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On the virtually cyclic dimension of
mapping class groups of punctured spheres

JAVIER ARAMAYONA

DANIEL JUAN-PINEDA

ALEJANDRA TRUJILLO-NEGRETE

We calculate the virtually cyclic dimension of the mapping class group of a sphere
with at most six punctures. As an immediate consequence, we obtain the virtually
cyclic dimension of the mapping class group of the twice-holed torus and of the
closed genus-two surface.

For spheres with an arbitrary number of punctures, we give a new upper bound for
the virtually cyclic dimension of their mapping class group, improving the recent
bound of Degrijse and Petrosyan (2015).

20F65, 55R35; 20F36

1 Introduction

Given a discrete group G, a family F of subgroups of G is a set of subgroups of G
which is closed under conjugation and taking subgroups. Of particular interest here are
the families FING and VCG, which consist, respectively, of finite and virtually cyclic
subgroups of G.

A model for the classifying space EFG of the family F is a G–CW–complex X such
that the fixed-point set of H 2F is contractible, and is empty whenever H …F . Using
standard terminology, we denote EFING by EG, and EVCG by EG. The study of
models for these families finds a large part of its motivation in the Baum–Connes and
Farrell–Jones conjectures, respectively.

Although a model for the space EFG always exists, it need not be finite-dimensional.
The smallest possible dimension of a model of EFG is called the geometric dimension
of G for the family F , and is usually denoted by gdF G. Again using standard
terminology, we will write gdG D gdFIN G and gdG D gdVC G, and refer to them as
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the proper geometric dimension and the virtually cyclic dimension of G, respectively.
For many families of groups these two numbers are related by the inequality

(1) gdG � gdGC 1;

although it is known not to be true in general; see Example 6.5 of Degrijse and
Petrosyan [5]. Classes of groups for which it does hold include CAT.0/ groups (see
Lück [17]), hyperbolic groups (see Juan-Pineda and Leary [12]), standard braid groups
(see Flores and González-Meneses [8]), and groups satisfying a certain property (Max)
(see Lück and Weiermann [18, Theorem 5.8]), which roughly states that every infi-
nite virtually cyclic subgroup is contained in a unique maximal such subgroup (see
Section 5).

In this note we investigate the relation between gdG and gdG for the mapping class
group Mod.S/ of a connected, orientable surface S , mainly in the case when S has
genus zero. We stress that mapping class groups do not fall in any of the categories
above; however, they contain finite-index subgroups with property (Max) (see Juan-
Pineda and Trujillo-Negrete [13, Proposition 5.1]); compare with Lemma 5.5 below.
For these subgroups the inequality (1) holds, although this does not say anything about
whether this is the case for the whole group.

We will denote by Sn
g;b

the connected orientable surface of genus g , with b boundary
components and n punctures. If b D 0, we will omit b from the notation.

At this point, we remark that the proper geometric dimension of Mod.Sng / is known
(see Aramayona and Martínez-Pérez [1]) to coincide with its virtual cohomological
dimension, which in turn was computed by Harer [10] and is an explicit linear function
of g and n (in the particular case when gD 0, it is equal to n� 3). Our main result is
as follows:

Theorem 1.1 Let n 2 f5; 6g. Then gd Mod.Sn0 /D gd Mod.Sn0 /C 1D n� 2.

We remark that gd Mod.Sn0 / is zero for n� 3, and the group Mod.S40 / is virtually free,
so gd Mod.S40 /D 2; this follows from Juan-Pineda and Leary [12]. As an immediate
corollary of Theorem 1.1, we will obtain:

Corollary 1.2 If S 2 fS21 ; S
0
2 g, then gd Mod.S/D gd Mod.S/C 1.

The explicit values are gd Mod.S21 / D 3 and gd Mod.S02 / D 4. Since Mod.S01 / '
SL.2;Z/ is hyperbolic, gd Mod.S01 /D 2; see [12].
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As a further corollary of Theorem 1.1 we calculate the exact value of the virtually
cyclic dimension of the spherical braid group Bn on n strands for n 2 f5; 6g. Indeed,
using the classical fact that Bn is a finite extension of Mod.Sn0 /, we will obtain:

Corollary 1.3 If n 2 f5; 6g, then gd.Bn/D gd.Bn/C 1D n� 2.

This latter result should be compared with a recent theorem of Flores and González-
Meneses [8], which proves the analogous statement for braid groups of the disk, with
an arbitrary number of strands.

In order to prove Theorem 1.1, we will use a result of Lück and Weiermann [18], stated
as Theorem 3.1 below, which relates the virtually cyclic dimension of a group G to
the proper dimension of certain subgroups associated to infinite-order elements of G.
We then use the Nielsen–Thurston classification of mapping classes and a case-by-case
analysis to bound the dimension of such subgroups.

Remark 1.4 It is unlikely that our arguments could be generalized to arbitrary surfaces;
see Remark 4.2 below for more details. In spite of this, the interested reader can check
that an immediate adaptation of the proof of Theorem 1.1 for nD 6 gives a direct proof
of Corollary 1.2, as well as of the analogous statement for Mod.S31 /. In particular,
we obtain that inequality (1) is in fact an equality for all surfaces Sng for which
3g� 3Cn� 3.

For a general number of punctures, a recent result of Degrijse and Petrosyan [6] gives
a bound for gd Mod.Sng / which is linear in g and n; see Theorem 5.1 below. In the
particular case when g D 0, this bound takes the form

(2) gd Mod.Sn0 /� 3n� 8D 3 � gd Mod.Sn0 /C 1:

Using the aforementioned result of Lück and Weiermann [18] with a theorem of
Cameron, Solomon and Turull [4], we will prove the following slightly improved
bound:

Theorem 1.5 Suppose n� 4. Let bn be the number of ones in the binary expression
of n. Then

gd Mod.Sn0 /� n� 4C
h
3n�1

2

i
� bn;

where Œ � � denotes integer part.

Remark 1.6 We have that 3n� 8� n� 4C
�
3n�1
2

�
� bn for all n� 4, and that the

inequality is strict for n� 5.
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Pure mapping class groups of spheres As we will observe in Lemma 5.5 pure
mapping class groups of spheres have property (Max), and hence inequality (1) is
satisfied. Moreover, we will remark in Proposition 5.4 that in this case we get an
equality, in fact.

Surfaces with boundary It follows from the definition that Mod.S/ is torsion-free
whenever S has boundary. Combining this with a number of results by various authors,
quickly yields that (1) holds for surfaces with boundary. The argument is essentially
contained in the paper by Flores and González-Meneses [8]; we offer a short account
in the appendix.

Acknowledgements Aramayona was partially supported by grants RYC-2013-13008
and MTM2015-67781. Juan-Pineda and Trujillo-Negrete were partially supported by
CONCAYT FORDECYT 265667. We would like to thank Yago Antolín, John Guaschi,
Conchita Martínez and Luis Paris for conversations. We are also grateful to the referee
for comments and suggestions.

2 Mapping class groups and braid groups

In this section we give some preliminaries on mapping class groups and their relation
with braid groups. We refer the reader to [7] for a thorough discussion on these and
related topics.

2.1 Mapping class groups

Let S be a (possibly disconnected) orientable surface with empty boundary and whose
every connected component has negative Euler characteristic, so that S supports a
complete hyperbolic metric of finite area. Sometimes it will be convenient to regard
(some of) the punctures of S as marked points, and we will switch between the two
points of view without further mention. As mentioned above, we will write Sng to
denote the connected surface of genus g with n marked points.

The mapping class group Mod.S/ is the group of isotopy classes of self-homeo-
morphisms of S ; elements of Mod.S/ are called mapping classes. The pure mapping
class group PMod.S/ is the subgroup of Mod.S/ whose elements send every marked
point to itself; observe that PMod.S/ has finite index in Mod.S/.

Since we will deal mainly with surfaces of genus zero, from now on we will restrict
our attention to the case of S D Sn0 , with n� 3.

Algebraic & Geometric Topology, Volume 18 (2018)
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2.1.1 Curves and multicurves By a curve on Sn0 we mean the (free) isotopy class
of a simple closed curve that does not bound a disk with at most one marked point. A
multicurve is then a set of curves that pairwise disjoint, ie they may be realized in a
disjoint manner on Sn0 . An easy counting argument shows that a maximal multicurve
on Sn0 has n� 3 elements.

2.1.2 Nielsen–Thurston classification We say that f 2 Mod.Sn0 / is reducible if
there exists a multicurve � � Sn0 such that f .�/ D � ; otherwise, we say that f is
irreducible. A notable example of a reducible element is the Dehn twist T˛ about the
curve ˛ ; see [7] for definitions and properties of Dehn twists. Finally, we note that
finite-order elements of Mod.Sn0 / may be reducible or irreducible.

The celebrated Nielsen–Thurston classification of mapping classes asserts that an
irreducible element of infinite order has a representative which is a pseudo-Anosov
homeomorphism; see [7, Chapter 5] for details. For this reason, irreducible mapping
classes of infinite order are normally referred to as pseudo-Anosov mapping classes.

2.1.3 Canonical reduction system Note that, in general, a reducible mapping class
may fix more than one multicurve. For this reason, we define the canonical reduction
system of a mapping class as the intersection of all the maximal (with respect to
inclusion) multicurves that it fixes. For instance, the canonical reduction system of the
Dehn twist T˛ is equal to ˛ .

2.1.4 The cutting homomorphism Let � be a multicurve on Sn0 , and consider
.Mod.Sn0 //� D fg 2 Mod.Sn0 / j g.�/ D �g. Denote by Sn0 � � the (disconnected)
surface which results from removing from Sn0 a closed regular neighborhood of each
element of � . Write Sn0 � � D Y1 t � � � tYk , observing that each Yj is a sphere with
marked points. There is an obvious surjective homomorphism

.Mod.Sn0 //� !Mod
�G
i

Yi ; �

�
;

called the cutting homomorphism associated to � . Here, Mod
�F

i Yi ; �
�

denotes the
subgroup of Mod

�F
i Yi

�
whose elements preserve the set of punctures of

F
i Yi that

correspond to elements � . The cutting homomorphism fits in a short exact sequence

(3) 1! T� ! .Mod.Sn0 //� !Mod
�G
i

Yi ; �

�
! 1;

where T� is the free abelian group generated by the Dehn twists along the elements of � .
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Armed with these definitions, we can give a canonical form for elements of PMod.Sn0 /.
More concretely, let f 2 PMod.Sn0 /, and write � for its canonical reduction system, so
that f 2 .Mod.Sn0 //� . Again, let Sn0 � � D Y1 t � � � tYk . Since f is pure, it follows
that f .˛/D ˛ for every ˛ 2 � ; also, f .Yi /D Yi for every i . From this discussion,
and using the Nielsen–Thurston classification, we have deduced:

Lemma 2.1 With the notation above, the image of f 2 PMod.Sn0 / under the cutting
homomorphism (3) belongs to PMod.Y1/� � � � � PMod.Yk/. Moreover, the projection
of this image onto each factor is either the identity or pseudo-Anosov.

2.1.5 Normalizers We will use the following well-known result about normalizers
of pseudo-Anosov elements; see [20]:

Lemma 2.2 Let f 2Mod.Sn0 / be a pseudo-Anosov. Then its normalizer NMod.Sn0 /
.f /

is virtually cyclic.

It is also possible to describe the normalizer of a multitwist, which is defined as the
product of Dehn twists along a set of pairwise disjoint curves. Indeed, observe that, for
any f 2Mod.Sn0 /, we have f T�f �1 D Tf .�/ . In particular, we obtain:

Lemma 2.3 For any multicurve � , NMod.Sn0 /
.T� /DMod.Sn0 /� .

2.2 Braid groups

Given n� 0, we denote by Fn the configuration space of n distinct points on a sphere.
Note that the symmetric group †n acts on Fn by permutation the coordinates; the
quotient space Jn D Fn=†n may then be regarded as the configuration space of n
unordered points on the sphere. Birman [2, Proposition 1.1] proved that the natural
projection Fn! Jn is a regular .nŠ/–fold covering map.

We define the n–strand spherical braid group as Bn D �1.Jn/, and its pure subgroup
as Pn D �1.Fn/ < �1.Jn/.

As mentioned in the introduction, braid groups are strongly related to mapping class
groups of spheres. More concretely, for n� 3 there is a short exact sequence (see, for
instance, [7, Section 9.4.2])

(4) 1! Z2! Bn!Mod.Sn0 /! 1;

where Z2 is generated by the full twist braid, �n , of Bn and it generates the center
of Bn . In turn, for pure braid groups we have

(5) 1! Z2! Pn! PMod.Sn0 /! 1:

Algebraic & Geometric Topology, Volume 18 (2018)
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3 General results on geometric dimension

In this section we introduce the main ingredient in our proofs, namely the result of
Lück and Weiermann [18] stated as Theorem 3.1 below.

3.1 The main tool

Let G be a group, and C1G the family of infinite, virtually cyclic subgroups of G. After
[17; 18], we define an equivalence relation � on C1G by

(6) C �D () jC \Dj D1:

Let ŒC1G � denote the set of equivalence classes and by ŒC � the equivalence class of
C 2 C1G . The normalizer of ŒC � is defined as

(7) NG ŒC � WD fg 2G W jgCg
�1
\C j D1gI

in other words, it is the commensurator of C in G. We define the following family of
subgroups of NG ŒC �:

(8) GG ŒC �D fH 2 VCNG ŒC � W jH WH \C j<1g[FINNG ŒC �:

After all these definitions, we are ready to give Lück and Weiermann’s bound from [18]:

Theorem 3.1 [18, Theorem 2.3] Let C1G and � be as above. Let I be a complete
system of representatives ŒH � of the G–orbits in ŒC1G � under the G–action coming
from conjugation. Suppose there exists d 2N such that

(1) gdG � d ,

(2) gdNG ŒH �� d � 1, and

(3) gdGŒH�NG ŒH �� d

for each ŒH � 2 I. Then gdG � d .

We stress that, in [18], Lück and Weiermann construct an explicit model for the
classifying space of G with respect to the family of virtually cyclic subgroups, although
this construction will not be needed here.

Under certain circumstances, Theorem 3.1 becomes a lot easier to work with, as we
now explain. First, we need the following definition:

Algebraic & Geometric Topology, Volume 18 (2018)
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Definition 3.2 (property (C)) A group G has property (C) if, whenever f; g 2G are
elements of infinite order with gf mg�1 D f k , we have that jmj D jkj.

We remark that if G has property (C), then [17, Lemma 4.2] yields that for any C 2 C1G ,

NG.C /�NG.2ŠC /�NG.3ŠC /� � � � ;

where kŠC D fhkŠ j h 2 C g and NG ŒC �D
S
k�1NG.kŠC /.

We also need:

Definition 3.3 (uniqueness of roots) A group G has the property of uniqueness of
roots if f; g 2G are such that f n D gn for some n, then f D g .

Armed with these definition, we give the following easy consequence of Theorem 3.1:

Proposition 3.4 Suppose G satisfies property (C) and has a finite-index normal sub-
group H with the property of uniqueness of roots. If for any C 2 C1H we have

(i) gdG � d ,

(ii) gdNG.C /� d � 1,

(iii) gdWG.C /� d ,

where WG.C /DNG.C /=C , then gdG � d .

Proof We will use Theorem 3.1. Since H is a normal subgroup of finite index with
the property of uniqueness of roots, we have NG.D/DNG.tD/ for any D 2 C1H and
any t 2 Z n f0g.

Let C 2 C1G . Combining this with [17, Lemma 4.2], we have that NG ŒC �DNG.kŠC /
for some k 2 Z n f0g and kŠC 2 C1H . Thus we may assume that C 2 C1H and
NG ŒC �DNG.C /. Further, a model for EWG.C / is a model for EGGNG ŒC � with the
action given from the projection pW NG.C /!WG.C /. Applying Theorem 3.1, we
conclude the proof.

We finish this subsection with the following definition from [18], which will be used
later:

Definition 3.5 (property (Max)) We say that a group G satisfies (Max) if every
subgroup H 2 VCG nFING is contained in a unique Hmax 2 VCG nFING which is
maximal in VCG nFING.

Algebraic & Geometric Topology, Volume 18 (2018)
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Remark 3.6 Let G and H be as in Proposition 3.4. If, in addition, H is a torsion-free
group that satisfies property (Max), then for D 2 C1H , we have NG.D/DNG.Dmax/;
this follows from the property of uniqueness of roots and because H is a normal
subgroup of finite index in G. In that case, in Proposition 3.4 we may assume that
C 2 C1H is maximal in CH.

3.2 On proper geometric dimension

In light of Proposition 3.4, in order to estimate the virtually cyclic dimension, one
needs to be able to estimate proper geometric dimension. With this motivation, we now
present a number of known results about proper geometric dimension.

First, an immediate consequence of the definition of proper geometric dimension is
that, for any two groups G1 and G2 , one has

(9) gd.G1 �G2/� gdG1C gdG2:

Another observation is that if H is a subgroup of a group G, then

(10) gdH � gdG:

Next, a result of Karrass, Pietrowski and Solitar [14] implies that the Bass–Serre tree
of a virtually free group G is a model for EG . In other words, we have:

Lemma 3.7 Let G be a virtually free group. Then gdG � 1, with equality if and
only if G is infinite.

The next theorem, due to Lück [15], gives a relation between the geometric dimension
of a group and that of finite-index subgroups:

Theorem 3.8 [15, Theorem 2.4] If H � G is a subgroup of finite index n, then
gdG � gdH �n.

We will also need to be able to bound the proper geometric dimension of certain exten-
sions of groups. In this direction, we will use the next result, which is a consequence
of [16, Theorem 5.16]:

Theorem 3.9 Let 1!H !G!K! 1 be an exact sequence of groups. Suppose
that H has the property that for any group zH which contains H as subgroup of finite
index, gd zH � n. If gdK � k , then gdG � nC k .

Finally, we will make use the following well-known result [9, Proposition 2.6] in order
to prove Corollaries 1.2 and 1.3:
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Lemma 3.10 Suppose gdG � 3. Let 1 ! F ! G ! H ! 1 be a short exact
sequence of groups, where F is finite. Then gdG D gdH.

4 Proof of Theorem 1.1

In this section we prove Theorem 1.1, using Proposition 3.4 for Mod.Sn0 / with n� 6.
In order to do so, we first remark that the second and third authors showed that Mod.Sng /
has property (C) [13], and that [3, Theorem 6.1] implies that PMod.Sn0 / has unique
roots; we recall that PMod.Sn0 / has finite index in Mod.Sn0 /. Next, we will use the
following special case of the main result of [1], combined with Harer’s calculation [10]
of the virtual cohomological dimension of the mapping class group:

Theorem 4.1 For every n, gd Mod.Sn0 /D n� 3.

In light of this result, inequality (10) implies that

gdNMod.Sn0 /
.f /� n� 3;

for any f 2Mod.Sn0 /. We will show in Lemma 5.5 that PMod.Sn0 / has property (Max).
Therefore, by Remark 3.6, the proof of Theorem 1.1 boils down to proving that

gdWMod.Sn0 /
.f /� n� 2

for every infinite-order element f 2 PMod.Sn0 / such that hf i is maximal. We will do
so using a case-by-case analysis depending on the Nielsen–Thurston type of such a
mapping class. We have separated the proof in the cases nD 5 and nD 6, since the
combinatorial possibilities are different in these two cases.

Remark 4.2 As hinted in Remark 1.4, our methods are unlikely to carry over to
spheres with an arbitrary number of punctures. The main reason is that the image of the
cutting homomorphism (3) is in general a complicated group, namely the semidirect
product of a symmetric group and the direct product of mapping class groups of the
corresponding subsurfaces. In particular, it is not clear that one can effectively control
the value of gdWMod.Sn0 /

.f / for infinite-order elements f 2 PMod.Sn0 / such that hf i
is maximal. However, in the cases n 2 f5; 6g this image is easy to describe, and the
value of the geometric dimension is amenable to our computations.

On the other hand, we stress that essentially the same analysis as in the case nD 6
will give a direct proof of Corollary 1.2, as well as the analogous statement for S31 .
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4.1 The case of the five-punctured sphere

As indicated above, we need to prove

gdWMod.S50 /
.f /� 3

for every infinite-order element f 2 PMod.S50 / such that hf i is maximal. There are
two cases to consider:

Case 1 (f is pseudo-Anosov) Here, Lemma 2.2 implies that NMod.S50 /
.f / is virtu-

ally cyclic, in which case gdNMod.S50 /
.f /D 1 and gdWMod.S50 /

.f /D 0.

Case 2 (f is reducible) Let � be its canonical reduction system. We distinguish the
following further cases, depending on whether � has one or two elements.

Subcase 2(a) (� has exactly one element) Write � D f˛g, observing that S50 n˛ D
S30 tS

4
0 . Let � be the cutting homomorphism (3) associated to � . Suppose first that

�.f / is trivial, so that f 2 hT˛i. In fact, since hf i is assumed to be maximal, we
obtain that f D T˛ . By Lemma 2.3, NMod.S0;5/.T˛/DMod.S0;5/˛ , and thus we have

(11) 1! hT˛i !NMod.S50 /
.f /!Mod.S30 ; q1/�Mod.S40 ; q2/! 1;

where the punctures q1 and q2 are those that appear when the surface is cut along ˛
(see Figure 1). Therefore,

(12) WMod.S50 /
.f /'Mod.S30 ; q1/�Mod.S40 ; q2/:

Since Mod.S30 / is finite and Mod.S40 / is virtually free, the combination of Lemma 3.7
with equations (9) and (10) implies that gdWMod.S50 /

.f /D 1, as desired.

Suppose now that �.f / is not trivial, so that the restriction of f to Mod.S40 ; q2/ (using
the notation above) is a pseudo-Anosov, which we denote by f2 . In this case, we have

(13) 1! hT˛i !NMod.S50 /
.f /!Mod.S30 ; q1/�NMod.S40 ;q2/

.f2/! 1:

By Lemma 2.2, NMod.S40 ;q2/
.f2/ is virtually cyclic, hence taking quotients we obtain

(14) 1! Z!WMod.S50 /
.f /! F ! 1;

where F is a finite group. In other words, WMod.S50 /
.f / is virtually cyclic, and thus

gdWMod.S50 /
.f /D 1 by Lemma 3.7.

Subcase 2(b) (� has two elements) Write � D f˛; ˇg and S n � D Y1 t Y2 t Y3 .
Note that Yj is homeomorphic to S30 for j D 1; 2; 3.

Algebraic & Geometric Topology, Volume 18 (2018)
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x1
x2

x3
x4

x5

x1 x2
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q2
x3

x4

x5

�!

Figure 1: Cutting along a curve

Since f is pure, it follows that f 2 hT˛; Tˇ i. Therefore, the normalizer of f in
Mod.S50 / coincides with Mod.S50 /� , by Lemma 2.3. The cutting homomorphism (3)
reads

(15) 1! hT˛; Tˇ i !Mod.S50 /� !Mod.Y1 tY2 tY3; �/! 1:

Since Mod.Y1 tY2 tY3/ is a finite group, we obtain

1! Z!WMod.S50 /
.f /! F 0;

where F 0 is a finite group. Therefore, gdWMod.S50 /
.f /D 1, again by Lemma 3.7. This

finishes the proof of Theorem 1.1 in the case nD 5.

4.2 The case of the six-punctured sphere

We now prove Theorem 1.1 in the case nD 6. Again, it suffices to prove that

gdWMod.S50 /
.f /� 4

for every f 2 PMod.S60 / of infinite order such that hf i is maximal. Let f be such an
element. As in the case nD 5, if f is pseudo-Anosov, then gdNMod.S60 /

.f /D 1 and
gdWMod.S60 /

.f /D 0. Therefore, from now on we assume that f is reducible. Write �
for the canonical reduction system of f , noting that 1� j� j � 3.

Case 1 (j� j D 1) We write � D f˛1g, and distinguish the following subcases:

Subcase 1(i) (˛1 bounds a disk with exactly two punctures) In this case, S60 n˛1 D
S30 tS

5
0 , and the cutting homomorphism (3) associated to � reads

(16) 1! hT˛1i !Mod.S60 /� !Mod.S30 tS
5
0 ; �/! 1:
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Since the two components of S60 n˛1 are not homeomorphic (or by Lemma 2.1) we
deduce that �� .Mod.S60 /� / D Mod.S30 ; q1/ �Mod.S50 ; q2/, where q1 and q2 are
the punctures that appear when cutting S60 along ˛1 . Restricting this sequence to
NMod.S60 /

.f / and observing that Mod.S30 ; q1/Š Z2 , we obtain

(17) 1! hT˛1i !NMod.S60 /
.f /! Z2 �Mod.S50 ; q2/! 1:

Suppose first that f has no pseudo-Anosov components; in other words, the projec-
tion of f under the cutting homomorphism is trivial. In this case, f is central in
NMod.S60 /

.f /, and from (17) we obtain

WMod.S60 /
.f /Š Z2 �Mod.S50 ; q2/:

Note that any model for EG.Mod.S50 // is also a model for EG.Z2�Mod.S50 // also;
thus gdWMod.S60 /

.f /� gd Mod.S50 /� 2.

Thus, we may assume that the restriction of f to the S50 –component of S60 n ˛1 is
pseudo-Anosov. In this case, Lemma 2.2 and (16) yield

(18) 1! Z!NMod.S60 /
.f /! Z2 �V ! 1;

where V �NMod.S50 /
.f2/ is infinite and virtually cyclic. Thus, taking quotients,

(19) 1! Z!WMod.S60 /
.f /! Z2 �F ! 1;

and hence gdWMod.S60 /
.f /� 1, as desired.

Subcase 1(ii) (each component of S60 n ˛1 contains three punctures) In this case,
S60 n˛1 D S

4
0 tS

4
0 , and thus

Mod.S40 tS
4
0 /

 
' .Mod.S40 /�Mod.S40 //Ì Z2;

where Z2 is generated by a mapping class that interchanges the two components of
S60 n˛1 . Furthermore, the image of Mod.S60 /� under the cutting homomorphism (3)
is equal to

�� .Mod.S60 /� /
 ��
' .Mod.S40 ; q1/�Mod.S40 ; q2//Ì Z2;

where q1 and q2 are again the new punctures of S60 n˛1 . Let Mod.S60 /
�
� �Mod.S60 /�

be the subgroup whose elements do not permute the components of S60 n˛1 , and let
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��� WD �� jMod.S60 /
�
�

. We have the following diagram:

(20)

1

��

1 // hT˛1i

Id

��

// Mod.S60 /
�
�

inclusion

��

 ��
�
// Mod.S40 ; q1/�Mod.S40 ; q2/ //

��

1

1 // hT˛1i
// Mod.S60 /�

 ��
// .Mod.S40 ; q1/�Mod.S40 ; q2//Ì Z2

��

// 1

Z2

��

1

With the above diagram in mind, we distinguish the following two cases, depending on
the image of f under the cutting homomorphism associated to � :

(a) Suppose first that f has no pseudo-Anosov components. Then NMod.S60 /
.f /D

Mod.S60 /� . Since Mod.S40 / is virtually free, (9) and Lemma 3.7 imply that

gd.Mod.S40 ; q1/�Mod.S40 ; q2//� 2;

which in turn yields

gd
�
.Mod.S40 ; q1/�Mod.S40 ; q2//Ì Z2

�
� 4;

by Theorem 3.8. Finally, using Theorem 3.9 and Lemma 3.7, we obtain

gdNMod.S60 /
.f /� 5 and gdWMod.S60 /

.f /� 4;

as desired.

(b) Now suppose that f has at least one pseudo-Anosov component; equivalently,
assume that  �� .f / D .f1; f2; IdZ2/ is not trivial. Again, there are two cases to
consider.

Suppose first that there is .g1; g2; / in the image  �� .NMod.S60 /
.f // with  ¤ IdZ2 .

In particular, f1 is conjugate to f ˙12 , and hence both f1 and f2 are pseudo-Anosov.
Let

NMod.S60 /
.f /� DNMod.S60 /

.f /\Mod.S60 /
�
� :

Algebraic & Geometric Topology, Volume 18 (2018)



On the virtually cyclic dimension of mapping class groups of punctured spheres 2485

By restricting the diagram (20) we have

(21)

1

��

1 // hT˛1i

Id

��

// NMod.S60 /
.f /�

inclusion

��

 ��
�
// V1 �V2 //

��

1

1 // hT˛1i
// NMod.S60 /

.f /
 ��

// .V1 �V2/Ì Z2

��

// 1

Z2
��

1

where V1 �V2 �NMod.S40 ;q1/
.f1/�NMod.S40 ;q2/

.f2/, which is a product of virtually
cyclic subgroups by Lemma 2.2. Taking quotients in (21) we obtain

(22) 1! Z!WMod.S60 /
.f /! V3! 1;

where V3 is a virtually cyclic subgroup. In particular, this implies that

gdWMod.S60 /
.f /� 2;(23)

using Theorem 3.9. This finishes the proof of the case under consideration.

Next, suppose that  �� .g/D .g1; g2; IdZ2/ for any element g 2 NMod.S60 /
.f /, and

thus NMod.S60 /
.f / D NMod.S60 /

.f /� . Hence NMod.S60 /
.f / and WMod.S60 /

.f / fit into
the short exact sequences

(24)
1! Z!NMod.S60 /

.f /
 ��
��!V1 �Mod.S40 ; q2/! 1;

1! Z!WMod.S60 /
.f /! F �Mod.S40 ; q2/! 1

in the case when f1 is pseudo-Anosov and f2 is the identity, or into

(25)
1! Z!NMod.S60 /

.f /
 ��
�!V1 �V2! 1;

1! Z!WMod.S60 /
.f /! V3! 1

when both f1 and f2 are pseudo-Anosov; here, V1 , V2 and V3 are virtually cyclic
subgroups and F is finite. Proceeding as above, in both cases (24) and (25) we conclude
that gdWMod.S60 /

.f /� 2. This finishes the discussion of Case 1.

Case 2 (j� j D 2) Write � D f˛1; ˛2g. Again, there are some cases to consider,
depending on the topological type of ˛1 and ˛2 .
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Subcase 2(i) (˛i bounds a disc with exactly two punctures for i D 1; 2) Observe
that S60 n .˛1[˛2/D S

4
0 tS

3
0 tS

3
0 . The cutting homomorphism (3) yields the exact

sequence

(26) 1! hT˛1 ; T˛2i !Mod.S60 /� !Mod.S40 tS
3
0 tS

3
0 ; �/! 1;

noting that hT˛1 ; T˛2i ' Z2 . Observe that

(27) Mod.S40tS
3
0tS

3
0 ; �/

 
'Mod.S40 ; q1; q2/�.Mod.S30 ; q3/�Mod.S30 ; q4//ÌZ2
�
'Mod.S40 ; q1; q2/�.Z2�Z2/ÌZ2:

Again, there are different cases depending on the image of f under the cutting homo-
morphism. In this direction, suppose first that f D T k1˛1 T

k2
˛2 with gcd.k1; k2/D 1. In

this case NMod.S60 /
.f /DMod.S60 /� , and we have

1! Z2!NMod.S60 /
.f /

� ��
��!Mod.S40 ; q1; q2/� .Z2 �Z2/Ì Z2! 1;(28)

1! Z!WMod.S60 /
.f /!Mod.S40 ; q1; q2/� .Z2 �Z2/Ì Z2! 1:(29)

From the exact sequences (28) and (29), plus (9) and Theorem 3.9, we conclude that
gdWMod.S60 /

.f /� 2, as desired.

Suppose now that  �� .f /D .f1; Id/2Mod.S40 ; q1; q2/�F , with f1 is pseudo-Anosov.
Then

1! Z2!NMod.S60 /
.f /

� ��
��!V �F ! 1;

1! Z2!WMod.S60 /
.f /

 ��
�!F �F 0! 1;

where F and F 0 are finite groups and V is virtually cyclic. By Theorem 3.9 we
conclude

gdNMod.S60 /
.f /� 3 and gdNMod.S60 /

.f /� 2;

as desired.

Subcase 2(ii) (˛1 bounds a disc with exactly two punctures and ˛2 bounds a disc
with three punctures) In this case, the cutting homomorphism (3) again gives

1! hT˛1 ; T˛2i !Mod.S60 /� !Mod.S40 tS
3
0 tS

3
0 ; �/! 1:

However, in this case we have

 �� .Mod.S60 /� /DMod.S30 ; q1/�Mod.S30 ; q2; q3/�Mod.S40 ; q4/
�
' Z2 �Mod.S40 ; q4/:
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Again, we distinguish two cases depending on the image of f under the cutting
homomorphism. First, assume that f D T

k1
˛1 T

k2
˛2 with gcd.k1; k2/ D 1. Then

NMod.S60 /
.f /DMod.S60 /� , and therefore we have the sequences

1! Z2!NMod.S60 /
.f /

���
�!Z2 �Mod.S40 ; q4/! 1;

1!! Z!WMod.S60 /
.f /

���
�!Z2 �Mod.S40 ; q4/! 1:

From these sequences, we conclude that

gdNMod.S60 /
.f /� 3 and gdWMod.S60 /

.f /� 2;

as desired.

Suppose now that ���f D .IdZ2 ; f1/, where f1 is pseudo-Anosov. From Lemma 2.2
we have the sequences

1! Z2!NMod.S60 /
.f /

���
�!V ! 1;

1! Z2!WMod.S60 /
.f /

���
�!F ! 1;

where V 0 is a virtually cyclic subgroup and F is finite. Therefore gdWMod.S60 /
.f /� 2

again. This finishes the discussion of Case 2.

Case 3 (j� j D 3) Write � D f˛1; ˛2; ˛3g, observing that S60 n .˛1[˛2[˛3/ is the
disjoint union of four copies of S30 . Thus the cutting homomorphism (3) gives

1! hT˛1 ; T˛2 ; T˛3i !Mod.S60 /�
��
�!Mod.S30 tS

3
0 tS

3
0 tS

3
0 ; �/! 1;

observing that hT˛1 ; T˛2 ; T˛3i ' Z3 . Note that Mod.S30 t S
3
0 t S

3
0 t S

3
0 / is a fi-

nite subgroup and that f is in the kernel of �� ; moreover, f D T k1˛1 T
k2
˛2 T

k3
˛ with

gcd.k1; k2; k3/D 1. Therefore we have the sequences

1! Z3!NMod.S60 /
.f /! F ! 1;

1! Z2!WMod.S60 /
.f /! F ! 1:

In particular, gdWMod.S60 /
.f /� 2, as desired. This finishes the discussion of Case 3,

and also the proof of Theorem 1.1.

4.3 Proof of Corollaries 1.2 and 1.3

We now explain how to prove Corollaries 1.2 and 1.3. First, the latter follows immedi-
ately from the combination of Theorem 1.1, (4) and Lemma 3.10.
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Now, Corollary 1.2 follows along the same lines, recalling that there are short exact
sequences

1! Z2!Mod.S21 /!Mod.S50 /! 1;

1! Z2!Mod.S02 /!Mod.S60 /! 1I

in both cases, the Z2 is generated by a hyperelliptic involution; see [7].

5 A general bound

In this section we prove Theorem 1.5. Before doing so, we remark that Degrijse and
Petrosyan [6] have recently given the following bound for the virtually cyclic dimension
of Mod.Sng /:

Theorem 5.1 [6] Let g; n� 0 with 3g� 3Cn� 1. Then

gd Mod.Sng /� 9gC 3n� 8:

The above result is stated in [6] for closed surfaces only; however the argument remains
valid in full generality. For completeness we include a sketch here, which uses known
facts about the geometry of the Weil–Petersson metric on Teichmüller space. We refer
the reader to [21] for a thorough discussion on these and many other topics.

Proof of Theorem 5.1 Denote by Tg;n the Teichmüller space of Sng , which is
homeomorphic to R6gC2n�6 . Endow Tg;n with its Weil–Petersson metric, on which
Mod.Sng / acts by semisimple isometries. The metric completion T g;n of Tg;n is a
complete separable CAT.0/ space, and the action of Mod.Sng / on Tg;n extends to a
semisimple isometric action on T g;n . Moreover, the stabilizer of a point is a virtually
abelian group of rank � 3gCn� 3. At this point, Corollary 3(iii) of [6] implies that

gd Mod.Sng /D .6gC 2n� 6/C .3gCn� 3/C 1D 9gC 3n� 8;

as desired

We now proceed to prove Theorem 1.5. Again, the main tool will be Proposition 3.4,
this time combined with a result of Martínez-Pérez [19]. Before stating the latter, we
need the following definition. Let G be a group, and F 2 FING a finite subgroup.
The length l.F / of F is defined as the largest natural number k for which there is a
chain 1D F0 < F1 < � � �< Fk D F . The length of G is

l.G/D supfl.F / j F 2 FINGg:
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Theorem 5.2 [19, Theorem 3.10, Lemma 3.9] Suppose that 3� gdG <1. If l.G/
is finite, then

gdG � vcdGC l.G/;

where vcd. � / denotes virtual cohomological dimension.

We begin with the following lemma:

Lemma 5.3 Suppose n � 4. Let f 2 PMod.Sn0 / and suppose that hf i is maximal
in C1PMod.Sn0 /

. Then
gdWPMod.Sn0 /

.f /� n� 4:

Proof Suppose that f has canonical reduction system � D .˛1; : : : ; ˛k/, the re-
striction f jYj is pseudo-Anosov for j 2 1; : : : ; r , and f jYi is the identity for i 2
frC1; : : : ; kC1g. Note that Yj is a sphere with at least four punctures for j 2f1; : : : ; rg.
Thus, from the definition of the cutting homomorphism (3) and the comment after it,
we have

(30) 1! hT� i !NPMod.Sn0 /
.f /

��
�!U �

kC1Y
iDrC1

PMod.Yi /! 1;

where U is a finite-index subgroup of
Qr
iD1NPMod.Yi /.f jYi /'Zr . If f 2 hT� i, then

r D 0 and

(31) 1! hT� i=hf i !WPMod.Sn0 /
.f /

y��
�!

kC1Y
iD1

PMod.Yi /! 1;

where hT� i=hf i ' Zk�1 . By Theorem 3.9, (9) and [11, Corollary 10.5], we have

gdWPMod.Sn0 /
.f /� k� 1C

kC1X
iD1

gd PMod.Yi /

D k� 1C

kC1X
iD1

vcd PMod.Yi /

D k� 1Cn� k� 3

D n� 4:

If, on the other hand, f … hT� i, then r � 1. Let xf D .f jY1 ; : : : ; f jYr /; then

(32) 1! hT� i !WPMod.Sn0 /
.f /

��
�!U=h xf i �

kC1Y
iDrC1

PMod.Yi /! 1:
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Note that U=h xf i is virtually Zr�1 , and thus gd.U=h xf i/ D r � 1. Again, applying
Theorem 3.9, (9) and [11, Corollary 10.5] to (32), we have

gdWPMod.Sn0 /
.f /� kC 1C r � 1C

kC1X
iDrC1

vcd PMod.Yi /

� kC r � 1C

kC1X
iD1

vcd PMod.Yi /� r

D n� 4:

We are finally in a position to prove Theorem 1.5:

Proof of Theorem 1.5 We will use Proposition 3.4. Let hf i maximal in C1PMod.Sn0 /
,

and note that gdNMod.Sn0 /
.f /� gd Mod.Sn0 /D n� 3, by [1]. We now give a bound

for gdWMod.Sn0 /
.f /. We have the exact sequence

1!NPMod.Sn0 /
.f /!NMod.Sn0 /

.f /! A! 1;

where A�†n . Since hf i � PMod.Sn0 / we have

1!WPMod.Sn0 /
.f /!WMod.Sn0 /

.f /! A! 1:

We remark that WPMod.Sn0 /
.f / is torsion-free since PMod.Sn0 / is, and hf i is maximal

in C1PMod.Sn0 /
. Then l.WMod.Sn0 /

.f //� l.A/� l.†n/. By a result of Cameron, Solomon
and Turull [4, Theorem 1],

l.†n/D
h
3n�1

2

i
� bn:

At this point, Theorem 5.2 and Lemma 5.3 together imply

gdWMod.Sn0 /
.f /� vcdWMod.Sn0 /

.f /C l.A/

D vcdWPMod.Sn0 /
.f /C l.A/

� n� 4C
h
3n�1

2

i
� bn;

where the equality holds since PMod.Sn0 / has finite index in Mod.Sn0 /.

5.1 Pure subgroups

As mentioned in the introduction, if one considers the pure mapping class group instead
of the full mapping class group, then the situation is a lot easier. Indeed, after Harer’s
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calculation of the virtual cohomological dimension of the (pure) mapping class group,
we get:

Proposition 5.4 Let n� 4. Then

gd PMod.Sn0 /D gd.PMod.Sn0 //C 1D n� 2:

The main ingredient of the proof is property (Max).

Lemma 5.5 Let n � 4. Then the pure mapping class group PMod.Sn0 / satisfies
property (Max).

Proof Let C �D be an inclusion of infinite cyclic subgroups. Then the centralizers
of C and D in PMod.Sn0 / are equal, since PMod.Sn0 / has unique roots. If C is
generated by a pseudo-Anosov class, then its centralizer is cyclic, and in particular is
the unique maximal cyclic subgroup that contains C . If C is generated by a reducible
element f , by Lemma 2.1 and the case of pseudo-Anosov classes, we obtain a unique
maximal cyclic subgroup that contains C .

Proof of Proposition 5.4 As mentioned in the introduction, Lück and Weiermann
[18, Theorem 5.8] proved that every group with property (Max) satisfies inequality (1).
Now, a combination of Harer’s calculation [10] of the virtual cohomological dimension
of Mod.Sn0 / and [11, Corollary 10.5] yields gd PMod.Sn0 /D n� 3. Therefore,

gd PMod.Sn0 /� n� 2:

Now, Sn0 contains n � 2 disjoint essential curves ˛1; : : : ; ˛n�3 , and the subgroup
hT˛1 ; : : : ; T˛n�3

i is isomorphic to Zn�3 . By property (10), we conclude gd Mod.Sn0 /�
gd Zn�3 D n� 2.

Appendix: Surfaces with boundary

Finally, we explain how to establish inequality (1) in the case of mapping class groups
of surfaces with nonempty boundary. As indicated in the introduction, the arguments
appear in the paper of Flores and González-Meneses [8] in the case when the surface
has genus zero. For completeness, we give a self-contained argument here.

For S a surface with nonempty boundary, its mapping class group Mod.S/ is again
defined as the group of isotopy classes of self-homeomorphisms of S , but this time the
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homeomorphisms and isotopies are required to fix each boundary component pointwise.
As a byproduct of this definition, Mod.S/ has no torsion.

The main ingredient will be the following result of Martínez-Pérez [19]; again, vcd. � /
denotes virtual cohomological dimension:

Theorem A.1 Let G be a group such that any finite subgroup is nilpotent. Suppose
vcdG <1 and gdG � 3; then

gdG � max
F 2FING

fvcdGC rk.WGF /g;

where rk. � / denotes the biggest rank of a finite elementary abelian subgroup.

We denote by Sn
g;b

the connected, orientable surface of genus g with n marked
points and b boundary components. For m � 3, define the congruence subgroup
Mod.Sn

g;b
/Œm� as the finite-index subgroup of Mod.Sn

g;b
/ consisting of those elements

which act trivially on H1.Sng;bIZm/. It is known that Mod.Sn
g;b
/Œm� has property

(Max) [13, Proposition 5.11], and the property of uniqueness of roots [3]. We will
make use of the following lemma:

Lemma A.2 Let b � 1. If g D 0, suppose b C n � 4, and if g � 1, suppose
2gC bCn� 3. Fix m� 3 and let C 2 C1Mod.Sn

g;b
/Œm�

maximal; then

gdWMod.Sn
g;b
/.C /� gd Mod.Sng;b/C 1:(33)

Proof We will use Theorem A.1. First, the hypotheses imply that Mod.Sn
g;b
/ contains

Zk with k � 3, and thus vcd Mod.Sn
g;b
/C1� 3. Also, observe that gd Mod.Sn

g;b
/D

vcd Mod.Sn
g;b
/ since Mod.Sn

g;b
/ has no torsion.

Let C 2C1Mod.Sn
g;b
/Œm� be maximal. Note that any finite subgroup of WMod.Sn

g;b
/.C / is of

the form V=C where V is an infinite cyclic subgroup of NMod.Sn
g;b
/.C /. Again, since

Mod.Sn
g;b
/ has no torsion, it follows that finite subgroups of WMod.Sn

g;b
/.C / are cyclic.

Write, for compactness, QDWMod.Sn
g;b
/.C /. Applying Theorem A.1 we have

gdQ � max
F 2FINQ

fvcdQC rk.WQ.F //g D vcdQC 1:(34)

We will give a bound for vcdQ . Consider the short exact sequence

(35) 1!NMod.Sn
g;b
/Œm�.C /!NMod.Sn

g;b
/.C /!K! 1;
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where K is a subgroup of the finite group Aut.H1.Sng;b;Zm//. Passing to the quotient,
we have

(36) 1!WMod.Sn
g;b
/Œm�.C /!WMod.Sn

g;b
/.C /!K 0! 1;

where K 0 'K . Now, C is maximal in C1Mod.Sn
g;b
/Œm�

, so WMod.Sn
g;b
/Œm�.C / is torsion-

free, and thus

vcdWMod.Sn
g;b
/.C /D vcdWMod.Sn

g;b
/Œm�.C /(37)

� gdWMod.Sn
g;b
/Œm�.C /

� gdNMod.Sn
g;b
/Œm�.C /

� gd Mod.Sng;b/;

where the equality holds since Mod.Sn
g;b
/Œm� has finite index in Mod.Sn

g;b
/, the second

inequality is given in the proof of [18, Theorem 5.8], and the last inequality follows
from subgroup inclusion. Thus the result follows.

Finally, we have the desired bound for surfaces with boundary:

Proposition A.3 Let b � 1. If g D 0, suppose bC n � 4, and if g � 1, suppose
2gC bCn� 3. Then

gd Mod.Sng;b/� gd Mod.Sng;b/C 1;

and equality holds if g 2 f0; 1g.

Proof For the inequality gd Mod.Sn
g;b
/ � gd Mod.Sn

g;b
/ C 1, the proof is again

an immediate consequence of Proposition 3.4, Remark 3.6 and Lemma A.2, with
d D gd Mod.Sn

g;b
/.

By [10, Theorem 4.1], vcd Mod.Sn
g;b
/ and the maximal rank of an abelian subgroup

of Mod.Sn
g;b
/ are equal if and only if g 2 f0; 1g. Let ƒ be that abelian subgroup of

rank vcd Mod.Sn
g;b
/; then gdƒD vcd Mod.Sn

g;b
/C1, and therefore gd Mod.Sn

g;b
/�

vcd Mod.Sn
g;b
/C 1.
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