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Poincaré duality complexes with
highly connected universal cover

BEATRICE BLEILE

IMRE BOKOR

JONATHAN A HILLMAN

Turaev conjectured that the classification, realization and splitting results for Poincaré
duality complexes of dimension 3 (PD3 –complexes) generalize to PDn –complexes
with .n�2/–connected universal cover for n� 3 . Baues and Bleile showed that such
complexes are classified, up to oriented homotopy equivalence, by the triple consisting
of their fundamental group, orientation class and the image of their fundamental
class in the homology of the fundamental group, verifying Turaev’s conjecture on
classification.

We prove Turaev’s conjectures on realization and splitting. We show that a triple
.G; !; �/ , comprising a group G, a cohomology class ! 2 H 1.GIZ=2Z/ and a
homology class � 2Hn.GIZ!/ , can be realized by a PDn –complex with .n�2/–
connected universal cover if and only if the Turaev map applied to � yields an
equivalence. We show that a PDn –complex with .n�2/–connected universal cover
is a nontrivial connected sum of two such complexes if and only if its fundamental
group is a nontrivial free product of groups.

We then consider the indecomposable PDn –complexes of this type. When n is
odd the results are similar to those for the case n D 3 . The indecomposables are
either aspherical or have virtually free fundamental group. When n is even the
indecomposables include manifolds which are neither aspherical nor have virtually
free fundamental group, but if the group is virtually free and has no dihedral subgroup
of order > 2 then it has two ends.

57N65, 57P10

1 Introduction

Hendricks classified Poincaré duality complexes of dimension 3 (PD3 –complexes)
up to oriented homotopy equivalence using the “fundamental triple”, comprising the
fundamental group, the orientation character and the image of the fundamental class in
the homology of the fundamental group.

Published: 11 December 2018 DOI: 10.2140/agt.2018.18.3749

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=57N65, 57P10
http://dx.doi.org/10.2140/agt.2018.18.3749


3750 Beatrice Bleile, Imre Bokor and Jonathan A Hillman

Turaev [21] gave an alternative proof of Hendricks’ result and provided necessary and
sufficient conditions for a triple .G; !; �/ — comprising a group G, a cohomology
class ! 2H 1.GIZ=2Z/ and a homology class � 2H3.GIZ

!/, where Z! denotes
the integers Z regarded as a right ZŒG�–module with respect to the twisted structure
induced by ! — to be the fundamental triple of a PD3 –complex. Central to this was
that the image of � under a specific homomorphism, which we call the Turaev map,
be an isomorphism in the stable module category of ZŒG�, that is to say, a homotopy
equivalence of ZŒG�–modules.

The results on classification and splitting allowed Turaev to show that a PD3 –complex
is a nontrivial connected sum of two PD3 –complexes if and only if its fundamental
group is a nontrivial free product of groups. He conjectured that these results hold for
all PDn –complexes with .n�2/–connected universal cover.

Baues and Bleile classified Poincaré duality complexes of dimension 4 in [2]. Their
analysis showed that a PDn –complex X, with n � 3, is classified up to oriented
homotopy equivalence by the triple comprising its .n�2/–type Pn�2.X /, its orientation
character ! D !X 2 H 1.�1.X /IZ=2Z/ and the image � of its fundamental class
in Hn.Pn�2.X /IZ

!/. (We assume that all spaces have basepoints. Thus, every map
f W X ! Y has a preferred lift to a map of universal covers. Hence, if f �!Y D !X ,
there is a well-defined homomorphism Hn.f IZ!/, and it is meaningful to say that f
is “oriented”, ie that f�ŒX �D ŒY �. See Taylor [20] for a discussion of this issue.)

They called this the fundamental triple of X, as it is a generalization of Hendricks’ “fun-
damental triple”, for the .n�2/–type of X determines its fundamental group. Moreover,
when the universal cover of the complex is .n�2/–connected — automatically the case
when nD 3 — the .n�2/–type is an Eilenberg–Mac Lane space of type .�1.X /; 1/,
so that the .n�2/–type and the fundamental group determine each other completely,
reducing their fundamental triple to that of Hendricks.

Turaev’s conjecture on classification is a direct consequence:

Theorem There is an oriented homotopy equivalence between two PDn –complexes
with .n�2/–connected universal cover if and only if their fundamental triples are
isomorphic.

We prove Turaev’s conjectures on realization and splitting. These are, respectively,
Theorems A and B below. While our approach to Theorem A is a direct generalization
of Turaev’s theorem, our proof applies Baues’ homotopy systems in detail.
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Recall that the group G is of type FPn if and only if the trivial ZŒG�–module Z has a
projective resolution P, with Pj finitely generated for j � n.

Theorem A Let G be a finitely presentable group, ! a cohomology class in
H 1.GIZ=2Z/ and � a homology class in Hn.GIZ!/, with n� 3.

If G is of type FPn�1 , with H i.GI !ZŒG�/ D 0 for 1 < i � n� 1, then .G; !; �/
can be realized as the fundamental triple of a PDn –complex with .n�2/–connected
universal cover if and only if the Turaev map applied to � yields an isomorphism in the
stable module category of ZŒG�.

Theorem B A PDn –complex with .n�2/–connected universal cover decomposes as a
nontrivial connected sum of two such PDn –complexes if only if its fundamental group
decomposes as a nontrivial free product of groups.

Thus, it is enough to investigate PDn –complexes with .n�2/–connected universal
cover whose fundamental group is indecomposable as free product, and we turn to the
analysis of such complexes. Our arguments here exploit the interaction of Poincaré
duality with the Chiswell sequence associated with a graph of groups (see Crisp [8]
and Hillman [15]).

The parity of the dimension n is significant.

When n is odd, indecomposable orientable PDn –complexes are either aspherical or
have virtually free fundamental groups, and the arguments of [15] provide similar
constraints on the latter class of groups. (See Section 7.) However, implementing the
realization theorem may be difficult, and we do not consider this case further.

When n is even there are indecomposable fundamental groups, G, with virtual cohomo-
logical dimension n — vcd G D n — and infinitely many ends. Our strongest results
are for groups which are indecomposable and virtually free.

Theorem C Let X be a PD2k –complex with .2k�2/–connected universal cover,
and such that G D �1.X / is virtually free and indecomposable as a free product. If
G is finite then X ' S2k or RP2k . If G is infinite and has no dihedral subgroup of
order > 2, then G has two ends and its finite subgroups have cohomological period
dividing 2k . Hence, zX ' S2k�1 . If, moreover, X is orientable, then H 1.GIZ/Š Z.

In particular, Theorem C applies to closed 4–manifolds M with �2.M /D 0 and such
fundamental groups. There is no geometric connected sum decomposition theorem for
4–manifolds currently known that corresponds to Theorem B.

Algebraic & Geometric Topology, Volume 18 (2018)



3752 Beatrice Bleile, Imre Bokor and Jonathan A Hillman

There is also a realization result, when G Š F Ì� Z with F finite (that is, when
H 1.GIZ/Š Z).

Theorem D If G Š F Ì� Z, where F is finite, then G D �1.X / for some PD2k –
complex X with zX ' S2k�1 if and only if F has cohomological period dividing 2k

and H2k�1.� IZ/D˙1.

Since putting this paper on arXiv in May 2016 we have learned that Theorem D is a
particular case of Proposition 8 of Golasiński and Gonçalves [10]. The paper [10] also
gives estimates of the number of homotopy types realizing a given fundamental group.
However, we have chosen to retain our independent treatment as it is brief and is a
natural complement to our more substantial results.

In general, it is not known when such a PDn –complex is homotopy equivalent to a
closed n–manifold. (This question leads to delicate issues of algebraic number theory;
see Hambleton and Madsen [12].) There has been extensive research on the mixed-
spherical space form problem, on the fundamental groups of manifolds with universal
covering space Sn �Rk for n; k > 0. A recurring theme is the role of finite dihedral
subgroups. See Hambleton and Pedersen [13] for a survey of recent progress.

The main questions left open by our study of indecomposable, virtually free fundamental
groups are

(a) what happens when G has dihedral subgroups; and

(b) are there examples with D4 D .Z=2Z/2 as a subgroup?

As seems common in topology, there appear to be difficulties associated with 2–torsion!

Section 2 summarizes background material and fixes notation.

Section 3 contains the formulation and proof of the necessity of the condition for the
realization of a fundamental triple by a PDn –complex with .n�2/–connected universal
cover.

Section 4 completes the proof of Theorem A, with the sufficiency of the condition in
Section 3.

Section 5 contains the proof of Theorem B, showing how the fundamental triple detects
connected sums.

Section 6 is an interlude outlining the notion of graphs of groups used subsequently.

Section 7 starts the discussion of indecomposable PDn –complexes with .n�2/–con-
nected universal covers, beginning with Crisp’s centralizer condition.
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In Section 8 we give some supporting results, and construct examples of indecomposable
groups G with infinitely many ends and vcd G D n which are the fundamental groups
of closed n–manifolds with .n�2/–connected universal cover.

In Section 9 we show that finite subgroups of G of odd order are metacyclic.

In Sections 10 and 11 we prove Theorems C and D.

Section 12 concludes by briefly considering possible examples with D4 as a subgroup.

2 Background and notation

This section summarizes background material and fixes notation for the rest of the
paper. Details and further references can be found in [4; 8; 15].

Let ƒ be the integral group ring ZŒG� of the group G. We write I for the augmentation
ideal, the kernel of the augmentation map

augW ƒ! Z;
X
g2G

ngg 7!
X
g2G

ng;

where Z is a ƒ–bimodule with trivial ƒ action. Each cohomology class ! 2
H 1.GIZ=2Z/ may be viewed as a group homomorphism !W G ! Z=2Z D f0; 1g

and yields an anti-isomorphism

(1) W ƒ!ƒ; �D
X
g2G

ngg 7! x�D
X
g2G

.�1/!.g/ngg�1:

Consequently, a right ƒ–module A yields the conjugate left ƒ–module !A, with
action given by

��a WD a:x�

for � 2ƒ and a 2A. Plainly, the conjugate defines a functor from the category of left
ƒ–modules to the category of right ƒ–modules. Similarly, a left ƒ–module B yields
the conjugate right ƒ–module B! . If M is a ƒ–bimodule, then conjugating both the
left and the right ƒ–module structures leads to !M ! , with ƒ–bimodule structure

��x�� WD x�:x:x�:

Given left ƒ–modules Aj and Bi for 1 � i � k and 1 � j � `, we sometimes
write the ƒ–morphism  W

L`
jD1 Aj !

Lk
iD1 Bi in matrix form as Œ ij �k�` for

 ij D pri ı ı inj W Aj ! Bi , where inj is the j th natural inclusion and pri the i th
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natural projection of the direct sum. The composition of such morphisms is given by
matrix multiplication.

If B is a left ƒ–module and M a ƒ–bimodule, then Homƒ.B;M / is a right ƒ–
module with action given by

':�W B!M; b 7! '.b/:�:

The dual of the left ƒ–module B is the left ƒ–module B� D !Homƒ.B; ƒ/. The
construction of the dual defines an endofunctor on the category of left ƒ–modules.

Evaluation defines a natural transformation " from the identity functor to the double
dual functor, where, for the left ƒ–module B ,

"BW B! B�� D !Homƒ.!Homƒ.B; ƒ/;ƒ/; b 7! evb;

with evb defined by
evbW

!Hom.B; ƒ/!ƒ;  7!  .b/:

The left ƒ–module A defines the natural transformation � from the functor A! ˝ƒ –
to the functor Homƒ.!Homƒ. – ; ƒ/;A/, where, for the left ƒ–module B ,

�BW A
!
˝ƒB! Homƒ.B�;A/D Homƒ.!Homƒ.B; ƒ/;A/

is given by
�B.a˝ b/W  7!  .b/:a

for a˝ b 2A! ˝ƒB . Both " and � become natural equivalences when restricted to
the category of finitely generated free ƒ–modules.

The ƒ–morphisms f;gW A1 ! A2 are homotopic if and only if the ƒ–morphism
f �gW A1!A2 factors through a projective ƒ–module P. Associated with ƒ is its
stable module category, whose objects are all ƒ–modules and whose morphisms are
all homotopy classes of ƒ–morphisms. Thus, an isomorphism in the stable module
category of ƒ is a homotopy equivalence of ƒ–modules.

We work in the category of connected, well-pointed CW –complexes and pointed maps.
We write X Œk� for the k –skeleton of X, suppressing the basepoint from our notation.
The inclusion of the k –skeleton into the .kC1/–skeleton induces a homomorphism
�kC1.X

Œk�/! �kC1.X
ŒkC1�/, whose image we denote by �kC1.X /.

From now, we work with the fundamental group G D �1.X / of X and its integral
group ring ƒD ZŒG�. We take X to be a reduced CW –complex, so that X Œ0� D f�g,
and write uW zX !X for the universal cover of X, fixing a basepoint for zX in u�1.�/.
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We write C . zX / for the cellular chain complex of zX viewed as a complex of left
ƒ–modules. Since X is reduced, C0. zX /Dƒ, and the augmentation ideal coincides
with the image of the boundary map C1. zX /! C0. zX /.

The homology and cohomology of X we work with are the abelian groups

Hq.X IA/ WDHq.A˝ƒC . zX //;

H q.X IB/ WDH q
�
Homƒ.C . zX /;B/

�
;

where A is a right ƒ–module and B is a left ƒ–module.

An n–dimensional Poincaré duality complex (PDn –complex) comprises a reduced
connected CW –complex X whose fundamental group �1.X / is finitely presentable,
together with an orientation character ! D !X 2 H 1.�1.X /IZ=2Z/, viewed as a
group homomorphism �1.X /! Z=2Z, and a fundamental class ŒX � 2Hn.X IZ!/

such that, for every r 2 Z and left ZŒ�1.X /�–module M, the cap product with ŒX �,

–a ŒX �W H r .X IM /!Hn�r .X IM
!/; ˛ 7! ˛ a ŒX �;

is an isomorphism of abelian groups. We denote this by .X; !; ŒX �/.

Wall [22; 24] showed that for n> 3, every PDn –complex is standard, meaning that
it is homotopically equivalent to an n–dimensional CW –complex with precisely one
n–cell, whereas a PD3 –complex X is either standard or weakly standard, the latter
meaning that it is homotopically equivalent to one of the form X 0 [ e3 , where e3

is a 3–cell and X 0 is a 3–dimensional CW –complex with H 3.X 0IB/ D 0 for all
coefficient modules B .

In [1], Baues introduced homotopy systems to investigate when chain complexes and
chain maps of free ƒ–modules are realized by CW –complexes.

Take an integer n> 1. A homotopy system of order .nC 1/ comprises

(a) a reduced n–dimensional CW –complex X ;

(b) a chain complex C of free ƒ–modules coinciding with C . zX / in degree q

for q � n;

(c) a homomorphism fnC1W CnC1! �n.X / with fnC1 ı dnC2 D 0 such that the
diagram

CnC1 �n.X /

Cn �n.X;X
Œn�1�/

fnC1

dnC1 j

hn

Algebraic & Geometric Topology, Volume 18 (2018)
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commutes, where j is induced by the inclusion .X;�/! .X;X Œn�1�/, and

hnW �n.X;X
Œn�1�/

Š

u�1
���! �n. zX ; zX

Œn�1�/
Š

h
�!Hn. zX ; zX

Œn�1�/

is the Hurewicz isomorphism h composed with u�1
� , the inverse of the isomor-

phism induced by the universal covering map.

3 Formulation and necessity of the realization conditions

For our generalization of Tuarev’s realization condition to PDn –complexes with n� 3,
we introduce a set of functors from the category of chain complexes of projective left
ƒ–modules to the category of left ƒ–modules.

Given f W C !D, a map of chain complexes of projective left ƒ–modules C and D,
put Tq.C / WD coker.dC

qC1
W CqC1 ! Cq/ D Cq= im.dC

qC1
/ and let Tq.f / be the

induced map of cokernels

im.dC
qC1

/ Cq Tq.C /

im.dD
qC1

/ Dq Tq.D/

fq 9! Tq.f /

Direct verification shows that each Tq is a functor from the category of chain complexes
of left ƒ–modules to the category of left ƒ–modules.

By Lemma 4.2 in [4], chain-homotopic maps f ' gW C ! D induce homotopic
maps Tq.f /' Tq.g/, that is, Tq.f /�Tq.g/ factors through a projective ƒ–module.
Hence, for each q 2 Z, Tq induces a functor from the category of chain complexes
of projective left ƒ–modules and chain homotopy classes of chain maps to the stable
module category of ƒ.

Let X be a PDn –complex with n � 3, and let ƒD ZŒ�1.X /�. By Remark 2.3 and
Lemma 3.6 in [2], we may assume that X DX 0[ en is standard (or weakly standard
if nD 3) with

Cn. zX /D Cn. zX 0/˚ƒe;

where e corresponds to en , the element 1˝ e 2Z!˝ƒCn. zX / is a cycle representing
the fundamental class ŒX � of X, and e is a generator of Cn. zX /.
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Writing Fq for Tq.
!Homƒ. –; ƒ//, Poincaré duality, together with Lemma 4.3 in [4],

provides the homotopy equivalence of ƒ–modules

T�nC1. –a .1˝ e//W Fn�1.C . zX //! T1.C . zX //:

Construct the .n�2/–type P DPn�2.X / of X by attaching to X cells of dimension n

and higher. Then the Postnikov section pW X ! P is the identity on the .n�1/–
skeleta and Ci. zX / D Ci. zP / for 0 � i < n. Composing with the isomorphism
� W T1.C . zX // ! I, Œc� 7! d1.c/, we obtain the homotopy equivalence of left ƒ–
modules

(2) � ıT�nC1. –a .1˝ e//W Fn�1.C . zP //! I:

We next construct the Turaev map, which sends the image of the fundamental class
of X in the homology of the Postnikov section to the homotopy class of the homotopy
equivalence (2).

Let C be a chain complex of free left ƒ–modules. We write xI for the image of the
augmentation ideal I under the anti-isomorphism (1). This gives rise to the short
exact sequence of chain complexes 0! xIC !C ! Z! ˝ƒC ! 0, with associated
connecting homomorphism ır W Hr .Z! ˝ƒC /!Hr�1.xIC /.

The set of homotopy classes of module morphisms A!B , written ŒA;B�, is naturally
a group and it is straightforward (see [3]) to verify that

y�C ;r W Hr .xIC /! ŒF r .C /; I �; Œ�:c� 7! ŒF r C ! I; Œ'� 7! '.�:c/�;

is a homomorphism of groups. Composing y�C ;r�1 with ır yields the Turaev map

�C ;r W Hr .Z
!
˝ƒC /! ŒF r�1.C /; I �:

Lemma 1 �
C . zP/;n

.p�.ŒX �//D Œ� ıT�nC1. –a .1˝ e//�:

Proof Take a diagonal

�W C . zX /!C . zX /˝Z C . zX /

and a chain homotopy ˛W C . zX /! C . zX / such that id� .id˝ aug/� D d˛C ˛d ,
where we have identified C ˝Z Z with C. Let

�e D e˝�C
X
`

X
0�i<n

x`;i ˝y`;n�i :

Direct calculation shows that eD aug.�/eC˛de . Since Œ1˝e� generates the homology
Hn.X IZ!/Š Z, this yields Œ1˝ e�D Œaug.�/˝ e�, whence aug.�� 1/D 0. Hence,
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� � 1 2 I D im.d1/, or � D 1C d1.c1/ for some c1 2 C1. zX /. Thus, given ' 2
Homƒ.Cn. zX /;ƒ/,

' a .1˝ e/D '.e/.1C d1.c1//:

By direct calculation,�
� ıT�nC1. –a .1˝ e//

�
.Œ'�/D '.dn.e//.1C d1.c1//

and
�

C . zP/;n
.p�.ŒX �//.Œ'�/D y�C . zP/;n

.Œdn.e/�/.Œ'�/:

Hence, by definition, �
C . zP/;n

.p�.ŒX �// is represented by the ƒ–morphism

Fn�1.C . zP //! I; Œ'� 7! '.dn.e//:

To conclude the proof, note that Fn�1.C . zP //! I , Œ'� 7! '.dn.e//:d1.c1/, factors
through C1.X / and is thus null-homotopic.

As � ı T�nC1. – a .1˝ e// is a homotopy equivalence of ƒ–modules, Lemma 1
provides a necessary condition for realization.

Theorem 2 Let P be an .n�2/–type. Take ! 2H 1.P IZ=2Z/ and � 2Hn.P IZ!/.
Then .P; !; �/ is the fundamental triple of a PDn –complex only if �

C . zP/;n
.�/ is a

homotopy equivalence of left ƒDZŒ�1.P /�–modules.

Proof Let P be an .n�2/–type. Take ! 2 H 1.P IZ=2Z/ and � 2 Hn.P IZ!/.
Suppose that .P; !; �/ is the fundamental triple of the PDn –complex X. If P 0 is an
.n�2/–type obtained by attaching to X cells of dimension n and higher, then there is
a homotopy equivalence f W P ! P 0 with f�.�/D i�.ŒX �/, where i W X ! P 0 is the
inclusion. By Lemma 1,

�
C . zP 0/;n

.i�ŒX �/D Œ� ıT�nC1. –a .1˝ e//�

and hence �
C . zP/;n

.�/ are homotopy equivalences of ƒ–modules.

Let X now be a PDn –complex with .n�2/–connected universal cover. The .n�2/–
type of X is an Eilenberg–Mac Lane space K.�1.X /; 1/, and we may identify the
fundamental triple of X with .�1.X /; !; �/, where � is the image of ŒX � in the group
homology of �1.X /.

Lemma 3 Let .X; !; ŒX �/ be a PDn –complex with .n�2/–connected universal cover.
Then �1.X / is FPn�1 , and H i.�1.X /I

!ƒ/D 0 for all 1< i � n� 1.
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Proof Since X is a PDn –complex, it is finitely dominated, and so is homotopy
equivalent to a complex with finite .n�1/–skeleton. Thus, we may assume that X Œn�1�

is finite. We construct an Eilenberg–Mac Lane space K DK.�1.X /; 1/ from X by
attaching cells of dimension n and higher. As the universal cover zX of X is .n�2/–
connected, the cellular chain complexes of the universal covers zX and zK coincide in
degrees below n, that is, Ci. zX /D Ci. zK/ for 0� i < n. In particular, these modules
are finitely generated, and so �1.X / is FPn�1 .

Moreover, for 1< i � n� 1,

H i.�1.X /I
!ƒ/DH i.X I !ƒ/ŠHn�i.X Iƒ/D 0:

We note for later reference that

�n�1. zX /ŠHn�1. zX IZ/Š
!H 1.GIZŒG�/;

by Hurewicz’s theorem and Poincaré duality, respectively.

Necessary conditions for realization are a corollary to Lemma 3 and Theorem 2.

Corollary 4 (conditions for realizability) Let G be a group. Take !2H 1.GIZ=2Z/

and � 2Hn.GIZ!/. If .G; !; �/ is the fundamental triple of a PDn –complex with
.n�2/–connected universal cover, then G is a finitely presentable group of type FPn�1 ,
H i.GI !ƒ/ D 0 for 1 < i � n � 1 and �

C . zK /;n
.�/ is a homotopy equivalence of

ƒD ZŒG� modules.

4 Sufficiency of the realization condition

We now establish the sufficiency of the realization conditions in Corollary 4.

Let G be a finitely presentable group of type FPn�1 , with n � 3. Let K0 be an
Eilenberg–Mac Lane space of type .G; 1/ with universal cover zK0 ! K0 . Identify
the (co)homologies of G and K0 . Choose ! 2 H 1.GIZ=2Z/ and suppose that
H i.GI !ƒ/D 0 for 1 < i � n� 1, where ƒD ZŒG�. Finally, take � 2Hn.GIZ!/,
with �

C . zK 0/;n
.�/ a class of homotopy equivalences of ƒ–modules.

We construct a PDn –complex X with .n�2/–connected universal cover and funda-
mental triple .G; !; �/.

By the hypotheses on G, we may assume that K0 has been chosen with finitely many
cells in each dimension below n.
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Let hW Fn�1.C . zK0//! I be a representative of �
C . zK 0/;n

.�/. Then h is a homotopy
equivalence of ƒ–modules. By Theorem 4.1 and Observation 1 in [4], h factors as

Fn�1.C . zK0//� Fn�1.C . zK0//˚ƒm� I ˚P� I

for some projective ƒ–module, P, and m 2N . Let B D .e0[ en�1/[ en be the n–
dimensional ball and replace K0 by the Eilenberg–Mac Lane space KDK0_

�Wm
iD1 B

�
.

Then Fn�1.C . zK//D Fn�1.C . zK0//˚ƒm and the factorization of h becomes

hW Fn�1.C . zK//
j� I ˚P

prI��� I

with j surjective. Consider the ƒ–morphism ' given by the composition

C n�1. zK/D !Homƒ.Cn�1. zK/;ƒ/
p
�� Fn�1.C . zK//

j� I ˚P

�
i 0
0 id

�
���!ƒ˚P;

where p is the projection onto the cokernel and i W I � ƒ the inclusion. Since
Fn�1.C . zK//D C n�1. zK/= im.d�

n�1
/ by definition, ' ı d�

n�1
D 0. As Cn�1. zK/ is a

finitely generated free ƒ–module, the natural map

!"W Cn�1. zK/! Cn�1. zK/
��

is an isomorphism. Define

dn WD .
!"/�1

ı'�W .ƒ˚P /�! Cn�1. zK/:

It follows from the naturality of !" that dn�1 ı dn D 0.

We first consider the case when P is free, so that P Š ƒq for some q 2 N and
ƒ˚P ŠƒqC1 .

Since zKŒn�1� is .n�2/–connected, the Hurewicz homomorphism

hqW �q. zK
Œn�1�/!Hq. zK

Œn�1�/

is an isomorphism for q � n� 1 and we obtain the map

'0W ƒqC1
Š .ƒ˚P /�! ker.dn�1/DHn�1. zK

Œn�1�/
h�1

n�1
��! �n�1. zK

Œn�1�/;

x 7! h�1
n�1.Œdn.x/�/:

Let C be the chain complex of ƒ–modules

ƒqC1
Š .ƒ˚P /�

dn
�! Cn�1. zK

Œn�1�/
dn�1
��! � � � ! C1. zK

Œn�1�/!ƒ:

Then Y D .C ; '0;KŒn�1�/ is a homotopy system of order n. As Ci D 0 for i > n,
H nC2.Y I�nY / D 0 and, by Proposition 8.3 in [2], there is a homotopy system
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.C ; 0;X / of order nC 1 realising Y , with X an n–dimensional CW –complex. By
construction, C . zX /D C and the universal cover of X is .n�2/–connected. Since
X Œn�1� DKŒn�1� and �q.K/D 0 for all q > 1, the inclusion i W KŒn�1�!K extends
to a map

f W X !K DK.G; 1/

and we may take ! 2H 1.KIZ=2Z/ to be an element of H 1.X IZ=2Z/.

Proposition 5 X is a PDn –complex with fundamental triple .G; !; �/, that is,

(i) ZŠHn.X IZ!/D hŒX �i;

(ii) f�.ŒX �/D �;

(iii) –a ŒX �W H r .X I !ƒ/!Hn�r .X Iƒ/ is an isomorphism for every r 2 Z.

Proof (i) As C . zX /DC is a chain complex of finitely generated free ƒ–modules,
the natural map

�C W Z
!
˝ƒC ! Homƒ.!Homƒ.C ; ƒ/;Z/

is an isomorphism. Hence, writing �C for the morphism Homƒ.B;Z/!Homƒ.A;Z/
induced by �W A! B , we obtain

Hn.X IZ
!/D ker.1˝ dn/Š ker.'C/

for 'W !Homƒ.Cn�1. zK
Œn�1�/;ƒ/!ƒ˚ƒq defined above.

Since both p and j are surjective, both pC and jC are injective, whence

ker.'C/D ker
���

i 0

0 id

�
ıj ıp

�C �
D ker

��
i 0

0 id

�C �
D ker

��
iC 0

0 id

��
Š ker.iC/:

But I is generated by elements 1� g for g 2 G and . ı i/.1� g/ D 0 for  2
Homƒ.ƒ;Z/. Hence,

ker.'C/Š Homƒ.ƒ;Z/Š Z;

generated by aug ı prƒW ƒ˚ƒ
q! Z, the projection onto the first factor followed by

the augmentation map.

Let ŒX � D Œ1˝ x� 2 Hn.X IZ!/ be the homology class corresponding to aug ı prƒ
under the isomorphism Hn.X IZ!/D ker.1˝ dn/Š ker.'C/Š Homƒ.ƒ;Z/. Then
x 2 .ƒ˚ƒq/� is projection onto the first factor.
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(ii) By the proof of Lemma 1, �
C . zX /;n

.ŒX �/ is represented by

Fn�1.C . zX //! I; Œ � 7!  .dn.x//:

Thus, given  2 Cn�1. zX /
� D Cn�1. zK/

� ,

 .dn.x//D  .!"�1.x ı'//

D
!".!"�1.x ı'//. /

D .x ı'/. /

D

�
x ı

�
i 0

0 id

�
ı j ıp

�
. /

D .i ı prI ı j /.Œ �/

D h.Œ �/:

Hence, �
C . zX /;n

.ŒX �/ is the homotopy class of h, so that

�
C . zK /;n

.�/D �
C . zX /;n

.ŒX �/D �
C . zK /;n

.f�.ŒX �//:

By Lemma 2.5 in [21], �
C . zK /;n

is injective, whence �D f�.ŒX �/.

(iii) First consider 1� i < n� 1. Then Hi.X Iƒ/DHi.K
Œn�1�Iƒ/D 0.

By the definition of ' ,

H n�1.X I !ƒ!/D 0:

Moreover, by hypothesis,

H n�i.X Iƒ!/DH n�i.KŒn�1�
I ƒ!/ŠH n�i.GIƒ!/D 0

for 1< i < n� 1. Thus,

–a .1˝ ŒX �/W H n�i.X I !ƒ/!Hi.X Iƒ/

is an isomorphism for 1� i < n� 1.

Next consider i D 0. As P and ƒ˚P are free, C . zX / is a chain complex of free ƒ–
modules. Since the (twisted) evaluation map from a finitely generated free ƒ–module
to its double dual is an isomorphism,

H n.X I !ƒ/D !Homƒ.Cn. zX /;
!ƒ/= im.'�/� D .ƒ˚P /��= im.'�/�

Š .ƒ˚P /= im.'/Šƒ=I Š Z:
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The class Œ � of the image of .1; 0/2ƒ˚P under the (twisted) evaluation isomorphism
generates H n.X I !ƒ/ and so, by Lemma 4.4 of [4],

Œ �a ŒX �D Œ �a Œ1˝x�D Œ .x/:e0�D Œe0�;

where e0 2 C0. zX / is a chain representing the basepoint. Thus,

–a ŒX �W H n.X I !ƒ/!H0.X Iƒ/

is an isomorphism.

Finally, note that by the above, –a .1˝x/ yields the chain homotopy equivalence

im d�
n�1

im d2

Cn�1. zX /
�

C1. zX /

Cn. zX /
�

C0. zX /

–a.1˝x/ –a.1˝x/

Applying the functor !Homƒ. – ; ƒ/, we obtain the chain homotopy equivalence
. –a .1˝x//� , inducing isomorphisms

. –a ŒX �/�W H 0.X I !ƒ/!Hn.X Iƒ/;

. –a ŒX �/�W H 1.X I !ƒ/!Hn�1.X Iƒ/:

By Lemma 2.1 in [4], . – a .1˝ x//� induces an isomorphism in homology if and
only if –a .1˝x/ does, whence

–a ŒX �W H 0.X I !ƒ/!Hn.X Iƒ/;

–a ŒX �W H 1.X I !ƒ/!Hn�1.X Iƒ/

are isomorphisms.

Suppose now that P is projective, but not free.

Then there are a finitely generated ƒ–module Q and a natural number q such that
P�˚QŠƒq . The natural isomorphisms

.ƒ˚P /�˚ƒ1Šƒ�˚P�˚.Q˚P�˚� � � /Šƒ˚.P�˚Q˚P�˚Q˚� � � /Šƒ1

show that .ƒ˚P /�˚ƒ1 is a free ƒ–module.

Consider the chain complex D given by

0! .ƒ˚P /�˚ƒ1

�
dn 0
0 id

�
�����! Cn�1. zK

Œn�1�/˚ƒ1
Œdn�1 0 �
�����! Cn�2. zK

Œn�1�/

dn�2
��! Cn�3. zK

Œn�1�/! � � � :
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We attach infinitely many n–balls to KŒn�1� to obtain a CW –complex, K0 , whose cel-
lular chain complex coincides with D in dimensions below n. Then zK0Œn�1� is .n�2/–
connected, and the Hurewicz homomorphisms hqW �q. zK0

Œn�1�
/!Hq. zK0

Œn�1�
/ are

isomorphisms for q � n� 1. Defining the map

'0W .ƒ˚P /�˚ƒ1! ker.dn�1/DHn�1. zK0
Œn�1�

/
h�1

n�1
��! �n�1. zK0

Œn�1�
/;

x 7! h�1
n�1.Œdn.x/�/;

we obtain the homotopy system Y 0D .D; '0;K0Œn�1�/ of order n. As DiD 0 for i >n,
yH nC2.Y 0I�nY 0/ D 0. By Proposition 8.3 in [2], there is then a homotopy system
.C ; 0;X 0/ of order nC 1 realising Y 0, with X 0 an n–dimensional CW –complex.

Note that D, the chain complex of X 0, is chain homotopy equivalent to the chain
complex W given by

� � �!P�˚Q

�
id 0
0 0

�
���!P�˚Q

�
0 0
0 id

�
���!P�˚Q

h
0 0
0 0
0 id

i
���! .ƒ˚P /�˚Q

�
dn

0

�
���!Cn�1. zK

Œn�1�/

dn�1
��! Cn�2. zK

Œn�1�/
dn�2
��! Cn�3. zK

Œn�1�/! � � � :

By Theorem 2 of [23], there is a CW –complex X, with cellular chain complex W ,
homotopy equivalent to X 0 . Since W is finitely generated in each degree, the proof
that X realizes .G; !; �/ is analogous to the proof of Proposition 5.

This completes the proof of Theorem A.

5 Decomposition as connected sum

Wall constructed a new PDn –complex from given ones using the connected sum of PDn –
complexes (see [24]). This allows PDn –complexes to be decomposed as connected
sums of other, simpler PDn –complexes.

Take PDn –complexes .Xk ; !k ; ŒXk �/ for k D 1; 2. Then we may express Xk as the
mapping cone

Xk DX 0k [fk
en

k

for suitable fk W S
n�1!X 0

k
. Here, X 0

k
is an .n�1/–dimensional CW –complex when

n> 3, and when nD 3, X 0
k

is 3–dimensional with H 3.X 0
k
IB/D 0 for all coefficient

modules B . For k D 1; 2, let �k W X 0k!X 0
1
_X 0

2
be the canonical inclusion of the k th

summand and put
yfk WD �k ıfk W S

n�1
!X 01 _X 02;
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so that yfk determines an element of �n�1.X
0
1
_X 0

2
/. Let f1Cf2W S

n�1!X 0
1
_X 0

2

represent the homotopy class Œ yf1�C Œ yf2�. Then the connected sum X DX1 #X2 of X1

and X2 is the mapping cone of f1Cf2 :

X1 # X2 WD .X
0
1 _X 02/[f1Cf2

en:

It follows from the Seifert–van Kampen theorem that

(3) �1.X /D �1.X1/��1.X2/:

The canonical inclusion ink W �1.Xk/! �1.X / induces a (left or right) ZŒ�1.Xk/�–
module structure on any (left or right) ƒD ZŒ�1.X /�–module. In particular, ƒ is a
�1.Xk/–bimodule. By the universal property of the free product, the group homomor-
phisms !Xk

D in�k.!X / uniquely determine a group homomorphism !X W �1.X /!

Z=2Z. For k D 1; 2, let Lk be the functor ƒ˝ZŒ�1.Xk/� – .

Let B be the subcomplex of C . zX / containing the n–cells over the n–cell of X

attached by f1Cf2 . Then B is a Poincaré duality chain complex [2, page 2361] and
it follows from Theorem 2.3 of [4] that Lk.C . zXk// is also a Poincaré duality chain
complex.

Let x denote the chain representing the n–cell attached by f1Cf2 . Repeated applica-
tion of Theorem 2.3 of [4] shows that L1.C . zX1//CL2.C . zX2// is a Poincaré duality
chain complex. Hence, .X; !X ; Œ1˝ x�/ is a Poincaré duality complex. This is the
connected sum of .X1; !X1

; ŒX1�/ and .X2; !X2
; ŒX2�/, introduced by Wall [24].

Theorem B A PDn –complex with .n�2/–connected universal cover decomposes
as a nontrivial connected sum if and only if its fundamental group decomposes as a
nontrivial free product of groups.

Proof Suppose the PDn –complex, X, is the nontrivial connected sum of the PDn –
complexes, X1 and X2 . Then, by (3), its fundamental group is the nontrivial free
product of the fundamental groups of X1 and X2 .

For the converse, let .X; !X ; ŒX �/ be a PDn –complex with .n�2/–connected universal
cover and with �1.X /DG DG1 �G2 for nontrivial groups G1 and G2 . As �1.X /

is finitely presentable, so are G1 and G2 . For j D 1; 2, let Kj D K.Gj I 1/ be an
Eilenberg–Mac Lane space with finite 2–skeleton. Then K1 _K2 is an Eilenberg–
Mac Lane space K.G1 �G2I 1/, and

Hn.KIZ
!/DHn.K1IZ

!1/˚Hn.KnIZ
!2/;
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where !j 2H 1.Kj IZ=2Z/ for j D 1; 2 is the restriction of the orientation character
! 2H 1.KIZ=2Z/. Thus, �X D �1C�2 , with �j 2Hn.Kj IZ!j / for j D 1; 2.

By the discussion above, if the PDn –complex Xj , with .n�2/–connected universal
cover realizes the fundamental triple .Gj ; !j ; �j /, then the connected sum of X1

and X2 realizes the fundamental triple of X, whence, by the classification theorem
in [2], X is orientedly homotopy equivalent to X1 # X2 . Hence, it is sufficient to
construct realizations of .Gj ; !j ; �j / for j D 1; 2.

Let Sj be the functor ƒ˝ZŒGj � –, so that, for i � 1,

Ci. zK/D S1.Ci. zK1//˚S2.Ci. zK2//:

It follows that

Fn�1.C . zK//D S1

�
Fn�1.C . zK1//

�
˚S2

�
Fn�1.C . zK2//

�
and

I.�1.X //D S1.I.G1//˚S2.I.G2//;

where the canonical inclusion is given by

Sj .I.Gj //! I.G1 �G2/; � ˝� 7! ��;

for � 2 ZŒ�1.X /� and � 2 I.G1 �G2/ viewed as an element of I.�1.X //.

Let
'j W F

n�1.C . zKi//! I.Gj /

be a ZŒGj �–morphism representing the class �
C. zKj /;n

.�j /. Then the class, �
C. zK /;n

.�/

of homotopy equivalences is represented by

S1

�
Fn�1.C . zK1//

�
˚S2

�
Fn�1.C . zK2//

�
S1.'1/˚S2.'2/

��

Fn�1.C . zK//

S1.I.G1//˚S2.I.G2// I.G1 �G2/

and it follows from the proof of the analogous proposition for nD3 [21, pages 269–270]
that 'j is a homotopy equivalence of modules. By Theorem A, .Gj ; !j ; �j / is realized
by a PDn –complex Xj with .n�2/–connected universal cover.

As in [21], Theorem B implies that when �1.X / is torsion-free the indecomposable
summands of X are either aspherical or copies of Sn�1 �S1 or Sn�1 z�S1 , where
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Sk z� S1 is the mapping cylinder of an orientation-reversing self-homeomorphism
of Sk .

In the next sections we shall consider what may happen when we allow �1.X / to have
torsion.

6 An interlude on graphs of groups

Our arguments in the second part of this paper use the notion of graph of groups, for
which our main references are [9; 18]. In particular, we rely on the fact that every
finitely presentable group is accessible: it is the fundamental group of a finite graph
of groups in which all edge groups are finite and all vertex groups are either finite or
have one end. (See Theorem VI.6.3 of [9].) A graph of groups .G; �/ consists of a
graph � with origin and target functions o and t from the set of edges E D E.�/

to the set of vertices V D V .�/, and a family G of groups Gv for each vertex v and
subgroups Ge �Go.e/ for each edge e , with monomorphisms �eW Ge!Gt.e/ . (We
shall usually suppress the maps �e from our notation.) All edges are oriented, but we
do not use this, and in considering paths or circuits in � we shall not require that the
edges be compatibly oriented. The fundamental group of .G; �/ is the group �G with
presentation˝
Gv; te 8v 2 V .�/; e 2E.�/ j tegt�1

e D �e.g/ 8g 2Ge; e 2E.�/;

tf D 1 8f 2E.‡/
˛
;

where ‡ is some maximal tree for � . The generator te is the stable letter associated
to the edge e . Different choices of maximal tree give isomorphic groups. We may
assume that .G; �/ is reduced: if an edge joins distinct vertices then the edge group is
isomorphic to a proper subgroup of each of these vertex groups. If �G is indecompos-
able as a free product then .G; �/ is indecomposable: all edge groups are nontrivial.
An edge e is a loop isomorphism at v if o.e/D t.e/D v and the inclusions induce
isomorphisms Ge ŠGv . It is an MC-tie if o.e/¤ t.e/ and Ge has index 2 in each of
Go.e/ and Gt.e/ . (We shall give the motivation for this name later.)

In an alternative formulation, the graph of groups .G; �/ determines a tree T on
which �G acts, such that the stabilizers of edges are the conjugates of the edge groups
and the stabilizers of the vertices are the conjugates of the vertex groups. A �G–tree T

is terminal if each edge stabilizer is finite and each vertex stabilizer is finite or has
one end. If .G; �/ is reduced, the corresponding �G–tree T is incompressible in
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the terminology of [9]. If G is a finitely generated accessible group then there is
an essentially unique incompressible terminal G–tree, by Proposition IV.7.4 of [9].
Following [8], we shall say that a vertex of T is finite or infinite if its stabilizer in �G
is finite or infinite, respectively. Let Vf be the subset of vertices v such that Gv is
finite. Every finite subgroup of �G fixes a vertex of T , by Corollary I.4.9 of [9], and
so is conjugate to a subgroup of Gv for some v 2 V . (See Proposition I.7.11 of [9].)
Thus vertex subgroups are maximal finite subgroups of �G .

The two most important special cases are when � has a single edge e . If the vertices are
distinct then �GŠA�C B is the generalized free product of ADGo.e/ and BDGt.e/

with amalgamation over C D Ge . If o.e/ D t.e/ then �G Š A�' is the HNN
extension with base ADGo.e/ , associated subgroups Ge and �e.Ge/ and characteristic
isomorphism ' D �e .

If � is a subgroup of finite index in �G and T is a terminal �G–tree then the stabilizers
of the natural action of � on T are finite or one-ended. Hence, � is the fundamental
group of a finite graph of groups .G� ; �� /, where �� D �nT projects naturally onto � .
However, if � is a proper subgroup of �G then .G� ; �� / need not be reduced or
indecomposable.

A finitely generated group is virtually free if and only if it is the fundamental group
of a finite graph of finite groups. (See Corollary IV.1.9 of [9].) It is virtually Z if
and only if it has two ends if and only if it has a (maximal) finite normal subgroup F

such that the quotient is infinite cyclic or is isomorphic to the infinite dihedral group
D1 D Z=2Z�Z=2Z. (See pages 129–130 of [9].)

If H is a subgroup of a group G, let CG.H / and NG.H / denote the centralizer and
normalizer of H in G, respectively. If x 2G , let hxi be the cyclic subgroup generated
by x , and let CG.x/D CG.hxi/.

Lemma 6 Let .G; �/ be a reduced finite graph of groups in which all edge groups
are finite and all vertex groups are either finite or have one end. If an edge e is a loop
isomorphism or an MC-tie then N�G.Ge/ is infinite. If a vertex group Gv is finite then
N�G.Gv/ is infinite if and only if there is a loop isomorphism at v .

Proof If e is a loop isomorphism at v then the stable letter te associated with the
edge normalizes Ge DGv . If e is an MC-tie with ends u and v then Ge is normal in
each of Gu and Gv . Hence, if ˛ 2Gu nGe and ˇ 2Gv nGe then ˛ˇ is an element of
infinite order in N�G.Ge/.
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Suppose that Gv is finite and N�G.Gv/ is infinite. The fixed-point set of the action
of Gv on a terminal �G–tree is a nonempty subtree which is preserved by N�G.Gv/.
Since N�G.Gv/ is infinite this subtree must have a nontrivial edge, with image e in �
having v as one vertex. Then Ge DGv , since this edge is fixed by Gv , and so e must
be a loop isomorphism at v , since G is reduced.

Let .G; �/ be a graph of groups in which all edge groups are finite and all vertex groups
are either finite or have one end. There is an associated “Chiswell” exact sequence of
right ZŒ�G�–modules

0!
M
v2Vf

ZŒGvn�G� ��!
M
e2E

ZŒGen�G�!H 1.�GIZŒ�G�/! 0;

in which the image of a coset Gvg of Gv in �G under � is

�.Gvg/D
X

o.e/Dv

� X
Geh�Gv

Gehg

�
�

X
t.e/Dv

� X
Geh�Gv

Gehg

�
:

The outer sums are over edges e and the inner sums are over cosets of Ge in Gv .
(This follows from part (1) of Theorem 2 of [7], with i D 0, for if G < � then
H 0.GIZŒ��/ Š ZŒGn�� if G is finite and is 0 if G is infinite. The extreme terms
in the sequence in the cited theorem are 0, since the vertex groups are finite or one-
ended.) If C is a finite subgroup of G then the summands ZŒGvn�G� and ZŒGen�G�
are themselves direct sums of permutation modules, when considered as right ZŒC �–
modules.

7 The centralizer condition of Crisp

In the remainder of this paper we shall consider indecomposable PDn –complexes with
.n�2/–connected universal covers. The arguments of [8] for the case n D 3 apply
equally well in higher dimensions. When n is odd they imply that the indecomposable
PDn –complexes of this type are either aspherical or have virtually free fundamental
group. Theorem 17 of [8] leads to strong constraints on the possible groups when the
fundamental group is virtually free, as in [15]. The consequences are different when n

is even. In particular, there may be no simple characterization of the indecomposables.
However, if the PDn –complex is indecomposable and its fundamental group is virtually
free then in all known cases the fundamental group either has two ends or has order � 2.
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Let X be an indecomposable PDn –complex with .n�2/–connected universal cover,
and let GD�1.X / and !Dw1.X /. Let GCDKer.!/ and let XC be the correspond-
ing orientable covering space. Since G is finitely presentable, it is the fundamental
group of a finite graph of groups .G; �/, where all vertex groups are finite or have one
end and all edge groups are finite, by Theorem VI.6.3 of [9]. Since G is indecomposable
as a proper free product, by Theorem B, all edge groups are nontrivial.

The first nontrivial higher homotopy group of X is �n�1.X /. As observed in Section 3,
this is isomorphic to Hn�1. zX IZ/ and then to !H 1.GIZŒG�/, by the Hurewicz theo-
rem and Poincaré duality, respectively. A homological argument by devissage gives
isomorphisms

Hs.C I
!H 1.GIZŒG�//ŠHs.C IHnC1. zX IZ//ŠHsCn.C IZ/

for all subgroups C �G and all s�1. (See Lemma 2.10 of [14].) The work in [8] relates
these homological properties of H 1.GIZŒG�/ to the presentation of H 1.GIZŒG�/ via
the Chiswell exact sequence, when nD 3. We shall see that this connection extends to
all dimensions n, with due consideration of the parity of n.

Suppose first that n is odd, and that C is a finite cyclic subgroup of G D �1.X /.
Then HnC1.C IZ/D 0 and HnC2.C IZ/Š C . The arguments of Theorems 14 and 17
of [8] extend immediately to show that (i) if X is orientable and indecomposable
then either X is aspherical or G is virtually free; and (ii) if g 2 G has prime order
p > 1 and CG.g/ is infinite then p D 2, w.g/D �1 and CG.g/ has two ends. We
may then apply the analysis of [15] to further constrain the possibilities. However,
implementing the realization theorem may be difficult, since it involves the module
Fn�1.C. zK//D coker.d�

n�2
/. As there is no algorithm for computing the homology

of a finitely presentable group in degrees > 1 [11], there may be no algorithm to
provide an explicit matrix for dn�2 if n> 3, in general. This may not be a problem
when G is virtually free. In particular, is S3 �Z=2Z S3 the fundamental group of a
PD2kC1 –complex with .2k�1/–connected universal cover for any k > 1? (It is the
group of a finite PD3 –complex [15].)

When n is even and C is finite cyclic, HnC1.C IZ/Š C and HnC2.C IZ/D 0. In
this case, Lemma 2.10 of [14] gives

H1.C I
!H 1.GIZŒG�//ŠHnC1.C IZ/Š C:

Let T be a terminal G –tree, with e.T / ends and1.T / vertices with infinite stabilizers,
and let �.T /D e.T /C1.T /� 1. If g 2 G has prime order then (since n is even)
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Remark 13 of [8] gives either

!.g/D 1 and �.T hgi/D 1

or
!.g/D�1 and �.T hgi/D�1:

(The G–tree T is denoted by X in [8]). The argument of Theorem 17 of [8] then
gives the following:

Theorem 7 Let X be an indecomposable PDn –complex with .n�2/–connected
universal cover, and let G D �1.X / and ! D w1.X /. If n is even, x 2G has order
m> 1 and CG.x/ is infinite, then CG.x/ is virtually Z and either !.x/D 1 or 4jm.
Moreover, no conjugate of x is in any infinite vertex group.

Proof If g 2 G has prime order p and !.g/D �1 then p D 2 and �.T hgi/D �1.
Hence, g does not fix any end or infinite vertex, and so T hgi is a nonempty finite
tree with all vertices finite. Since CG.g/ leaves T hgi invariant, it is finite. Hence, if
CG.g/ is infinite then !.g/DC1 and �.T hgi/D 1. As in [8], it follows that g fixes
a ray ."; "0/, but fixes no infinite vertex, and CG.g/ is virtually Z.

Suppose now that x 2G has finite order m and CG.x/ is infinite. If mD 2k then xk

has order 2 and CG.x/� CG.x
k/, so CG.x

k/ is infinite. Hence, !.xk/D 1, and so
either !.x/D 1 or 4jm.

If p is a prime factor of m then xm=p has order p , and so does not fix any infinite
vertex of T . Hence, the same is true of x , and so no conjugate of x is in any infinite
vertex group.

We shall apply Theorem 7 together with the normalizer condition — a proper subgroup
of a nilpotent group is properly contained in its normalizer [17, Proposition 5.2.4] —
and the next lemma.

Lemma 8 Let G be a group with a finite subgroup C.

(1) CG.C / has finite index in NG.C /.

(2) If G has a subgroup isomorphic to A�C B and NG.C / is finite or has two ends,
then either NA.C /D C or NB.C /D C or ŒNA.C / WC �D ŒNB.C / WC �D 2.

(3) If G has a subgroup isomorphic to A�C ' and NG.C / is finite or has two ends,
then either NA.C /D C or NA.'.C //D '.C / or

ŒNA.C / WC �D ŒNA.'.C // W'.C /�D 2:

Algebraic & Geometric Topology, Volume 18 (2018)



3772 Beatrice Bleile, Imre Bokor and Jonathan A Hillman

Proof The first assertion is clear, since Aut.C / is finite.

For the second assertion, we may assume that G D A �C B . The image of the
subgroup generated by NA.C / [NB.C / in the quotient NG.C /=C is isomorphic
to NA.C /=C �NB.C /=C. Hence, if NG.C / is finite then either NA.C / D C (and
NB.C / is finite) or NB.C /D C (and NA.C / is finite). If NG.C / has two ends then
so does NG.C /=C, and so NA.C /=C DNB.C /=C D Z=2Z.

If G has a subgroup isomorphic to A �C ' and t is the stable letter of the HNN
extension, let B D tAt�1 . Then G has a subgroup isomorphic to A �C B , where
C �A is identified with '.C /D tC t�1 � B , and so (3) follows from (2).

Lemma 9 Let .G; �/ be a reduced finite graph of groups. If e is an edge such that
Go.e/ and Gt.e/ are finite nilpotent groups, then either e is a loop isomorphism or it
is an MC-tie. In particular, if Go.e/ or Gt.e/ has odd order, then e must be a loop
isomorphism.

Proof This follows from the normalizer condition, Lemma 8 and Theorem 7.

When �1.X / is virtually free, the following lemma complements Theorem 7.

Lemma 10 Let X be an indecomposable PDn –complex with .n�2/–connected uni-
versal cover, with n even. If G D �1.X / is virtually free and g 2GC has prime order
p � 2, then NG.hgi/ has two ends.

Proof We may assume that G Š �G , where .G; �/ is an indecomposable, reduced
finite graph of finite groups. Let F be a free normal subgroup of finite index in G, and
let � be the indecomposable factor of FC containing C. Then N�.C /D NFC .C /,
and so has finite index in NG.C /, since FC has finite index in G. Thus, we may
assume that G D � . Since p is prime, the nontrivial edge stabilizers for the action of
C D hgi on the terminal G –tree T are isomorphic to C. Hence, � has just one vertex
and all the edges are loop isomorphisms, so G is a semidirect product C ÌF.r/, with
r � 0. Clearly C is normal in this group. If r D 0 then G is finite and so zX 'Sn . But
then jGj�.X /D �.Sn/D 2, and GC D 1, contrary to hypothesis. Therefore, r > 0,
and so NG.C / is infinite, since it contains C ÌF.r/. Hence, NG.C / has two ends,
by Theorem 7 and Lemma 8.
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8 Other consequences of the Chiswell sequence and Poincaré
duality

We shall assume henceforth that n is even, and that X is a PDn –complex with .n�2/–
connected universal cover. If GD�1.X / is finite then zX 'Sn , and so jGj � 2. Hence
X ' Sn or RPn . If G has one end then zX is contractible, and so X is aspherical.
Hence, we may also assume that G has more than one end.

While our main concerns shall be with the case when all vertex groups are finite,
elementary considerations give some complementary results.

Lemma 11 Let X be an indecomposable PDn –complex with .n�2/–connected uni-
versal cover, and let .G; �/ be a reduced finite graph of groups in which all edge
groups are finite and all vertex groups are either finite or have one end, and such that
�G ŠG D �1.X /. Let g 2G have order q and !.g/D 1, where ! Dw1.X /. Then
there is an exact sequence

0!
M
v2Vf

H1.hgiI
!.ZŒGvnG�//!

M
e2E

H1.hgiI
!.ZŒGenG�//! Z=qZ! 0:

Proof Since ZŒGvnG� is a permutation ZŒhgi�–module and !.g/D 1,

H0.hgiI
!.ZŒGvnG�//

is a free abelian group for all v 2 Vf . Since H1.hgiI
!H 1.GIZŒG�// Š Z=qZ and

H2.hgiI
!H 1.GIZŒG�//D 0 by Lemma 2.10 of [14], the result follows from the long

exact sequence of homology for hgi associated to the short exact sequence of left
ZŒ��–modules obtained by conjugating the Chiswell sequence.

The result holds also if !.g/D�1 and no odd power of g is conjugate to an element
of a finite vertex group. Otherwise, the righthand term of the short exact sequence
may be Z=q0Z, where q0 D q or 1

2
q . However, we shall not need to consider the

orientation-reversing case more closely.

Theorem 12 Let X be an indecomposable PDn –complex with .n�2/–connected
universal cover, and let .G; �/ be a reduced finite graph of groups in which all edge
groups are finite and all vertex groups are either finite or have one end, and such that
�G ŠG D �1.X /. Let ! D w1.X /. Let g 2G have order q > 1. Then:
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(1) If q D pr for some prime p and r � 1, and !.g/ D 1, then g is conjugate
to an element of an edge group. If g is in a finite vertex group Gv , then g is
conjugate to an element of Ge for some edge e with v 2 fo.e/; t.e/g.

(2) Let g 2Ge , where e is an edge such that Go.e/ and Gt.e/ each have one end,
and suppose that !.g/D 1. If xgx�1 2Ge0 for some x 2G and edge e0 such
that Go.e0/ and Gt.e0/ each have one end, then x 2Ge . Hence, NG.Ge/DGe .

(3) If Gv has one end for all v 2 V and g 2G has finite order, then !.g/D 1.

Proof If g has order pr for some prime p and !.g/D 1, then

H1.hgiI
!.ZŒGenG�//Š Z=pr Z

for at least one edge e , by Lemma 11, for otherwise
L

e2E H1.hgiI
!.ZŒGenG�// has

exponent dividing pr�1 . Therefore, g must fix some coset Gex , and so xgx�1 �Ge .
If g 2Gv but has no conjugate in Ge for any edge e with v 2 fo.e/; t.e/g, then the map
from H1.hgiI

!.ZŒGvnG�// to
L

e2E H1.hgiI
!.ZŒGenG�// has nontrivial kernel.

If xgx�1 2G0e for some x 62Ge and edge e0 with both adjacent vertex groups having
one end, then H 1.GIZŒG�/ has more than one copy of the augmentation ZŒhgi�–
module Z as a direct summand. But then H1.hgiI

!H 1.GIZŒG�// would have at least
two copies of Z=qZ as direct summands, which would contradict Lemma 2.10 of [14].

If all vertex groups have one end, the Chiswell sequence reduces to an isomor-
phism H 1.GIZŒG�/ Š

L
e2E ZŒGenG�. If g has order 2k and !.g/ D �1, then

!.xgx�1/D�1 for all x 2G , and so H1.hgiI
!.ZŒGenG�// has exponent dividing k

for all edges e 2E . Hence, H1.hgiI
!H 1.GIZŒG�// has exponent dividing k . This

contradicts Lemma 2.10 of [14].

There are easy counterexamples to part (1) if n is odd or if !.g/ D �1. Using
Lemma 10, it can be shown that (1) holds if q is odd. (We do not need to know this
below.) However, it does not always hold when q is even. The simplest counterexample
is given by the fundamental group of the double of the nontrivial I –bundle over the
lens space L.6; 1/, which is an amalgam of two copies of Z=6Z over Z=3Z.

If GŠN ÌZ=pZ, where N is torsion-free and p is an odd prime, then all edge groups
are Z=pZ. Since .G; �/ is reduced and indecomposable, either all vertex groups have
one end or � has just one vertex and G Š Z˚Z=pZ (by Lemma 10).

Example Let n� 4 be even, and let M be an orientable n–manifold such that �M is
.n�2/–connected. Suppose that M has a self-homeomorphism g of prime order p and
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with nonempty finite fixed-point set. Then g is orientation-preserving, since n is even.
Let s be the number of fixed points, and let U DM nN , where N is a hgi–invariant
regular neighbourhood of the fixed-point set. Then �D �1.U /Š �1.M /, since n> 2.
Let V D U=hgi and X D D.V / D V [@V V . Then zX is .n�2/–connected, by a
Mayer–Vietoris argument, and �1.X / Š .� �� �F.s � 1//ÌZ=pZ. If � has one
end then �1.X /Š �G , where .G; �/ is a graph of groups, with � having two vertices
and s edges, both vertex groups �ÌZ=pZ and all edge groups Z=pZ.

This construction can be generalized, by starting with a finite group F which acts
semifreely and with finite fixed-point set on one or several closed n–manifolds with
.n�2/–connected universal covers. After deleting regular neighbourhoods of the fixed
points, we may hope to assemble the pieces along pairs of boundary components with
equivalent F –actions. Note that F must have cohomological period dividing n, since it
acts freely on the boundary spheres. The analogous construction in the odd-dimensional
cases gives only nonorientable examples (with F of order 2).

Explicitly: The 4–dimensional torus T 4 D R4=Z4 has such self-maps, of orders 2,
3, 4, 5, 6 and 8. (It also has a semifree action of Q.8/ with finite fixed-point set.)
The group Z=kZ acts semifreely, with two fixed points, on Tk , the closed orientable
surface of genus k . The corresponding diagonal action on Tk �Tk is semifree, with
four fixed points. Similarly, S1 � S3 has an orientation-preserving involution with
four fixed points. (In the latter case, doubling the complement of the fixed-point set
gives a virtually free group which is the free product of three two-ended factors.)

If p is prime, a locally smoothable Z=pZ–action on a closed manifold which is
orientable over Fp cannot have exactly one fixed point. (See Corollary IV.2.3 of [5].)
Thus, the above construction always leads to groups of the form � ÌZ=pZ, where
� has a nontrivial free factor. Is there an example with �1.X / indecomposable and
virtually a free product of PDn –groups?

If �1.X / is virtually torsion-free, must the edge groups have cohomological period
dividing n? In general, must �1.X / be virtually torsion-free? We suspect no, but have
no counterexamples.

9 Virtually free fundamental group

We shall now restrict further to the class of (infinite) virtually free groups. The known
indecomposable examples among manifolds with such groups are mapping tori of self-
homeomorphisms of .n�1/–dimensional spherical space forms and unions of mapping
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cylinders of double coverings of two such space forms (twisted I –bundles) with
homeomorphic boundary. The fundamental groups have two ends, and graph of group
structures with just one edge, which is a loop isomorphism or an MC-tie, respectively.
(The examples involving mapping cylinders suggested the latter term.) There are similar
constructions involving PDn�1 –complexes with universal cover ' Sn�1 .

Our goal is to show that these examples are essentially all, provided that the fundamental
group has no dihedral subgroup of order > 2. There are examples with dihedral
subgroups and two ends, and there may still be indecomposable examples with infinitely
many ends. (See Section 11 below.)

Lemma 13 Let X be a PDn –complex with .n�2/–connected universal cover, and
such that G D �1.X / is virtually free. Let H be a nontrivial subgroup of Gv \GC .
Then there is an edge e with v as a vertex and such that Ge \H ¤ 1.

Proof Let F be a free normal subgroup of finite index in GC . Then FH is the
fundamental group of a finite orientable cover of X. If Ge\H D 1 for all edges e with
v as a vertex, then the induced graph of groups structure for FH has a vertex group H

with all adjacent edge groups trivial, and so H is a free factor of FH. Therefore, H is
the fundamental group of an orientable PDn –complex with .n�2/–connected universal
cover, by Theorem B. But this is impossible, since n is even and H ¤ 1.

Theorem 14 Let X be a PDn –complex with .n�2/–connected universal cover, and
such that G D �1.X / is virtually free. Then finite nilpotent subgroups of G of odd
order are cyclic, and so finite subgroups of G of odd order are metacyclic.

Proof Let F be a free normal subgroup of finite index in G and let pW G!G=F be
the natural epimorphism. If S is a finite subgroup of G then FS Dp�1p.S/ŠF ÌS .
On replacing FS by an indecomposable factor, if necessary, we may assume that
FS Š �GS , where .GS ; �S / is an indecomposable reduced finite graph of groups,
with vertex groups isomorphic to subgroups of S, and with at least one edge, since
jS j> 2.

Suppose first that S is nilpotent, of odd order. Then �S has just one vertex v and one
edge, which is a loop isomorphism, by Lemma 9. Hence, G Š S ÌZ and so has two
ends. Therefore, zX ' Sn�1 and so S has periodic cohomology. Since S is nilpotent
of odd order, it is cyclic.

In general, S is metacyclic, by Proposition 10.1.10 of [17], since all its Sylow subgroups
are cyclic.
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This does not extend to subgroups of even order, as it stands. However, for groups of
odd order “metacyclic with cyclic Sylow subgroups” is equivalent to “having periodic
cohomology”, and in all known examples the vertex groups have the latter property.

Corollary 15 If G has no subgroup isomorphic to .Z=2Z/2 then all finite subgroups
of G have periodic cohomology.

Proof The exclusion of .Z=2Z/2 implies that finite 2–groups in G are cyclic or
quaternionic. (See Proposition 5.3.6 of [17].) Since all finite p–groups of odd order
in G are cyclic by Theorem 14, it follows that all finite subgroups have periodic
cohomology. (See Proposition VI.9.3 of [6].)

Finite groups with periodic cohomology fall into six families:

(I) Z=mZÌZ=qZ.

(II) Z=mZÌ .Z=qZ�Q.2i// for i � 3.

(III) Z=mZÌ .Z=qZ�T �
k
/ for k � 1.

(IV) Z=mZÌ .Z=qZ�O�
k
/ for k � 1.

(V) .Z=mZÌZ=qZ/�SL.2;p/ for p � 5 prime.

(VI) Z=mZÌ .Z=qZ�TL.2;p// for p � 5 prime.

Here m is odd, and m, q and the order of the quotient by the metacyclic subgroup
Z=mZÌZ=qZ are relatively prime. The first family includes cyclic groups, dihedral
groups D2m D Z=mZ Ì�1 Z=2Z with m odd, and the groups of odd order with
periodic cohomology. The group Q.2i/ is the quaternionic group of order 2i , with
presentation

hx;y j x2i�1

D 1; x2i�2

D y2; yxy�1
D x�1

i;

and T �
k

and O�
k

are the generalized binary tetrahedral and octahedral groups, re-
spectively. Then T �

k
Š O�

k
0
Š Q.8/ÌZ=3kZ and has index 2 in O�

k
. If p is an

odd prime then TL.2;p/ may be defined as follows. Choose a nonsquare � 2 F�p ,
and let TL.2;p/ � GL.2;p/ be the subset of matrices with determinant 1 or � .
The multiplication ? is given by A ?B D AB if A or B has determinant 1, and
A?B D ��1AB otherwise. Then SL.2;p/D TL.2;p/0 and has index 2. (Note also
that SL.2; 3/Š T �

1
and TL.2; 3/ŠO�

1
.)

We shall not specify the actions in the semidirect products here, as these play no role
in our arguments. We shall only need the following simple facts about such groups,
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which may easily be checked by inspecting the terms of the above list. Let P be a
finite group of even order with periodic cohomology. If P is not metacyclic then its
Sylow 2–subgroup is quaternionic, and P has a unique element of order 2, which is
central. Hence, if P has a dihedral subgroup D2` then it is metacyclic. Moreover, D0

2`

is then normal in P. If P is metacyclic or of type IV or VI it has a unique subgroup
of index 2, while if it is of type III or V there is no subgroup. Groups of type II have
three such subgroups. (See [25] for more on these groups.)

10 Virtually free groups without dihedral subgroups

Our strategy for proving Theorem 20 (the main part of Theorem C) is to use Theorem 7,
the normalizer condition and Lemma 13 to show that the graph has just one edge, which
is either a loop isomorphism or an MC-tie. Lemma 16 implies that if Gv is a vertex
group of maximal order then there is either a loop isomorphism or an MC-tie with v
as one vertex. Lemmas 17 and 19 show that if � has no dihedral subgroup then all
edge groups have index � 2 in adjacent vertex groups. The main result then follows
fairly easily. We shall assume that X is a PDn –complex and GD�1.X /Š�G , where
.G; �/ is a reduced, indecomposable finite graph of finite groups, with at least one
edge, and that G does not have D4 as a subgroup. We shall not state these conditions
explicitly in the lemmas.

Lemma 16 At each vertex v there is either a loop isomorphism or an edge e with
distinct vertices v and w and such that ŒGv WGe �D 2 and NG.Ge/ has two ends.

Proof Let F be a free normal subgroup of finite index in G. After replacing G by an
indecomposable factor of FGv , if necessary, we may assume that G DFGv . Since G

is infinite and indecomposable, there is at least one edge with v as a vertex. If Gv has
prime order then each such edge must be a loop isomorphism. Thus, we may assume
henceforth that jGvj is not prime.

If Gv is metacyclic but jGvj is not a power of 2 then Gv has a cyclic normal subgroup S

of odd prime order p . If Gv has order 2k � 4 or if G is not metacyclic then it has a
central element g of order 2 such that !.g/D 1, and we let S D hgi. In each case,
S �GC .

By Lemma 13, there is an edge e with v as one vertex and such that S �Ge . If both
vertices are v then S is normalized by Gv and by te , the stable letter associated to e ,
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since S is the unique subgroup of Gv of order p . The subgroup hGv; tei has infinitely
many ends unless Ge D Gv . Hence, Ge D Gv , and so e is a loop isomorphism, by
Theorem 7.

If e has distinct vertices v ¤ w then Gw is isomorphic to its image in FGv=F ŠGv .
Hence, S is also normal in Gw , and jGwj� jGvj. Therefore, S is normal in Gv�Ge

Gw .
Theorem 7 and Lemma 8 together imply that the normalizer of any finite subgroup
of G is finite or has two ends. Hence, ŒGv WGe �� 2 and ŒGw WGe �� 2. Since e is not
a loop isomorphism, ŒGv WGe �D ŒGw WGe �D 2. Hence, Ge is normal in Gv �Ge

Gw ,
and so NG.Ge/ has two ends.

If Gv has no subgroup of index 2 (eg if it is metacyclic of odd order or is of type III
or V) then Lemma 16 ensures that there is a loop isomorphism at v . If Gv has maximal
order among finite subgroups of G and ŒGv W Ge � D 2, then e is an MC-tie. The
argument for Lemma 16 shows that if e is not a loop isomorphism then it an MC-tie for
the induced graph of groups structure for FGv . However, it is not otherwise obvious
that it must be an MC-tie for the original graph of groups .G; �/.

Lemma 17 Let f be an edge with both vertices v . If f is not a loop isomorphism
then jGf j D 2 and Gv is dihedral.

Proof Suppose that jGf j> 2. Let g be an element of Gf of prime order p . Since
the Sylow subgroups of Gv are cyclic or quaternionic, each Sylow p–subgroup has
a unique subgroup S of order p . Therefore, if tf is the stable letter associated to f
then there is an a 2 Gv such that atf gt�1

f
a�1 D gs for some 0 < s < p . Hence,

.atf /
p�1 centralizes S. By Lemma 16, there is another edge e which is either a loop

isomorphism at v or has distinct vertices u and v , and such that ŒGv WGe � D 2 and
NG.Ge/ has two ends.

If e is a loop isomorphism, then S is also centralized by some power of te . If
ŒGv WGe �D 2 and NG.Ge/ has two ends, we may assume that S �Ge , since jGf j> 2,
and then S is centralized by an element of infinite order in NG.Ge/. In each case, we
find that S is centralized by a nonabelian free subgroup, contradicting Theorem 7.

Therefore, we must have Gf Š Z=2Z. If Gv is not dihedral then Gf is central in Gv .
But the subgroup generated by Gv and tf contains a nonabelian free group, and so we
again contradict Theorem 7. Since Gv ©D4 , it has order at least 6.

This lemma indicates why we could require an MC-tie to have distinct vertices:
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Lemma 18 Let e and f be distinct edges with vertices u, v and v , w , respectively.
If e is a loop isomorphism at v or an MC-tie, then w ¤ u or v , and f is neither a
loop isomorphism nor an MC-tie.

Proof Suppose that e is a loop isomorphism at v and that f also has both vertices v .
If f is a loop isomorphism then Gv is normalized by the free group generated by
the stable letters te and tf , which contradicts Theorem 7. Therefore, f is not a loop
isomorphism, and so Lemma 17 applies.

If e is a loop isomorphism and f is an MC-tie with vertices v , w , then Gf is
normalized by Gv �Gf

Gw and by some power of te (since Gv has only a finite number
of subgroups of index 2). This again leads to a contradiction with Theorem 7.

Finally, if u¤ v and e is an MC-tie then similar arguments show that w ¤ u or v ,
and that f is not an MC-tie.

In particular, if every edge with v as one vertex is either a loop isomorphism or an
MC-tie, then there is just one edge, and so G has two ends.

Lemma 19 Let f be an edge with vertices v ¤ w . If ŒGw WGf � > 2 then Gf has
order 2, and Gv or Gw is dihedral.

Proof In order to show that Gf has order 2, we may assume without loss of generality
that G D FGw , where F is a free normal subgroup of finite index. Then every finite
subgroup of G is isomorphic to a subgroup of Gw , and so Gw has maximal order
among such subgroups. We may also assume that o.f /D v and t.f /Dw . Clearly f
is neither a loop isomorphism nor an MC-tie.

There are edges e and g , with vertices u, v and w , x , respectively, which are loop
isomorphisms or for which ŒGv WGe � D 2 or ŒGw WGg� D 2, by Lemma 16. In the
latter case, g must be an MC-tie, by the maximality of jGwj. Hence, v ¤ w or x , by
Lemma 18, and so g ¤ f . The subgroups Ge and Gg are centralized by elements of
infinite order. Hence, Gf has a subgroup H which is the intersection of two subgroups
of index � 2 in Gf , and which is centralized by these elements. We shall show that
we may assume that they generate a nonabelian free subgroup of CG.H /.

If e and g are each loop isomorphisms then H D Gf is centralized by powers of
the stable letters te and tf . If e is a loop isomorphism and g is an MC-tie then
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H D Gf \ Gg is centralized by powers of te and ˛0ˇ0, where ˛0 2 Gw n Gg and
ˇ0 2Gx nGg do not involve te .

If e is not a loop isomorphism then u¤ v , by Lemma 17, and Ge is normalized by
some ˛ˇ , where ˛ 2Gu nGe and ˇ 2Gu nGe . Suppose that u¤ w or x . If g is a
loop isomorphism then H DGf \Ge is normalized by powers of ˛ˇ and tg , If g is
an MC-tie then H D Gf \Ge \Gg is normalized by powers of ˛ˇ and of ˛0ˇ0. A
similar argument applies if uD w or x .

In each case, these pairs generate a nonabelian free subgroup of CG.H /, which
contradicts Theorem 7, unless H D 1. Since Gf is nontrivial and is not D4 , we then
have Gf D Z=2Z.

We now return to the general case (ie we do not assume that G D FGw ). Since
Gf D Z=2Z, it is central in the Sylow 2–subgroups of Gv and Gw , and CG.Gf / has
two ends or is finite. Hence, either Gf is its own centralizer in one vertex group, in
which case the vertex group is dihedral, or these Sylow subgroups both have order 4,
and no element of odd order in either vertex group commutes with Gf . In the latter
case, the vertex groups are metacyclic groups of the form Z=mZÌ� Z=4Z, where m

is odd and � W Z=4Z! .Z=mZ/� is injective. Such groups have a unique subgroup
of index 2, and so Gf � Ge and Gf � Gg . But then the earlier argument applies
with H D Gf to show that CG.H / has a nonabelian free subgroup, contradicting
Theorem 7. Hence, Gv or Gw is dihedral.

Theorem 20 Let X be a PDn –complex with .n�2/–connected universal cover,
where n is even. If G D �1.X / is infinite, virtually free and indecomposable, and no
maximal finite subgroup is dihedral, then G has two ends, and its finite subgroups have
cohomological period dividing n.

Proof Let Gv be a vertex group of maximal order. Suppose first that Gv has odd
order. Then Gv has no subgroup of index 2 and none of order 2, and so every edge e

with v as a vertex must be a loop isomorphism, by Lemmas 17 and 19.

Since no maximal finite subgroup is dihedral, there are no dihedral vertex groups.
Therefore, if Gv has even order > 4 and f is an edge with vertices v , w , then
ŒGv W Gf � � 2, by Lemmas 17 and 19. Since jGvj is maximal, f is either a loop
isomorphism or an MC-tie.

In each of these cases there must be just one edge, by Lemma 18, and so � has two
ends.
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Finally, if all vertex groups have order 4 then they are cyclic, and all proper edge
groups have order 2. Hence, there is a unique subgroup S of order 2. Clearly S �GC ,
and so G D CG.S/ has two ends, by Lemma 10.

Since G has two ends, zX ' Sn�1 , and so finite subgroups of G have cohomological
period dividing n.

In the final case there are three possibilities: G Š Z ˚ Z=4Z, Z=4Z Ì�1 Z or
Z=4Z�Z=2Z Z=4Z.

Corollary 21 If G has no element of even order then G Š S ÌZ, where S is a finite
metacyclic group of odd order and of cohomological period dividing n.

In particular, if n is a power of 2 then S must be cyclic. (See Exercise VI.9.6 of [6].)

When there is 2–torsion, G need not be an extension of Z by a finite normal subgroup.
For example, if MC is the mapping cylinder of the double cover of a lens space
LDL.2m; q/ and X DD.MC/DMC[L MC is the double, then G is an extension
of the infinite dihedral group D1 by Z=mZ, and zX Š S3 �R.

Theorem 22 Let X be an orientable PDn –complex such that zX ' Sn�1 . Then
G D �1.X /Š F Ì� Z, where F is the maximal finite normal subgroup of G, and X

is a mapping torus.

Proof Since zX ' Sn�1 , the group G has two ends. Hence, it has a maximal finite
normal subgroup F and a subgroup � of index � 2 which contains F and is such
that �=F Š Z. The covering space XF D

zX=F ' Sn�1=F associated to F is a
PDn�1 –complex, and so the covering space X� associated to � is the mapping torus
of a self-homotopy-equivalence of F. Hence, �.X� /D 0, and so �.X /D 0 also. But
if � ¤G then G=G0 is finite. Since cdQG D 1, it follows from the spectral sequence
for the universal covering that Hq.X IQ/D 0 for 0< q < n� 1. This is also the case
when q D n� 1, by Poincaré duality. Hence, �.X /D 2 (since n is even). This is a
contradiction. Therefore, � DG Š F ÌZ and X is a mapping torus.

We shall now restate and prove Theorem C of the introduction.

Theorem C Let X be a PD2k –complex with .2k�2/–connected universal cover,
and such that G D �1.X / is virtually free and indecomposable as a free product. If
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G is finite then X ' S2k or RP2k . If G is infinite and has no dihedral subgroup of
order > 2 then G has two ends and its finite subgroups have cohomological period
dividing 2k . Hence, zX ' S2k�1 . If, moreover, X is orientable, then H 1.GIZ/Š Z.

Proof If G is finite then zX ' S2k , and so jGj�.X /D �.S2k/D 2. Hence, either
G D 1 and X ' S2k , or G D Z=2Z and X 'RP2k .

If G is infinite and has no dihedral subgroup of order > 2, then G has two ends, and
its finite subgroups have cohomological period dividing 2k , by Theorem 20.

The final assertion follows from Theorem 22.

It remains an open question whether the conclusion of Theorem C must hold if G has a
dihedral maximal finite subgroup. (There are such examples with G D �1.X / having
two ends — see Theorem 23 below.) Lemmas 18 and 19 impose some restrictions, but
leave open the possibility that, for instance, there might be a PD2k –complex X with
.2k�2/–connected universal cover and �1.X /Š �G , where the underlying graph �
is a cycle of length four, the vertex groups are dihedral and the edges are alternately
MC-ties or have edge group of order 2.

11 Construction of examples

Every finite group F with cohomological period q is the fundamental group of an
orientable PDq�1 –complex with universal cover ' Skq�1 for all k � 1 [19; 24].
Since q is even, such complexes are odd-dimensional. (In fact, the only nonorientable
quotients of finite group actions on spheres are the even-dimensional real projective
spaces RP2k .) We may use such complexes to realize groups with two ends.

Theorem 23 Let F be a finite group. If GŠFÌ�Z then there is a PD2k –complex X

with �1.X /ŠG and zX ' S2k�1 if and only if F has cohomological period divid-
ing 2k and H2k�1.� IZ/ is multiplication by ˙1. If jF j> 2, then X is orientable if
and only if H2k�1.� IZ/D 1.

Proof If a PD2k –complex X has fundamental group G and universal cover zX '
S2k�1 then F has cohomological period dividing 2k , since it acts freely on zX, and
the condition H2k�1.� IZ/D˙1 follows from the Wang sequence for the projection
of X onto S1 corresponding to the epimorphism G!G=F ŠZ. (See Theorem 11.1
of [14] for the case k D 2.)
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Suppose, conversely, that F has cohomological period dividing 2k . Then there is a
based orientable PD2k�1 –complex XF with fundamental group F and zXF ' S2k�1 .
If H2k�1.� IZ/ D ˙1 then there is a self-homotopy-equivalence f of XF which
induces � [16]. The mapping torus of f is then a PD2k –complex with fundamental
group G and universal cover ' S2k�1 .

If jF j> 2 then H2k�1.� IZ/D 1 (as an automorphism of H2k�1.F IZ/Š Z=jF jZ)
if and only if H2k�1.f IZ/D 1 (as an automorphism of H2k�1.X IZ/Š Z) if and
only if X is orientable.

In particular, when the dimension 2k is divisible by 4, there are examples X with
�1.X /ŠD2m�Z for odd m> 1. These do not satisfy the hypotheses of Theorem C.

Suppose now that G Š E �F H , where E and H are finite groups with periodic
cohomology and ŒE WF � D ŒH WF � D 2. Let n be a multiple of the cohomological
periods of E and H. However, there is one subtlety: We must be able to choose
PD2k�1 –complexes XE and XH with fundamental groups E and H and universal
covers 'S2k�1 in such a way that the double covers associated to the subgroups F are
homotopy equivalent. For then we may construct a PD2k –complex X with fundamental
group G and zX ' Sn�1 by gluing together two mapping cylinders via a homotopy
equivalence of their “boundaries”. See Chapter 11 of [14] for an example with k D 2,
E DQ.24/, H D Z=3Z�Q.8/ and F D Z=12Z where this construction cannot be
carried through. (The difficulty is that PD3 –complexes with fundamental group E

or H have unique homotopy types: the double covers corresponding to F are lens
spaces which are not homotopy equivalent. Similar examples should exist in higher
dimensions.)

Theorem 23 is essentially Theorem D of the introduction, and is the case mD 1 of
Proposition 8 of [10]. Part of the discussion of the case G ŠE �F H in the previous
paragraph may also be found in the final section of [10].

12 Must finite subgroups have periodic cohomology?

There remains the key question of whether the group .Z=2Z/2 ever arises in this
context. Suppose that Y is a PD2k –complex with .2k�2/–connected universal cover
and virtually free fundamental group, and that �1.Y / has a subgroup C Š .Z=2Z/2 .
Let F be a free normal subgroup of finite index in �1.Y /. We may assume that
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F < �1.Y /
C . Then Y has a finite cover YFC with fundamental group FC Š F ÌC .

As in Theorem 14, some indecomposable factor X of YFC has fundamental group
G D F.r/ÌC for some r > 1. (Since G cannot be finite of order 4 and C does not
have periodic cohomology, r ¤ 0 or 1.) We may assume that G Š �G , where .G; �/
is an indecomposable reduced finite graph of groups, with all vertex groups Gv Š C

and all edge groups Ge of order 2. In particular, every edge group is orientable, by
Theorem 7.

Since G is virtually free, it has a well-defined virtual Euler characteristic

�virt.G/D
�.F.r//

jC j
D

1�r

4
:

We also have �virt.G/D 1
4
jV j � 1

2
jEj, since .G; �/ is indecomposable and reduced.

Moreover, �.X /D 2�virt.G/, by the multiplicativity of (virtual) Euler characteristic
for finite covers (passage to finite-index subgroups), and so �virt.G/ 2 1

2
Z. Hence, jV j

is even.

Suppose first that X is not orientable. Then !jC ¤ 1, since !.F /D 1. Hence, if e

and f are two edges with o.e/D o.f /D v then Ge D Gf D Ker.!jGv
/. If e ¤ f

then CG.Ge/ contains a nonabelian free subgroup. Hence, there is at most one edge
at each vertex. Since � is connected, there is just one edge e , which must have
distinct vertices, for otherwise CG.Ge/ would have a nonabelian free subgroup. Hence,
G ŠGu �Ge

Gv Š .Z=2Z/�D1 has two ends, and so zX ' S2k�1 . But then C has
periodic cohomology, which is false. Therefore, X must be orientable.

Since X is finitely covered by #r
.S3 �S1/, H2.X IQ/D 0, and so �.X / is even.

Hence, �virt.G/ is integral. Moreover, if there is a vertex v of valency � 2 then there
is an epimorphism f W G!Z=2Z which is nontrivial on Ge for all edges e with v as
one vertex. But then Ker.f /Š � zG , where .zG; �/ is a graph of groups with all vertex
groups of order 2 and with trivial edge groups for the edges with v as one vertex. This
is impossible if the double cover is orientable. If there is a vertex w with valency > 3

then two edges with w as one vertex have the same edge group Ge <Gw , and CG.Ge/

contains a nonabelian free subgroup. Therefore each vertex of � has valency 3, so
2jEj D 3jV j. In summary,8̂̂̂<̂

ˆ̂:
X is orientable;
vertices of � have valence 3;

jV j is even;
r D 1C 2jV j � 1 mod 4:
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The simplest example meeting these criteria has V D fv;wg and E D fa; b; cg, with
each edge having origin v and target w . Then

Gv D ha; b; c j a
2
D b2

D c2
D 1; c D abi

and
Gw D ha

0; b0; c0 j .a0/2 D .b0/2 D .c0/2 D 1; c0 D a0b0i:

The edge groups are GaD hai, Gb D hbi and Gc D habi, as subgroups of Gv , and for
each edge x the monomorphism �x W Gx!Gw is given by �x.x/D x0. The edge a

is a maximal tree in � . Let t and u be stable letters corresponding to the other edges.
Then �G has the presentation

hGv;Gw; t;u j a
0
D a; b0 D tbt�1; a0b0 D uabu�1

i;

which simplifies to

ha; b; t;u j a2
D b2

D .ab/2 D 1; atbt�1
D tbt�1aD uabu�1

i:

Is this the fundamental group of an orientable PD2k –complex with .2k�2/–connected
universal cover? Can the arguments of Section 2 of [8] be tweaked to rule this out?
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