcom g, (L(T)G. A) ~ Mapge, (T. G (4))
for any simplicial group I' € sGr.

Now, consider the Quillen equivalence (2-2), and take I' = G(X) for some X €
sSety; then the right-hand side of (A-4) is equivalent to the homotopy mapping space
Mapgget,, (X , W((}(A))). Moreover, the term W(é (A)) in this mapping space has an
alternative description by the following:

Lemma A.5 The simplicial set W (G(A)) is equivalent to the simplicial set

| B.G [P (Spec(A)).

Proof For any simplicial group T' € sGr, we have an equivalence diag(BT") ~ W (I")
(see eg [46]). Applying this to I = G(A), we see that it suffices to show that there
is an equivalence B.(é(A)) ~ Rhp,c(Spec(A)) of bisimplicial sets. In fact, we will
show that there is a levelwise equivalence, ie for each n > 0, there is an equivalence
By ((~} (A)) ~ Rhp,c(Spec(A)) of simplicial sets. Indeed, take I' = IF,,, the free group
on n variables, in the adjunction (A-4); then it takes the form

(A'S) RthG (SPCC(A)) = MapsCommAlgk (O(G)(Xm ’ A)

~ Mapqg, (Fr, G (A)) ~ G (A)".
In other words, one obtains an equivalence Rhp,G (Spec(A4)) ~ Bn(@(A)) by taking
I' = F, in the adjunction (A-4). Moreover, when n varies, the groups {I, },>¢ form
in fact a cosimplicial group in such a way that B, H = Homg, (IF,, H) as a simplicial
set for any group H. In this way, the equivalences Rhp, G (Spec(A4)) >~ B, (é(A))

in (A-5) respect the simplicial structure as n varies, and hence can be strictified into a
levelwise equivalence of bisimplicial sets. This completes the proof of the lemma. O

Thus, combining this lemma with (A-4), and, again taking I' = G(X), one has

(A_6) MapsComm Algy (G (X)G ’ A) = MapsSeto (X’ |B'G |pre (SPCC(A))) .
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Now, notice that there is a Quillen adjunction
t: sSetg 2 sSety :F,

where ¢ is the inclusion functor and E (X) is the subsimplicial set consisting of simplices
with all vertices lying on the basepoint x € X. As a result, the right-hand side of (A-6)
can be rewritten as Map g+ (X ,|BeG |Pre(Spec(A))), the homotopy mapping space
taken in the model category of pointed simplicial sets. Thus, if one defines a pointed
mapping (pre)stack Map((X, ), (| B«G|P™, %)) in the same way as in Definition A.3,
then this shows that the right-hand side of (A-6) can be identified with the value of
the derived prestack Map((X, *), (| BsG|P'®, *)) on Spec(A). Moreover, the left-hand
side of (A-6) is also, by definition, the value of the derived stack RSpec(G(X)g) on
Spec(A). This shows that there is an equivalence of derived prestacks

RSpec(G (X)) =~ Map((X, %), (| B.G [P, %)),
which in particular shows that Map((X, =), (| B.G|P™, *)) is in fact a derived stack.

Now, since the stackification functor is left exact (see [50, Proposition 4.6.7]), one
can show that the stackification of Map((X, %), (| B.G|P™, %)) is the pointed mapping
stack Map((X, x), (BG, %)) in Definition A.3. Since we have already seen that the
former is a derived stack, the stackification is an equivalence, which therefore finishes
the proof. a

Notice that the homotopy pullback (A-1) exhibits the pointed mapping stack
Map((X, *). (BG, %))

as a principal G -bundle over the unpointed mapping stack Map(X, BG). This means
that the pointed mapping space Map((X, %), (BG, %)) has a G —action whose homo-
topy quotient coincides with the unpointed mapping stack Map(X, BG). One can
check that, under the equivalence in Proposition A.4 between the pointed mapping
stack Map((X, *), (BG, %)) and the derived representation scheme DRepg (X), this
G —action coincides! with the usual one on DRep (X), so that we have an equiva-
lence (A-2).

I5Indeed, for any simplicial group I', the G —action on the simplicial commutative algebra I is
induced by the adjunction (A-3), so that G(A4) acts on Homscomn a1g;, (I'G, A) = Homser (I, G(A4)) by
conjugation on G(A4). Retaining the notation in the proof of Proposition A.4, one can likewise consider an
action of G(A) on the spaces (A-4), which would then allow one to compare the two actions by showing

that the corresponding Borel spaces EG x g —, suitably defined as derived prestacks, are both equivalent
to Map(X, |B.G|P™®).
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Remark If G is a reductive group, then in view of the equivalence (A-2), the de-
rived character scheme DCharg (X) (as defined in Section 4) is quasi-isomorphic to
the (simplicial commutative) ring of global functions on the derived mapping stack
Map(X, BG).

A.2 Kapranov’s construction

We now turn to the comparison with another derived moduli space, the derived moduli
space of G-local systems RLocg (X, *) on the pointed space (X, *) studied in [27].
The construction of this derived moduli space is as follows.

First, one considers the underived case. Given any X € sSet, one considers an affine
scheme Homgget (X, BG), defined as an end functor between X: A’ — Set and
BG: A% — Affj . Dually, one can take the ring of functions O(BG): A — Comm Algy, ;
then we have

O(Homgget (X, BG)) = X ®a O(BG) € CommAlgy,.

In the derived case, one can embed the category Comm Alg,, either in dgComm Alg]':,
as in [27], or in sComm Algy , as we will do in the following, and consider

(A-7) O(RHomgse: (X, BG)) = X ®% O(BG) € Ho(sComm Algy).

A word of caution is in order. Here we are taking the homotopy coend functor between
the objects X € (Set)2” and O(BG) € (sComn Algk)A, both with the Reedy model
structure. In particular, weak equivalences in (Set)2”™ are isomorphisms of simplicial
sets. Thus, despite the notation, the homotopy coend (A-7) is in general not invariant
under weak equivalences of X. Instead, one considers a natural action of GXO, the
Xo—fold product of copies of G, on the derived affine scheme RHomggset (X, BG),
where X is the set of vertices of X. Then, as shown in [27], the action of G Xo\*}
on RHomgset (X, BG) is free, and the quotient RHomgget (X, BG)/GXO\{*} is a
homotopy invariant of X. This defines the derived moduli space of G —local systems
RLocg (X, *) on the pointed space (X, *).

To compare with the derived representation scheme, we take a reduced simplicial
set X € sSety, so that, in particular, RLocg (X, *) = RHomgget (X, BG) in this
case. To compute the homotopy coend (A-7) and relate it to DRepg(X), we take
a specific resolution O(W (RG)) € (sComm Algk)A of O(BG), and show that the
coend X ®a O(W (RG)) is isomorphic to G(X)g as simplicial commutative algebras
(see [6]). While this resolution O(W (RG)) is not Reedy cofibrant (the latching
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morphisms are not cofibrations), it is nonetheless Reedy smooth, meaning that the
latching morphisms are smooth extensions in a suitable sense. It is shown in [27] that
resolutions by this more general class of objects can be used to compute the homotopy
coend (A-7). As a consequence, one obtains an equivalence

DRepg (X) >~ RLocg (X, *).

Combined with the equivalence (A-2), this gives a comparison between the two derived
moduli spaces RLocg (X, *) and Map(X, BG):

Corollary A.6 The derived mapping stack Map(X, BG) is equivalent to the quotient
of the derived moduli space RLocg (X, *) of G-local systems by the conjugation
action of G, ie

Map(X, BG) >~ [RLocg (X, *)/G].

A.3 Relation to Pridham’s work

The referee has suggested to us that the main results of this appendix (namely Proposition
A.4 and the equivalence (A-2)) can be also deduced from the work of J P Pridham [37].
Specifically, assuming that the constructions of [37] extend to higher Deligne—Mumford
stacks, for any (finite) reduced simplicial set X, one can consider the derived moduli
stack of G—torsors on the Deligne-Mumford hypergroupoid Spec(k) x X € sAff
defined by (Spec(k) x X), := Spec(k*X7). In this case, the functor Cy(X,G)
given in [37, Definition 4.34] is simply represented by the cosimplicial group scheme
CL(X.G) := G%n , and the functor MC[CL (X, G)] in [37, Definition 4.3] is repre-
sented by Spec[G(X)g]. From [37, Proposition 4.38] we may then recover both our
Proposition A.4 and the equivalence (A-2).
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