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A refinement of Betti numbers and homology
in the presence of a continuous function

II: The case of an angle-valued map

DAN BURGHELEA

For f W X ! S1 a continuous angle-valued map defined on a compact ANR X,
� a field and any integer r � 0 , one proposes a refinement ıfr of the Novikov–
Betti numbers of the pair .X; �f / and a refinement yıfr of the Novikov homology
of .X; �f / , where �f denotes the integral degree one cohomology class represented
by f . The refinement ıfr is a configuration of points, with multiplicity located in
R2=Z identified to C n 0 , whose total cardinality is the r th Novikov–Betti number
of the pair. The refinement yıfr is a configuration of submodules of the r th Novikov
homology whose direct sum is isomorphic to the Novikov homology and with the
same support as of ıfr . When � D C , the configuration yıfr is convertible into a
configuration of mutually orthogonal closed Hilbert submodules of the L2 –homology
of the infinite cyclic cover of X defined by f , which is an L1.S1/–Hilbert module.
One discusses the properties of these configurations, namely robustness with respect
to continuous perturbation of the angle-values map and the Poincaré duality and one
derives some computational applications in topology. The main results parallel the
results for the case of real-valued map but with Novikov homology and Novikov–Betti
numbers replacing standard homology and standard Betti numbers.
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3038 Dan Burghelea

1 Introduction

This paper is a sequel of [2] (which considers the case of real-valued map) but can
be read independently of [2]. Here we treat the case of an angle-valued continuous
map f W X ! S1 and complete results from Burghelea and Haller [4]. In this paper,
without any additional specifications, an angle-valued map assumes that the space X is
a compact ANR (in particular a space homeomorphic to a finite simplicial complex or a
compact Hilbert cube manifold) and the map f is continuous. The map f determines
a degree one integral cohomology class �f 2H 1.X IZ/.

We fix a field � and an integer r , with r D 0; 1; 2; dim X, and provide first a con-
figuration ıfr of finitely many points with specified multiplicity located in the space
T WDR2=Z,1 which can be identified to the punctured plane C n 0. It will be shown
that the set of points (counted with multiplicity) of this configuration has cardinality
equal to the Novikov–Betti number ˇN

r .X I �f /. In view of the identification of T with
C n 0 the configuration ıfr can be also interpreted as a monic2 polynomial P

f
r .z/,

with complex coefficients and nonzero free term of degree equal to the Novikov–Betti
number, whose roots are the points of the configuration ıfr .

We refine the configuration ı
f
r to the configuration yıfr of �Œt�1; t �–free modules

indexed by z 2C n 0, each one a quotient of split free submodules of the r th Novikov
homology of .X I �f /, and in the case � DC to the configuration yyıfr of closed Hilbert
submodules of L2 –homology of zX, the infinite cyclic cover of X defined by �f . All
configurations ıfr , yıfr and yyıfr are maps with finite support defined on Cn0 with ıfr .z/
a nonpositive integer, yıfr .z/ a free �Œt; t�1�–module and yyıfr .z/ an L1.S1/–Hilbert
module with yıfr .z/ of rank and yyıfr .z/ of von Neumann dimension equal to ıfr .z/.

In this paper, for a fixed field � , the Novikov homology H N
r .X I �/ is a free �Œt�1; t �–

module. Novikov [12] and most authors — see for example Pajitnov [13] — regard
Novikov homology as a �Œt�1; t ��–vector space, where �Œt�1; t �� denotes the field of
Laurent power series with coefficients in � , obtained by extending the scalars from
�Œt�1; t � to �Œt�1; t ��.3 If the Novikov homology is regarded as a vector space over this
field then yıfr is a configuration of vector subspaces, and this is entirely in analogy with
the case of a real-valued map treated in [2].

1 R2 is equipped with the action �.n; .a; b//D .aC 2�n; bC 2�n/ .
2The monomial of highest degree has coefficient 1 .
3The vector space is equal to H N .X I �/˝�Œt�1;t � �Œt

�1; t �� .
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The results about the configurations ıfr , yıfr and yyıfr are formulated in Theorems 1.1, 1.2
and 1.3 and are formally similar to Theorems 4.1, 4.2 and 4.3 in [2], but conceptually
more complex and technically more difficult to conclude. In comparison with [2] there
are however a number of differences and new features which deserve to be pointed
out:

� The location of the points in the support of the configurations ıfr , yıfr and yyıfr is
the space T WD R2=Z, identified to the punctured complex plane C n 0 by the map
ha; bi 7! z D eiaC.b�a/ , and not R2 DC as in [2].

� The Betti numbers ˇr .X / in [2] are replaced by the Novikov–Betti numbers
ˇN

r .X I �/ or by L2 –Betti numbers ˇL2
r . zX /, with zX the infinite cyclic cover defined

by � D �f , and the homology Hr .X / is replaced by the Novikov homology of .X; �/
or by the L2 –homology of zX.

� For z D ha; bi 2 supp ıfr the configuration yıfr takes as value yıfr ha; bi D yı
f
r .z/,

a free �Œt�1; t �–module which is a quotient �Fr .z/=�F 0r .z/ of split free submodules�F 0r .z/��Fr .z/�H N
r .X I �/. The configuration yıfr is derived from a configuration of

pairs zıfr .z/ WD .�Fr .z/;�F 0r .z// of submodules of H N
r .X; �f /, a concept explained in

Section 2.

� In the case � D C , the ring of Laurent polynomials CŒt�1; t � has a natural com-
pletion to the finite von Neumann algebra L1.S1/ and H N

r .X I �f / to an L1.S1/–
Hilbert module. The Hilbert module structure, although unique up to isomorphism,
depends on a chosen CŒt�1; t �–compatible Hermitian inner product on H N

r .X I �f / —
see Section 2 — which always exists. With respect to a given CŒt�1; t �–compatible
inner product, the free module H N

r .X I �/ can be canonically converted into the
L1.S1/–Hilbert module H

L2
r . zX /, zX the infinite cyclic cover associated with � ,

and the configuration yıfr .z/ into a configuration of mutually orthogonal closed Hilbert
submodules yyıfr .z/ � H

L2
r . zX / with

P
z2supp ıfr

yyı
f
r .z/ D H

L2
r . zX /. This conversion

is referred to below as the von Neumann completion and is described in Section 2. A
Riemannian metric on X when X is the underlying space of a closed smooth manifold,
or a triangulation of X when X is homeomorphic to a finite simplicial complex,
provides a canonical inner product which leads to the familiar L2 –homology, H

L2
r . zX /.

This is a particular case of a construction described in Lück [9].

� The refinement of the Poincaré duality stated in Theorem 1.3 is derived from
the Poincaré duality between Borel–Moore homology and cohomology of the open
manifold zM.
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The paper ends with a few topological applications, Observation 1.4 and Theorem 1.5.

In Section 2 one recalls the definition of various spaces of configurations (of points with
multiplicity, of submodules and of pairs of submodules, of mutually orthogonal closed
Hilbert submodules of a Hilbert module) and of the relevant topologies on these spaces.
The configurations referred to above, ıfr , yıfr and yyıfr for f W X ! S1 an angle-valued
map, are defined in Section 3 and all have the same support located in T or C n 0. A
point in T will be denoted by ha; bi and one in C n 0 by z .

To formulate the results, for the reader’s convenience we recall some concepts and
notation.

For an angle-valued map f W X ! S1 one denotes by �f 2 H 1.X IZ/ the integral
cohomology class represented by f and by Qf W zX ! R an infinite cyclic cover or
lift of the map f . In Section 2 one also defines the concepts of weakly tame and
tame maps as well as of homologically regular and homologically critical values. The
simplicial maps are always tame and then weakly tame. Informally, for a weakly tame
map a homologically regular value is a complex number z D eiaCb 2 S1 such that
the homology of the level of z0 in a small neighborhood of z is unchanged and a
homologically critical value is a complex number z D eiaCb 2 S1 which is not a
homologically regular value.

For � 2H 1.X IZ/ one denotes by:

� C�.X;S
1/ the space of continuous maps in the homotopy class defined by �

equipped with the compact open topology.

� � W zX !X an infinite cyclic cover defined by �f , or by f .

For a specified field � one denotes by:

� H N
r .X I �/ the Novikov homology in dimension r with respect to the field � .

� ˇN
r .X I �/ the r th Novikov–Betti number; see Section 2 for definitions.

In case � DC the L2 –homology of zX in dimension r will be denoted by H
L2
r . zX /.

This is an L1.S1/–Hilbert module. In this case the von Neumann dimension of
H

L2
r . zX / equals the Novikov–Betti number with respect to the field C .

The main results of this paper are collected in the following theorems:

Theorem 1.1 (topological results) (1) The configurations ıfr , yıfr and yyıfr have
the same support. If f is weakly tame and ıfr .z/¤ 0 with z D eiaC.b�a/ , then
both a and b are homological critical values of Qf .
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(2) (a)
P

z2Cn0 ı
f
r .z/D ˇ

N
r .X I �f /.

(b)
L

z2Cn0
yı
f
r .z/'H N

r .X I �f /.

(c) When � D C a CŒt�1; t �–compatible inner product on H N
r .X I �f / (see

Section 2 for the definition) converts yıfr into a configuration yyıfr of closed
Hilbert submodules of H

L2
r . zX / which satisfy

P
z2Cn0

yyı
f
r .z/DH

L2
r . zX /,

and yyıfr .z/? yyı
f
r .z
0/ for z ¤ z0.

(3) If X is a good ANR (see Section 2 for the definition), in particular homeomor-
phic to a finite simplicial complex or to a compact Hilbert cube manifold, then
for an open and dense set of maps f in C�.X;S

1/ one has ıfr .z/D 0 or 1.

Here and below D denotes equality or canonical isomorphism and ' indicates the
existence of an isomorphism.

Items (1) and (2a) were first established in Burghelea and Haller [4] but only for tame
maps and by different methods.

Anticipating Section 2 we denote by Confk.X / the set of configurations of k points
in X and by CONFV .X / the set of configurations of subspaces of the module V

indexed by the points of X. If V is a �–vector space, a subspace means a genuine vector
subspace, if V is a free module, a subspace means a free split submodule and if V is a
Hilbert module, a subspace means a closed Hilbert submodule. In view of this notation,
(2a) indicates that ıfr 2 ConfˇN

r .X I�f /
.T /, T DC n 0, which can be identified to the

ˇN
r .X I �f /–fold symmetric product of C n0, hence to the space of degree ˇN

r .X I �f /

monic polynomials with nonzero free coefficient, hence to CˇN
r .X I�f /�1� .C n0/, and

(2b) implies that any family of splittings as defined in Section 3 makes yıfr an element in
CONFV .T /, with V the free �Œt�1; t �–module H N

r .X I �f /. Item (2c) states that yyıfr
is an element in CONFO

H
L2
r . zX /

.T /, the space configurations of mutually orthogonal
closed Hilbert submodules of the L1.S1/–Hilbert H

L2
r . zX /.

Associated to � there is the infinite cyclic cover � W zX !X, a principal Z–covering
unique up to isomorphism, such that any continuous f W X ! S1 has lifts Qf W zX !R

(ie Z–equivariant maps which induce, by passing to X D zX=Z, the map f ; see
Section 2) unique up to an additive constant of the form 2�k . For two lifts Qf of f
and zg of g denote by D. Qf ; zg/D sup

zx2 zX
j Qf .zx/� zg.zx/j and denote by D.f;g/ the

minimal of D. Qf ; zg/ over all possible lifts of f and g ; see Section 2. D.f;g/ provides
a metric on C�.X;S

1/.

Algebraic & Geometric Topology, Volume 18 (2018)
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Theorem 1.2 (stability) Suppose X is a compact ANR and � 2H 1.X IZ/.

(1) The assignment

f  ıfr D Pf
r .z/ 2CˇN

r .X I�/�1
� .C n 0/ for f 2 C�.X;S

1/

is a continuous map.

Moreover, with respect to the canonical metric D provided by the identification
of the space of configurations with the ˇN

r .X I �/–fold symmetric product of T,
one has the estimate

D.ıf ; ıg/ < 2D.f;g/:

(2) If � D C and the spaces of configurations CONF
H

L2
r . zX /

.C n 0/ is equipped
with either the fine or the natural collision topology (see Section 2 for the
definitions) then the assignment f  yyıfr is continuous.

Item (1) was first established in [4] for X homeomorphic to a simplicial complex.

Theorem 1.3 (Poincaré duality) Suppose M is a closed topological manifold of
dimension n which is �–orientable4 and f W M!S1 an angle-valued map with �f ¤0.
Then one has the following:

(1) ı
f
r ha; biDı

f
n�r hb; ai; equivalently, ıfr .z/Dı

f
n�r .�z/ with �.z/Dzjzj�2ei ln jzj.

(2) The Poincaré duality between Borel–Moore homology of zM and the cohomol-
ogy of zM induces the isomorphisms of �Œt�1; t �–modules from H N

r .M I �/ to
H N

n�r .M I �/ which intertwine yıfr ha; bi and yıfn�r hb; ai. Precisely, a collection
of compatible N –splittings Sr (see Definition 3.10), additional data which
always exist, provide the canonical isomorphisms of �Œt�1; t �–modules5

PDS
r W H

N
r .M I �f /!H N

n�r .M I �f /;

PDS
r ha; biW

yı
Qf

r ha; bi !
yı
Qf

n�r hb; ai;

IS
r W

M
ha;bi2T

yır ha; bi !H N
r .M I �f /

such that the diagram

4This theorem will be verified only in the case M is homeomorphic to a finite simplicial complex.
5The finiteness of the rank of H N

r .M I �f / implies that yıfr ha; bi D 0 for all but finitely many pairs
ha; bi .
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L
ha;bi2T

yır ha; bi

I S
r

��

L
PDS

r ha;bi
//
L
ha;bi2T

yın�r hb; ai

I S
n�r

��

H N
r .M I �f /

PDS
r

// H N
n�r .M I �f /

is commutative.

(3) For � D C a C Œt�1; t �–compatible Hermitian inner product on H N
r .M I �f /

(see Section 2 for the definition) provides canonical compatible N –splittings
Sr such that the von Neumann completion (described in Section 2) leads to the
canonical isomorphisms

PDL2
r W H

L2
r . zM /!H L2

n�r .
zM /;

PDL2
r ha; biW

yyıL2
r ha; bi !

yyıL2
n�r hb; ai;

IL2
r W

M
ha;bi2T

yyır ha; bi !H L2
r . zM /;

which make the diagramL
ha;bi2T

yyır ha; bi

I
L2
r
��

L
PD

L2
r ha;bi

//
L
ha;bi2T

yyın�r hb; ai

I
L2
n�r
��

H
L2
r . zM /

PD
L2
r

// H
L2
n�r . zM /

commutative. A Riemannian metric or a triangulation of a closed smooth or
topological manifold provides canonical CŒt�1; t �–compatible Hermitian inner
products on H N

r .M I �f / and therefore the isomorphisms claimed in item (3).

Item (1) was first established in [4].

Theorem 1.3(2) implies the following:

Observation 1.4 If M is a compact manifold with boundary @M, and H N
r .@M I �f@M

/

(with f@M the restriction of f to @M ) vanishes for all r , then H N
r .M I �f / '

H N
n�r .M I �f /.

If X is connected and u 2 x� n 0 with x� the algebraic closure of � , denote by .�;u/
the local coefficient system defined by the rank-one �–representation

.�;u/W �1.X;x0/!H1.X IZ/
�
�!Z u�

�!x� n 0;

Algebraic & Geometric Topology, Volume 18 (2018)
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where � is interpreted as a group homomorphism �W H1.M:Z/! Z and u as the
homomorphism u�.n/D un . Denote by Hr .X I .�;u// the homology with coefficients
in .�;u/ and by ˇr .X I .�;u// the dimension of this �–vector space.

For � 2 H 1.M IZ/ the set of Jordan cells Jr .X I �/ was defined in Burghelea and
Dey [3] and from a different perspective of relevance in the theorem below, discussed
in Burghelea and Haller [4] and Burghelea [1]. One denotes by Jr .X I �/.u/ the set of
Jordan cells .�; k/ with �D u 2 x� n 0.

Theorem 1.5 Suppose .M n; @M / is a compact manifold with boundary �2H 1.M IZ/

such that ˇN
r .@M; �j@M /D 0 for all r . Suppose that M retracts by deformation to a

simplicial complex of dimension �
�

n
2

�
, where

�
n
2

�
denotes the integer part of n

2
and

�.M / is the Euler–Poincaré characteristic with respect to the field � . Then we have:

(1) If nD 2k then one has

ˇN
r .X I �/D

�
0 if r ¤ k;

.�1/k�.M / if r D k;
(1a)

ˇr .X /D

�
Jr�1.X I �/.1/CJr .X I �/.1/ if r ¤ k;

Jk�1.X I �/.1/CJk.X I �/.1/C .�1/k�.M / if r D k;
(1b)

ˇr .X I yu�/D

�
Jr�1.X I �/.u/CJr .X I �/.1=u/ if r ¤ k;

Jk�1.X I �/.u/CJk.X I �/.1=u/C .�1/k�.M / if r D k:
(1c)

(2) If nD 2kC 1 then one has

ˇN
r .X I �/D 0;(2a)

ˇr .X /D Jr�1.X I �/.1/CJr .X I �/.1/;(2b)

ˇr .X I .�;u//D Jr�1.X I �/.1=u/CJr .X I �/.u/:(2c)

(3) If V n�1�M n is a compact proper submanifold (ie Vt@M,6 and V\@MD@V )
whose Poincaré dual cohomology class is �f and Hr .V / D 0, then the set of
Jordan cells Jr .M; �/ is empty for r > 0 and J0.M; �/D f.�I 1/; �D 1g.

As pointed out to us by L Maxim, the complement X DCn nV of a complex hyper-
surface V � Cn;V WD f.z1; z2; : : : ; zn/ j f .z1; z2; : : : ; zn/ D 0g regular at infinity,
equipped with the canonical class �f 2 H 1.X IZ/ defined by f W X ! C n 0 is an

6Here t means transversal.

Algebraic & Geometric Topology, Volume 18 (2018)



A refinement of Betti numbers and homology in the presence of a continuous function, II 3045

example of an open manifold which has as compactification a manifold with boundary
equipped with a degree one integral cohomology class which satisfies the hypotheses
and then the conclusion of Theorem 1.5 above.

Item (1) recovers a calculation of Maxim; see Maxim [11] and Friedl and Maxim [7]7

that the complement of an algebraic hypersurface regular at infinity has vanishing
Novikov homologies in all dimensions but n.

At this point we thank Maxim for challenging questions and information about some of
his work. I also thank the referee for providing repairs in the statement and the proof
of Theorem 1.2, pointing out misprints and requesting useful additional explanations.

Acknowledgement This paper was written when the author was visiting MPIM-Bonn
(November 2015–March 2016). He thanks MPIM for partial support during that period.

2 Preparatory material

Angles and angle-valued maps An angle is a complex number � D eit 2 C with
t 2 R and the set of all angles is denoted by S1 D f� D eit j t 2 Rg. The space of
angles, S1 , is equipped with the distance

d.�2; �1/D inffjt2� t1j j e
it1 D �1; eit2 D �2g:

One has d.�1; �2/ � � . With this description, S1 is an oriented one-dimensional
manifold with the orientation provided by a specified generator u of H1.S

1IZ/.

A closed interval in I � S1 with ends the angles �1 D eit1 and �2 D eit2 is the set
I WD feit j t1 � t � t2; t2� t1 < 2�g.

In this paper all real- or angle-valued maps are proper continuous maps defined on
an ANR, hence locally compact in the case of real-valued and compact in the case of
angle-valued. Recall that an ANR — see Hu [8] — is a space homeomorphic to a closed
subset A of a metrizable space which has an open neighborhood U which retracts
to A. Simplicial complexes and finite- or infinite-dimensional manifolds are ANRs.

7The Friedl–Maxim results state the vanishing of more general and more sophisticated L2 –homologies
and Novikov-type homologies. Such results can be also recovered via the appropriate Poincaré duality
isomorphisms.
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Infinite cyclic cover For an angle-valued map f W X ! S1 let f �W H 1.S1IZ/!

H 1.X IZ/ be the homomorphism induced by f in integral cohomology and let �f D
f �.u/ 2H 1.X IZ/. The assignment f  �f establishes a bijective correspondence
between the set of homotopy classes of continuous maps from X to S1 and H 1.X IZ/.

Recall the following:

� An infinite cyclic cover of X is a map � W zX ! X together with a free action
�W Z� zX ! zX such that �.�.n;x//D �.x/ and the map induced by � from zX=Z

to X is a homeomorphism. The infinite cyclic cover � W zX!X is said to be associated
to � if any continuous proper map Qf W zX!R which satisfies Qf .�.n;x//D Qf .x/C2�n

induces a map f W X ! R=2�Z D S1 with �f equal to � . The homeomorphisms
�.k; : : : /W zX ! zX are called deck transformations.

� For two infinite cyclic covers �i W
zXi!X for i D 1; 2, associated to � , there exists

a homeomorphism !W zX1!
zX2 which intertwines the free actions �1 and �2 and

satisfies �2 �! D �1 .

� Given � W zX!X , an infinite cyclic cover �W Z� zX! zX and an angle-valued map
f W X!S1 , the map Qf W zX!R is a called a lift of f if Qf .�.n;x//D Qf .x/C2�n and
by passing to the quotients X D zX=Z and S1 DR=Z the map Qf induces exactly f .
A lift Qf provides the pullback diagram

(3)

R
p
// S1

zX
�
//

Qf

OO

X

f

OO

where p.t/ is given by p.t/D eit 2 S1 . Two lifts Qf1 and Qf2 of f differ by a deck
transformation, ie there exists k 2 Z with Qf2 D

Qf1 ��.k; : : : /.

Given f W X ! S1 , there exists a canonical infinite cyclic cover � W zX ! X , the
pullback of pW R ! S1 by f , and a canonical lift Qf W zX ! R of f ; explicitly,
zX D f.x; r/ j f .x/D p.t/g and Qf .x; t/D t .

Denote by C�.X IS
1/ the set of all continuous angle-valued maps on X in the homotopy

class defined by � and let � W zX !X be an infinite cyclic cover associated to � . For
f;g 2 C�.X;S

1/ and zh and Ql lifts of f and g , let

(1) D.zh; Ql/ WD sup
zx2 zX
jzh.x/� Ql.x/j,

(2) D.f;g/ WD inffD.zh; Ql/ j zh a lift of f and Ql a lift of gg.
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Note that if d.f .x/;g.x// < � then D.f;g/D supx2X d.f .x/;g.x//, where d is
the standard metric on S1 , namely d.u; v/D inf�;� 0 j� �� 0j for uD ei� and vD ei� 0 .

Observation 2.1 (1) For any maps f and g , there exist lifts Qf and zg such that
D.f;g/DD. Qf ; zg/.

(2) D is a complete metric which induces the compact open topology on C�.X;S
1/.

(3) If f;g 2C�.X;S
1/, Qf and zg are lifts of f and g and 0D t0 < t1 < t2 < � � �<

tN < tNC1D1 any subdivision of the interval Œ0; 1�, then the canonical homotopy
Qft D t Qf C .1� t/zg satisfies D. Qf ; zg/D

P
0�i�N D. Qfti

; QftiC1
/. If ft denotes

the homotopy between f and g induced from Qft , then, by passing to the quotient
and using D.f;g/DD. Qf ; zg/,

(4) D.f;g/�
X

0�i�N

D.fti
; ftiC1

/:

The verifications are straightforward and left to the reader.

A homotopy ft as in item (3) is referred to as a canonical homotopy.

Regular and critical values and tameness Let f W X ! S1 or R be a proper con-
tinuous map.

� The value s 2 S1 or R is regular/homologically regular if there exists a neigh-
borhood U of s such that for any s0 2 U the inclusion f �1.s0/ � f �1.U / is a
homotopy equivalence/homology equivalence8 and critical/homologically critical if
not regular/homologically regular. We denote by CR.f / the set of critical values and
by CRH�.f / the set of homologically critical values. Clearly CRH�.f / � CR.f /.
Since the field � will be fixed once and for all, � will be discarded from notation and
we write CRH.f / instead of CRH�.f /.

� The map f is weakly tame if for any s 2 S1 or R the subspace f �1.s/ is an ANR.
This implies that, for any closed interval I in R or S1 , f �1.I/ is an ANR.

� The map is tame if it is weakly tame and in addition the set of critical values is
discrete and the distance between any two critical values bounded from below by a
positive number �.f /.

8With respect to a specified field � .
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� The map is homologically tame with respect to a specified field if the set of homo-
logically critical values is discrete and the distance between any two such homologically
critical values is bounded from below by a positive number.

For an angle-valued map f W X ! S1 consider a lift Qf W zX !R of f . The map f is
weakly tame (resp. tame, homologically tame) if and only if so is Qf . If X is a finite
simplicial complex then a map f W X ! S1 is called pl (piecewise linear) if some —
and then any — lift Qf W zX !R is a pl map. An angle � 2 S1 is a regular value (resp.
critical value, homologically critical value) if � D eit with t a regular value (resp.
critical value, homologically critical value) for Qf . For technical reasons we will need
the following concept:

� A compact ANR X is called a good ANR if the set of tame maps (real- or angle-
valued maps) is dense in the set of all continuous maps with respect to the compact
open topology. In particular any finite simplicial complex is a good ANR in view of the
fact that the set of pl maps is dense in the set of continuous maps and each pl real- or
angle-valued map is tame.

The von Neumann completion When � D C , the ring of Laurent polynomials
CŒt�1; t �— equivalently, the group ring CŒZ� of the infinite cyclic group Z — is
an algebra with involution � and trace tr defined as follows:

If aD
P

n2Z antn then

�.a/ WD a� D
X
n2Z

xant�n; tr.a/D a0;

with xa denoting the complex conjugate of the complex number a.

The algebra CŒZ� D CŒt�1; t � can be considered as a subalgebra of the algebra of
bounded linear operators on the separable Hilbert space

l2.Z/D

�
an; n 2 Z

ˇ̌̌ X
n2Z

janj
2 <1

�
with the Hermitian scalar product �.a; b/D

P
n2Z an

xbn .

The linear operator defined by a Laurent polynomial (an alternative name for an element
in CŒZ�DCŒt�1; t �) is given by the multiplication of the Laurent polynomial regarded
as a sequence with all but finitely many components equal to zero with a sequence
in l2.Z/.
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One denotes by N the weak closure of CŒZ� in the space of bounded operators of the
Hilbert space l2.Z/ when each element of CŒZ� is regarded as such an operator, which
is a finite von Neumann algebra, with involution and trace extending the ones defined
above; see [9].

This algebra N is referred to below as the von Neumann completion of the group ring
CŒZ� and is isomorphic to the familiar L1.S1/ via Fourier series transform (whose
inverse assigns to a complex-valued function defined on S1 its Fourier series).

Given a free CŒt�1; t �–module M, a C Œt�1; t �–compatible Hermitian inner product is
a map �W M �M !C which satisfies:

(1) Linearity C–linear in the first variable.

(2) Symmetry �.x;y/D x�.y;x/.

(3) Positivity

(a) �.x;x/ 2R�0 �C .

(b) �.x;x/D 0 if and only if x D 0.

(4) For any x and y , there exists n such that �.tnx;y/D 0.

(5) �.tx; ty/D �.x;y/.

Items (1)–(4) make � a nondegenerate Hermitian inner product on M and items (5)
and (6) define the CŒt�1; t �–compatibility of the Hermitian inner product �.

An equivalent data is provided by a CŒt�1; t �–valued inner product — see [9] — which
is given by a map y�W M �M !CŒt�1; t � which satisfies:

(1) CŒt�1; t �–linear in the first variable.

(2) Symmetric in the sense that y�.x;y/D y�.y;x/� for x;y 2M.

(3) Positive definite in the sense that it satisfies

(a) y�.x;x/ 2CŒt�1; t �C with CŒt�1; t �C the set of elements of the form aa� ,
and

(b) y�.x;x/D 0 if and only if x D 0.

(4) The map zy�W M ! HomCŒt�1;t �.M;CŒt�1; t �/ defined by zy�.y/.x/ D y�.x;y/
is one-to-one.
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The relation between � and y� is given by

(5) y�.x;y/D
X
n2Z

tn�.t�nx;y/; �.x;y/D tr y�.x;y/:

Clearly CŒt�1; t �–valued inner products exist. Indeed, if e1; e2; : : : ; ek is a base of M

then
�
�X

aie
i ;
X

bj ej
�
WD

X
ai.bi/

�

provides such an inner product.

Note that if M is finitely generated but not free, a map y� as above satisfying all
properties but (3b) and instead satisfying “ker zy� equals the CŒt�1; t �–torsion of M ”,
induces a C Œt�1; t �–compatible Hermitian inner product � on M=TM, where TM is
the collection of torsion elements in M.

By completing the C–vector space M (the underlying vector space of the finitely
generated CŒt; t�1�–module M ) with respect to the Hermitian inner product � one
obtains a Hilbert space M which is an N –Hilbert module — see [9] — isometric
to l2.Z/

˚k , with k the rank of M.

Two different CŒt�1; t �–valued inner products, �1 and �2 , lead to the isomorphic (and
then also isometric) Hilbert modules M�1

and M�2
. This justifies discarding � from

the notation.

If one identifies N to L1.S1/ and l2.Z/
˚k to L2.S1/˚k — by interpreting the

sequence
P

n2Z antn as the complex-valued function
P

n2Z anein� — the N –module
structure on l2.Z/

˚k becomes the L1.S1/–module structure on .L2.S1//˚k given
by the componentwise multiplication of L1–functions with L2 –functions.

If N �M is a free split submodule of the finitely generated free CŒt�1; t �–module M

and � is an CŒt�1; t �–valued inner product on M, then N � is a closed Hilbert
submodule of M� . Moreover, if N 0i � Ni �M for i D 1; 2; : : : is a collection of
pairs of split submodules then the collection Ni=N

0
i is a collection of free modules,

which are quotients of submodules of M, and the von Neumann completion process
converts N 0i and Ni into closed Hilbert submodules of M and each Ni=N

0
i into a

Hilbert module canonically identified to the orthogonal complement of the kernel of
the projection Ni!Ni=N

0
i inside Ni . The process of passing from (CŒt�1; t �;M ) to

(N ;M ) referred to above as von Neumann completion was considered in [10] for any
group ring CŒ�� and finitely generated projective CŒ��–module.
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Configurations of points with multiplicity A configuration of points with multiplic-
ity in X is a map with finite support ıW X ! Z�0. The support of ı is the set

supp ı WD fx 2X j ı.x/¤ 0g

and the cardinality of the support is

#ı WD
X

ı.x/:

Denote by Confn.X / the set of configurations of cardinality n. Clearly Confn.X /D

Sn.X / D X n=†n , the quotient of the n–fold product X n by the action of the per-
mutation group of n–elements, †n , and this description equips Confn.X / with the
quotient topology induced from the topology of the product space X n . There is an
alternative but equivalent way — see below — to describe this topology as collision
topology.

Configuration of subspaces Let A be a commutative ring with unit, for example a
field � DA, and V a free module of finite rank, rank V D n, and let S.V / be the set
of split submodules of V .

A configuration of subspaces of V indexed by points in X is a map with finite support
yıW X ! S.V / such that M

ix W
M
yı.x/! V;

with ix W yı.x/! V the inclusion, is an isomorphism. As before,

supp ı WD fx 2X j yı.x/¤ 0g:

Denote by CONFV .X / the set of configurations of such submodules (subspaces if V

is a vector space). The configuration yı is called a refinement of ı 2 Confrank V .X / if
ı.x/D rank yı.x/.

If S.V / is equipped with a topology then CONFV .X / carries a topology, the collision
topology, defined by specifying for each element a system of fundamental neighbor-
hoods.9

A fundamental neighborhood of a configuration y! 2 CONFV .X / with support
fx1;x2; : : : ;xkg and values y!.xi/D Vi is specified by

(a) a collection of disjoint open sets .U1;U2; : : : ;Uk/ of X, each Ui a neighborhood
of xi ;

9Described in [2] in the case A is a field.
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(b) a collection of neighborhoods of yı.xi/ in S.V /, V1 3
yı.x1/, V2 3

yı.x2/, : : : ,
Vk 3

yı.xk/, and consists of�
yı 2 CONFV .X /

ˇ̌̌ X
x2Ui\supp yı

yı.x/ 2 Vi

�
:

If the topology on S.V / is the discrete topology then the topology on CONFV .V / is
referred to as the fine collision topology.

In the case of configuration of points with multiplicity, the topology on Confrank V .X /

can be described in the same way, simply by replacing S.V / by Z�0 equipped with
the discrete topology. Note that the assignment

CONFV .X / 3 yı ı 2 Confrank V .X /

is continuous.

If A D � with � D R or � D C and the vector space V (not necessary of finite
dimension) is equipped with a Hilbert space structure and S.V / is the set of closed
subspaces, then one can consider on S.V / the topology induced from the norm topology
on the space of bounded operators on V . The closed subspaces of V are identified to
the self-adjoint projectors. In this case the corresponding topology on CONFV .X / is
called the natural collision topology. If V is a Hilbert space, the subset of configurations
with the additional property that yı.x/? yı.y/ is denoted by CONFO

V
.X /.

Configurations of pairs Let A be a commutative ring with unit, V a free module
of finite rank, rank V DN , and let P.V / be the set of pairs .W;W 0/ with W �W 0

split submodules of V . The pair .W;W 0/ is called virtually trivial if W DW 0.

A configuration of pairs of submodules of V parametrized by X is a map zıW X!P.V /
with finite support

supp zı WD fx 2X j zı.x/¤ virtually trivialg

which satisfies the following properties:

(1) The set AD zı.X / is finite.

(2) If ˛; ˇ 2 A with ˛ D .W˛;W
0
˛/ and ˇ D .Wˇ;W

0
ˇ
/, then W˛ �Wˇ implies

W˛ �W 0
ˇ

.

(3) For any ˛ one hasX
ˇ2A;Wˇ�W˛

rank.Wˇ=W 0ˇ/D rank W˛ and
X
˛2A

rank.W˛=W 0˛/D rank V:
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Any collection of splitting fs˛W W˛=W 0˛!W˛ � V j ˛ 2Ag, ie right inverses of the
canonical projections p˛W W˛!W˛=W 0˛ , assigns to zı the configuration of subspaces yı
defined by yı.x/D szı.x/.Wzı.x/=W 0

zı.x/
/. If � DR or C and V is a �–Hilbert space,

then the orthogonal complements provides canonical splittings and the associated
configuration yı becomes a configuration of subspaces.

If ADCŒt�1; t � and V is a free A–module of finite rank equipped with a CŒt�1; t �–
valued inner product, then the von Neumann completion converts A into L1.S1/,
V into a finite-type Hilbert module, hence a Hilbert space, and any configuration of
pairs zı , by the process of von Neumann completion, into a configuration of Hilbert
submodules. First one converts zı into a configuration of pairs of Hilbert submodules
and then, using the Hermitian inner product, one realizes the quotient of each pair as a
closed Hilbert submodule. Clearly the space of configurations of Hilbert submodules
comes equipped with the natural collision topology as well as the fine collision topology.

Novikov homology Let � be a field and let �Œt�1; t � be the �–algebra of Laurent
polynomials with coefficients in � . This is a commutative algebra which is an integral
domain and a principal ideal domain. For a pair .X; �/ with � 2H 1.X IZ/ and X a
compact ANR, let zX be the associated infinite cyclic cover and let � W zX ! zX be the
positive generator of the group of deck transformations isomorphic to Z, viewed as a
homeomorphism of zX. Since X is compact, the �–vector space Hk. zX / is actually a
finitely generated �Œt�1; t �–module whose multiplication by t is given by the linear
isomorphism induced by the homeomorphism � .

Since �Œt�1; t � is a principal ideal domain, the collection of torsion elements form a
�Œt�1; t �–submodule Vr .X I �/ WD Torsion.Hr . zX //D THr . zM / (usually referred to as
monodromy) which, as a �–vector space, is of finite dimension. The quotient module
Hr . zX /=THr . zX / is a finitely generated free �Œt�1; t �–module. In this paper, this free
�Œt�1; t �–module and its rank are called the Novikov homology and the Novikov–Betti
number and are denoted by H N

r .X I �/ and ˇN
r .X I �/, respectively.10 Since �Œt�1; t �

is a principal ideal domain one has Hr . zX /'H N
r .X I �/˚THr . zX /.

As pointed out above the �Œt�1; t �–module Vr .X I �/ D THr . zX /, which is finitely
generated, when regarded as a vector space over � is of finite dimension and the
multiplication by t is actually a �–linear isomorphism T . In view of the Jordan

10Classically, the Novikov homology is the �Œt�1; t ��–vector space Hr . zX / ˝�Œt�1;t � �Œt
�1; t ��

with �Œt�1; t �� the field of Laurent power series; clearly, ˇN
r D dim.H N

r . zX /˝�Œt�1;t � �Œt
�1; t ��/ D

rank.H N
r . zX // .
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decomposition theorem it is completely determined up to isomorphism by the collection
of pairs with multiplicity

Jr .X W �/ WD f.�; k/ j � 2 x� n 0; k 2 Z�1g:

Here x� denotes the algebraic closure of � . Recall that any such pair should be
interpreted as a k � k matrix T .�; k/ with � on the diagonal, 1 above the diagonal
and zero anywhere else and, by the Jordan decomposition theorem, T (when regarded
over x� ) is similar to the direct sum of all these matrices T .�; k/.

For a fixed u 2 � n 0, one writes J .X I �/.u/D f.�; k/ 2 Jr .X I �/ j �D ug.

�Œt�1; t�–Modules A �Œt; t�1�–module V is actually a �–vector space V equipped
with a �–linear isomorphism T W V !V . The multiplication by t and the isomorphism
T are related by the formula tv WD T .v/. With this observation we define V � , the
�Œt�1; t �–module whose underlying vector space is the dual of V , Hom.V; �/, and a
linear isomorphism T � , the dual of T . Note that if V is finitely generated �Œt�1; t �–
module then V � is not finitely generated in general, but only when it is a torsion module.

If Z acts freely on the set S, �ŒS � denotes the vector space of �–valued maps with
finite support and �ŒŒS �� denotes the vector space of all �–valued maps, then:

(1) Both �ŒS � and �ŒŒS �� are �Œt�1; t �–torsion-free modules, with �Œt�1; t �–structure
induced by the action of 1 2 Z on S.

(2) �ŒŒS �� is isomorphic to �ŒS �� (as �Œt�1; t �–modules).

(3) A torsion-free �Œt�1; t �–module is finitely generated if and only if it is isomorphic
to �ŒS � for some free Z–action on some set S with the quotient set S=Z finite.

(4) If V is a finitely generated torsion �Œt�1; t �–module then V � is a finitely gener-
ated torsion module and is isomorphic to V .

3 The configurations ıfr , zı
f
r and yyı

f
r

3.1 Boxes and the maps

Let � be a fixed field. Consider hW Y !R a (continuous) proper map with Y an ANR,
hence locally compact. For a; b 2R consider

(6)

Ih
a.r/D img.Hr .h

�1.�1; a�/!Hr .Y //;

Ib
h.r/D img.Hr .h

�1.Œb;1//!Hr .Y //;

Fh
r .a; b/D Ih

a.r/\ Ib
h.r/�Hr .Y /;
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and let

(7)

Ih
�1.r/D

\
a2R

Ih
a .r/;

I1h .r/D
\
b2R

Ib
h .r/;

Fh
r .�1; b/D Ih

�1.r/\ Ib
h.r/�Hr .Y /;

Fh
r .a;1/D Ih

a.r/\ I1h .r/�Hr .Y /;

Fh
r .�1;1/D Ih

�1.r/\ I1h .r/�Hr .Y /:

Proposition 3.1 For �1� a0 < a; b < b0 �1 one has

(1) Fh
r .a
0; b0/� Fh

r .a; b/,

(2) Fh
r .a
0; b0/D Fh

r .a
0; b/\Fh

r .a; b
0/,

(3) Fh
r .a; b/ is a finite-dimensional vector space.

Proof Items (1) and (2) follow from the definitions. To check item (3), observe that
by (1) it suffices to verify the statement for a� b . If f is weakly tame, the statement
follows from the Mayer–Vietoris long exact sequence in homology in view of the finite-
dimensionality of Hr .f

�1Œb; a�/, a consequence of the fact that f �1Œb; a� is a compact
ANR. If f is only a proper map, one proceeds as in the proof of [2, Proposition 3.2].
Precisely, one dominates X by a locally compact simplicial complex K and up to a
proper homotopy the map f by a simplicial proper map gW K!R which is weakly
tame. The result is true for g by a simple Mayer–Vietoris argument and then is true
for f .

A subset B of R2 of the form

B D .a0; a�� Œb; b0/

with �1� a0 < a; b < b0 �1 is called a box. When both a0 and b0 are finite, the
box is called a finite box. Let

B.a; b; �/ WD .a� �; a�� Œb; bC �/

for 0< � �1.

Below we write
BC c

for the box which is the .c; c/–translation along the diagonal of the box B ; explicitly,
BC c WD .a0C c; aC c�� ŒbC c; b0C c/, and for B D .a0; a�� Œb; b0/ we denote by
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b00

b0

b

a00 a0 a

B001

B00
2

B01

B0
2

Figure 1

cB �R2 the set

cB WD B.a; bI1/ nB:

For a box B D .a0; a�� Œb; b0/ let

(8)
F 0hr .B/ WD Fh

r .a
0; b/CFh

r .a; b
0/� Fh

r .a; b/�Hr .Y /;

Fh
r .B/ WD Fh

r .a; b/=F
0h
r .B/:

Clearly, if Ih
�1.r/D I1

h
.r/, as will be the case for h a lift of a continuous angle-valued

map (see Proposition 3.8), then, for any a; b 2R,

F 0hr .B.a; bI1//D Ih
�1.r/C I1h .r/D Ih

�1.r/D I1h .r/:

For �1� a00 < a0 < a and b < b0 < b00 �1, consider

B01 WD .a
0; a�� Œb; b0/; B02 WD .a

0; a�� Œb0; b00/;

B1 WD .a
00; a�� Œb; b0/; B2 WD .a

00; a�� Œb0; b00/;

B001 WD .a
00; a0�� Œb; b0/; B002 WD .a

00; a0�� Œb0; b00/

and

(9) B WD .a00; a��I Œb; b00/I

see Figure 1.

One has

B1 D B01 tB001 ; B2 D B02 tB002 ; B D B1 tB2:
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Proposition 3.2 The inclusions B00
1
� B1 � B0

1
, B00

2
� B2 � B0

2
and B1 � B � B2

induce the short exact sequences

0! Fh
r .B

00
i /

i
Bi

B00
i
;r

��!Fh
r .Bi/

�
B0

i
Bi ;r
��!Fh

r .B
0
i/! 0 for i D 1; 2;

0! Fh
r .B2/

iB
B2;r
��!Fh

r .B/
�

B1
B;r
��!Fh

r .B1/! 0:

The proof follows from the definition of Fh
r .a; b/ and Proposition 3.1 above.

Observation 3.3 If B0 and B00 are the boxes B0DB0
1
tB0

2
and B00DB00

1
tB00

2
then

one has
iB
B00

2
;r
WD iB

B00;r � i
B00

B00
2
;r
D iB

B2;r
� i

B2

B00
2
;r

with iB
B00

2
;r

injective and

�
B0

1

B;r
WD �

B0
1

B0;r
��B0

B;r D �
B0

1

B1;r
��

B1

B;r

with �
B0

1

B;r
surjective.

For �0 > � , the inclusion B.a; bI �/ � B.a; bI �0/ for �0 > � induces the surjective
linear map

�
B.a;bI�/

B.a;bI�0/;r
W Fh

r .B.a; bI �
0//! Fh

r .B.a; bI �//:

Define
yıh

r .a; b/ WD lim
��!
�!0

Fh
r .B.a; bI �//:

In view of Proposition 3.1, yıh
r .a; b/ is a finite-dimensional vector space.

Define
ıh

r .a; b/ WD dim yıh
r .a; b/:

Let �.a;b/
B;r
W Fh

r .B/!
yıh

r .a; b/ be given by

�
.a;b/
B;r

WD lim
��!
�!0

�
B.a;bI�/
B;r

:

Proposition 3.4 (1) For a; b 2R and � small enough, yıh
r .a; b/D Fh

r .B.a; bI �//.

(2) For any box B D .a0; a� � Œb; b0/ with �1 � a0 < a; b < b0 � 1, the set
supp ıh

r \B has finite cardinality and one hasX
.a;b/2B\supp yıh

r

ıh
r .a; b/D dim Fh

r .B/:
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(3) If h is weakly tame and yıh
r .a; b/¤ 0 then both a and b are homological critical

values, hence supp yıh
r D supp ıh

r � CRH.h/�CRH.h/� CR.h/�CR.h/.

Proof In view of the finite-dimensionality of dim Fh
r .a; b/ stated in Proposition 3.1(3),

for any a< b there are at most finitely many values of ˛ , say ˛1 <˛2 < � � �<˛k with
a� ˛1 � b , such that dim Ih

˛=I
h
a or I˛

h
=Ib

h
changes. This implies also supp ıh

r \B has
finite cardinality (hence the first part of (2)). The finite-dimensionality of dim Fh

r .a; b/

implies that dim Fh.B.a; bI �// stabilizes when �! 0, which implies (1).

To conclude item (2) entirely, consider a0 D ˛0 < ˛1 < � � � < ˛r D a and b D ˇ1 <

� � �<ˇsC1D b0 such that any box Bi;j D .˛i�1; ˛i �� Œ ǰ ; ǰC1/ contains at most one
point in supp ıh

r . Apply inductively Proposition 3.2 to derive thatX
1�i�r
1�j�s

dim Fh.Bi;j /D Fh
r .B/:

If h is weakly tame, then unless both a and b are homologically critical values,
Fh

r .B.a; bI �// stabilizes to zero, which implies (3). Indeed, in view of the definition
one has

dim Fr .B.a; bI �//

D dim Fr .a; b/C dim Fr .a� �; b� �/� dim Fr .a� �; b/� dim Fr .a; b� �/:

If either a or b are regular values and � is small enough, the right side of the equality
vanishes.

In general, ıh
r and yıh

r are not configurations since their support, although discrete,
might not be finite.

Consider the canonical surjective maps

(10) �r .a; b/W F
h
r .a; b/!

yıh
r .a; b/; �B

r .a; b/W F
h
r .a; b/! Fh

r .B/:

Clearly �r .a; b/D �
.a;b/
B;r
��B

r .a; b/.

One calls a splitting any linear map

(11) ir .a; b/W yır .a; b/! Fh
r .a; b/ or iB

r .a; b/W
yır .a; b/! Fh

r .B/

which satisfies

�r .a; b/ � ir .a; b/D id or �
.a;b/
B;r
� iB

r .a; b/D id:
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We continue to write ir .a; b/ for its composition with the inclusion Fh
r .a; b/�Hr .Y /.

A splitting ir .a; b/ provides the splitting iB
r .a; b/ defined by

iB
r .a; b/D �

B
r .a; b/ � ir .a; b/:

For .a; b/2B0 with B0D .a0; aC��Œb�; b
00/ and �1�a0<a�aC; b�� b< b0�1,

let
iB0

r .a; b/W yıfr .a; b/! Fh
r .B

0/

be the composition

yıh
r .a; b/

ir .a;b/
����!Fh

r .a; b/
�
�!Fh

r .aC; b�/
�B0

r .a0;b0/
�����!Fh

r .B
0/:

Both linear maps ir .a; b/ and iB0

r .a; b/ are injective. The first is injective because
�r .a; b/ � ir .a; b/D id. The second is injective because of the commutativity of the
diagram

Fh
r .a; b/

�

��

�B
r .a;b/

// Fh
r .B/

iB0

B;r
��

Fh
r .aC; b�/

�B0

r .aC;b�/
// Fh

r .B
0/

which implies iB0

r .a; b/D iB0

B;r
� iB

r .a; b/ with iB0

B;r
.a; b/injective by Observation 3.3

and iB
r .a; b/ injective being a splitting.

One summarizes the above maps by the diagram

(12)

Hr .Y / Fh
r .a; b/

�B
r .a;b/

����

oo
�

oo

�r .a;b/

// // yıh
r .a; b/

ir .a;b/
ss

iB
r .a;b/

{{

��

iB0

r .a;b/

��

Fh
r .B/

�
.a;b/

B;r

55 55

//
iB0

B;r
// Fh

r .B
0/

where the subdiagrams involving only arrows ! or only arrows Ü are commutative
and iB

r .a; b/D �
B
r .a; b/ � ir .a; b/.

To simplify the writing, until the end of this section we will write
L
.a;b/ and

L
.a;b/2B

instead of
L
.a;b/2supp ıh

r
and

L
.a;b/2supp ıh

r \B , respectively.

Choose a collection of splittings S D Sr D fir .a; b/ j .a; b/ 2 supp ıh
r g.
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Define
Syıh

r .a; b/ WD ir .a; b/.yı
h
r .a; b//� Fh

r .a; b/�Hr .Y /

and consider the map

SIr D

M
.a;b/

ir .a; b/W
M
.a;b/

yıh
r .a; b/!Hr .Y /;

and for a box B the map

SIB
r D

M
.a;b/2B

iB
r .a; b/W

M
.a;b/2B

yıh
r .a; b/! Fh

r .B/

with ir .a; b/ and iB
r .a; b/ provided by the splittings in the collection S.

Denote by
�r W Hr .Y /!Hr .Y /=.I

h
�1C I1h /

the canonical projection.

Proposition 3.5 Suppose h is a weakly tame map.

(1) The linear maps SIB
r and �r �

SIr are isomorphisms. Therefore, SIr is injective
and SIr

�L
.˛;ˇ/2R2

yıh
r .˛; ˇ/

�
\ .Ih

�1.r/C I1
h
.r//D 0.

(2) We have X
˛�a; ˇ�b

Syıh
r .˛; ˇ/C Ih

�1.r/C I1h .r/D Fh
r .a; b/;(2a)

X
.˛;ˇ/2cB

Syıh
r .˛; ˇ/C Ih

�1.r/C I1h .r/D F 0hr .B/;(2b)

X
.˛;ˇ/2R2

Syıh
r .˛; ˇ/C Ih

�1.r/C I1h .r/DHr .Y /;(2c) X
.˛;ˇ/2B

Syıh
r .˛; ˇ/D Fh

r .B/:(2d)

Proof (1) To shorten the notation introduce the vector spaces�Fh
r .B/ WD

M
.a;b/2B

yıh
r .a; b/ and �Fh

r WD

M
.a;b/

yıh
r .a; b/

and for the collection of splittings S one regards SIB
r and SIr as maps

SIB
r W
�Fh

r .B/! Fh
r .B/;

SIr W
�Fh

r !Hr .Y /:
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For B D B1 tB2 with B1 D B00
1

and B2 D B0
1

or B1 D B00 and B2 D B0 as in
Figure 1, one has the commutative diagram

Fh
r .B1/ // Fh

r .B/
// Fh

r .B2/

�Fh
r .B1/

SI
B1
r

OO

// �Fh
r .B/

SI B
r

OO

// �Fh
r .B2/:

SI
B2
r

OO

First one checks the statement (1) for boxes B with supp ıh
r \B consisting of only

one element. This is indeed the case by Proposition 3.4(3) for a box B.a; bI �/ with �
small enough.

Manipulation with this diagram as in [2], namely a decomposition of B as a disjoint
union of smaller boxes and successive applications of Proposition 3.4, permits us
to establish inductively the result for any finite box B . The general case and the
isomorphism �r �

SIr follows from the case of B a finite box by passing to the
projective limit as follows.

Observe that because Fh
r .a; b/ is finite-dimensional, by Proposition 3.1(3) the cardi-

nality of the set supp ıh
r \B.a; bIR/ remains constant when R is large enough.

Consider �Fh
r .B.a; bI1// WD

M
.a;b/2.B.a;bW1//

yıh
r .a; b/:

Since the set supp ıh
r \B.a; bIR/ is constant when R is large, one has�Fh

r .B.a; bI1//D lim
 ��

R!1

�Fh
r .B.a; bIR//:

Consider Fh
r .B.a; bI1// WD Fh

r .a; b/=.I
h
�1.r/\ Ib

h
.r/C Ih

a.r/\ I1
h
.r//. For the

same reason, Fh
r .B.a; bI1//D lim

 ��
R!1

Fh
r .B.a; bIR//.

Since SI
B.a;bIR/
r is an isomorphism for any R, SI

B.a;bIR/
r stabilizes in R and

SIB.a;bI1/
WD lim

 ��
R!1

SIB.a;bIR/
r ;

one has that SIB.a;bI1/ is an isomorphism.

Note that R2 D
S

L B.�L;LI1/ and

SIR2

r D lim
��!

L!�1

SIB.�L;LI1/
r :
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Since SI
B.�L;LI1/
r is an isomorphism for any L, so is SIR2

r , which is exactly �r �.
SIr /.

(2) Proposition 3.4 and (1) imply (2).

An immediate consequence of Proposition 3.5 is the following corollary:

Corollary 3.6 For a discrete collection of points .ai ; bi/ 2R2 for i 2A,

(1)
T

i2A Fh
r .ai ; bi/D

L
f.˛;ˇ/2

T
i2A B.ai ;bi I1/g

Syıh
r .˛; ˇ/C Ih

�1.r/C I1
h
.r/,

(2)
S

i2A Fh
r .ai ; bi/D

L
f.˛;ˇ/2

S
i2A B.ai ;bi I1/g

Syıh
r .˛; ˇ/C Ih

�1.r/C I1
h
.r/.

3.2 Definition and properties of ıf
r and yı

f
r

Let f W X ! S1 be a continuous map, X a compact ANR, Qf W zX ! R a lift of f
and � a fixed field. We apply the previous considerations to Qf W zX ! R. In this
case we have the deck transformation � W zX ! zX, which induces the isomorphism
tr W Hr . zX / ! Hr . zX / and therefore the structure of a �Œt�1; t �–module on this �–
vector space. Recall that for a box B D .a0; a�� Œb; b0/ one denotes by BC c the box
BC c WD .a0C c; aC c�� ŒbC c; b0C c/.

Observation 3.7 (1) The isomorphism tr satisfies

tr .F
Qf

r .a; b//DF
Qf

r .aC2�; bC2�/ and t�1
r .Fh

r .a; b//DFh
r .a�2�; b�2�/:

(2) For any box B D .a0; a� � Œb; b0/, consider the box B C 2� . The isomor-
phism tr induces the isomorphisms tr .B/W F

Qf
r .B/ ! F

Qf
r .B C 2�/ and then

ytr .a; b/W yı
Qf

r .a; b/! yı
Qf

r .aC 2�; bC 2�/.

(3) I
Qf
�1.r/ and I1

Qf
.r/ are invariant with respect to tr , hence �Œt�1; t �–submodules,

therefore

Hr . zX /=.I
Qf
1.r/C I1

Qf
.r//

is a �Œt�1; t �–module.

Clearly the following diagram with the vertical arrows tr .a; b/; tr .B/; ytr .a; b/ induced
by tr is commutative:
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(13)

Hr . zX /

tr

��

F
Qf

r .a; b/
�

oo
�r .a;b/

//

tr .a;b/

��

�B
ab;r ''

yı
Qf

r .a; b/

ytr .a;b/

��

F
Qf

r .B/

�
.a;b/

B;r

77

tr.B/

��

Hr . zX / F
Qf

r .aC2�; bC2�/
�
oo

�B0

r .aC2�;bC2�/ ''

�r .aC2�;bC2�/
// yı
Qf

r .aC2�; bC2�/

F
Qf

r .BC2�/

�
.aC2�;bC2�/

BC2�;r

77

Proposition 3.8 I
Qf
�1.r/D I1

Qf
.r/D T .Hr . zX //:

Proof If x 2 T .Hr . zX // then there exists an integer l 2 Z and a polynomial P .t/D

˛ntnC ˛n�1tn�1C � � � C ˛1t C ˛0 with ˛i 2 � and ˛0 ¤ 0 such that P .t/t lx D 0.
Let y D t lx . Since Hr . zX /D

S
b Ib
Qf
.r/, one has y 2 Ib.r/ for some b 2 R. Since

P .t/y D 0, one concludes that

y D�.˛n=˛0/t
n�1
� � � � � .˛1=˛0/ty

and therefore y 2 IbC2�.r/.

Repeating the argument, one concludes that y 2 IbC2�l for any l , hence y 2 I1.r/.
Since x D t�ly , one has x 2 I1.r/. Hence, T .Hr . zX //� I1.r/.

Let x2I1.r/. Since Hr . zX /D
S

a I
Qf

a.r/, it follows that x2Ia.r/ for some a2R, and
if in addition x 2 I1.r/ then, by Observation 3.7(3), all x; t�1x; t�2x; : : : ; t�lx; : : :

are in Ia.r/\ I1.r/. Since by Proposition 3.1(3) the dimension of Ia.r/\ I1.r/ is
finite, there exist ˛i1

; : : : ; ˛il
such that

.˛i1
t�i1 C � � �C˛il

t�il /x D 0:

This gives x 2 T .Hr . zX //. Hence, I1.r/ � T .Hr . zX //. Therefore, I1.r/ D

T .Hr . zX //. By a similar argument one concludes that Hr . zX /D I�1.r/.

Recall that

� H N
r .X I �f / WDHr . zX /=T .Hr . zX //,

� �.r/W Hr . zX /!H N
r .X I �f / denotes the canonical projection, and
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� the �–vector spaces Hr . zX /, T .Hr . zX // and H N
r .X I �f / are �Œt�1; t �–modules

with the multiplication by t given by or induced by the isomorphism tr and �.r/
is �Œt�1; t �–linear.

In view of Proposition 3.8, T .Hr . zX // is contained in F
Qf

r .a; b/ and F 0
Qf

r .B/ and then
one defines

� N F
Qf

r .a; b/ WD F
Qf

r .a; b/=T .Hr . zX // for any B WD .a0; a�� Œb; b0/,

� N F
0 Qf
r .B/ WD F

0 Qf
r .B/=T .Hr . zX // and N F

Qf
r .B/ WD

N F
Qf

r .a; b/=
N F
0 Qf
r .B/, and

then

� N yı
Qf

r .a; b/D lim�!0
N F

Qf
r .B.a; bI �/D

N F
Qf

r .B.a; bI �// for � small enough.

Clearly one has:

� N F
0 Qf
r .B/�

N F
Qf

r .a; b/�H N
r .X I �f /.

� (1) F
Qf

r .B/D
N F

Qf
r .B/.

(2) yı
Qf

r .a; b/D
N yı
Qf

r .a; b/.

� The diagram

(14)

yı
Qf

r .a; b/

ytr .a;b/

��

N F
Qf

r .a; b/oo

N ytr .a;b/

��

))

// H N
r .X; �f /

N ytr

��

N F
Qf

r .B/D F
Qf

r .B/

ll

N ytr .B/

��

yı
Qf

r .aC2�; bC2�/ N F
Qf

r .aC2�; bC2�/oo

))

// H N
r X; �f /

N F
Qf

r .BC2�/D F
Qf

r .BC2�/

llll

is commutative with the vertical arrows isomorphisms.

Recall from the introduction that h iW R2!T DR2=Z denotes the map which assigns
to .a; b/ 2R2 its equivalence class ha; bi 2T. One denotes by hKi �T the image of
K �R2 by the map h i; in particular, one writes ha; bi, hBi and hcBi for the images
of .a; b/, B and cB .

The box B D .a� ˛; a�� Œb; bCˇ/ is called small if 0 < ˛; ˇ < 2� , in which case
the restriction of h i to B is one-to-one; clearly, if B is a small box, so is any BC c

and .BC 2�k/\ .BC 2�k 0/D∅ for k ¤ k 0 .
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For ha; bi 2 T and hBi � T with B D .a�˛; a�� Œb; bCˇ/ a small box introduce

N Ffr ha; bi WD
X
k2Z

N F
Qf

r .aC 2�k; bC 2�k/�H N
r .X I �f /;

N F 0fr hBi WD
X
k2Z

N F 0
Qf

r .BC 2�k/D .N F
Qf

r ha
0; biCN F

Qf
r ha; b

0
i/� N F

Qf
r ha; bi

�H N
r .X I �f /;

both �Œt�1; t �–submodules of the free �Œt�1; t �–module H N
r .X I �f /, hence finitely

generated free modules, and

Ffr hBi WD
M
k2Z

F
Qf

r .BC 2�k/D
M
k2Z

N F
Qf

r .BC 2�k/;

yıfr ha; bi WD
M
k2Z

yı
Qf

r .aC 2�k; bC 2�k/D
M
k2Z

N yı
Qf

r .aC 2�k; bC 2�k/;

both (Ffr hBi and yıfr ha; bi) free �Œt�1; t �–modules whose multiplication by t is given
by the isomorphism

L
k2Z ytr .aC 2�k; bC 2�k/.

Recall that for a set S equipped with an action �W Z�S!S the �–vector space �ŒS �,
of �–valued finitely supported maps, has the structure of a �Œt�1; t �–module which is
free when the action is free and has a base indexed by the quotient set S=Z. If S �R2

is a discrete subset, invariant to the action �W Z�R2!R2 given by �.n; .a; b//D
.aC2�n; bC2�n/, then �ŒS � is a free �Œt�1; t �–module with a base indexed by hSi.
For the box B D .a�˛; a�� Œb; bCˇ/�R2 one denotes by yB and ccB the subsets,
in R2 ,

(15)

yB WD
[
z2Z

.BC 2�k/�R2;

ccB WD
[
k2Z

c.BC 2�k/�R2

and by h yBi � T and hbcBi � T their images by the map h i.

Clearly the sets yB , ccB and supp ı
Qf

r are invariant to the free action � with quotient
sets h yBi, hccB i and hsupp ı

Qf
r i D supp ıfr , respectively. In view of the above and of

Proposition 3.5 one can conclude that the �–vector spaces

N Ffr ha; bi;
N F 0fr hBi;

N Ffr ha; bi=
N F 0fr hBi
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are free �Œt�1; t �–modules with bases indexed by

h yB.a; bI1/i \ supp ıf ; hccBi \ supp ıf and h yBi \ supp ıf ;

the quotient sets of yB.a; bI1/\supp ı
Qf

r , ccB \supp ı
Qf

r and yB\supp ı
Qf

r , respectively.

For any box B D .a�˛; a�� Œb; bCˇ/ and k 2 Z consider the �–linear map

�r .a; bI k/W
N F

Qf
r .aC 2�k; bC 2�k/

N F 0
Qf

r .BC 2�k/

!
N Ffr ha; bi=

N F 0fr hBi

induced by the inclusion N F
Qf

r .aC2�k; bC2�k/�
L

k02Z
N F

Qf
r .aC2�k 0; bC2�k 0/

and let

�r ha; bi WD
M
k02Z

�r .a; bI k
0/W N Ffr hBi !

N Ffr ha; bi=
N F 0f hBi:

This map is surjective and, in view of the commutative diagram (14), is �Œt�1; t �–linear.

Since �r .a; b/ is surjective and both the source and the target are free modules of equal
finite rank, it follows that �r .a; b/ is an isomorphism.

One summarizes the above observation as Proposition 3.9:

Proposition 3.9 (1) The �Œt�1; t �–module N Ffr ha; bi=
N F 0fr hBi is free and of

rank #.h yBi\supp ıfr /. If B is a small box then this rank equals #.B\supp ı
Qf

r /.

(2) If B is small then the �–linear map �r ha; bi is an isomorphism.

(3) For � small enough,

yıf ha; bi D N Fr hB.a; bI �/i

with B.a; bI �/D .a� ��� Œb; bC �/.

Let N�r .a; b/W
N F

Qf
r .a; b/!yı

Qf
r .a; b/ be the canonical projection. As in the definition

of splittings an N –splitting is a linear map Nir .a; b/W yı
Qf ! N F

Qf
r .a; b/ such that

N�r .a; b/ �
Nir .a; b/D id.

Definition 3.10 A collection S of splittings ir .a; b/W yı
Qf

r .a; b/!F
Qf

r .a; b/ for a; b2R

or N –splittings Nir .a; b/W yı
Qf

r .a; b/!
N F

Qf
r .a; b/ for a; b 2R is called a collection of

compatible splittings or compatible N –splittings if

ytr .a; b/ � ir .a; b/D ir .aC 2�; bC 2�/ � ytr .a; b/

or
ytr .a; b/ �

Nir .a; b/D
Nir .aC 2�; bC 2�/ � ytr .a; b/:
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Note that:

(1) The splitting ir .a; b/ of �r .a; b/ induces the splitting N ir .a; b/ of N�r .a; b/

by composition with the canonical projection

F
Qf

r .a; b/!
N F

Qf
r .a; b/D F

Qf
r .a; b/=THr . zM /:

(2) Collections of compatible splittings and therefore of compatible N –splittings
exist. It suffices to start with splittings for pairs .a; b/ for 0� a< 2� and extend
them for a outside this interval by composing with the appropriate ytr and get
compatible splittings and then derive from them compatible N –splittings.

(3) The linear maps �r .a; b/ or N�r .a; b/ and the collection S of compatible
splittings or compatible N –splittings induce

�r ha; biW F
f
r ha; bi !

yıfr ha; bi and ir ha; biW yı
f
r ha; bi ! Ffr ha; bi

or

N�r ha; biW
N Ffr ha; bi ! yı

Qf
r ha; bi and Nir ha; biW yı

f
r ha; bi !

N Ffr ha; bi:

Item (3) requires some explanation.

To define �r ha; bi and N�r ha; bi we show first that the linear maps �r .a; b/ and
N�r .a; b/ extend to X

i2Z

F
Qf

r .aC 2� i; bC 2� i/�Hr . zM /;

X
i2Z

N F
Qf

r .aC 2� i; bC 2� i/� NHr .M I �/;

respectively. If this is the case, denote these extensions by x�r ha; bi and N x�r ha; bi.
To show this is the case it suffices to verify that if xi 2 Ffr .aC 2� i; bC 2� i/ andP

i2Z xi 2 T .Hr .zx/ then xi 2 F 0fr .B.a C 2� i; b C 2� i I 2�// C THr . zM /; this
guarantees that

L
i �r .aC 2� i; bC 2� i/.xi/D 0.

Indeed, since

B.aC 2� i; bC 2� i I1/\

� [
j2Z; j¤i

B.aC 2�j ; bC 2�j I1/

�
� cB.aC 2� i; bC 2� i I 2�/;

if x D
P

i2Z xi 2 THr . zM / with xi 2 Fr .aC 2� i; bC 2� i/, in view of Proposition
3.5(2b), one has

xi D x�
X
i¤j

xj 2 THr . zX /CF 0
Qf

r .B.aC 2� i; bC 2� i I 2�//:
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Define �r ha; bi and N�r ha; bi to be the direct sum of x�r haC 2� i; bC 2� ii and of
N x�r haC 2� i; bC 2� ii, respectively, over all i 2 Z.

Clearly the map �r ha; bi is the factorization ofM
k2Z

�r .aC 2�k; bC 2�k/W
M
k2Z

F
Qf

r .aC 2�k; bC 2�k/

! yıfr ha; bi D
M

ı
Qf

r .aC 2�k; bC 2�k/

by the projection � W
L

k2Z F
Qf

r .aC2�k; bC2�k/!
P

k2Z F
Qf

r .aC2�k; bC2�k/.
A similar observation holds for N�r ha; bi.

Define ir ha; bi to be the composition of
L

k2Z ir .a C 2�k; b C 2�k/ with the
projection � W

L
k2Z F

Qf
r .aC 2�k; b C 2�k/!

P
k2Z F

Qf
r .aC 2�k; b C 2�k/ and

Nir ha; bi to be the composition of
L

k2Z
Nir .aC 2�k; bC 2�k/ with the projection

� W
L

k2Z
N F

Qf
r .aC 2�k; bC 2�k/!

P
k2Z

N F
Qf

r .aC 2�k; bC 2�k/.

Then a collection S of compatible splittings and implicitly of compatible N –splittings
defines the �–linear map

SIN
r D

M
ha;bi2T

ir ha; biW
M
.a;b/

yıfr ha; bi !H N
r .M I �f /;

and for a small box B the �–linear maps

SIN
r hBi D

M
ha;bi2hBi

iB
r ha; b/W

M
ha;bi2hBi

yı
Qf

r ha; bi !
N F

Qf
r hBi:

Proposition 3.11 Both SIN
r and SIN

r hBi are �Œt�1; t �–isomorphisms.

Proof Indeed, for a chosen collection S of compatible N –splittings consider the
diagrams

(16)

L
h˛;ˇi
yıf h˛; ˇi

SI N
r

// H N
r .X I �/

L
fh˛;ˇi;˛�a;ˇ�bg

yıf h˛; ˇi

�

OO

SI N
r

// N Ffr ha; bi

�

OO

L
h˛;ˇi2hcBi

yıf h˛; ˇi

�

OO

SI N
r

// N F 0fr hBi

�

OO
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and

(17)

L
h˛;ˇi;˛�a;ˇ�b

yıf h˛; ˇi

� 0r
��

SI N
r

// N Ffr ha; bi

� 00r
��L

h˛;ˇi2hBi
yıf h˛; ˇi

SI N
r hBi

// N Ffr hBi D Ffr hBi

with � 0r and � 00r the obvious projections.

In view of Proposition 3.5 one has:

� yıf h˛; ˇi is a free �Œt�1; t �–module with the multiplication by t given by the
isomorphism

L
k2Z ytr .˛C 2�k; ˇC 2�k/.

� The vector spaces involved in the above diagrams are all free �Œt�1; t �–modules
and in view of the commutativity of diagrams (13) and (14) all arrows in both diagrams
are �Œt�1; t �–linear.

� The horizontal arrows in the above diagrams are isomorphisms; in particular, so are
SIN

r and SIN
r hBi.

Proposition 3.12 N Ffr ha; bi and N F 0fr hBi are split free submodules of H N
r .X I �/,

and Ffr hBi is a quotient of split free submodules, hence also free. In particular,
yı
f
r ha; bi, which is canonically isomorphic to Ffr hB.a; bI �/i for � <�.f /, is a quotient

of split free submodules Ffr ha; bi=F
0f
r hB.a; bI �/i.

Definition of ıf
r , zı

f
r , yı

f
r , yyı

f
r and P

f
r .z/ In view of Propositions 3.1, 3.2 and 3.9

and of Proposition 3.12, the assignments

(1) ha; bi ı
f
r ha; bi,

(2) ha; bi zıfr ha; bi D .Ffr ha; bi;F 0fr hB.a; bI �/i/, with � small,

(3) ha; bi yıfr ha; bi,

(4) ha; bi yyıfr ha; bi, with yyıfr ha; bi the von Neumann completion of yıfr ha; bi

for ha; bi 2 T , defined by

(1) ı
f
r ha; bi WD ı

Qf.a; b/,

(2) zıfr ha; bi WD .F
f
r ha; bi;F

0f
r hB.a; bI �/i/, with � small enough,

(3) yıfr ha; bi D .F
f
r ha; bi=F

0f
r hB.a; bI �/i/, with � small enough
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are configurations of points with multiplicity, of pairs of submodules of H N
r .X I �f /

and of free �Œt�1; t �–modules.

We use the identification of T with C n0 provided by the map ha; bi 7! zD eiaC.b�a/

and if z1; z2; : : : ; zk 2Cn0 are the points in the support of ıfr , when regarded in Cn0,
define the polynomial

Pf
r .z/ WD

Y
.z� zi/

ı
f
r .zi /:

When � DC , the von Neumann completion described in Section 2 converts CŒt�1; t �

into the von Neumann algebra L1.S1/ and a CŒt�1; t �–valued inner product converts
H N

r .M I �/ into an L1.S1/–Hilbert module and F 0fr hBi, Ffr hBi and yıha; bi into
Hilbert submodules. The von Neumann completion leads to the configuration yyıfr
of mutually orthogonal L1.S1/–Hilbert modules. If X is an underlying space of
a closed Riemannian manifold or of a simplicial complex (hence a space equipped
with a triangulation), then the additional structure — the Riemannian metric or the
triangulation — provides such an inner product.

4 Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1 Item (1) follows from Proposition 3.4(3) and the definitions
of ıfr , yıfr and yyıfr .

Item (2) follows from the fact that �.r/ � SIr is an isomorphism, as established in
Proposition 3.5(1) applied to Qf and from the definitions of ıfr , yıfr and yyıfr . The
configuration yıfr is derived from a configuration of pairs as described in Section 2 with
yı
f
r ha; bi D Ffr ha; bi=F

0f
r hB.a; bI �/i for any � < �.f /.

For (3), one proceeds as in the proof of Theorem 4.1(4) in [2] in the case X is a
compact smooth manifold or a finite simplicial complex. For example, if X is a smooth
manifold, possibly with boundary, any angle-valued map is arbitrary close to a Morse
angle-valued map f which takes different values on different critical points. Then
the same remains true for Qf W zX !R, an infinite cyclic cover of this Morse map; this
guarantees that for the sequence of critical values � � � < ci�1 < ci < ciC1 < � � � , the
inclusion-induced linear maps H�. zXci�1

/!H�. zXci
/ have cokernel of dimension at

most one. As argued in the proof of Theorem 1(4) in [2], this implies that ı
Qf

r and
then ıfr takes only 0 or 1 as values. In the same way as in [2], with the help of results
on compact Hilbert cube manifolds, eg Theorem 4.2 below, one derives Theorem 1.1(3)
in the generality stated.
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Proof of Theorem 1.2 First observe that in view of Observation 4.1 and Theorem 4.2
(stating results about Hilbert cube manifolds) it will suffice to prove Theorem 1.2 for
X a finite simplicial complex.

Indeed, if Theorem 1.2 holds for any finite simplicial complex, in view of Observation 4.1
and Theorem 4.2(3), it holds for K�I1 , hence, by Theorem 4.2(2), for X a compact
Hilbert cube manifold and then again, by Theorem 4.2(1) and Observation 4.1, holds
for any compact ANR.

For a continuous map f W X!S1 and K a compact space denote by fK W X �K!S1

the composition fK WD f ��X with �X W X �K!X the first factor projection.

Observation 4.1 If f W X ! S1 is a continuous map with X a compact ANR and K

is a contractible compact ANR, then ıfr D ı
fK
r and yıfr D yı

fK
r .

The statement follows in a straightforward manner from the definitions of ıfr and yıfr .

Denote by I1 the product of countably many copies of I D Œ0; 1� and write I1 D

Ik � I1�k .

Theorem 4.2 (Chapman and Edwards [5]) (1) If X is a compact ANR then
X � I1 is a compact Hilbert cube manifold, ie locally homeomorphic to I1 .

(2) Any compact Hilbert cube manifold M is homeomorphic to K � I1 for some
finite simplicial complex K .

(3) If K is a finite simplicial complex, f W K�I1!S1 a continuous map and �>0,
then there exists an n and gW K�In!S1 a pl map such that kf �gI1�nk<� .

A proof of items (1) and (2) can be found in [5]. Item (3) is a rather straightforward
consequence of the compactness of K � I1 and the approximation of continuous
maps by pl maps when the source is a finite simplicial complex (for more details see
Proposition 6.5 in [1]).

We proceed now with the verification of Theorem 1.2 for X a finite simplicial complex.

In view of Observation 2.1, the proof of (1) is the same as of Theorem 4.2 in [2]
provided we replace f W X !R by Qf W zX !R, a lift of f W X ! S1 representing � .
The basic ingredient, Proposition 3.16 (based on Lemmas 3.17 and 3.18) in [2], holds for
hW Y !R, with Y a locally compact ANR and h a proper map, instead of f W X !R

continuous with X compact.
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For the reader’s convenience we restate this proposition in the way it will to be used
but beforehand we introduce the notation

D.a; bI �/ WD B.aC �; bC �I 2�/D .a� �; aC ��� ..b� �; bC ��:

Proposition 4.3 Let f W X ! S1 be a tame map and � < 1
3
�.f /. For any map

gW X ! S1 which satisfies kf � gk1 < � and a and b critical values of a lift
Qf W zX !R of f , one has X

x2D.a;bI2�/

ızgr .x/D ı
Qf

r .a; b/;(18)

supp ızgr �
[

.a;b/2supp ı
Qf

r

D.a; bI 2�/(19)

when zgW zX !R is any lift of g .

Moreover, if �DC and Hr . zX / is equipped with a Hermitian scalar product, the above
statement can be strengthened to

(20) x 2D.a; bI 2�/ D) yızgr .x/�
yı
Qf

r .a; b/;
M

x2D.a;bI2�/

yızgr .x/D
yı
Qf

r .a; b/;

with yı
Qf

r .x/ ? yı
Qf

r .y/. Here yı
Qf

r .x/ or yızgr .x/ denotes the orthogonal complement of
F 0
Qf

r .D.a; bI �// in F
Qf

r .a; b/ or of F 0 zgr .D.a; bI �// in F zgr .a; b/ for � small enough.

The steps in the proof of Theorem 1.2(1) are similar to the steps described in Section 4.2
in [2]. We summarize them below:

(1) For a pair .X; �/, with X a compact ANR, let C�.X;S
1/ denote the set of maps

in the homotopy class defined by � equipped with the compact open topology.
Note, in view of Observation 2.1, that:

(a) The compact open topology is induced from the complete metric D.f;g/

and D.f;g/DD. Qf ; zg/ for appropriate lifts.

(b) For f;g 2C�.X;S
1/ and any sequence 0D t0 < t1 < � � �< tN�1 < tN D 1,

by Observation 2.1(3), the canonical homotopy ft from f to g , ie f0 D f

and f1 D g , satisfies

(21) D.f;g/�
X

0�i<N

D.ftiC1
; fti

/:

(2) For X is a simplicial complex let U � C�.X;S
1/ be the subset of pl maps. One

can verify that:
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(a) U is a dense subset in C�.X;S
1/.

(b) If f;g 2 U with D.f;g/ < � then, for the canonical homotopy ft each
ft 2 U, hence �.ft / > 0. Then, for any t 2 Œ0; 1�, there exists ı.t/ > 0 such
that t 0; t 00 2 .t � ı.t/; t C ı.t// implies D.ft 0 ; ft 00/ <

1
3
�.ft /.

Both statements (a) and (b) are argued as in [2].

(3) Consider the space of configurations Confbr
.T /, br D ˇ

N
r .X I �/ viewed as

Sbr .T /, the br fold symmetric product of T equipped with the induced metric,
D, which is complete. Since any map in U is tame, in view of Proposition (3.16)
in [2], f;g 2 U with D.f;g/ < 1

3
�.f / imply

(22) D.ıfr ; ı
g
r /� 2D.f;g/:

This suffices to conclude the continuity of the assignment f  ı
f
r .

To finalize the proof of Theorem 1.2(1) we check first (Step 1) that the inequality (22)
extends to all f;g 2 U, second (Step 2) that the inequality (22) extends to all f;g 2
C�.X;S

1/ for X a finite simplicial complex, and third (Step 3) that the inequality (22)
extends to all f;g 2 C�.X;S

1/ for X an arbitrary compact ANR.

Step 1 Start with f;g 2 U and consider the canonical homotopy Qft D t Qf C .1� t/zg

for t 2 Œ0; 1� between two lifts Qf and zg of f and g which satisfy D.f;g/DD. Qf ; zg/.
Note that each Qft satisfies Qft .�.n;x//D Qft .x/C 2�n, hence is a lift of a pl map ft .

Choose a sequence 0< t1 < t3 < t5 < � � �< t2N�1 < 1 such that for i D 1; : : : ; 2N �1

the intervals .t2i�1� ı.t2i�1/; t2i�1C ı.t2i�1//, with ı.ti/ as in (2b), cover Œ0; 1� and
.t2i�1; t2i�1C ı.t2i�1//\ .t2iC1� ı.t2iC1/; t2iC1/¤∅. This is possible in view of
the compactness of Œ0; 1�.

Take t0D 0, t2N D 1 and t2i 2 .t2i�1; t2i�1Cı.t2i�1//\.t2iC1�ı.t2iC1/; t2iC1/. To
simplify the notation abbreviate fti

to fi . In view of (2) and (3) above (the inequality
(22)) one has that jt2i�1� t2i j < ı.t2i�1/ implies D.ıf2i�1 ; ıf2i / < 2D.f2i�1; f2i/

and jt2i� t2iC1j<ı.t2iC1/ implies D.ıf2i ; ıf2iC1/ < 2D.f2i ; f2iC1/. Then we have

D.ıf ; ıg/�
X

0�i<2N�1

D.ıfi ; ıfiC1/� 2
X

0�i<2N�1

D.fi ; fiC1/� 2D.f;g/

in view of Observation 2.1(3).

Step 2 Suppose X is a simplicial complex. In view of the density of U and of the
completeness of the metrics on C�.X IS

1/ and Confbr
.T /, the inequality (22)) extends
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to the entire C�.X IS
1/. Indeed, the assignment U 3 f  ı

f
r 2 Cbr

.R2/ preserves
the Cauchy sequences.

Step 3 We verify the inequality (22) for X DK � I1 , with K simplicial complex
and I1 the Hilbert cube. One proceeds exactly as in [2]. Since by Theorem 1.2(2) any
compact Hilbert cube manifold is homeomorphic to K� I1 for some finite simplicial
complex K , the inequality (22) continues to hold. Since for X a compact ANR

(i) X � I1 is a Hilbert cube manifold by Theorem 1.2(1),

(ii) I W C.X IR/! C.X � I1IR/ defined by I.f /D xfI1 is an isometric embed-
ding, and

(iii) ıf D ı
xfI1 ,

the inequality (22) holds for X a compact ANR.

To check Theorem 1.2(2) we begin with a few observations. If � DC , a Riemannian
metric on a closed smooth manifold M nDX, or a triangulation of a compact ANR X,
provides a Hermitian scalar product on Hr . zX / invariant to the action of the group of
deck transformations of the covering zX ! X. Ultimately this provides a CŒt�1; t �–
compatible Hermitian inner product on H N

r .X I �/ and then a collection of compatible
N –splittings Nir .a; b/ for .a; b/ 2 R2 and then the collection of compatible N –
splittings Nir ha; bi for ha; bi 2 T for both f and g . The images of these splittings
are the free submodules yıf and yıg . In view of Proposition 4.3, for a given f ,
.a; b/2CR.f /�CR.f /, � < �.f / and any g with kg�f k1< 1

3
� , the two subspaces

of spaces of H N
r .X I �/X

.a0;b0/2D.a;bI�/\supp ızg

N ir ha
0; b0i.yıg

ha0; b0i/ and Nir ha; bi.yı
f
ha; bi/

are equal.

The CŒt�1; t �–compatibility permits us to pass to von Neumann completions and derive
the collection of Hilbert submodules yyıf and yyıg which under the above hypotheses
satisfy X

.a0;b0/2D.a;bI�/\supp ızg

yyıg
ha0; b0i/Dyyıf ha; bi:

This implies the continuity of the assignment f  yyıfr when the space of configu-
rations is equipped with the fine topology and then with the natural topology, hence
Theorem 1.2(2).
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5 Proof of Theorem 1.3

We prove Theorem 1.3 for weakly tame maps f W M!S1 , with M a closed topological
manifold of dimension n, whose set of nontopological regular values is finite. If the set
of such maps is dense in the set of all maps equipped with the compact open topology
then, in view of Theorem 1.2, the result holds for all continuous maps. One expects
this to always be the case. When the manifold is homeomorphic to a finite simplicial
complex, this is indeed the case since a pl map is weakly tame and has finitely many
critical values and the set of pl maps is dense in the set of all continuous maps with
the compact open topology. For manifolds which have no triangulation, a possible
argument for such density is considerably longer and will not be provided in this paper.
We were unable to locate a reference in the literature. For f a weakly tame map it will
suffice to consider only regular values a and b . This is because for arbitrary pairs c

and c0 one can find � > 0 small enough such that for a0D c�� , aD cC� , bD c0�� ,
b0 D cC � and B D .a0; a�� Œb; b0/, in view of Proposition 3.4 one has

yı
Qf

r .c; c
0/D yı

Qf
r .a; b/D F

Qf.B/yı
Qf

r .c
0; c/D yı

Qf
r .b
0; a0/D F

Qf.B0/:

The proof of Theorem 1.3 requires some additional notation and considerations.

Some additional notation and definitions Recall that a topologically regular value
is a value s which has a neighborhood U such that f W f �1.U /! U is a topological
bundle. If so, any lift (infinite cyclic cover) Qf W zM ! R of f has the set of critical
values discrete and 2� –periodic.

We use the notation:

(1) zMa WD
Qf �1..�1; a�/ and zM a WD Qf �1.Œa;1// for a 2R.

(2) Ia.r/ WD img.Hr . zMa/!Hr . zM // and Ia.r/ WD img.Hr . zM
a/!Hr . zM //.

(3) F
Qf

r .a; b/D I
Qf

a \ Ib
Qf

and ir .a; b/W F
f
r .a; b/�Hr . zM /, the inclusion.

In addition consider:

(4) G
Qf

r .a; b/ WDHr . zM /=.I
Qf

a CIb
Qf
/ and pr .a; b/W Hr . zM /!G

Qf
r .a; b/, the canon-

ical projection.

(5) For a box B D .a0; a�� Œb; b0/ let:

(a) F
Qf

r .B/ WD coker.F
Qf

r .a
0; b/˚F

Qf
r .a; b

0/! F
Qf

r .a; b// and �B
r W F

Qf
r .a; b/�

Ffr .B/ the canonical surjection,
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(b) G
Qf

r .B/ WD ker.G
Qf

r .a
0; b0/!G

Qf
r .a
0; b/�

G
Qf

r .a;b/
G
Qf

r .a; b
0/ and

uB
r W G

Qf
r .B/�G

Qf
r .a
0; b0/

the canonical inclusion.

(c) Since F
Qf

r .B/ identifies canonically to

Ia.r/\ Ib.r/=.Ia0.r/\ Ib.r/C Ia.r/\ Ib0.r//

and G
Qf.B/ identifies canonically to

.Ia0.r/C Ib.r//\ .Ia.r/C Ib0.r//=.Ia0.r/C Ib0.r//;

the inclusion Ia.r/\ Ib.r/ � .Ia0.r/C Ib.r//\ .Ia.r/C Ib0.r// induces
the linear map �r .B/W F

Qf
r .B/!G

Qf
r .B/, which is an isomorphism.

For a verification one can consult [2, Proposition 4.7].

If a is a topologically regular value then zMa and zM a are manifolds with compact
boundary f �1.a/ and denote by

(23)

H BM
r . zM /D lim

 ��
0<l;t!1

Hr . zM ; zM�l t
zM t /;

H BM
r . zMa/D lim

 ��
0<l!1

Hr . zMa; zMa�l/;

H BM
r . zM a/D lim

 ��
0<l!1

Hr . zM ; zM aCl/;

H BM
r . zM ; zMa/D lim

 ��
0<l!1

Hr . zM ; zMa t
zM aCl/;

H BM
r . zM ; zM a/D lim

 ��
0<l!1

Hr . zM ; zM a
t zMa�l/:

The reader will recognize on the left side of the equalities (23) the notation for the
Borel–Moore homology vector spaces with coefficients in � , the right homology to
extend the Poincaré duality from compact manifolds to arbitrary finite-dimensional
manifolds.

Poincaré duality diagrams for zM One has the following commutative diagrams,
whose vertical arrows are isomorphisms, referred to as the Poincaré duality diagrams
for nonclosed manifolds:
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H BM
r . zMa/

PD1
a

��

ia.r/
// H BM

r . zM /

PD
��

ja.r/
// H BM

r . zM ; zMa/

PD2
a

��

H n�r . zM ; zM a/

D

��

sa.n�r/
// H n�r . zM /

D

��

ra.n�r//
// H n�r . zM a/

D

��

.Hn�r . zM ; zM a//�
.ja.n�r//�

// Hn�r . zM /�
.ia.n�r//�

// Hn�r . zM
a/�

(24)

H BM
r . zM b/

PDb
1

��

ib.r/
// H BM

r . zM /

PD
��

jb.r/
// H BM

r . zM ; zM b/

PDb
2

��

H n�r . zM ; zMb/

D

��

sb.n�r/
// H n�r . zM //

D

��

rb.n�r/
// H n�r . zMb/

D

��

.Hn�r . zM ; zMb//
�
.jb.n�r//�

// .Hn�r . zM //�
.ib.n�r//�

// .Hn�r . zMb//
�

(25)

One can derive these diagrams from the Poincaré duality for compact bordisms
. Qf �1Œa; b�; Qf �1.a/; f �1.b// when a and b are topologically regular values, by passing
to the limit a!�1 or b!1 with no knowledge about Borel–Moore homology.

The Poincaré duality isomorphism

PDBM
r W H BM

r . zM /
PDr
�!H n�r . zM /

D
�! .Hn�r . zM //�

we consider below is the composition of the vertical arrows in the middle of diagram
(24) or (25).

Note that all three terms of this sequence are �Œt�1; t �–modules and the two arrows are
�Œt�1; t �–linear with the multiplication by t given by the linear isomorphism induced
by the deck transformation �r .

If one uses H BM
r . � / instead of Hr . � /, one can also consider BM F

Qf
r .a; b/, BM F

Qf
r .B/

and BM yı
Qf

r .a; b/ instead of F
Qf

r .a; b/, F
Qf

r .B/ and yı
Qf

r .a; b/. Proposition 5.2(3) will
show that BM F

Qf
r .B/ and BM yı

Qf
r .a; b/ are respectively canonically isomorphic to

F
Qf

r .B/ and yı
Qf

r .a; b/.

Intermediate results With the definitions already given, one has the following propo-
sition:
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Proposition 5.1 (1) For any a and b regular values of Qf , the Poincaré duality
isomorphism restricts to an isomorphism

PDBM
r .a; b/W BM F

Qf
r .a; b/! .G

Qf
n�r .b; a//

�:

(2) For any box B D .a0; a� � Œb; b0/ and B0 D .b; b0� � Œa0; a// with all a, a0 ,
b and b0 regular values, PDBM

r induces the isomorphisms PDBM
r .a; b/ and

PDBM
r .B/, making the diagram below commutative:

(26)

BM F
Qf

r .a
0; b0/

��

PDBM
r .a0;b0/

// .G
Qf

n�r .b
0; a0//�

��

BM F
Qf

r .a; b/

��

&&

PDBM
r

// .G
Qf

n�r .b; a//
�

u�n�r

''p�r

��

BM F
Qf

r .B/
PDBM

r .B/
// .G

Qf
n�r .B

0//�

��n�r
��

H BM
r . zM /

PDBM
r

// .Hn�r . zM //� .F
Qf

n�r .B
0//�

Proof (1) In view of diagrams (24) and (25) one has

img ia.r/\ img ib.r/D ker ja.r/\ ker j b.r/' ker.ia.n� r//�\ ker.ib.n� r//�

'
�
coker.ib.n� r/˚ ia.n� r//

��
D .G

Qf
n�r .b; a//

�:

The first equality holds by exactness of the first rows in the diagrams, the second by
the equality of the top- and bottom-right horizontal arrows, the third by linear algebra
duality and the fourth by the definition of Gn�r .

(2) Consider the box BD .a0; a��Œb; b0/ and denote by B0 the box B0D .b; b0��Œa0; a/.
Note that the image of the diagram

BMF.B/ WD

8̂̂̂̂
<̂
ˆ̂̂:

BM F
Qf

r .a
0; b0/ //

��

BM F
Qf

r .a; b
0/

��

BM F
Qf

r .a
0; b/ // BM F

Qf
r .a; b/
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by BM PDr is the diagram

G.B0/� WD

8̂̂̂̂
<̂
ˆ̂̂:
.G
Qf

n�r .b
0; a0//� //

��

.G
Qf

n�r .b
0; a//�

��

.G
Qf

r .b; a
0//� // .G

Qf
n�r .b; a//

�

which is the dual of the diagram

G.B0/ WD

8̂̂̂̂
<̂
ˆ̂̂:

G
Qf

n�r .b; a/ //

��

G
Qf

n�r .b
0; a/

��

G
Qf

r .b; a
0/ // G

Qf
n�r .b

0; a0/

Therefore, BM PDr induces an isomorphism from BM F
Qf

r .B/ D cokerBMF.B/ to
.ker.G.B0///� D .G

Qf
n�r .B

0//� .

From diagram (26) one derives

(27)

BM F
Qf

r .a; b/

��

&&

PDBM
r .a;b/

// .G
Qf

n�r .b; a//
�

u�n�r

''p�r .a;b/

��

BM yı
Qf

r .a; b/ // .yı
Qf

n�r .b; a//
�

H BM
r . zM /

PDBM
r

// .Hn�r . zM //�

with the horizontal arrows isomorphisms, the vertical arrows injective and the oblique
arrows surjective.

Indeed, for B D .a� �; aC ��� Œb� �; bC �/, so B0 D .b� �; bC ��� Œa� �; aC �/,
and � small enough to have (in view of Proposition 3.4(1)) yı

Qf
r .a; b/ D F

Qf
r .B/ and

yı
Qf

n�r .b; a/D F
Qf

r .B
0/, the diagram (26) gives rise to the diagram (27).

The key observation for finalizing (1) and (2) is the following proposition:

Proposition 5.2 The �–linear maps F
Qf

r .a; b/!
BM F

Qf
r .a; b/

(1) are compatible with the deck transformations,

(2) are surjective,
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(3) have kernel Cr .M / independent of .a; b/, equal to the kernel of the �Œt�1; t �–
linear map Hr . zM /!H BM

r . zM / and equal to T .Hr . zM //.

Proof One shows first that one has a natural short exact sequence

0! Cr .M /! F
Qf

r .a; b/!
BM F

Qf
r .a; b/! 0

which is compatible with the action provided by the deck transformations and leaves
Cr .M / fixed, and second that Cr .M / is exactly the �Œt�1; t �–torsion of the Hr . zM /.
Precisely, one show that one has the following commutative diagram with exact se-
quences as rows and Cr .M /D I

Qf
�1.r/C I1

Qf
.r/:

(28)

0 // Cr .M / //

trDid

��

F
Qf

r .a; b/ //

tr
��

BM F
Qf

r .a; b/ //

tBM
r
��

0

0 // Cr .M / // F
Qf

r .aC 2�; bC 2�/ // BM F
Qf

r .aC 2�; bC 2�/ // 0

The proof uses the following diagram, where �l < a0 < a and b < b0 < t :

(29)

Hr�1. zM�l /

D

��

Hr�1. zM�l /

O{�l .r�1/

��

Hr�1. zM�lt
zM t /

Hr�1. zM
t /

O{t .r�1/

OO

Hr�1. zM
t /

D

OO

Hr . zMa0 ; zM�l /

��

//

Hr . zMa; zM�l /

��

//

Hr . zM ; zM�lt
zM t ///

Hr . zM
b; zM t /

OO

//

Hr . zM
b0 ; zM t /

OO

//

Hr . zMa0/

��

//

ia0 .r/

��

Hr . zMa/

ia.r/

��

//

Hr . zM ///

Hr . zM
b/

ib.r/

OO

//

Hr . zM
b0/

OO

ib0 .r/

\\

//

Hr . zM�l /

D

��

//

Hr . zM�l /

O{�l .r/

��

//

Hr . zM�lt
zM t ///

Hr . zM
t /

O{t .r/

OO

//

Hr . zM
t /

D

OO

//

In this diagram the horizontal lines are exact sequences. By passing to limits when
l; t !1, diagram (29) induces the diagram
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(30)

H BM . zMa0/

��

iBM
a0

.r/

��

H BM
r . zMa/

iBM
a .r/

��

H BM
r . zM /

H BM
r . zM b/

.iBM /b.r/

OO

H BM . zM b0/

OO
.iBM /b

0
.r/

^^

H. zMa0/

��

//

Hr . zMa///

ia.r/

��

Hr . zM ///

Hr . zM
b///

ib.r/

OO

Hr . zM
b0/

OO

//

which provides the relation between Fr .a; b/;Fr .a
0; b0/;Hr . zM / and their Borel–

Moore versions.

Diagram (30) leads to the linear map F
Qf

r .a; b/!
BM F

Qf
r .a; b/ and establishes the

compatibility with the deck transformations, hence Proposition 5.2(1).

Since BM F
Qf

r .a; b/D img.iBM
a .r//\img..iBM /b.r// and img.O{�l.r//\img.O{t .r//D

0 for any r , l and t , a careful analysis of the projective limit and of the diagram (29)
implies that

F
Qf

r .a; b/!
BM F

Qf
r .a; b/

is surjective (hence (2) holds), with kernel isomorphic to

lim
 ��

0<l;t!1

img.Hr . zM�l t
zM t /!Hr . zM //D I�1.r/C I1.r/D Cr .M /:

In view of Proposition 3.8, Cr .M / is equal to THr . zM /, hence (3) holds too.

The diagram (26) and the above observations induce the following diagram with the
first three horizontal arrows isomorphisms and the last arrow (PDN ) injective and
�Œt�1; t �–linear (indeed, the first three horizontal arrows are isomorphisms in view of
the isomorphism F

Qf
r .a; b/=T .Hr . zM //' BM F

Qf
r .a; b/):
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(31)

F
Qf

r .a; b/=T .Hr . zM //

BM F
Qf

r .a; b/

��

&&

PDBM
r .a;b/

// .G
Qf

n�r .b; a//
�

u�n�r

&&

p�r

��

F
Qf

r .B/

�ab
B;r

��

PDr .B/
// .G

Qf
n�r .B

0//�

yı
Qf

r .a; b/
bPDr .a;b/

// .yı
Qf

n�r .b; a//
�

H N
r .M I �/

PDN
r

// .H N
n�r .M I �//

�

The bottom arrow is the composition

(32) Hr . zM /=THr . zM /DH N
r .M I �/!H BM

r . zM /=TH BM
r . zM /

! .Hn�r . zM //�=T .Hn�r . zM /�/ D � .H N
n�r .M I �//

�

with the first arrow �Œt�1; t �–linear and injective in view of Proposition 5.2(3) and the
second arrow, H BM

r . zM /=T .H BM
r . zM //!Hn�r . zM /�=T .Hn�r . zM /�/ a �Œt�1; t �–

linear isomorphism in view of the isomorphism PDW BM Hr . zM /!Hn�r . zM /� and
D � a canonical isomorphism. Indeed, the finite-dimensionality of T .Hn�r . zM // and

the isomorphism Hn�r . zM / ' H N
n�r .M I �/˚ T .Hn�r . zM // imply that the compo-

sition H N
r .M I �/

� ! Hn�r . zM /� ! Hn�r . zM /�=T .Hn�r . zM /�/ is a (canonical)
isomorphism.

Observation 5.3 (1) The diagram

(33)

yı
Qf

r .a; b/

ytr
��

bPDr .a;b/
// .yı
Qf

n�r r.b; a//�

yı
Qf

r .aC 2�; bC 2�/
bPDr .aC2�;bC2�/

// .yı
Qf

n�r r.bC 2�; aC 2�//�

yt�r

OO

is commutative,

(2) yı Qf.a; b/ is a finite-dimensional vector space and therefore .yı Qf.a; b//� is a finite-
dimensional vector space isomorphic to yı Qf.a; b/.
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Define
yıfr ha; bi WD

M
k2Z

ı
Qf

r .aC 2�k; bC 2�k/;

which equipped with the isomorphism
L

k2Z ytr .aC2�k; bC2�k/ is a free �Œt�1; t �–
module, and

.yıfr /
�
ha; bi WD

M
k2Z

.ı
Qf

r .aC 2�k:bC 2�k//�;

which equipped with the isomorphism
L

k2Z ytr .aC2�k; bC2�k/ is a free �Œt�1; t �–
module.

Note that .yıfr /�ha; bi is not the same as .yıfr ha; bi/� . Actually,

.yıfr /
�
ha; bi � .yıfr ha; bi/

�
I

the first is a finitely generated free �Œt�1; t � module while the second is in general
infinitely generated except in the case of equality, which happens only in the case that
yı
f
r ha; bi D 0.

Finalizing the proof of Theorem 1.3 In view of Observation 5.3(2) and diagram (31)
above we have the isomorphism of �Œt�1; t �–modulescPDr ha; biW yı

f
r ha; bi ! .yıfn�r /

�
hb; ai:

The choice of compatible splittings “S ” provides an isomorphism of �Œt�1; t �–modules

�.r/ � IS
r W

M
ha;bi

.yıfr /
�
ha; bi !H N

r .M I �f /

and then establishes the isomorphism of H N
r .X I �f / to H N

n�r .M I �f / which inter-
twines .yıfr /�ha; bi with .yıfn�r /

�ha; bi. This establishes Theorem 1.3(1)–(2).

Suppose that � DR or � DC . Choose a nondegenerate positive definite inner product
on Hr . zM / which makes tr an isometry for any r . Such an inner product can be
provided by a Riemannian metric on M when M is a closed smooth manifold or
by a triangulation of M when M is triangulable, simply by lifting the metric or the
triangulation on zM.

These inner products provide canonical compatible splittings which realize canonically
yı
Qf

r .a; b/ as a subspace of Hr . zM / and then of H N
r .M I �f / and lead to the embedding

of yıfr ha; bi as a sub-�Œt�1; t �–module of H N .X I �f / (in view of the observation that
the images of yı Qf.a; b/ and yı Qf.aC 2�; bC 2�/ are orthogonal and ytr is an isometry).
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These canonical splittings make �.r/ �IS
r a canonical isomorphism. The inner products

on yı
Qf

r .a; b/ induced from the inner product on Hr . zM / canonically identifies yı
Qf

r .a; b/

to yı
Qf

r .a; b/
� then yıfr ha; bi to .yı

f
r /
�ha; bi and provides a canonical isomorphism

bPDr ha; biW yı
f
r ha; bi ! yı

f
n�r ha; bi and then the isomorphism bPDr W H

N .M; �f /!

H N .M I �f /n�r .

In the case � DC , if yyıfr ha; bi denotes the von Neumann completion of yıfr ha; bi (note
that H L2. zM / is the von Neumann completion of H N .M I �f /), then yyıf ha; bi is a
closed Hilbert submodule of H L2. zM /. Moreover, the von Neumann completion leads
to the canonical isomorphism of L1.S1/–Hilbert modulesccPDr W H

L2. zM /!H L2
n�r .

zM /

which intertwines yyıfr ha; bi with yyıfn�r hb; ai. This establishes Theorem 1.3(3).

6 Proof of Observation 1.4 and Theorem 1.5

Proof of Observation 1.4 Suppose X D X1 [ X2;Y D X1 \ X2 with X1 , X2

and Y closed subsets of X with X , X1 , X2 and Y all compact ANRs. Suppose
� 2 H 1.X IZ/ and let �1 , �2 and �o be the pullbacks of � on X1 , X2 and Y and
let zX , zX1 , zX2 and zY be the infinite cyclic cover of � , �1 , �2 and �0 . Note that
zX D zX1[

zX2
zX1\

zX2 D
zY and then the long exact sequence in homology

� � � !Hr . zY /!Hr . zX1/˚Hr . zX1/!Hr . zX /!Hr�1. zY /! � � �

is a sequence of �Œt�1; t �–modules with all arrows �Œt�1; t �–linear. If H N .Y I �0/D 0

then ˇN
r .X1I �1/Cˇ

N
r .X2I �2/D ˇ

N
r .X I �/.

We apply this to the double X D DM D M1 [@M M2 with M1 equal to M and
M2 equal to the manifold M with the opposite orientation and �D 2 H 1.DM IZ/

a cohomology class which restricts to � on M1 and M2 , respectively. Clearly
ˇN

r .DM I �D/D 2ˇN
r .M I �/. Since DM is closed and orientable, and consequently

satisfies ˇN
r .DM I �D/D ˇ

N
n�r .DM I �D/, the statement follows.

Proof of Theorem 1.5 Items (1) and (2a) follow from Observation 1.4 and the fact
that both Betti numbers and Novikov–Betti numbers calculate the same Euler–Poincaré
characteristic; see [6] or [13].

Items (1) and (2b–c) follow from Proposition 4.1 in [4], which calculates Hr .X I .�;u//.
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Item (3) follows from Theorem 1.4 in [4]. Indeed the hypotheses imply the existence
of a tame map f W M ! S1 with a given angle � a regular value and V D f �1.�/.
Since the homology of V is trivial in all dimensions but zero, the relation R�

r r ¤ 0 is
the trivial relation and R�

0
D id� . The statement follows from the description of Jordan

cells in terms of linear relations R�
r given by Theorem 1.4 in [4].

As pointed out to us by Maxim, the complement X DCnnV of a complex hypersurface
V � Cn;V WD f.z1; z2; : : : ; zn/ j f .z1; z2; : : : ; zn/D 0g regular at infinity, equipped
with the canonical class �f 2H 1.X W Z/ defined by f W X !C n 0 is an example of
an open manifold with an integral cohomology class which has as compactification a
manifold with boundary with a cohomology class which satisfies the hypotheses above.

Item (1) recovers a calculation of Maxim; see [11; 7]11 that the complement of an
algebraic hypersurface regular at infinity has vanishing Novikov homologies in all
dimension but n.

Appendix: Poincaré duality for nonclosed manifolds derived
from zM

Consistent with the previous notation let zM .a; b/ and zM .c/ denote the compact set
Qf �1.Œa; b�/ and Qf �1.a/ which for a, b and c regular values are submanifolds of zM

(the first, M.a; b/, is a manifold with boundary @M.a; b/DM.a/tM.b/). We also
recall that zMa D

Qf �1..�1; a�/ and zM b D Qf �1.Œb;1//.

Note that the Poincaré duality for bordisms provides the isomorphisms

(34)

PD.�l; a/W Hr . zM .�l; a/; zM .�l//!H n�r . zM .�l; a/; zM .a// for �l<a;

PD.b; t/W Hr . zM .b; t/; zM .t//!H n�r . zM .b; t/; zM .b// for t>b;

PD.�l; t/W Hr . zM .�l; t/; zM .�l/t zM .t//!H n�r . zM .�l;Ct// for t; l>0:

Combining with the excision property in homology or cohomology and passing to
the limit when 0 < l ! 1, and 0 < l; t ! 1, one derives the Poincaré duality

11The Friedl–Maxim results state the vanishing of more general and more sophisticated L2 –
homologies and Novikov-type homologies. They can be also recovered via the appropriate Poincaré
duality isomorphisms.
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isomorphisms

(35)

PD1
aWH

BM
r . zMa/!H n�r . zM ; zM a/;

PDb
1WH

BM
r . zM b/!H n�r . zM ; zMb/;

PDWH BM
r . zM /!H n�r . zM /;

PDb
2WH

BM
r . zM ; zM b/!H n�r . zMb/;

PD2
aWH

BM
r . zM ; zMa/!H n�r . zM a/;

where

(36)

PD1
a D lim

 ��
l!1

PD.�l; a/; PDb
1 D lim

 ��
t!1

PD.b; t/;

PDD lim
 ��

l!1; l!1

PD.�l; t/

PDb
2 D lim

 ��
l!1; tDb

PD.�l; t/; PDa
2 D lim

 ��
t!1;�lDa

PD.�l; t/:

These are the Poincaré duality isomorphisms which appear in the diagrams (24) and (25).

For example, in the case of the first isomorphism in (35),

H BM . zMa/D lim
 ��

l!1

Hr . zM .�l; a/; zM .�l//;

H n�r . zM ; zM a/DH n�r . zMa; zM .a//D lim
 ��

l!1

H n�r . zM .�l; a/; zM .a//;

where the passage from l to l 0 with l 0 > l in the first equality above is derived from
the commutative diagram

Hr . zM .�l; a/; zM .�l//

D

��

oo

Hr . zM .�l 0; a/; zM .�l 0;�l//

Hr . zM .�l 0; a/; zM .�l 0//

OO

oo

H n�r . zM .�l; a/; zM .a//

H n�r . zM .�l 0; a/; zM .a//

OO
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