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Quasiautomorphism groups of type F1
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The groups QF , QT , QT , QV and QV are groups of quasiautomorphisms of the
infinite binary tree. Their names indicate a similarity with Thompson’s well-known
groups F , T and V .

We will use the theory of diagram groups over semigroup presentations to prove that
all of the above groups (and several generalizations) have type F1 . Our proof uses
certain types of hybrid diagrams, which have properties in common with both planar
diagrams and braided diagrams. The diagram groups defined by hybrid diagrams also
act properly and isometrically on CAT.0/ cubical complexes.

20F65; 57M07

1 Introduction

Let � be a graph. A quasiautomorphism of � is a bijection of the vertices that preserves
adjacency and nonadjacency, with at most finitely many exceptions. Following the
notation of Nucinkis and St John-Green [16], we will let QV denote the group of
quasiautomorphisms h of the infinite binary tree that also take the left and right
children of a given vertex v to the left and right children of h.v/, again with at most
finitely many exceptions. The notation “QV ” indicates that QV is a collection of
quasiautomorphisms that bears a family resemblance to Thompson’s group V . (A
standard reference for Thompson’s groups is Cannon, Floyd and Parry [7]. We will
assume a basic familiarity with that source or its equivalent throughout this article.)

Groups of quasiautomorphisms have been the subject of several recent studies. Lehnert
conjectured in his thesis that the group QV is a universal group with context-free
coword problem, ie a universal coCF group. Bleak, Matucci and Neunhöffer [3]
have produced an embedding of QV into Thompson’s group V , and thus proved that
Lehnert’s conjecture is equivalent to the conjecture that V is itself a universal coCF
group. More recently, Nucinkis and St John-Green [16] have studied the finiteness
properties of QV and related groups. They introduced additional groups QF, QT ,
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QT and QV . The groups QF and QT are natural subgroups of QV that preserve
(respectively) the linear and cyclic orderings of the ends of the infinite binary tree (and
therefore bear a family resemblance to Thompson’s groups F and T , respectively).
The groups QT and QV are analogous groups that act as quasiautomorphisms on the
union of an infinite binary tree with an isolated point. Nucinkis and St John-Green
show that the groups QF, QT and QV have type F1 , and also compute explicit
finite presentations for these groups. Whether QT and QV are finitely presented (and
thus, more particularly, of type F1 ) is left as an open problem in [16].

The third author showed (in [12]) that QV is a braided diagram group over a semigroup
presentation. This description suggests an approach to proving the F1 property for QV .
Since Farley [11] shows that a class of braided diagram groups (including Thompson’s
group V ) have type F1 , and in fact other classes of diagram groups were shown to
have type F1 in Farley [9; 11], it is at least plausible that some approach inspired by
the theory of diagram groups could establish the F1 property for QV and QT . (We
note that the original proofs that Thompson’s groups F , T and V have type F1 were
given by Ken Brown [5] and by Brown and Geoghegan [6] in the 1980s.)

Nucinkis and St John-Green show, however, that the hypotheses of the main theorem
in [11] are satisfied by neither QT nor QV . In fact, as also noted in [16], even the
much more general main theorem of Thumann [17] does not apply to either of QT
or QV .

The goal of the present article is to extend the diagram-group methods of [9; 11] to
the groups QF , QT , QV , QT and QV . We will show that all of these groups can be
described using the theory of diagram groups over semigroup presentations. Indeed,
all of these groups are diagram groups over the same semigroup presentation, namely
P D hx; a j x D xaxi, although the specific types of diagram vary from group to
group. Three types of diagram groups have been considered in the literature: planar,
annular and braided diagram groups. All were introduced by Guba and Sapir [13],
which devotes by far the greatest attention to planar diagram groups (which are usually
simply called diagram groups). Farley [10; 11] considers the annular and braided
diagram groups in more detail. Here we will introduce hybrid diagram groups that
combine properties of multiple diagram group types. For instance, the group QF is
a special type of diagram group over P , in which the diagrams exhibit both planar
and braided behavior at the same time. We will use such hybrid diagrams to prove
that the groups QF , QT , QV , QT and QV all act properly by isometries on CAT.0/
cubical complexes, and that all have type F1 . In fact, our methods extend with equal
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ease to the case of an arbitrary finite number of binary trees and isolated vertices (see
Section 5), and the case of n–ary trees (for fixed n� 2) is different only in the details.
It even seems likely that our argument generalizes to other, nonregular, trees, although
this is more speculative, and we attempt no general statement about such cases here.

We note that it is probably possible to extend the main theorem of Thumann [17] to
prove the F1 property in the cases under consideration here. This is only a guess,
however, since the authors claim little familiarity with the methods of [17].

We will now offer an outline of the argument. In Section 2, we will give a rapid
introduction to the basic theory of diagram groups (including all three types: planar,
annular and braided), and describe the natural cubical complexes on which such groups
act, including a description of the links of vertices. In Section 3, we will give careful
definitions of the groups QF , QT and QV , and describe how to represent elements
of each group as “hybrid” diagrams. Section 3 also includes a description of natural
complexes on which QF and QT act; these arise as convex (and thus CAT.0/ by Crisp
and Wiest [8]) subcomplexes of QV . (We will in fact confine our attention to QF , QT
and QV alone, without sketching a general theory of “hybrid” diagrams. Nevertheless,
we hope that the ideas indicated in Section 3 may be of some independent interest.)
Section 4 shows that QF, QT and QV have type F1 . Our argument follows the
long-established method given by Brown [5]. Section 5 sketches some possible further
developments, including sketches of the proofs that QT and QV have type F1 (as
already proved by [16]), and the other generalizations briefly described above.

Acknowledgements The current article grew out of work done by Audino and Aydel,
under the direction of Farley, through SUMSRI, Miami University’s REU in mathemat-
ics. Financial support for SUMSRI in 2015 came from the NSA and Miami University.
The authors would also like to thank the referee for suggesting numerous improvements
in the exposition.

2 Braided diagram groups and actions on associated
complexes

2.1 Definition of braided diagram groups

To define braided diagram groups, we must first define braided diagrams over semigroup
presentations. The reader might like to refer to Example 2.7 and the accompanying
figure while reading the definition.
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Definition 2.1 (braided diagrams over a semigroup presentation) Let P be a semi-
group presentation; thus, P D h† jRi, where † is a set (to be regarded as an alphabet)
and R � †C � †C , where †C is the set of all nonempty positive words in the
symbols †. We view the elements of R as equalities between elements of †C (ie as
relations). For technical reasons, we impose the additional restriction that .u; u/ …R
for any u 2†C .

A braided diagram � over P is a labeled ordered topological space formed by making
identifications among three types of components: wires, transistors and the frame.

� A wire is a homeomorphic copy of Œ0; 1�. The “0” end is the bottom of the wire,
and the “1” end is the top.

� A transistor is a homeomorphic copy of Œ0; 1�2 . Each transistor has well-defined
top, bottom, left and right sides (in the obvious senses: the top is Œ0; 1�� f1g,
the bottom is Œ0; 1�� f0g, etc). These sides are part of the transistor’s definition.
The top and bottom sides have equally obvious left-to-right orderings. (We make
no use of any ordering of the sides.)

� The frame is a homeomorphic copy of @Œ0; 1�2 . It has well-defined top, bottom,
left and right sides, just as a transistor does. The top and bottom sides have
obvious left-to-right orderings.

To form a braided diagram � over P , we begin with a finite nonempty collection
W.�/ of wires, a labeling function `W W.�/!†, a finite (possibly empty) collection
T .�/ of transistors and a frame. Each endpoint of each wire is then attached either
to a transistor or to the frame. The bottom of a wire is attached either to the top of
a transistor or to the bottom of the frame; the top of a wire is attached either to the
bottom of a transistor or to the top of the frame. Moreover, the images of any two wires
in the quotient must be disjoint.

The resulting labeled oriented quotient space is called a braided diagram over P if the
following two conditions are also satisfied:

(1) Note that each transistor T inherits a top and bottom label from the labels of the
wires it touches. (The points at which the wires meet transistors are called contacts.)
These labels are words in †C , obtained by reading the labels of connecting wires from
left to right.

Let `top.T / and `bot.T / denote the top and bottom labels, respectively. We require
that .`top.T /; `bot.T // 2R or that .`bot.T /; `top.T // 2R, for each transistor T . If u
and v are the top and bottom labels of T , then we say that T is a .u; v/–transistor.
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(2) For transistors T1 and T2 of �, write T1 4 T2 if there is a wire whose bottom
contact is a point on the top of T1 and whose top contact is a point on the bottom of T2 .
Let < be the transitive closure of 4. We require that < be a strict partial order on the
transistors of �.

(Equivalently, suppose that the braided diagram � is drawn in the plane, such that each
transistor is enclosed by the frame and the sides of the transistors and frame are parallel
to the coordinate axes. We require that it be possible to arrange the transistors and the
frame in this fashion in such a way that each wire can be embedded monotonically,
ie so that the y–coordinate in the embedded image increases as we move from the
bottom of the wire to the top.)

Definition 2.2 (planar and annular diagrams) Let � be a braided diagram over the
semigroup presentation P . If � admits an embedding hW �!R2 into the plane that
preserves the left–right and top–bottom orientations on the transistors and frame, then
we say that � is planar.

We say that � is annular if it can be similarly embedded in an annulus. Or, more
precisely, suppose that we replace the frame @.Œ0; 1�2/ with a pair of disjoint circles,
each of which is given the standard counterclockwise orientation, in place of the usual
left–right orientations on the top and bottom of @.Œ0; 1�/2 . We further give both circles
basepoints, which are to be disjoint from all contacts. Transistors and wires are defined
as before, and their attaching maps are subject to the same restrictions as before. We
say that the resulting diagram is annular if the result may be embedded in the plane,
again preserving the left–right orientations of the transistors. We think of the “top”
circle as the inner ring of the annulus and the “bottom” circle as the outer ring.

(Here it may be helpful to view the transistors as having the counterclockwise orientation
on their “top” and “bottom” faces, where the “top” faces the interior boundary circle
of the annulus and the “bottom” faces the external boundary of the annulus.)

Definition 2.3 (equivalence of braided diagrams) Two braided diagrams �1 and �2
are equivalent if there is a homeomorphism h between them such that h preserves the
labelings of wires and all orientations (left–right and top–bottom) on all transistors and
the frame.

In the sequel, we will consider diagrams up to equivalence without explicitly mentioning
it.
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Definition 2.4 (.u; v/–diagrams) Let � be a braided semigroup diagram; let u and v
be in †C . We can define the top and bottom labels of � by reading the labels of the
wires that connect to the frame, from left to right, just as we defined the top and bottom
labels of an individual transistor above. We say that � is a braided .u; v/–diagram if
the top label of � is u and the bottom label is v .

In some cases, it is not important to specify the bottom label. We say that � is a
braided .u;�/–diagram if the top label of � is u and the bottom label is arbitrary.

Definition 2.5 (concatenation) If �0 is a braided .u; v/–diagram and �00 is a braided
.v; w/–diagram, then the concatenation �0 ı�00 is defined by stacking the diagrams,
�0 on top of �00.

Remark 2.6 We note (for the sake of clarity) that the basepoints on the inner and
outer circles of an annular diagram � are needed in Definitions 2.4 and 2.5. Here,
the “top” label of � is to be read counterclockwise from the top (inner) basepoint,
while the bottom label of � is similarly read counterclockwise from the outer circle’s
basepoint.

If �1 and �2 are annular .u; v/– and .v; w/–diagrams, respectively, for u, v , w2†C ,
then the concatenation �1 ı�2 is the result of identifying the outer circle of �1 with
the inner circle of �2 at the chosen basepoints (while also, of course, matching the
other contacts in counterclockwise order).

a

a

a

b

b

b

c

c

c

�1

�2

r.�1 ı�2/

Figure 1: Three examples of braided diagrams over semigroup presentations

Example 2.7 Figure 1 gives three examples of braided diagrams over semigroup
presentations. On the left, we have a braided .abc; bca/–diagram � over the semigroup
presentation P D ha; b; c; j ab D ba; bc D cb; ac D cai. More properly speaking,
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this is the immersed image of such a diagram under a mapping into the plane. All of
the defining features of � are illustrated. The frame appears as a dotted box, and the
left-to-right orientations of the transistors are the obvious ones. Note that the apparent
crossing of wires above the bottom-left transistor represents a double point of the
projection, since the wires are necessarily disjoint (by Definition 2.1) in the original
diagram �. Note also that it is unnecessary to specify whether the “c” wire crosses
over the “b” wire or vice versa, since such overcrossing data is not part of the definition
of �. (In effect, we allow any two wires of a braided diagram to pass through each
other.) This means that the descriptor “braided” is a misnomer; there is no true braiding.

In the center is the concatenation �1 ı�2 of �1 with �2 , where both are diagrams
over the semigroup presentation P D hx j x D x2i. (We omit the labels of the wires,
since each such label is “x”.) Here �1 is a braided .x; x4/–diagram and �2 is a
braided .x4; x/–diagram.

On the right is the result of removing all dipoles from the concatenation �1 ı�2 . (See
Definition 2.8.)

It is reasonably clear that, for a fixed word w 2 †C, the braided .w;w/–diagrams
over P form a semigroup under concatenation. We can define inverses using the idea
of a dipole.

Definition 2.8 (dipoles) Suppose that T1 and T2 with T1 4 T2 are transistors in a
braided semigroup diagram � over P . Let w1 , : : : ; wn be a complete list of wires
attached at the top of T1 , listed in the left-to-right order of their attaching contacts. We
say that T1 and T2 form a dipole if

(1) the tops of the wires w1 , : : : ; wn are glued in left-to-right order (w1 leftmost,
etc) to the bottom of T2 , and no other wires are attached to the bottom of T2 ,
and

(2) the top label of T2 is the same as the bottom label of T1 .

In this case, the result of removing the transistors T1 and T2 and the wires w1 , : : : ; wn ,
and then attaching the top contacts of T2 to the bottom contacts of T1 (in left-to-right
order-preserving fashion) is called removing a dipole. The inverse operation is called
inserting a dipole.

A diagram that contains no dipoles is called reduced.
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Two diagrams are equivalent modulo dipoles if one diagram can be obtained from the
other by repeatedly inserting or removing dipoles. The relation “equivalent modulo
dipoles” is indeed an equivalence relation.

Remark 2.9 The inverse of a .w;w/–diagram � is simply the result of reflecting �
across an axis parallel to the top of the frame. The proof that this is indeed ��1

is straightforward. Note that the unique planar .w;w/–diagram with no transistors
functions as an identity.

Remark 2.10 A standard argument using Newman’s lemma [15] shows that each
equivalence class modulo dipoles contains a unique reduced diagram. If � is a diagram,
then we let r.�/ denote the unique reduced representative in its equivalence class. For
the proof, see Lemma 2.2 from [10].

Definition 2.11 (braided diagram groups) Let P D h† jRi be a semigroup presen-
tation; let w 2 †C . The set of all equivalence classes of .w;w/–diagrams over P
(under the dipole equivalence relation) is a group under concatenation. It is denoted by
Db.P; w/ and called the braided diagram group over P based at w .

The set of all equivalence classes of planar .w;w/–diagrams over P is a group under
concatenation, denoted by D.P; w/. This is the ( planar) diagram group over P based
at w .

Similarly, the group of all equivalence classes of annular .w;w/–diagrams over P is
denoted by Da.P; w/ and called the annular diagram group over P based at w .

2.2 The diagram complex

In this section, we will describe a CAT.0/ cubical complex zKb.P; w/, the diagram
complex, on which Db.P; w/ acts properly and isometrically. The groups D.P; w/ and
Da.P; w/ admit actions on similar complexes, zK.P; w/ and zKa.P; w/, respectively.
The definitions of the latter complexes may be obtained from the definition of zKb.P; w/
simply by replacing all mentions of braided diagrams with planar or annular diagrams,
respectively. We will therefore concentrate on the case of zKb.P; w/.

We continue (in this subsection and the next) to let P D h† j Ri be an arbitrary
semigroup presentation such that .u; u/ …R (for all u 2†C ), and let w 2†C .
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Definition 2.12 (vertices of zKb.P; w/) A vertex of zKb.P; w/ is an equivalence
class of reduced braided .w;�/–diagrams over P ; the equivalence relation in question
is

�1 ��2 () �1 ı…D�2;

where … is a diagram with no transistors (ie a permutation diagram).

We can think of a vertex as simply a braided .w;�/–diagram such that the bottommost
wires do not attach to the bottom of the frame. We may thus sometimes refer to a
reduced braided .w;�/–diagram � over P as a vertex itself, even though (as above)
a vertex is technically an equivalence class of diagrams. We hope that this causes no
confusion.

Definition 2.13 (cubes of zKb.P; w/) A marked cube in zKb.P; w/ is determined by
a pair .�;‰/, where � is a reduced braided .w; v/–diagram (for some v 2†C ) and
‰ is a thin braided .v; u/–diagram (for some u 2 †C ). Here, a thin diagram ‰ is
such that no two transistors of ‰ are comparable in the partial order < on transistors
(as defined in Definition 2.1).

Definition 2.14 (realization of a marked cube) Given a marked cube .�;‰/, we
define its realization j�;‰j as follows. If ‰ contains n transistors, then choose a
numbering of the transistors 1, : : : ; n. A corner of the cube Œ0; 1�n is (obviously)
identified with a binary string of length n. We specify a labeling of each corner
w D .a1 , : : : ; an/ of Œ0; 1�n by a vertex of zKb.P; w/ as follows:

� If ai D 0, then we remove the i th transistor of ‰ by clipping the wires above it.

� If ai D 1, then we leave the i th transistor alone.

If we let ‰w denote the result of performing the above operations, then r.� ı‰w/ is
the label of the corner w .

We note, in particular, that two vertices �1 and �2 are adjacent exactly when one of
the vertices may be obtained from the other by clipping the wires above a bottommost
transistor. (Or, conversely, when one of the vertices may be obtained from the other by
attaching a new transistor to the bottommost wires in a label-preserving way.) This
characterization of adjacency in zKb.P; w/ plays a part in the description of links (see
Proposition 2.19).

This labeling of the vertices is uniquely determined by the pair .�;‰/ and the num-
bering of the transistors.
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1 2

Figure 2: A thin braided .x4; x2/–diagram ‰ over P D hx j x D x2i with a
numbering of its transistors (left) and the associated marked square .�1; ‰/
(right). Note that �1 is as in Figure 1.

Example 2.15 Consider the pair .�1; ‰/, where �1 is as in Figure 1 and ‰ appears
in the left side of Figure 2. Both are diagrams over P D hx j x D x2i. The associated
marked cube appears in the right side of Figure 2, where �1 appears as the label of
the bottom-left corner. Note that we have used a modified notation to label the corners
of the square. In particular, we have shrunk each transistor to a single vertex; this is
harmless, since the defining data of the braided diagrams can still be read from the
picture.

The frames have been omitted entirely. By Definition 2.12, the left–right ordering
of the wires attached to the bottom of each frame is irrelevant, while the left–right
ordering of the wires at the top of each frame is obvious, so the omission of the frames
is also harmless.

We note finally that the figure-eights occurring in the top-left and top-right corners
depict pairs of transistors with crossing wires in between (compare to the right-hand
picture in Figure 1). In particular, the middle “vertices” in these figure-eights are wire
crossings, not transistors.

Definition 2.16 (the diagram complex zKb.P; w/) Pick a realization j�;‰j for each
cube .�;‰/ as above. We glue two such realizations of cubes together along faces
whose vertices have the same labeling.

Proposition 2.17 The result of the above gluing is a CAT.0/ cubical complex [9; 10],
and thus contractible. There is a natural group action of Db.P; w/ on zKb.P; w/ by
the rule

z� � .�;‰/D .r.z� ı�/;‰/:
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(Here r.�/ is as defined in Remark 2.10.) This action is proper and by isometries.
It is not necessarily cocompact. In fact, if �1 and �2 are vertices, then �1 and �2
lie in the same orbit if and only if the bottom labels of the diagrams �1 and �2 are
permutations of each other.

The proof that the complexes in question are CAT.0/ uses Gromov’s famous link
condition. We refer the reader to [4] for one standard account.

2.3 The link of a vertex in the diagram complex

Definition 2.18 (disjoint applications of relations) Let �1 and �2 be thin braided
.w;�/–diagrams over P . Let w1 , : : : ; wn be the wires of �1 that meet the top of
the frame, listed in the left-to-right order in which they meet the top of the frame. Let
yw1 , : : : ; ywn be the wires of �2 that meet the top of its frame, ordered similarly. (Note
that the number of such wires is the same in both cases, since both numbers are equal
to the length of w .)

Let

S1 D fj 2 f1; : : : ; ng j the bottom of wj is attached to a transistor of �1g

and

S2 D fj 2 f1; : : : ; ng j the bottom of ywj is attached to a transistor of �2g:

We say that �1 and �2 represent disjoint applications of relations to w , or simply
that �1 and �2 are disjoint, if S1\S2 D∅.

Proposition 2.19 [9; 10] (description of the link) Let v be a vertex of zKb.P; w/; let
� represent v . Assume � is a braided .w; yw/–diagram. Define an abstract simplicial
complex L.v/ as follows: The vertices are the braided . yw;�/–diagrams over P that
contain exactly one transistor. A finite collection of such vertices spans a simplex if
and only if the vertices are pairwise disjoint (in the sense of Definition 2.18).

The link of v in zKb.P; w/ is isomorphic to L.v/.

2.4 The links associated to P D hx; a j xax D xi

The links in the cubical complex zKb.P; w/, where P D hx; a j xax D xi and
w 2 fx; agC , will be especially important in our main argument. We offer a direct
description here. The reader should refer to Remark 2.23, which describes the intuition
behind Definitions 2.20 and 2.21.
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Definition 2.20 (abstract links in zKb.P; w/) Let v D xkal 2 fx; agC for k; l � 0.
We let

Dv D
˚
.m; n; p/ jm; n 2 f1; : : : ; kg; p 2 f1; : : : ; lg; m¤ n

	
;

and
Av D

˚
.m/ jm 2 f1; : : : ; kg

	
:

We define an abstract simplicial complex lk.v/ as follows. The vertex set of lk.v/ is
Dv [Av . A nonempty collection

S D f.m1; n1; p1/; : : : ; .m˛; n˛; p˛/g[ f.m
0
1/; : : : ; .m

0
ˇ /g

is a simplex in lk.v/ if and only if there are no repetitions in the lists

m1; n1; : : : ; m˛; n˛; m
0
1; : : : ; m

0
ˇ

and
p1; : : : ; p˛:

(We note that one of ˛ or ˇ may be 0, but not both.)

We say that lk.v/ is the (abstract) link of the word v in zKb.P; w/.

Definition 2.21 (abstract descending links in zKb.P; w/) Let v and Dv be as above.
The vertex set of lk#.v/ is Dv . A collection of vertices S determines a simplex exactly
under the conditions specified in Definition 2.20.

We say that lk#.v/ is the (abstract) descending link of the word v in zKb.P; w/.

Proposition 2.22 Let v D xkal . The simplicial complex lk.v/ is isomorphic to the
link of any vertex whose bottom label is a permutation of xkal .

The simplicial complex lk#.v/ is the full subcomplex of lk.v/ determined by the
.xax; x/–transistors.

Proof The first statement is a special case of Proposition 2.19. The second statement
follows easily from the identification of the link of v with L.v/ from Proposition 2.19.
See also Remark 2.23 for more details.

Remark 2.23 The complexes lk.v/ and lk#.v/, as defined in Definitions 2.21 and 2.20,
are both flag complexes, as may be easily checked. The latter fact is used in the proof
that the larger cubical complexes are CAT.0/ (see Proposition 2.17).
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The members of Dv represent “descending” applications of relations (ie descending
attachments of transistors, in which three contacts are on top of the transistor). The
numbers m and n in the triple .m; n; p/ describe how the left and right top “x”–
contacts of the transistor are connected to the top of the frame, where the number m
(for instance) indicates that the top left “x”–contact of the transistor is connected
by a wire to the mth “x”–contact from the left at the top of the frame. The third
coordinate, p , describes how the top “a”–contact of the transistor is connected to the
top of the frame (namely, at the pth “a”–contact from the left).

In a similar way, the members of Av represent “ascending” applications of relations,
in which a single “x”–contact appears at the top of a transistor.

3 The groups QF, QT and QV

In this section, we describe the groups QF , QT and QV , first as groups of quasiauto-
morphisms, and second as braided diagram groups over semigroup presentations (or as
subgroups of such groups). We will first briefly review the description of F , T and V
as diagram groups, since such an understanding of these groups will be necessary in
what follows.

3.1 The groups F , T and V as diagram groups

According to the introduction of [13], Victor Guba was the first to observe the isomor-
phism D.P 0; x/ŠF , where P 0Dhx j xD x2i and F is Thompson’s group. Guba and
Sapir [13] subsequently developed the theory of annular and braided diagram groups in
order to describe Thompson’s group T and V (respectively) as diagram groups. They
proved that Da.P 0; x/Š T and Db.P 0; x/Š V (see Chapter 16 of [13]).

The first published proof of the isomorphism D.P 0; x/Š F , from [13], used a general
procedure for producing presentations of diagram groups. The resulting presentation
for D.P 0; x/ is identical to a standard one for F .

The third author gave a direct description of all three isomorphisms in [10, Section 6].
We review this description here. Let � be a reduced .x; x/–semigroup diagram
over P 0. Such a diagram contains two types of transistors: .x; x2/–transistors and
.x2; x/–transistors. Call the first type positive and the second type negative. Since
� is reduced, it follows that no positive transistor is less than a negative transistor in
the partial order < from Definition 2.1. Thus, there is an arc c connecting the left
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and right sides of � that separates all of the positive transistors from the negative
ones. This arc exhibits � as a product �1 ı��12 , where both �1 and �2 contain only
positive transistors. (Recall the description of inverses from Remark 2.9.) The diagrams
�1 and �2 each directly determine finite binary trees T1 and T2 , respectively. The
original diagram � now corresponds to the triple .T2; �; T1/, where T2 is the domain
tree, T1 is the range tree and � is a bijection between the leaves of T2 and T1 that is
determined by wires in �. The triple .T2; �; T1/ is a standard tree pair for an element
of F , T or V (as from [7]), depending upon whether � is planar, annular or braided.

For instance, let � be the diagram in the top-right of Figure 1. If we perform the above
procedure, we arrive at a tree pair .T 0; �; T 00/, where T 0 and T 00 are both full binary
trees of depth 2, and � is the bijection which sends the first leaf of T 0 (from the left)
to the first leaf of T 00, the second leaf to the second leaf, the third leaf to the fourth
leaf, and the fourth leaf to the third leaf.

3.2 The groups QF , QT and QV as quasiautomorphism groups

The results in this subsection are taken from [16] and included for the reader’s conve-
nience. Most of the definitions are from Section 2 of that source.

Definition 3.1 (QV ) We let T denote the infinite rooted binary tree. The vertices
of T may be identified with the members of the monoid f0; 1g� , which consists of all
finite binary sequences, including the empty sequence, which we denote by � .

For a given v 2 T 0 , we regard v0 as the left child of v and v1 as the right child.

A bijection hW T 0! T 0 is a member of QV if, for almost all v 2 T 0 , h sends the
left (resp. right) child of v to the left (resp. right) child of h.v/. (Here, “almost all”
means “with at most finitely many exceptions”.) Note, in particular, that h need not
preserve adjacency.

The set QV is a group under composition of functions.

Proposition 3.2 (tree pair representatives) Any h 2QV can be specified by a pair
..T1; �; T2/; f / where:

(1) .T1; �; T2/ is the usual tree pair representative of an element of V . Thus, T1 and
T2 are finite rooted ordered binary trees with the same number of leaves, and �
is a bijection of the leaves.
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(2) f is a bijection between the set of interior nodes of T1 and the set of interior
nodes of T2 . (Here, an interior node of Ti is a vertex of Ti that is not a leaf.)

 
1
2 3

!

2 1
3

ˇ̌̌
f W � 7! 0; 1 7! �

!

Figure 3: An element h of QV , described by a tree pair (left) and a bijection
f of interior nodes (right).

Example 3.3 Consider the pair in Figure 3. Here we have indicated the bijection �
of leaves by direct enumeration. Thus, the leaf 0 goes to the leaf 01, 10 to 00, and
11 to 1. The resulting assignment determines a bijection h between the vertices of T
that are not interior nodes of T1 and the vertices of T that are not interior nodes of T2
once we specify that h takes the left and right children of any noninterior vertex of T1
to the left and right children (respectively) of its image. Thus,

h.010/D �.0/10D 0110:

The bijection f specifies the values of h on the remaining vertices.

Proposition 3.4 The function � W QV ! V determined by projection onto the first
coordinate is a surjective homomorphism; the kernel is isomorphic to the group S1 of
self-bijections of N having finite support.

We easily define QF and QT in terms of � :

Definition 3.5 (definitions of QF and QT )

(1) QF D ��1.F /.

(2) QT D ��1.T /.

We recall that elements of Thompson’s group F may be represented by tree pairs (as
described in Proposition 3.2(1)) in which the bijection of the leaves is order-preserving,
and elements of T may be similarly represented by tree pairs in which the bijection
permutes the order of the leaves cyclically. We refer the reader to [7] for a more
extended discussion.

Thus, simply put, QF consists of the pairs, as in Proposition 3.2, such that the bijection
between leaves in the first coordinate preserves the left-to-right order, and QT consists
of the pairs in which the same bijection preserves the cyclic order.
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3.3 The groups QF , QT and QV as diagram groups

The observation that QV is a braided diagram group first appeared in [12]; see
Example 4.4 from that source. Here we will develop the idea in somewhat more
depth.

Proposition 3.6 QV is isomorphic to Db.P; x/, where P D hx; a j x D xaxi.

Proof We sketch the isomorphism. Let � be a braided .x; x/–diagram over P . We
can classify each T 2 � as either positive or negative, as follows: a transistor is
positive if the top label is x and the bottom label is xax ; it is negative in the opposite
case. If a positive transistor of � is less than a negative transistor in the partial order
on transistors, then � is necessarily not reduced. We can then remove dipoles until
no positive transistor is less than a negative transistor. The diagram � can now be
expressed in the form �D�1 ı�

�1
2 , where all transistors in �1 and �2 are positive.

We call such braided .x;�/–diagrams �1 and �2 positive.

A given positive braided .x; xnC1an/–diagram .n� 0/, read from bottom to top, can
be interpreted as a set of instructions for assembling an infinite binary tree (represented
by “x”) out of nC 1 infinite binary trees and n vertices (represented by “a”). Specifi-
cally, a positive transistor selects two infinite binary trees (two “x”s) and a single vertex
(an “a”) and combines them into a single binary tree (an “x”). (Or: the transistor
encodes the action of assembling these two trees and a vertex into a single binary tree.)
The bottom-left “x” contact becomes the rooted subtree with root 0 in the new tree,
the bottom-right “x” contact becomes the rooted subtree with root 1 and the vertex
represented by “a” becomes the root. Conversely, a negative transistor (read from
bottom to top) represents a dissection of a binary tree into three pieces.

Assume, without loss of generality, that �1 and �2 are braided .x; xnC1an/–diagrams.
It follows from the above discussion that ��12 represents a dissection of the standard
infinite binary tree into nC1 binary trees and n vertices; �1 represents the subsequent
reassembly of these pieces into a single binary tree. (Thus, ��12 is a dissection of the
domain tree, and �1 shows how to reassemble the pieces into the range tree.) We let
f� 2QV denote the function so determined by the diagram �.

The proof is completed by noting that

(1) the function f� indicated above is always in QV , and any element of QV is
f� for appropriate �;
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(2) if �0 and �00 are braided .x; x/–diagrams over P and �0 and �00 are equivalent
modulo dipoles, then f�0 D f�00 ; and

(3) the indicated correspondence is a homomorphism, ie f�0ı�00 D f�0 ı f�00 , for
all braided .x; x/–diagrams �0 and �00 over P .

x

x

x

x x

x

x

a

a

Figure 4: The element h 2QV from Figure 3 described in diagram form

Example 3.7 Figure 4 shows how the element h of QV from Figure 3 may be
specified by a braided .x; x/–diagram over the presentation P D ha; x j xax D xi.
Here, the negative transistors represent a dissection of the domain tree and the positive
transistors represent a dissection of the range tree.

We read the diagram from the bottom up. The bottommost transistor represents the
dissection of the basic binary tree T into three pieces: the binary tree rooted at “0”
(represented by the leftmost wire at the top of the transistor; hereafter, we simply call
this the 0–tree), the root (represented by the “a” wire) and the 1–tree (represented by
the rightmost wire). We note that the rightmost wire leads to another negative transistor;
this transistor represents the dissection of the subtree rooted at 1 into three more pieces:
the 10–tree (represented by the left wire), the root 1 (represented by the “a” wire) and
the 11–tree (represented by the right wire). There are no more negative transistors,
so the domain tree is dissected into five pieces (in left-to-right order): the 0–tree, the
root � , the 10–tree, the vertex 1 and the 11–tree.

In a similar way, the dissection of the range tree is encoded by the positive transistors,
which are read from the top down. Thus, the range tree is dissected into (respectively):
the 00–tree, the vertex 0, the 01–tree, the root � and the 1–tree.

The mapping between these pieces is determined by wire connections; in particular, we
have that h sends the 0–tree to the 01–tree, the root � to 0, the 10–tree to the 00–tree,
the vertex 1 to � , and the 11–tree to the 1–tree.
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3.4 Actions of QF , QT and QV on CAT.0/ cubical complexes

In this subsection, we will describe actions of QF , QT and QV on CAT.0/ cubical
complexes. All of the actions under consideration will be proper and by isometries. We
have already seen an action of QV with the desired properties: indeed, QV ŠDb.P; x/
(where P D ha; x j x D xaxi), so QV acts properly and isometrically on the CAT.0/
cubical complex zKb.P; x/. As subgroups of QV , both QF and QT also act properly
and isometrically on zKb.P; x/. We will, however, want QF and QT to act on more
economical complexes when we attempt to establish the F1 property for these groups.
Here we will find such complexes as convex subcomplexes of zKb.P; x/.

Proposition 3.8 (diagram description of elements in QF and QT ) Let � be a
braided .x; x/–diagram over P D ha; x j x D xaxi.

(1) The diagram � represents an element of QF if and only if the result of deleting
each edge labeled “a” results in a planar .x; x/–diagram over the presentation
P 0 D hx j x D x2i.

(2) The diagram � represents an element of QT if and only if the result of deleting
each edge labeled “a” results in an annular .x; x/–diagram over the presenta-
tion P 0.

Indeed, the above operation of deleting “a” edges induces the homomorphism � from
Proposition 3.4.

Proof We sketch the proof. A braided .x; x/–diagram � over P describes a quasiauto-
morphism of T via the isomorphism from Proposition 3.6. Under this correspondence,
the wires labeled by a describe the action of � on a finite number of individual vertices,
while the wires labeled by x describe the action of � on infinite binary subtrees. If
we forget the action on the individual vertices represented by “a” wires (by deleting
them), then the remaining “x” wires determine the action of � on the ends of T . The
resulting transformation of the ends of T is an element of F or T under the given
assumptions, essentially by the discussion in Section 3.1.

Thus, in the notation of Figure 3, the “a” wires determine the right half of the ordered
pair, while the left half of the ordered pair corresponds to the diagram � with “a”
wires removed.

The above descriptions of QF and QT suggest the following definition:
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Definition 3.9 (the complexes KQF and KQT ) Let P D ha; x j x D xaxi. We
denote the complex zKb.P; x/ by KQV .

For a braided .x;�/–diagram � over P , let �.�/ denote the diagram over P 0 D
hx j x D x2i obtained by deleting each wire labeled by “a”.

We define subcomplexes KQF and KQT of KQV to be the full subcomplexes of KQV
determined by vertex sets K0QF and K0QT , which are defined as follows: a vertex v
of KQV is in K0QF (resp. in K0QT ) if and only if it has a representative � such that
�.�/ is planar (resp. annular). (Recall that a vertex is an equivalence class of braided
diagrams (see Definition 2.12), so a representative of v is a choice of diagram from
the equivalence class.)

Proposition 3.10 The complexes KQF and KQT are path-connected subcomplexes
of KQV such that, for each v 2K0QF (resp. K0QT ), the link of v in KQF (resp. KQT )
embeds in the link of v in KQV as a full subcomplex.

In particular, KQF and KQT are CAT.0/ cubical complexes. Moreover, QF and
QT act properly and isometrically on KQF and KQT .

Proof We first show that KQF and KQT are path-connected subcomplexes of KQV .
Since the proofs in both cases are similar, it will be sufficient to consider KQF .

Let v be a vertex in QF . We will show that v can be connected to the natural basepoint
v� of KQF , which is the equivalence class of the permutation .x; x/–diagram �0.
(Recall that a permutation diagram has no transistors (see Definition 2.12). Thus, �0

consists simply of a frame and a single wire, which runs from the top of the frame to
the bottom.) We prove that v can be connected to v� by an edge-path using induction
on the number n of transistors in a diagram representative � for v . This is trivial
if n D 0. If n � 1, then we pick a transistor T of � that is minimal in the partial
order on transistors. We let �1 denote the diagram that is obtained from deleting T
(and all depending wires) from �, and we let v1 denote the vertex represented by �1 .
Clearly, v1 and v are adjacent in KQF , and, by induction, v1 can be connected to the
basepoint v� by a path. It follows that v can also be so connected to v� , and it then
follows that KQF is path-connected.

To show that KQF embeds as a convex subspace of KQV , it now suffices to prove
that the link of an arbitrary vertex v 2 KQF includes into the link of v 2 KQV as
a full subcomplex. (We are appealing to Theorem 1(2) from [8].) Assume that �
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represents v , and the bottom label of � is xkal for some integers k and l , with k > 0 .
Let ‰1 , ‰2 , : : : ; ‰m be .xkal ;�/–diagrams over the semigroup presentation P be
such that (i) each ‰i has exactly one transistor; (ii) the product � ı‰i determines a
vertex of KQF , possibly after reducing a dipole; (iii) any two ‰i and ‰j represent
disjoint applications of relations to xkal (in the sense of Definition 2.18). We note
that (i)–(iii) are equivalent to the condition that the ‰i are pairwise joined by edges in
the link lkQF.v/. We are required to show that the collection of all of the ‰i spans a
single .m�1/–simplex in lkQF.v/. But the condition that the ‰i are pairwise disjoint
shows that

f‰1; : : : ; ‰mg

is a simplex in lkQV.v/, and it is easy to see that the “union” of the ‰i (see Remark 2.23)
is planar after the application of � . This means that the link lkQF.v/ is a full sub-
complex of lkQV.v/. It now follows that KQF is a convex subset of KQV , and
therefore CAT.0/.

Since the action of QF on KQF is determined by stacking diagrams, and such stacking
preserves planarity under the projection � , QF acts on KQF by cell-permuting
automorphisms, and thus by isometries. The properness of the action follows from the
properness of the action of QF on KQV .

4 The F1 property

In this section, we will prove that each of the groups QF , QT and QV has type F1 .
Our proof uses Brown’s well-known finiteness criterion, which we recall below in
Section 4.1 (Theorem 4.1). In the remaining subsections we establish the various
hypotheses of Theorem 4.1. The section ends in Section 4.4 with a proof that each of
the groups QF , QT and QV has the F1 property.

4.1 Brown’s finiteness criterion

Our proof that QF, QT and QV have type F1 uses a well-known theorem due to
Brown.

Theorem 4.1 (Brown’s finiteness criterion [5]) Let X be a CW–complex. Let G be
a group acting on X. If

(1) X is contractible,

(2) G acts cellularly on X, and

Algebraic & Geometric Topology, Volume 18 (2018)



Quasiautomorphism groups of type F1 2359

(3) there is a sequence of subcomplexes X1 �X2 � � � � �Xn � � � � �X such that

(a) X D
S1
nD1Xn ,

(b) G acts cocompactly on Xi and leaves each Xi invariant,

(c) G acts with finite cell stabilizers, and

(d) for every k � 0, there exists an N such that Xn is k–connected for every
n�N,

then G is of type F1 .

We note that QF, QT and QV each act cellularly on contractible CW–complexes
by the results of Section 3.4. It therefore remains to introduce suitable filtrations
fXi j i 2Ng that satisfy (3).

4.2 Filtrations by subcomplexes

Definition 4.2 If † is an alphabet, p 2† and w 2†C , then we let jwjp denote the
number of occurrences of the letter p in w .

Definition 4.3 Let XDKQF , KQT or KQV . For n� 1, let Ln denote the collection
of words w in the alphabet fa; xg such that jwja D j � 1 and jwjx D j for some
j 2 f1; : : : ; ng.

We let Xn denote the subcomplex generated by the collection of all vertices of X
having bottom labels in Ln . Thus, X0n consists of all vertices having bottom labels
in Ln , and a higher-dimensional cube C of X lies in Xn if and only if the bottom
label of each corner of C lies in Ln .

Proposition 4.4 If X DKQF , KQT or KQV , then fXn j n 2Ng is a filtration of X
by subcomplexes that satisfies Theorem 4.1(3)(a)–(c), where G is QF, QT or QV
(respectively).

Proof We prove the proposition for X DKQV . The proofs in the other two cases are
similar.

We first prove that property (3)(a) holds. Let C be any cube in KQV . Each corner v
of the cube may be represented by a braided .x;�/–diagram �. It is easy to see (by
induction on the number of transistors in �) that the bottom label of � is xjaj�1 , up
to permutation of the letters, for some j � 1. Since C has a finite number of corners,
there is some particular k � 1 such that the bottom label of each corner lies in Lk .
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It follows that all corners of C lie in Xk , so that C � Xk . Thus, any cube of X is
contained in some Xk , proving (3)(a).

Next we establish property (3)(b). Recall that two vertices of KQV are in the same
orbit if and only if they may be represented by diagrams with the same bottom labels
(Proposition 2.17). It follows that each Xk is invariant under the action of QV , and
that there are only finitely many vertices of Xk modulo the action of QV . Since the
link of each vertex in QV is finite (Proposition 2.19 and Definition 2.20), the action of
QV on each Xk is cocompact. This proves (3)(b).

The group QV acts on each Xk with finite cell stabilizers since QV acts on KQV
itself with finite cell stabilizers. This proves (3)(c).

Remark 4.5 The groups QF and QT both act on KQV . Indeed, these actions
satisfy all of the conditions of Theorem 4.1, with the sole exception of the cocompact-
ness condition 3(b). This defect necessitates that we work with the complexes KQF
and KQT .

4.3 Analysis of descending links

In this subsection, we consider the descending links in the complexes KQF , KQT
and KQV . We first demonstrate (in Section 4.3.1) that the connectivity of the complexes
Xn is determined by the connectivity of the descending links lk#.w/, where w 2 Ln .
We then compute the connectivity of lk#.w/ as a function of n in Section 4.3.2.

4.3.1 The descending link and connectivity of the complexes Xn Fix n� 2. Let
X denote any of the complexes KQF , KQT or KQV . (The current discussion applies
equally to all three complexes, with inessential differences, so we will assume that
X DKQV for simplicity.) For a small � >0, consider the union of all �–neighborhoods
around the vertices v2Xn having bottom labels xnan�1 . Let A denote the complement
of this union and let B denote its closure. Clearly, Xn D A[B .

Since a vertex v 2 Xn with bottom label xnan�1 is adjacent in Xn only to vertices
with the bottom label xn�1an�2 , the link of v in Xn is isomorphic to the descending
link lk#.v/, as described in Definition 2.21. It follows that A\B may be identified
with a countable disjoint union of the links lk#.v/, as v runs over all vertices in Xn
with bottom label xnan�1 . Moreover, the subspace A strong deformation retracts onto
the complex Xn�1 . It follows that, up to homotopy, we can describe Xn as

Xn DXn�1[
F

v lk#.v/

�G
v

Cv

�
;

Algebraic & Geometric Topology, Volume 18 (2018)



Quasiautomorphism groups of type F1 2361

where the disjoint unions are over all vertices v having bottom label xnan�1 and the
spaces Cv are cones on the descending links, and therefore contractible.

We note that the above setup is a special case of a more general situation considered
in [1, Lemma 2.5]. As in [1], standard arguments using van Kampen’s theorem, the
Mayer–Vietoris sequence and the Hurewicz theorem yield the following result:

Proposition 4.6 If the descending link lk#.xkak�1/ is n–connected (n� 0), then the
inclusion map Xk�1 ,!Xk induces isomorphisms �j .Xk�1/!�j .Xk/ for 0� j �n.

In particular, if lk#.xkak�1/ is n–connected for all k �N (for some N 2N ), then
Xm is n–connected for all m�N.

For future reference, we now give a combinatorial description of the descending links.

Definition 4.7 Let vDxkal . We let lkQV
#
.v/D lk#.v/ (as defined in Definition 2.21).

We also let lkQF
#
.v/ and lkQT

#
.v/ denote the subcomplexes of lkQV

#
.v/ spanned by the

vertex sets ˚
.m;mC 1; p/ jm 2 f1; : : : ; k� 1g; p 2 f1; : : : ; lg

	
and˚
.m;mC 1; p/ jm 2 f1; : : : ; k� 1g; p 2 f1; : : : ; lg

	
[
˚
.k; 1; p/ j p 2 f1; : : : ; lg

	
;

respectively.

Proposition 4.8 Let vD xkal . The complexes lkQF
#
.v/ and lkQT

#
.v/ are isomorphic

to the descending links of the word v in the subcomplexes D.P; v/ and Da.P; v/ of
Db.P; v/, respectively.

Proof This follows from the description of lk.v/ from Proposition 2.22, and from
the description of the embedding of the complexes for QF and QT into the complex
for QV (Proposition 3.10).

Remark 4.9 As defined in Definition 4.7, the vertices of lkQF.v/ and lkQT.v/ are
3–tuples of integers. We will sometimes think of the final coordinate as a “color”
coordinate, since it has greater freedom of movement than the first two coordinates
(which are the “x”–coordinates, and therefore constrained by the requirements that the
associated diagrams be planar or annular). We will especially use the color language in
the proof of Proposition 4.11.
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4.3.2 The connectivity of the descending links in KQF and KQT We will deter-
mine the connectivity of the links lkQF

#
.v/ and lkQT

#
.v/ (for v D xkal ) with the aid

of covers by subcomplexes. The nerve theorem will be an important tool for us.

Theorem 4.10 [2] (the nerve theorem) Let � be a simplicial complex and .�i /i2I
a family of subcomplexes such that �D

S
i2I �i . If every nonempty finite intersection

�i1\� � �\�it is .k�tC1/–connected, then � is k–connected if and only if the nerve
N .�i / is k–connected.

Proposition 4.11 The complexes lkQF
#
.xkal/ and lkQT

#
.xkal/ are n–connected

(n� 0) if k � 3nC 5 and l � 2nC 3.

Proof The proofs are nearly identical, whether we consider QF or QT ; we will give
a detailed proof in the former case.

We prove the statement by induction on n. Note that the given link is nonempty when
k � 2 and l � 1.

Consider the base case nD 0. The sequence

.1; 2; ˛/; .3; 4; ˇ/; .1; 2; 
/

determines an edge-path in lkQF
#
.xkal/, where ˛ , ˇ , 
 2 f1; : : : ; lg are all distinct. It

follows that any two vertices of the form .1; 2; ˛/ can be connected by an edge-path.
Clearly, any vertex of the form .m;mC 1; ˇ/ .m > 2/ is adjacent to some .1; 2; ˛/.
Finally, note that any vertex .2; 3; ˇ/ can be connected to a vertex of the form .1; 2; ˛/

by the edge-path
.2; 3; ˇ/; .4; 5; 
/; .1; 2; ˛/:

It now follows easily that lkQF
#
.xkal/ is connected if k � 5 and l � 3.

Now assume that the statement of the proposition is true for 0� j � n. We consider
lkQF
#
.xkal/, where k� 3.nC1/C5 and l � 2.nC1/C3. Following the basic strategy

of [9] (in the proof of Proposition 4.11 there), we would like to cover lkQF
#
.xkal/ by

the simplicial neighborhoods of the vertices

C D
˚
.1; 2; ˛/; .2; 3; ˛/ j ˛ 2 f1; : : : ; lg

	
:

Unfortunately, these simplicial neighborhoods do not cover lkQF
#
.xkal/ in general.

(If k� l , then it is possible to find a simplex S that “uses” all of the colors 1, : : : ; l ,
but none of the vertices in the above collection; such a simplex clearly cannot be part of

Algebraic & Geometric Topology, Volume 18 (2018)



Quasiautomorphism groups of type F1 2363

the simplicial neighborhood of any of the above vertices.) We will instead consider the
.nC2/–skeleton of lkQF

#
.xkal/. We claim that the .nC2/–skeleton is indeed covered

by the .nC2/–skeletons of the simplicial neighborhoods considered above, as we now
prove.

Let S Df.m1; m1C1; ˛1/; : : : ; .mp; mpC1; p̨/g be a simplex in the .nC2/–skeleton.
If one of the mi is 1 or 2, then it is clear that the given simplex is in the simplicial
neighborhood of some vertex in C , and the desired conclusion follows. If all of
the mi are greater than 2, then, since p � nC 3 < 2nC 5 � l , there is a color
ˇ 2 .f1; : : : ; lg � f˛1; : : : ; p̨g/. The simplex S is therefore in the simplicial neigh-
borhood of .1; 2; ˇ/. Thus, clearly S is in the .nC2/–skeleton of the simplicial
neighborhood of .1; 2; ˇ/. This proves the claim.

We let C.m;mC 1; ˇ/ denote the .nC2/–skeleton of the simplicial neighborhood of
.m;mC 1; ˇ/ in lkQF

#
.xkal/. We consider the cover

yC D
˚
C.m;mC 1; ˇ/ jm 2 f1; 2g; ˇ 2 f1; : : : ; lg

	
:

We first claim that the nerve N .yC/ is .nC1/–connected. We will prove this by showing
that every set of nC 3 vertices of the nerve span an .nC2/–simplex of the nerve. It
will then follow that the nerve contains the .nC2/–skeleton of a high-dimensional
simplex, and is therefore .nC1/–connected. So, take any nC 3 members of yC . These
elements

C.m1; m1C 1; ˇ1/; : : : ; C.mnC3; mnC3C 1; ˇnC3/

.mi 2 f1; 2g/ collectively “use” at most nC 3 colors, out of a total of at least 2nC 5.
Thus, there is a ˇ 2 .f1; : : : ; lg� fˇ1; : : : ; ˇnC3g/, and it follows that the intersection

nC3\
iD1

C.mi ; miC1; ˇi /

is nonempty. (It contains the vertex .4; 5; ˇ/, for instance.) This proves that the nerve
N .yC/ is .nC1/–connected.

Now we want to prove that any nonempty t –fold intersection of members of yC is
.n�tC2/–connected. Thus, we consider the intersection

t\
iD1

C.mi ; mi C 1; ˇi /;
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where mi 2 f1; 2g. One easily checks that this intersection consists of all q–simplices
.q � nC 2/ on the set˚

.m;mC 1; 
/ jm 2 f3; : : : ; k� 1g; 
 2 .f1; : : : ; lg� fˇ1; : : : ; ˇig/
	

or on the set˚
.m;mC 1; 
/ jm 2 f4; : : : ; k� 1g; 
 2 .f1; : : : ; lg� fˇ1; : : : ; ˇig/

	
:

It follows directly that the intersection may be identified with the .nC2/–skeleton of
lkQF
#
.xk

0

al
0

/, where k0 � k� 3 and l 0 � l � t . We note first that

k0 � k� 3� 3.nC 1/C 5� 3D 3nC 5� 3.n� t C 2/C 5

and
l 0 � l � t � 2nC 5� t:

We want to prove that 2nC 5� t � 2.n� t C 2/C 3, but this is easily seen to be
equivalent to the inequality t � 2.

We can now conclude that the intersection in question is the same as the .nC2/–skeleton
of lkQF

#
.xk

0

al
0

/, where k0 � 3.n� t C 2/C 5 and l 0 � 2.n� t C 2/C 3. It follows
directly that the intersection is .n�tC2/–connected, as required.

It follows from the nerve theorem that lkQF
#
.xkal/ is .nC1/–connected for k �

3.nC 1/C 5 and l � 2.nC 1/C 3, as required. This completes the induction, and
proves the proposition in the case of QF .

Note that the required connectivity of the complex lkQT
#
.xkal/ is proved almost exactly

as above. In fact, the intersection of the cones C.m;mC1; ˇ/ from the last part of the
proof is isomorphic to a descending link lkQF

#
.xk

0

al
0

/ (rather than a descending link
of the form lkQT

#
.xk

0

al
0

/, as one might expect).

4.3.3 The connectivity of the descending links in KQV Here we will determine
the connectivity of the descending links lkQV

#
.xkal/ by a method analogous to the one

from Section 4.3.2.

The argument makes use of the following lemma [11, Lemma 6].

Lemma 4.12 Let K be a finite flag complex and let n � 0. The complex K is
n–connected if, for any collection of vertices S �K.0/ with jS j � 2, the intersectionT
v2S lk.v/ is .nC1�jS j/–connected.
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Proposition 4.13 For n� 0, the descending link lkQV
#
.xkal/ is n–connected when

k � 4nC 5 and l � 2nC 3.

Proof We will use induction to show that this is true for any n� 0.

Consider lkQV
#
.xkal/; let k � 5 and l � 3. We will show that lkQV

#
.xkal/ is 0–

connected. Let .m; n; ˛/ and .m0; n0; ˛0/ be arbitrary vertices of the link lkQV
#
.xkal/.

Note that, if fm; ng[fm0; n0g has three or fewer elements, then the vertices in question
are clearly connected by a path, since .m00; n00; ˛00/ is adjacent to both vertices if
m00; n00 … fm; ng [ fm0; n0g and ˛00 … f˛0; ˛00g. Thus, we may assume that m, n,
m0 and n0 are all different. In this case, there is nothing to prove unless ˛ D ˛0

(otherwise the vertices are adjacent by definition). Let M … fm; n;m0; n0g. We note that
.m0;M; ˇ/ (ˇ¤ ˛ ) is adjacent to .m; n; ˛/. Now, since .m0;M; ˇ/ may be connected
to .m0; n0; ˛0/ by the previous argument, it follows that .m; n; ˛/ and .m0; n0; ˛0/ may
be connected by a path. This proves that lkQV

#
.xkal/ is 0–connected.

Now let k � 4.nC 1/C 5 and l � 2.nC 1/C 3, where n � 0. We assume that the
statement of the proposition is true for 0� j � n. Let S be an arbitrary collection of
vertices in lkQV

#
.xkal/. We may assume that jS j � nC 2 (otherwise there is nothing

to prove). We note that \
v2S

lk.v/

is simply the full subcomplex of lkQV
#
.xkal/ on the vertices yv that have no overlap

with any of the v 2 S. (That is, yv and v represent disjoint applications of relations, as
in Definition 2.18, to xkal for all v 2 S.) It follows that\

v2S

lk.v/Š lkQV
#
.xk

0

al
0

/;

where k0 � 4nC 9� 2jS j and l 0 � 2nC 5� jS j. By Lemma 4.12 and induction, it
now suffices to show that

4nC 9� 2jS j � 4.nC 1� jS j/C 5

and
2nC 5� jS j � 2.nC 1� jS j/C 3:

Both of these inequalities are obvious. This completes the induction.

4.4 Conclusion: proof of the F1 property

It is now straightforward to complete the proof of the F1 property.
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Proposition 4.14 Let X DKQF ; KQT or KQV .

(1) If X DKQF or KQT , then Xk is n–connected if k � 3nC 5.

(2) If X DKQV , then Xk is n–connected if k � 4nC 5.

Proof If X DKQF or KQT , then, by Propositions 4.6 and 4.11, the descending link
lk#.xkak�1/ is n–connected provided that k � 3nC 5.

Similarly, if X D KQV , then, by Propositions 4.6 and 4.13, the descending link
lk#.xkak�1/ is n–connected provided that k � 4nC 5.

Theorem 4.15 The groups QF , QT and QV have type F1 .

Proof The complexes XDKQF , KQT and KQV admit actions by QF , QT and QV
(respectively) satisfying (1) and (2) from Theorem 4.1. This was established by the
end of Section 4.1. In Section 4.2, we established that the complexes X admit fil-
trations by subcomplexes fXkg such that (3)(a)–(c) from Theorem 4.1 are satisfied.
By Proposition 4.14, these filtrations satisfy (3)(d) from Theorem 4.1 as well. It now
follows from Theorem 4.1 that QF , QT and QV have type F1 .

5 Some generalizations

Nucinkis and St John-Green introduced the groups QT and QV , and proved that both
groups have type F1 . The group QV is defined just as QV was (see Definition 3.1),
except that QV is a set of automorphisms of T [ f�g, where � is an isolated point,
rather than a set of automorphisms of T , as in the case of QV . There is still a natural
action of QV on the set of ends of T , which yields a homomorphism QV ! V . The
inverse image of Thompson’s group T under this homomorphism is QT .

In the vocabulary of the main body of the paper, QV is the braided diagram group
Db.P; xa/, where P D hx; a j x D xaxi. The group QT is the subgroup of QV
consisting of diagrams that become (or remain) annular when all wires labeled “a” are
erased. The groups QV and QT then act on cubical complexes analogous to the ones
described in Sections 2.2 and 3.3: QV acts on zKb.P; xa/ and QT acts on the convex
subcomplex spanned by diagrams that are annular (in the above extended sense). The
proofs of the F1 property from the main body of the paper apply to these groups with
no essential changes.

More generally, we can define a class of groups as follows. Let Fk;l denote an ordered
forest consisting of k infinite binary trees and l isolated vertices. We let QVk;l denote
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the group of all bijections of the vertices of Fk;l that preserve left- and right-children,
with at most finitely many exceptions (as in Definition 3.1). We let QFk;l and QTk;l
be the subgroups of QVk;l that preserve the linear and the cyclic ordering, respectively,
of the ends. The group QVk;l is simply the braided diagram group Db.P; xkal/ (with
P as above), and the groups QFk;l and QTk;l have obvious definitions, analogous to
the ones given above. A minor variant of the main argument now proves:

Theorem 5.1 The groups QFk;l , QTk;l and QVk;l have type F1 for k � 1 and
l � 0.

It is not clear whether the above theorem specifies infinitely many different groups of
type F1 . The groups QVk;l and QVk0;l 0 are isomorphic if k� l D k0� l 0. This can
be seen in at least two ways:

(i) If k � l D k0 � l 0, then there is a quasi-isomorphism between Fk;l and Fk0;l 0

that conjugates QVk;l to QVk0;l 0 .

(ii) Under the same hypothesis, xkal is equivalent to xk
0

al
0

modulo the presentation
P D hx; a j xax D xi and up to permutation of the letters; thus, the groups in
question are isomorphic by what amounts to a change-of-basepoint isomorphism
(see [13] for a discussion of this principle in connection with diagram groups).

On the other hand, if k� l ¤ k0� l 0, then the authors do not know whether the groups
can be isomorphic. The above discussion carries over to the cases of QFk;l and QTk;l
without any changes.

Further extensions are possible. For instance, we could consider the case of rooted
ordered n–ary trees. Let T n

k;l
denote the ordered forest of k infinite n–ary trees and l

isolated vertices. We can let QV n
k;l

denote the group of bijections h of .T n
k;l
/0 that

send the j th child of a vertex v to the j th child of the vertex h.v/, with at most
finitely many exceptions. (These groups might equally well be denoted by QGn

k;l
,

since they extend Higman’s groups Gn;k [14] in the same way that QV extends V .
We caution the reader, however, that the groups QVk;l are not obviously extensions of
Vk;l or Gk;l , since the subscripts k and l in the latter groups refer to the (downward)
degree of the trees and the number of trees, respectively, in contrast to the meanings
of the same subscripts in QVk;l .) This group is isomorphic to the braided diagram
group Db.Pn; xkal/, where Pn D hx; a j x D xnai. This construction also yields its
own “QF ” and “QT ” versions, in a natural way. All such groups will have type F1
provided that n � 2. The argument differs from the main argument of this paper in
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only minor ways (for instance, the bounds in the analogs of Propositions 4.11 and 4.13
will be different).

Even more generally, we could define a tree using a tree-like semigroup presentation
P 0 D h† jRi (see Definition 4.1 from [12]). In such a presentation, each relation has
the form xDx1x2 : : : xi , and a given x 2† is the left-hand side of at most one relation
in R. For any fixed x 2†, there is a natural simplicial tree T.P0;x/ (as defined in the
proof of Theorem 4.12 from [12]). We can construct T.P0;x/ inductively as follows.
We begin with a root labeled x . This vertex is adjacent to children labeled (from left to
right) x1 , x2 , : : : ; xi (respectively) if .xD x1x2 : : : xi /2R. One similarly introduces
and labels the children of x1 , : : : ; xi using the relations of the form .x˛ D w˛/ 2R
(for 1 � ˛ � i , w˛ is a word in the generators †). The result is easily seen to be a
rooted, ordered, labeled simplicial tree. The reader can easily verify that T.P;x/ is the
usual infinite binary tree if P D hx j x D x2i, for instance. Now, assuming that a …†,
we define P 00 D h† [ fag j R0i, where R0 is the result of replacing each relation
.x D x1 : : : xi / 2 R with the relation x D x1 : : : xia . (Here, the letter “a” is again
being used to represent an isolated vertex.) The braided diagram group Db.P 00; x/
should be isomorphic to the group of quasiautomorphisms of T.P0;x/ under appropriate
hypotheses on the original tree-like semigroup presentation P 0. (For instance, one
would need to ensure that the trees T.P0;x/ and T.P 0;y/ are not isomorphic for different
x and y ; failure to do this would make the braided diagram group strictly smaller
than the corresponding quasiautomorphism group.) It is reasonable to expect that
such groups will often be of type F1 , but we will not try to guess at the appropriate
hypotheses here.

It is worth adding a final cautionary note. We cannot expect all groups in the family
sketched above to have type F1 . The Houghton group Hn can be described as the
“QF ” group associated to the forest T 1n;0 . This group was shown to have type Fn�1
but not type Fn by Brown [5]. In fact, it seems that adding even a single rooted 1–ary
tree (ie a cellulated ray) to a forest of higher-valence rooted trees will destroy the F1
property.
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