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Stability phenomena in the homology of tree braid groups

ERIC RAMOS

For a tree G , we study the changing behaviors in the homology groups Hi.BnG/

as n varies, where BnG WD �1.UConfn.G// . We prove that the ranks of these
homologies can be described by a single polynomial for all n , and construct this
polynomial explicitly in terms of invariants of the tree G . To accomplish this we
prove that the group

L
n Hi.BnG/ can be endowed with the structure of a finitely

generated graded module over an integral polynomial ring, and further prove that it
naturally decomposes as a direct sum of graded shifts of squarefree monomial ideals.
Following this, we spend time considering how our methods might be generalized to
braid groups of arbitrary graphs, and make various conjectures in this direction.

05C10; 05E40, 05C05, 57M15

1 Introduction

1.1 Introductory remarks and statements of the main theorems

In recent years there has been a push towards understanding the mechanisms connecting
various well-known asymptotic stability results in topology and algebra. For instance,
let N be a connected oriented manifold of dimension � 2 which is the interior of a
manifold with boundary, and write Confn.N / for the n–strand configuration space

Confn.N / WD f.x1; : : : ;xn/ 2N n
j xi ¤ xj g:

There is a natural action on Confn.N / by the symmetric group Sn , and we may
therefore define the n–strand unordered configuration space

UConfn.N / WD Confn.N /=Sn:

A classical theorem of McDuff [18, Theorem 1.2] implies that for each i and any n� i ,
the group Hi.UConfn.N // is independent of n. In contrast to the work of McDuff,
it can be seen that the analogous statement is not true for the ordered configuration
spaces Confn.N /. What is true, however, is perhaps the next best thing. It follows
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from work of Church, Ellenberg and Farb [4, Theorem 6.4.3] that for any i , there is
a polynomial P 2QŒx� such that the Betti number dimQ

�
Hi.Confn.U /IQ/

�
agrees

with P .n/ for n � 0. Results of this type fall under the heading of what one might
call asymptotic algebra.

The modern philosophy of asymptotic algebra can be roughly stated as follows: a family
of algebraic objects which display asymptotic stability phenomena can often times
be encoded into a single object, which is finitely generated in an appropriate abelian
category. In the case of McDuff, for each i and n the group Hi.UConfn.N // can be
realized as the n–graded piece of some finitely generated graded module over ZŒx�.
The result of Church, Ellenberg and Farb involves showing that the Sn –representations
Hi.Confn.U /IQ/ are each constituents of some finitely generated representation of the
category FI of finite sets and injections (see [4] for more on this notion). This philoso-
phy is also heavily featured in Sam and Snowden’s recent resolution [21] of Stembridge’s
conjecture. The goal of this paper is to apply similar techniques to the homologies of
the unordered configuration spaces of trees. Note that this problem was considered by
Lütgehetmann [16]. The results of that work are disjoint from the current work.

In this paper, a graph will always refer to a connected, compact CW complex of
dimension 1. A tree is a graph which is contractible as a topological space. An
essential vertex of G is a vertex of degree, or valency, at least 3, while an essential
edge of G is a connected component of the space obtained by removing all essential
vertices from G . Note that both the essential edges and vertices of a graph are unaffected
by subdivision of edges, and can be thought of as the topologically essential pieces of
the graph.

Our main result relates to the asymptotic behavior of the homologies of the braid group
of a tree. To state this result, we first need to define a kind of connectivity invariant for
trees.

Let G be a tree. Then we set

�i
G WD max

ffvj1 ;:::;vji gjvjk essentialg

˚
dimQ.H0.G �fvj1

; : : : ; vji
gIQ//

	
:

In words, �i
G

is the maximum number of connected components that G can be broken
into by removing exactly i essential vertices. Therefore, �1

G
is the maximum degree of

a vertex in G , while, if G has NG essential vertices, �NG

G
is the number of essential

edges of G . By convention, �0
G
D 1, while �i

G
D 0 for i >NG .
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Theorem A Let G be a tree and write BnG WD �1.UConfn.G// for the braid group.
Then for each i there is a polynomial Pi 2 QŒx� of degree �i

G
� 1 such that, for

all n� 0,
Pi.n/D dimQ.Hi.BnGIQ//:

Remark 1.1 It follows from a theorem of Ghrist [13, Theorem 3.3], and, independently,
a theorem of Świątkowski [22, Theorem 0.1], that given any graph G not homeomorphic
to S1, Hi.BnG/ D 0 for all i strictly greater than the number of essential vertices
of G . This is realized in the case where G is a tree in Theorem A by the fact that
�i

G
� 1D�1 in these cases.

It was brought to the author’s attention that recent work of Maciążek and Sawicki [17]
proves a version of Theorem A. Their work approaches the problem from a very
different perspective, and is motivated by questions in physics. The author is grateful
towards Professors Maciążek and Sawicki for informing him of their work.

The polynomial Pi of Theorem A is explicitly computed throughout the course of this
work (see Theorem 3.17). This computation implies something somewhat surprising
about these homology groups.

Corollary B Let G be a tree, and let i � 0. Then the homology groups Hi.BnG/

depend only on i , n and the degree sequence of G .

It is interesting to note that the rank of Hi.BnG/ agrees with a polynomial for all n� 0,
as opposed to only agreeing for n sufficiently large. In the case of configuration spaces
of manifolds, a result of this kind does have precedent. We have already discussed the
result of Church, Ellenberg and Farb [4, Theorem 6.4.3], which states that if N is an
oriented manifold which is the interior of a manifold with nonempty boundary, then
for any i the dimension of Hi.Confn.N /IQ/ agrees with a polynomial for all n. It is
perhaps an interesting observation that trees can be thought of as graphs with nontrivial
boundary. It is unclear whether the connection to the work of Church, Ellenberg and
Farb goes any deeper than this, however.

1.2 An outline of the proof

To prove Theorem A, we will rely on classical techniques in commutative algebra, as
well as more modern techniques in combinatorial topology. The first key ingredient
is the discrete Morse theory of Forman [10]. Given a regular CW complex X (see
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Definition 2.1), write Ki for the set of i –cells of X. A discrete Morse function is
a map f from the cells of X to R satisfying the following two hypotheses for all
cells � 2 Ki :

(1)
ˇ̌
f� 2 KiC1 j � � x� and f .�/� f .�/g

ˇ̌
� 1.

(2)
ˇ̌
f� 2 Ki�1 j � � x� and f .�/� f .�/g

ˇ̌
� 1.

We call � 2 Ki a critical i –cell with respect to f if the sets of conditions (1)–(2)
are both empty. The main consequence of discrete Morse theory is that the critical
cells of X determine its homotopy type. Formally, let a 2R and write X.a/ for the
subcomplex of X comprised of the closures of cells � with f .�/ � a. If there is
no critical cell � with a < f .�/ < b , then X.a/ is a deformation retract of X.b/.
Otherwise, if there is a unique critical cell � with a<f .�/< b , then X.b/ is obtained
from X.a/ by attaching the cell � . Moreover, there is a complex

(1-1) � � � !Mi! � � �
z@
�!M1!M0! 0;

where Mi is a free Z–module on the critical i –cells of X, whose homology is
the homology of the space X. We call the differential z@ the Morse differential (see
Definition 2.5).

Using work of Abrams [1], Farley and Sabalka were able to impose a discrete Morse
structure on the spaces UConfn.G/, where G is any graph [8]. We will spend a good
amount of time recounting the construction of Farley and Sabalka in Section 2.2. Once
we have accomplished this, our strategy will be to develop a strong understanding of
the critical cells. More specifically, we will work towards understanding the changing
behaviors of the critical cells as n varies.

Let G be a graph with E essential edges, and write SG WD ZŒx1; : : : ;xE � for the
integral polynomial ring in E variables. We will prove the following in Section 3.2:

(�) For each i , there exists a finitely generated graded SG –module Mi;� for which
Mi;n is a free Z–module with basis vectors indexed by the critical i –cells of
UConfn.G/.

Specializing to the case where G is a tree, work of Farley [7] implies that the Morse
differential is always trivial. Using the complex (1-1) we obtain the following:

Theorem C Let G be a tree with E essential edges, and let SG denote the integral
polynomial ring in E variables. Then, for each i and n, the action of SG on the critical
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cells of UConfn.G/ described in Section 3.2 imposes the structure of a finitely gener-
ated graded SG –module on the abelian group

L
n�0 Hi.UConfn.G//. In particular,

there exists a finitely generated graded SG –module Hi such that

.Hi/n ŠHi.UConfn.G//:

A result of Ghrist and Abrams (see Theorem 2.13) implies the spaces UConfn.G/ are
aspherical. It follows immediately from this that Hi.UConfn.G//ŠHi.BnG/. With
this in mind, the existence of a polynomial Pi 2 QŒx� which agrees with the Betti
numbers of Hi.BnG/ follows from the existence of the Hilbert polynomial in the study
of graded modules over polynomial rings. Of course, the above theorem does not tell us
anything about the degree of the Hilbert polynomial, nor does it bound its obstruction.
To accomplish this, we must first prove a structure theorem about the modules Hi .

Remark 1.2 We will, throughout the paper, make casual use of the theory of graded
modules over polynomial rings. More specifically, we will often rely upon the existence
of the Hilbert polynomial in this setting. For the reader unfamiliar with this material, it
is recommended that they read through the first chapter of Eisenbud [5].

To state this theorem, we first recall the definition of a squarefree monomial ideal. We
say an ideal I �QŒx1; : : : ;xd � is a squarefree monomial ideal if it contains a generating
set of monomials, none of which are divisible by a square in QŒx1; : : : ;xd �. These
ideals are the subject of Stanley–Reisner theory, and have many desirable properties. For
instance, much is known about their Hilbert polynomial (see Miller and Sturmfels [19]
for a reference on the subject).

Theorem D Let G be a tree, and let Hi denote the SG –module of Theorem C. Then
Hi ˝Z Q is isomorphic to a direct sum of graded twists of squarefree monomial ideals,
each having dimension at most �i

G
.

We will find that this theorem implies the conclusions of Theorem A. In fact, we will
be able to compute the polynomial Pi associated to Hi explicitly in terms of invariants
of the tree G (see Theorem 3.17).

1.3 An overview of the paper

In the next section, we will spend time developing necessary background. This includes
short summaries of discrete Morse theory (Section 2.1), and configuration spaces of
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graphs (Sections 2.2 and 2.3). Following this, we use the machinery developed in these
preliminary sections to prove the statement (�) (Section 3.2). Finally, we specialize to
the case of trees, and use enumerative combinatorial methods to prove Theorem A via
an explicit computation of the Hilbert polynomial (Sections 3.3 and 3.4).

To finish the paper, we briefly consider the case of a general graph G . Note that while
most of the explicit results in this paper are limited to the case where G is a tree, the
statement (�) will hold for any graph G . A result like Theorem C will therefore hold
for general graphs so long as we know that the Morse differential commutes with the
action of SG on Mi;� . It is the belief of the author that the action of SG , or perhaps a
slight alteration thereof, will indeed commute with this differential. Unfortunately, it is
known that this differential can become tremendously complicated as G increases in
complexity (see Ko and Park [15]). In any case, the methods in this work therefore
provide at least a strategy for proving stability results for more general graphs. In the
final sections, we discuss some implications of this.
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2 Preliminaries

2.1 Discrete Morse theory

We now take the time to briefly summarize the key points in Forman’s discrete Morse
theory [10]. We will largely be following the exposition of Forman [10; 11], Farley
and Sabalka [8] and Ko and Park [15].

In the introduction, we spent some time discussing the notion of discrete Morse function.
One thing that should stand out about this definition is that the literal values of the
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function are immaterial. Namely, the classification of critical cells is unchanged by
composition with any strictly monotone function R! R. In many cases it is often
easier to construct the relationships between the cells, rather than the discrete Morse
function itself. This hints towards the construction of what are known as discrete vector
fields. We will use this approach during the exposition of this and all future sections.

To begin, we first must place certain light restrictions on the spaces we will be working
with.

Definition 2.1 Let X be a CW complex. A cell of X will always refer to an open
cell in X. Given a cell � of dimension i , we will often write � .i/ to indicate that �
has dimension i . We will write K to denote the set of cells of X, and Ki to denote the
set of i –cells of X.

A cell � .i/� � .iC1/ is said to be a regular face of a cell � .iC1/ if, given a characteristic
map ˆ� W DiC1!X for � .iC1/, ˆ�1

� .x�/ is a closed ball and the map ˆ� jˆ�1
� .x�/ is

a homeomorphism. We say that the complex X is regular if � .i/ is a regular face
of � .iC1/ for any pair of cells � .i/ � � .iC1/ . Equivalently, X is regular if and only if
the attaching map of each of its cells is a homeomorphism.

We will assume throughout most of our exposition that X is a regular CW complex.
In his original paper on discrete Morse theory, Forman [10] proves some of his results
without the requirement that X be regular. The spaces UConfn.G/, for any graph G ,
are actually cubical complexes, which are certainly regular CW complexes. Therefore,
the condition that X be regular is not restrictive for what we need.

Definition 2.2 Let X be a regular CW complex. A discrete vector field V on X is a
collection of partially defined functions Vi W Ki!KiC1 satisfying the following three
conditions for each i :

(1) Vi is injective.

(2) The image of Vi is disjoint from the domain of ViC1 .

(3) � .i/ is a face of Vi.�
.i// for any � .i/ in the domain of Vi .

Given a regular CW complex X equipped with a discrete vector field V , a cellular
path between two cells ˛.i/ and ˇ.i/ is a finite sequence of i –cells

˛.i/ D ˛
.i/
0
; ˛

.i/
1
; : : : ; ˛

.i/

l�1
; ˛

.i/

l
D ˇ.i/
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such that ˛.i/
jC1

is a face of Vi.˛
.i/
j /. We say that the path is closed if ˛.i/ D ˇ.i/ and

we say it is trivial if ˛.i/j D ˛
.i/

k
for all j and k .

A discrete vector field V is said to be a discrete gradient vector field if it admits no
nontrivial closed cellular paths.

If V is a discrete gradient vector field on a regular CW complex X, then we call a cell
� of X redundant if � is in the domain of Vi for some i , collapsible if it is in the
image of Vi for some i , and critical otherwise.

Proposition 2.3 [8, Proposition 2.2; 10, Theorem 3.4] Let X be a regular CW
complex equipped with a discrete gradient vector field V . Consider the filtration

∅DX 000 �X 00 �X 001 �X 01 � � � � �X 00n �X 0n � � � � ;

where X 0i is the i –skeleton of X with the redundant i –cells removed, and X 00i is the
i –skeleton of X with both the redundant and critical i –cells removed. Then:

(1) For any i , X 0i is obtained from X 00i by attaching mi i –cells to X 00n along their
boundaries, where mi is the number of critical i –cells of the discrete gradient
vector field V .

(2) For any i , X 00
iC1

deformation retracts onto X 0i.

The above proposition leads to one notable corollary, which we record now.

Corollary 2.4 [8, Proposition 2.3; 10, Corollary 3.5] Let X be a regular CW complex
equipped with a discrete gradient vector field V . Then X is homotopy equivalent to a
CW complex with precisely mi i –cells for each i , where mi is the number of critical
i –cells of V .

Just as is the case with traditional Morse theory, the decomposition of the space X given
by Corollary 2.4 can be used to compute the homology groups of X. For simplicity, we
will state the construction for cubical complexes, although the general case is similar.

Definition 2.5 Let X be a cubical complex, and write Ci.X / for the free abelian
group of i –cells of X. If c Š I1� � � � � Ii is an i –cell of X, with Ij Š Œ0; 1�, then we
define

cj
� D I1�� � ��Ij�1�f0g�IjC1�� � ��Ii ; cj

� D I1�� � ��Ij�1�f1g�IjC1�� � ��Ii :

Algebraic & Geometric Topology, Volume 18 (2018)
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This allows us to define a boundary morphism

@W Ci.X /! Ci�1.X /

given by

@.c/ WD
X

j

cj
� � cj

� ;

turning C�.X / into a chain complex. It is a well-known fact that the homology of this
chain complex is the usual homology of the space X.

Further assume that X is equipped with a discrete gradient vector field V . Then we
have a map RW Ci.X /! Ci.X / defined by

R.c/D

8<:
0 if c is collapsible;
c if c is critical;

˙@.Vi.c//C c otherwise,

where the sign of @.Vi.c// in the above definition is chosen so that c has a negative
coefficient. The property that V has no nontrivial closed paths implies that Rm.c/D

RmC1.c/ for all m� 0 and all i –cells c [10]. We set R1.c/ to be this stable value.

For each i , let Mi denote the free abelian group with basis indexed by the critical
i –cells of V . Then the Morse complex associated to V is defined to be

M�W � � � !Mn! � � � !M1
z@
�!M0! 0;

where the boundary map z@ is given by

z@.c/ WDR1.@.c//

The map z@ is known as the Morse differential.

Theorem 2.6 [10, Theorem 8.2; 11, Theorem 7.3] For all i there are isomorphisms

Hi.X /ŠHi.M�/:

2.2 The configuration spaces of graphs

In this section we review necessary facts about configuration spaces of graphs. In the
next section, we will explain how the techniques of discrete Morse theory apply to
these spaces.

Algebraic & Geometric Topology, Volume 18 (2018)
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Definition 2.7 A graph is any compact, connected CW complex of dimension one.
A tree is a topologically contractible graph. Given a graph G with vertex v , we will
write �.v/ to denote the degree of the vertex v . Note that any loop on v contributes 2
to its degree count. We say that v is essential if �.v/� 3. If �.v/D 1, we say that v
is a boundary vertex, and the unique edge connected to v is called a boundary edge.

The configuration space on n points of G is the topological space

Confn.G/ WD f.x1; : : : ;xn/ 2Gn
j xi ¤ xj if i ¤ j g:

We note that there is a natural action without fixed points on Confn.G/ by the symmetric
group Sn . The unordered configuration space on n points of G is the quotient space

UConfn.G/ WD Confn.G/=Sn:

For the majority of this paper, we will work with the spaces UConfn.G/. Note that
many of the structural theorems discussed in this section will apply to both spaces.

In order to apply discrete Morse theory to questions about these configuration spaces,
we will first need to place a CW complex structure on them. To accomplish this, we
use a theorem of Abrams [1].

Definition 2.8 The discretized configuration space Dn.G/ in n points over G is the
CW subcomplex of Gn spanned by cells of the form

�1 � � � � � �n;

where �i �G is a cell (ie an edge or vertex) of G and x�i \ x�j D∅ whenever i ¤ j .
We write UDn.G/ to denote the quotient of Dn.G/ by the action of the symmetric
group.

Theorem 2.9 [1, Theorem 2.1; 14, Theorem 2.4; 20] Let G be a graph, and assume
that G satisfies the following two properties:

(1) Each path connecting distinct vertices of degree ¤ 2 has length at least n� 1.

(2) Each homotopically essential path connecting a vertex to itself has length at least
nC 1.

Then the inclusions Dn.G/ ,! Confn.G/ and UDn.G/ ,! UConfn.G/ are homotopy
equivalences.
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Remark 2.10 In the first cited source, Abrams states the theorem assuming that each
path connecting distinct vertices of degree ¤ 2 has length at least nC 1. It is noted
after the proof that the version of the theorem stated above is true, and a brief argument
is given for how it is proven. In the second source, Kim, Ko and Park give a formal
argument for this improvement. In the third source, Prue and Scrimshaw provide a
discrete Morse theory argument, which is independent of the first two sources. For our
purposes, the exact number of vertices needed is unimportant, as we can always just
subdivide the edges of G more if needed.

Note that subdividing edges of a graph G does not impact the configuration spaces
Confn.G/ and UConfn.G/. For much of what follows, we will often just assume,
without explicit mention, G is subdivided enough that the homotopy equivalence of
Theorem 2.9 holds.

Theorem 2.9 implies that Confn.G/ and UConfn.G/ are homotopy equivalent to
cubical complexes of dimension n. In fact, we will be able to do better than this.

Theorem 2.11 [13, Theorem 3.3; 22, Theorem 0.1] Let G be a graph which is not
homeomorphic to S1 . Then Confn.G/ and UConfn.G/ are homotopy equivalent to
CW complexes of dimension NG , where NG is the number of essential vertices of G .

Remark 2.12 If G is homeomorphic to S1 , then UConfn.G/ is easily seen to be
homotopy equivalent to a circle for all n. Throughout this work, and the literature in
general, it is a recurring theme that certain theorems only apply to graphs which are
neither S1 nor the interval. It is interesting that these two graphs are precisely those
which are homeomorphic to compact manifolds.

Note that Ghrist originally proved Theorem 2.11 using more classical topological
means. Świątkowski accomplished something similar in [22]. We will later see that
it naturally falls out of the discrete Morse structure that Farley and Sabalka placed
on UDn.G/. This was first noted by Farley and Sabalka [8].

One remarkable thing to note about the Ghrist–Świątkowski theorem is that the dimen-
sion of the configuration spaces of graphs is independent of n. This behavior is in stark
contrast to the behavior of configuration spaces of smooth manifolds of dimension � 2.

In his paper [13], Ghrist also proves that configuration spaces of graphs are, in fact,
aspherical. This result was later reproven by Abrams [1, Theorem 3.10], where he
shows that both Dn.G/ and UDn.G/ are universally covered by CAT(0) complexes.
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Theorem 2.13 [13, Theorem 3.1; 1, Corollary 3.11] Let G be a graph. Then
Confn.G/, and hence UConfn.G/, are aspherical. That is to say, �k.Confn.G//D 0

for k > 1.

Note that this theorem is analogous to that which says the configuration spaces of the
plane are aspherical. In that case, the fundamental groups of the ordered and unordered
spaces are the Artin pure braid groups and the Artin braid groups, respectively. We
borrow this terminology for our context as well.

Definition 2.14 Let G be a graph. The braid group on n strands of G is defined to
be

BnG WD �1.UConfn.G//:

We similarly define the pure braid group on n strands as

PnG WD �1.Confn.G//:

The study of the braid groups of graphs is still a very active area of research. See
[14; 15; 9] for more on these groups.

As an immediate corollary to Theorem 2.13, we obtain the following:

Corollary 2.15 Let G be a graph. Then there are isomorphisms

Hi.Confn.G//ŠHi.PnG/; Hi.UConfn.G//ŠHi.BnG/:

The goal for this paper is to establish a methodology for understanding stability phe-
nomena in the groups Hi.BnG/, in the spirit of modern trends of asymptotic algebra.
Note that we will spend very little time considering pure braid groups. In fact, there
doesn’t seem to be much literature about the homology of these groups, as they are
vastly more complicated than the braid groups [15; 3].

The following theorem of Farley exactly computes the homology groups when G is a
tree:

Theorem 2.16 [7] Let G be a tree. Then the group Hi.BnG/ is free for all n� 0.

Note that the theorem of [7] is slightly more general than this. We will discuss the
more general version in later sections.

Expanding upon the work of Farley, the following theorem of Ko and Park suggests
that the tree case is indicative of a more general phenomenon:
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Theorem 2.17 [15, Theorem 3.6] Let G be a graph. Then G is planar if and only if
H1.BnG/ is torsionfree for any, and therefore all, n� 2. Moreover, in the case where
G is not planar, all torsion is 2–torsion.

Kim, Ko and Park [14, Theorem 5.5] proved that G is planar if and only if H1.B2G;Z/

is torsionfree. It is also conjectured in that work that Theorem 2.17 is true. It should
be noted that [15, Theorem 3.6] is far stronger than what we have written above. In
fact, their result explicitly computes the groups H1.BnG;Z/ in terms of combinatorial
invariants of the graph G . It follows from their computation that the amount of 2–
torsion of the group is unvarying in n. Moreover, if G is biconnected — that is, G

requires the removal of at least 2 vertices to disconnect it — then H1.BnG;Z/ Š

H1.B2G;Z/ for all n� 2 [15, Lemma 3.12]. In the final section of this paper we will
conjecture an extension of this fact to the higher homologies (see Conjecture 4.3).

To finish this section, we record a result of Gal on the Euler characteristic of these spaces.
Note that Gal proves a more general theorem for computing the Euler characteristic of
the configuration space of any simplicial complex.

Theorem 2.18 [12, Theorem 2] Let G be a graph and set

e.t/ WD
X
n�0

�.Confn.G//

n!
tn:

Then

e.t/D

Q
v

�
1C .1��.v//t

�
.1� t/E

;

where E is the number of edges of G .

Remark 2.19 Confn.G/ is an n!–fold cover of UConfn.G/. It follows from this that
the above formula can be easily used to compute the Euler characteristic of UConfn.G/

as well.

Definition 2.20 Let G be a graph which has at least one essential vertex, and let E
denote the set of essential vertices of G . Then an essential edge of G is a connected
component of G � E .

Corollary 2.21 Let G be a graph with at least one essential vertex and let E denote
the number of essential edges of G . Then the function

n 7! �.UConfn.G//

is a polynomial of degree E � 1.
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Proof We first note that smoothing the degree 2 vertices of G does not impact the
spaces UConfn.G/. We may therefore assume without loss of generality that G does
not have any such vertices. In this case, the Euler characteristic �.UConfn.G// is the
coefficient of tn in the power series expansion ofQ

v essential
�
1C .1��.v//t

�
.1� t/E

:

A straightforward enumerative combinatorics argument implies that the nth coefficient
of the power series expansion of this expression is given by a polynomial of degree
exactly E � 1 for n sufficiently large. It remains to show that this agreement begins
at nD 0.

Assume that G has NG essential vertices. It is a standard fact from enumerative
combinatorics that the coefficients of the power series expansion of a rational function
of the form f .t/=.1� t/l will agree with a polynomial for all n so long as deg.f / < l .
This is the case in our specific instance, so long as NG > 1.

Theorem 2.18 was largely the inspiration for this work. It suggests that asymptotically
the Betti numbers of Hi.BnG/ are polynomial. In this work we will prove this
suggestion in the case where G is a tree. We will also provide a setup in the case
where G is a general graph, which hopefully will be able to illustrate this behavior in
that case as well.

2.3 The discrete Morse theory of UConfn.G /

In this section we will outline the discrete Morse structure on UConfn.G/ developed in
the work of Farley and Sabalka [8]. We begin by fixing n, and assuming the graph G

is sufficiently subdivided for Theorem 2.9 to hold for UConfn.G/.

Fix a spanning tree T for G , as well as an embedding of T into the plane. We will
label the vertices of T by applying a depth-first search. Concretely, begin by choosing
a boundary vertex v0 to be the root of T , and label it with the number 0. Continue
down the boundary edge adjacent to v0 , labeling any vertices encountered along the
way with increasing labels. If at any point an essential vertex is encountered, then
travel down the leftmost — relative to the current direction of travel — edge whose
vertices have not been labeled. If a boundary vertex is encountered, then one returns
to the most recently passed essential vertex. An example of a correctly labeled tree is
given in Figure 1.
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Figure 1: A tree which is properly labeled. Note that this tree is also suffi-
ciently subdivided to apply Theorem 2.9 with nD 3 .

For the remainder of this section, G and T will be as in the previous paragraphs. As
before we will write K to denote the set of cells of UConfn.G/, while Ki will denote
the set of i –cells of UConfn.G/.

Definition 2.22 Given an edge e of G , we write �.e/ to denote its largest — with
respect to the given labeling — vertex, and �.e/ to denote its smallest vertex. If v is
a vertex of G which is not v0 , then we write e.v/ to denote the unique edge of T

for which �.e.v// D v . We note that e.v/ will be the first edge on the unique path
within T from v to v0 .

Let c D fvj1
; : : : ; vjn�i

; er1
; : : : ; eri

g be an i –cell of UDn.G/. If

�.e.vjl
//\fvj1

; : : : ; vjn�i
; �.er1

/; �.er1
/; : : : ; �.eri

/; �.eri
/g ¤∅

for some 1� l � n� i , then we say that vjl
is blocked in c . Note that by convention

v0 is always blocked.

We define a partial function Vi W Ki!KiC1 inductively in the following way. Given an
i –cell c D fvj1

; : : : ; vjn�i
; er1

; : : : ; eri
g, assume without loss of generality that vj1

is
an unblocked vertex of c which is smallest with respect to the labeling of T . Assuming
that c is not in the image of Vi�1 , we set

Vi.fvj1
; : : : ; vjn�i

; er1
; : : : ; eri

g/ WD fvj2
; : : : ; vjn�i

; er1
; : : : ; eri

; e.vj1
/g:

If c does not have any unblocked vertices, or if c is in the image of Vi�1 , then Vi.c/

is undefined.

Theorem 2.23 [8, Sections 3.1–3.2] The collection of partial functions Vi W Ki !

KiC1 forms a discrete gradient vector field on UDn.G/.
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Figure 2: The critical 1–cell fv0; v5; e4;7g , the collapsible 1–cell fv0; v1; e9;10g

and the redundant 1–cell fv1; v5; e4;7g

While the spaces UConfn.G/ can be high-dimensional, we can still visualize their
cells. Indeed, it is often useful to think of the cells of UConfn.G/ as being subsets of
edges and vertices of the graph G itself. In Figure 2 we see examples of a critical, a
collapsible, and a redundant 1–cell of V , where G is taken to be the tree in Figure 1
and nD 3. In these examples, the cell fv0; v1; e9;10g is collapsible, as

fv0; v1; e9;10g D V0.fv0; v1; v10g/;

and v10 is the smallest unblocked vertex. The cell fv1; v5; e4;7g is redundant, as v1 is
not blocked, and it is not in the image of V0 . Indeed, the only cell that could possibly
map to it would be fv1; v5; v7g. However, in this case v1 is the smallest unblocked
vertex. Finally, the cell fv0; v5; e4;7g is critical, as its vertices are all blocked, and it is
not collapsible.

From these examples, one can imagine there existing a way to classify all cells of the
three types. To write down such a classification, we first need a bit of nomenclature.

Definition 2.24 Let c D fvj1
; : : : ; vjn�i

; er1
; : : : ; eri

g be an i –cell of UDn.G/. We
say that an edge e 2 c is order-respecting in c if e is in T and, for all v 2 c such that
�.e.v//D �.e/, the label of v in T is larger than the label of �.e/.

Remark 2.25 Edges e 2G �T — which we call deleted edges — are, by definition,
never order-respecting.

Theorem 2.26 (the classification theorem [8, Theorem 3.6]) Let c be a cell of
UDn.G/ and let T be a choice of spanning tree of G equipped with a planar embed-
ding. Then:

(1) c is critical if and only if it contains no order-respecting edges and all of its
vertices are blocked.
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(2) c is redundant if and only if

(a) it contains no order-respecting edges and at least one of its vertices is un-
blocked, or

(b) it contains an order-respecting edge (and thus a minimal order-respecting
edge e ) and there is some unblocked vertex v such that the label of v in T

is less than that of �.e/.

(3) c is collapsible if and only if it contains an order-respecting edge (and thus a
minimal order-respecting edge e ) and any vertex v such that the label of v in T

is less than that of �.e/ is blocked.

It is not hard to check that the previous examples satisfy the conditions of the classifi-
cation theorem.

One useful fact about the discrete gradient vector field V is that its critical cells are, in
some sense, the most restrictive of the three possible types. Indeed, we may expand
upon the classification of critical cells in the following way:

Lemma 2.27 Let c D fvj1
; : : : ; vjn�i

; er1
; : : : ; eri

g be a critical i –cell of V .

(1) For each k in f1; : : : ; ig, either erk
is a deleted edge or �.erk

/ is an essential
vertex of T .

(2) Let c0 be a critical i –cell with edges er1
; : : : ; eri

such that the number of its
vertices in each component of T � fxer1

; : : : ; xeri
g agrees with the number of

vertices of c in these same components. Then c D c0.

Proof For the first statement, let e be an edge of c which is not deleted. If �.e/D v0 ,
then it is clear that e is order-respecting. We note that �.e/ is not a boundary vertex in
any other case by how the labeling on T was defined. It therefore remains to show that
�.e/ does not have degree 2. Indeed, if this were the case, then for any vertex v of G ,
�.e.v//¤ �.e/. In particular, e must be order-preserving. This proves the first claim.

For the second claim, one uses the fact that the vertices of c must all be blocked.

Note that the observations made in the above lemma were originally pointed out by
Farley and Sabalka when they defined the vector field V [8, Section 3.3]. We collected
these observations in Lemma 2.27 so that they could be easily referred back to during
future sections. We will find that this lemma is critical in defining the polynomial ring
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structure on
L

n Hi.BnG/. In the next section, we will find that the deleted edges
of G can be chosen so that they remain unchanged as n increases and we repeatedly
subdivide the graph. The above lemma also suggests that those edges of critical cells
contained in the tree T are unchanging in n. While this is not literally the case, as all
edges of T are being subdivided as n increases, Lemma 2.27 tells us that the important
information encoded by such an edge is the essential vertex of its tail, as well as the
direction it is leaving this essential vertex. For this reason we will often be a bit loose
with our language and claim that two critical cells with different choices of n have the
“same” edges.

Definition 2.28 Let c be a critical cell of the discrete gradient vector field and let e2T

be an edge in c . The classification theorem implies that there must exist some vertex
v 2 c such that the label of v in T is smaller than that of �.e/, while �.e.v//D �.e/.
We refer to such a vertex as a witness for e in c . If v is the only witness for e in c ,
then we say v is necessary.

3 The proof of Theorem A

3.1 The setup

We use this section to fix the notation which will be used throughout the proofs of the
main theorems. Note that all of the constructions presented in the previous sections
were already well established in the literature prior to this work. To the knowledge of
the author, the main construction of the following sections — namely the action of SG

on the critical cells of UConfn.G/ — does not appear elsewhere in the literature.

As was the case in all previous sections, let G denote a graph, which is neither a circle
nor a line segment. We will reserve E to denote the number of essential edges of G ,
while NG will denote the number of essential vertices of G .

Next, we must construct our spanning tree T , as in Section 2.3. To do this, we first
subdivide every edge of G , which connects two essential vertices, once. Note that this
includes any loops of G . Once this is done, we choose a spanning tree T of G which
satisfies the following:

(3-1) Every edge of G not in T is adjacent to an essential vertex of G .

Note that it is not entirely obvious that such a T exists for an arbitrary graph G . This
fact was proven by Farley and Sabalka during the proof of [8, Theorem 4.4].
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Remark 3.1 It is noted by Farley and Sabalka that if one chooses T to satisfy (3-1),
then Lemma 2.27 and Corollary 2.4 imply Theorem 2.11.

Having chosen our spanning tree T to satisfy (3-1), we observe that for n� 2, we can
sufficiently subdivide G for Theorem 2.9 by subdividing T . This follows from the fact
that we began by subdividing all edges of G which connected essential vertices. We
will often not differentiate between the spanning trees chosen for each n for this very
reason.

3.2 The modules Mi;�

Recall from Section 2.1 the Morse complex

� � � !Mi! � � � !M1!M0! 0;

where Mi is the free Z–module with basis indexed by critical cells. In our case, we
write Mi;n to denote the free Z–module with basis indexed by the critical cells of the
Farley–Sabalka discrete gradient vector field of UDn.G/.

Let e1; : : : ; eE denote the essential edges of the graph G . Then we set

SG WD ZŒxe1
; : : : ;xeE

�:

Our goal for the remainder of this section will be to argue, for each i , that Mi;� has
the structure of a finitely generated graded SG –module.

Definition 3.2 Fix i and n, and let e denote an essential edge of G . Given a critical
i –cell

c D fvj1
; : : : ; vjn�i

; er1
; : : : ; eri

g

of UDn.G/, we define xe �c to be the unique critical i –cell of UDn.G/ obtained from c

by adding a vertex to the connected component of T � fxer1
; : : : ; xeri

g containing e.
More precisely, xe �c is obtained from c by adding the smallest vertex on the connected
component containing e. This is well defined by Lemma 2.27, as well as the choice of
the tree T , as T will contain a unique representative of each essential edge of G by
construction. This turns the collection fMi;ngn into a graded SG –module, which we
denote by Mi;� .

One can visualize the action of SG described in the above definition in the following
way. The labeling on T induces a natural flow on T . Namely, all edges flow towards

Algebraic & Geometric Topology, Volume 18 (2018)



2324 Eric Ramos

0 1
2

3

4

5

6

7 8

9

10

0 1 2
3

4

5

6

7

8

9

10 11 12

13

14

15

Figure 3: An illustration of multiplication by xe , where e is the essential
edge containing the boundary vertex v6 of the tree G of Figure 1.

the root of T . Let c D fvj1
; : : : ; vjn�i

; er1
; : : : ; eri

g be a critical cell. We imagine the
vertices vj as being particles drifting in the direction of the flow, while the edges ej ,
along with their endpoints, are stationary blockades. For any essential edge e, the
action of xe on c involves placing a new particle somewhere on e, and allowing it to
flow until it too is blocked.

We provide an illustration of the action of SG in Figure 3.

Lemma 3.3 For each i , the module Mi;� is finitely generated over SG .

Proof We claim that every critical cell in Mi;n , with n> 2i , can be obtained from a
critical cell in Mi;n�1 . Indeed, if c is a critical cell in Mi;n , then at least one vertex
is not a necessary witness of some edge in e . Remove the vertex, among those which
are not necessary witness vertices, which occupies the maximal position with respect
to the labeling on T . Removing this vertex leaves us with a critical cell c0 in Mi;n�1 ,
as this removal cannot create unblocked vertices nor order-respecting edges. It follows
that c is the image of c0 under the action of the appropriate essential edge.

Because Mi;n has a finite basis for each n, it follows that Mi;� is finitely generated.

Remark 3.4 It follows from the above lemma that the number of critical i –cells
grows, as a function of n, like a polynomial of degree � E � 1. Indeed, if V� is a
graded module over a polynomial ring in d variables, then the function n 7! rankZ Vn

will always grow like a polynomial of degree � d . In fact, if i <NG , we claim that
this polynomial must have degree strictly less than E�1. First, we note that the action
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of SG on a critical cell c does not affect the edges of c . Because of this it follows that
Mi;� can be expressed as a direct sum of graded SG –modules, where each summand
corresponds to a choice of edges in our critical i –cell. For any fixed critical i –cell c ,
one observes that two variables xe and xe0 will act identically whenever e and e0 are
on the same connected component of G with the edges of c removed. It follows that
the summand of Mi;� containing this cell has Hilbert polynomial of degree strictly
less than E whenever i <NG . The Hilbert polynomial of the whole of Mi;� is a sum
of such polynomials, and therefore also has degree strictly less than E . This will be
used in the final section of the paper.

Lemma 3.3, and Theorem 2.6 now imply some asymptotic data about the homology
groups Hi.BnG/.

Theorem 3.5 Let G be a graph with E essential edges. Then for all i � 0, there
exists a polynomial Pi 2QŒt � of degree �E � 1 such that, for all n� i ,

dimQ.Hi.BnGIQ//� Pi.n/:

If i <NG , then this polynomial has degree <E � 1.

3.3 The case of trees

In this section, we begin to explore the specific case where G is a tree. The work of
Farley [7] will allow us to conclude quite a bit more than we are able to in the general
case. To begin with, we state a refined version of Theorem 2.16.

Theorem 3.6 [7] Let G be a tree. Then for each n the Morse complex Mi;n has
trivial differential. In particular,

Hi ŠMi;�

as SG –modules, where Hi is the module of Theorem C.

To state our main stability theorem, we begin with the following definition:

Definition 3.7 Let G be a tree. Then we define the quantity

�i
G WD max

ffvj1 ;:::;vji gjvjk essentialg

˚
dimQ.H0.G �fvj1

; : : : ; vji
gIQ//

	
:

For example, �1
G

is the maximum degree of G , while �NG

G
is E , the number of

essential edges. By convention, �0
G
D 1 while �i

G
D 0 for i >NG .
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Theorem 3.8 Let G be a tree, and fix i � 0. Then the Betti number bi.n/ WD

dimQ
�
Hi.Bn.G/IQ/

�
is equal to a polynomial of degree �i

G
� 1 for n� i .

Proof Theorem 3.6 and the work of the previous sections imply that bi.n/ is eventually
a polynomial; it remains only to show that this polynomial has the claimed degree.

We begin by partitioning the basis vectors of Mi;n according to the collection of
edges which appear. The action of SG does not impact the edges, and so each of
these partitions will correspond to a summand of Mi;n . Moreover, considering any
one of these summands, we observe that the variables induce at most �i

G
distinct

operators on Mi;n . It follows that the degree of the Hilbert polynomial of Mi;� is
at most �i

G
� 1. To finish the proof, we will show that Mi;� has a summand whose

Hilbert polynomial has degree �i
G
� 1.

Fix the i essential vertices of G whose absence realizes the maximum in Definition 3.7.
For each essential vertex in this fixed list, let e be an edge adjacent to it in the second
leftmost direction, relative to the direction of the root. Note that any critical cell
containing these edges has a unique essential edge which can house a witness vertex.
There is therefore a critical i –cell in Mi;2i constructed by choosing each of these
edges, along with the unique witness vertex for each. Denote this cell by c . The
submodule generated by c is a summand of Mi;� . We claim that this submodule is
our desired summand.

Any i –cell of Mi;n which shares the same edges of c — ie those basis vectors in the
nth graded piece of SG � c — is entirely determined by distributing n� 2i vertices to
one of �i

G
components. Thus,

rankZ..SG � c/n/D

�
n� 2i C�i

G
� 1

�i
G
� 1

�
;

as desired.

The only piece of Theorem A which remains to be proven is in showing that bi.n/

agrees with a polynomial for all n � 0. To accomplish this, we must first prove
Theorem D. As a first simplification, we note that our answer is unaffected by changing
basis to Q, and may therefore assume we are working over a rational polynomial ring.
This grants us access to many classical approaches to solving the problem. We will
also make heavy use of the direct sum decomposition of Mi;� described in the proof
of Theorem 3.8.
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Definition 3.9 Let G be a tree. The notation

xv WD .vj1
; : : : ; vji

/

will always refer to an i –tuple of essential vertices of G , appearing in the order induced
by the labeling on G . We write �.xv/ to denote the number of connected components of
G�fvj1

; : : : ; vji
g. Given xv , let Nl WD .l1; : : : ; li/ denote an i –tuple of positive integers

such that
1� lk � �.vjk

/� 2 for all k:

We will also set
j Nl j WD

X
k

lk :

Given a pair .xv; Nl/, we associate to it the summand of Mi;�˝ZQ generated in degree 2i

by critical cells c satisfying the following two properties:

(1) If e 2 c is an edge, then �.e/D vjk
for some k .

(2) if e 2 c has �.e/D vjk
, then there are precisely lk essential edges which can

house witness vertices of e .

Note that these two pieces of data uniquely determine the edges which are allowed to
appear in cells which form the bases for the graded pieces of the summand. Denote
this summand by N .xv;Nl/ .

We observe that two variables xe1
and xe2

of SG act identically on N .xv;Nl/ if and only
if e1 and e2 are contained in the same connected component of G � fvj1

; : : : ; vji
g.

Let S .xv;
Nl/ denote the quotient of SG ˝Z Q by xe2

� xe2
. In particular, S .xv;

Nl/ is
isomorphic to a rational polynomial ring in �.xv/ variables, and N .xv;Nl/ is a finitely
generated graded module over S .xv;

Nl/ .

Remark 3.10 If i D 0, then xv and Nl are empty tuples with �.xv/ D 1. If i > NG ,
then, by convention, N .xv;Nl/ D 0.

Our next goal will be to show that the Hilbert function

n 7! dimQ.N
.xv;Nl//

agrees with a polynomial for all n. Note that we already know that this Hilbert function
is a polynomial for n sufficiently large, and must only show that this agreement is
the case for all n. This will imply the same about the Hilbert function for Mi;� . We
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accomplish this through the computations in the next section, although we spend time
now to set some ground work in this direction. Following this, we will explicitly
compute this Hilbert polynomial. We begin with the following:

Proposition 3.11 The module N .xv;Nl/.i/ is isomorphic to a squarefree monomial ideal
of S .xv;

Nl/ , where for a graded module V over a polynomial ring, V .i/ denotes the
graded module with V .i/n D VnCi .

Proof We recall that a monomial ideal is called squarefree if it is generated by
monomials, none of which are divisible by a square.

By definition, N .xv;Nl/.i/i D N
.xv;Nl/
2i

is spanned by critical cells containing the edges
e1; : : : ; ei determined by the pair .xv; Nl/ (see Definition 3.9), along with a single witness
vertex for each. To define a map �W N .xv;Nl/.i/! S .xv;

Nl/ , it suffices to specify where
each of these cells is mapped. We set, for any such cell c ,

(3-2) �.c/D
Y
e

xe;

where the product is over essential edges containing a witness vertex of c . Note that it
is impossible for a single essential edge to house a witness vertex for multiple edges,
and so the above monomial is indeed squarefree. Extending this map through the action
of S .xv;

Nl/ defines our desired isomorphism.

Squarefree monomial ideals are some of the most well-understood objects in commuta-
tive algebra. They are also the subject of the so-called Stanley–Reisner theory (see [19]
for a comprehensive reference on the subject).

3.4 Computing the Hilbert polynomial

We note that for i D 1, the polynomial describing the Betti number b1.n/ has been
explicitly computed in terms of invariants of the tree G . Indeed, this follows from
the structure theorem of Ko and Park [15, Theorem 3.6], and also from the work of
Farley and Sabalka [8]. The Hilbert polynomial has also been computed for all i in
the case where G is a tree with maximal degree 3 by Farley [7]. Aside from these
cases, no explicit description of the polynomial is known. That being said, the work in
this paper implies that computing this polynomial is no more difficult than computing
the Hilbert polynomials of some squarefree monomial ideals. In other words, for any
tree G , the work of this paper reduces the task of computing Hi.BnG/ for all n to a
finite computation. We will proceed with this computation in this section.
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Remark 3.12 Proposition 3.11 reveals that the monomial ideals which appear as
graded shifts of summands of Hi are quite simple. Because of this, we will find that
the computation of the Hilbert polynomial of Hi falls more in the realm of enumerative
combinatorics than Stanley–Reisner theory. It is likely that studying the cases of more
general graphs will require more robust commutative algebra, and we therefore proceed
with the case that G is a tree using that language. Our hope is that once the case of
general graphs is completed, this will aid in creating a uniform means of approaching
asymptotic behaviors in the configuration spaces of graphs.

In this section we will use the decomposition of Proposition 3.11 to compute the
Hilbert polynomial of Mi;� . Proposition 3.11 implies that N .xv;Nl/.i/ is isomorphic to
a squarefree monomial ideal of S .xv;

Nl/ . To ease computations, we reorder the variables
of S .xv;

Nl/ to satisfy the following. Begin by labeling the essential edges adjacent to vj1

which house witness vertices by x1 through xl1
, chosen in the order induced by our

ordering of the vertices of G . Next, label the essential edges housing a witness vertex
adjacent to vj2

with the variables xl1C1 to xl1Cl2
, using the same rule. Continue in

this fashion until j Nl j essential edges have been labeled. We then use the remaining
variables to label the final �.xv/� jNl j essential edges, chosen in any order. Our first
observation is the following:

Lemma 3.13 There is an isomorphism of S .xv;
Nl/–modules

N .xv;Nl/.i/Š .x1; : : : ;xl1
/˝Q .xl1C1; : : : ;xl1Cl2

/˝Q � � �˝Q .xPi�1
jD1 ljC1

; : : : ;x
j Nlj
/

˝Q QŒx
j NljC1

; : : : ;x�.xv/�;

where the tuple .x1; : : : ;xl1
/ is considered as a module over the ring QŒx1; : : : ;xl1

�,
.xl1C1; : : : ;xl1Cl2

/ a module over the ring QŒxl1C1; : : : ;xl1Cl2
�, and so on.

Proof This follows immediately from the isomorphism (3-2).

Definition 3.14 The Hilbert series associated to the module N .xv;Nl/ is the formal
power series

H
.xv;Nl/

.t/ WD
X
n�0

.dimQ N .xv;Nl/
n /tn:

Our next goal will be to express H
.xv;Nl/

.t/ as a rational function in t . From here,
standard enumerative combinatorics will allow us to compute the Hilbert polynomial.
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Proposition 3.15 The Hilbert series H
.xv;Nl/

.t/ can be expressed as the rational function

H
.xv;Nl/

.t/D
t i
Q

j .1� .1� t/lj /

.1� t/�.xv/
:

Proof We will prove this using the fact that the Hilbert series is multiplicative over
tensor products. It is easy to see that the Hilbert series for the augmentation ideal of a
rational polynomial ring in d variables is equal to the rational function

1

.1� t/d
� 1D

1� .1� t/d

.1� t/d
:

Lemma 3.13 therefore implies

H
.xv;Nl/

.t/D t i

�Y
j

1� .1� t/lj

.1� t/lj

��
1

.1� t/�.xv/�j
Nlj

�
D

t i
Q

j .1� .1� t/lj /

.1� t/�.xv/
;

where the factor t i arises from the graded shift of N .xv;Nl/ .

This will allow us to prove our result on the obstruction to the Hilbert polynomial
of Mi;� .

Corollary 3.16 Let G be a tree and fix i � 0. Then the dimension of Mi;n˝Z Q

agrees with a polynomial for all n� 0.

Proof It suffices to prove the claim for the summands N .xv;Nl/ . Proposition 3.15 tells
us that the Hilbert series of N .xv;Nl/ takes the form

t i
Q

j .1� .1� t/lj /

.1� t/�.xv/
:

The proof of Corollary 2.21 implies that it suffices to show the total degree of the
numerator t i

Q
j .1� .1� t/lj / is strictly smaller than �.xv/. Namely, we must argue

i CjNl j< �.xv/:

This follows from the fact that each essential vertex of xv , say vjk
, is adjacent to at

least one essential edge which can never house a witness vertex, namely, the essential
edge which is maximal among all essential edges adjacent to vjk

with respect to the
ordering of the vertices of G . Moreover, the essential edge containing the root can
never house a witness vertex for any essential vertex.
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Put another way,

i CjNl j � i C
X

k

.�.vjk
/� 2/D i C�.xv/� i � 1D �.xv/� 1:

This concludes the proof.

We have now proven enough to explicitly compute the Hilbert polynomial of Mi;� ,
and consequently Hi.BnG/. The following theorem follows from the results of this
section, as well as the combinatorics of generating functions.

Theorem 3.17 Let G be a tree, fix i; r � 0 and, for any pair .xv; Nl/, write

a
.xv;Nl/
i;r WD

X
d1C���CdiDr

dj�1

.�1/rCi

�
l1

d1

�
� � �

�
li

di

�
:

Also let P xvi .n/ be the polynomial

P xvi .n/D

�
�.xv/� 1C n� i

�.xv/� 1

�
:

Then for all n� 0, the dimension of Hi.Bn;Q/ is equal to the polynomial

(3-3)
X
.xv;Nl/

j NljX
rDi

a
.xv;Nl/
i;r P xvi .n� r/:

Proof It suffices to understand the polynomials which describe the coefficients of the
rational functions

t i
Q

j .1� .1� t/lj /

.1� t/�.xv/
:

This is a simple exercise in the combinatorics of generating functions.

Remark 3.18 From the above formulation, the polynomial P xvi .n/ as well as the
constants a

.xv;Nl/
i;r only depend on the degree sequence of the graph G . It follows that

the homologies of the braid group of a tree only depend on its degree sequence, as we
recorded in Corollary B

Specializing Theorem 3.17 to the case wherein i D 1 yields a much simpler form.
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Corollary 3.19 Let G be a tree. Then for all n� 0, the dimension of H1.BnG;Q/

agrees with the polynomial

X
v essential

�.v/�2X
lD1

�
�.v/� 2C n

�.v/� 1

�
�

�
�.v/� 2C n� l

�.v/� 1� l

�
:

Proof In this case we note that for an essential vertex v and a chosen integer 0� l �

�.v/� 2, we have

a
v;l
1;r
D .�1/rC1

�
l

r

�
:

Therefore, the polynomial (3-3) can be written as

X
v essential

�.v/�2X
lD1

lX
rD1

.�1/rC1

�
l

r

��
�.v/� 2C n� r

�.v/� 1

�
:

Using the principle of inclusion–exclusion, it can be seen that

lX
rD1

.�1/rC1

�
l

r

��
�.v/� 2C n� r

�.v/� 1

�
D

�
�.v/� 2C n

�.v/� 1

�
�

�
�.v/� 2C n� l

�.v/� 1� l

�
;

as desired.

A result of this kind appears in the work of Farley and Sabalka, where they compute
the number of generators of the group BnG [8]. A formula for the case i D 1 is also
found in the results of Ko and Park [15].

Another simple case is that in which every essential vertex of G has degree 3. In this
case, Theorem 3.17 can be used to recover the following result of Farley [7]:

Corollary 3.20 Let G be a tree whose every essential vertex has degree 3. Then for
all n� 0, the dimension of Hi.BnGIQ/ agrees with the polynomial�

NG

i

��
n

2i

�
:

Proof The major thing to note in this case is that for any xv , the only associated
vector Nl is .1; : : : ; 1/. Therefore,

a
.xv;Nl/
i;r D

�
1 if r D i ;

0 otherwise.
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The formula (3-3) now becomes�
NG

i

�
P xvi .n� i/D

�
NG

i

��
�.xv/� 1C n� 2i

�.xv/� 1

�
D

�
NG

i

��
2i C 1� 1C n� 2i

2i

�
D

�
NG

i

��
n

2i

�
:

This completes the proof.

4 Concluding remarks

In this section we consider what this work implies for the homology of graph braid
groups when G is a general graph rather than a tree.

Let G be a graph with NG essential vertices and E essential edges. Also assume
that G is homeomorphic to neither S1 nor a line segment. Then the work of Section 3.2
implies that Mi;� carries the structure of a finitely generated SG –module. If G is
not a tree, however, it is no longer the case that the Morse differential is trivial. We
therefore pose the following question:

Question 1 Does the action of SG on Mi;� commute with the Morse differential? In
other words, is the Morse differential a morphism of graded SG –modules?

We note that altering our choice of spanning tree T has a nontrivial influence on the
Morse differential. It is therefore unclear whether the Morse differential will commute
with the action of SG for all choices of T . We therefore refine Question 1 as follows:

Question 2 Does there exist a choice of spanning tree T of G such that the action of
SG on Mi;� commutes with the Morse differential?

If the answer to these questions is affirmative, then we can immediately conclude many
things about the asymptotic behavior of these homology groups. Indeed, in this case,
the Hilbert basis theorem would imply that there is a finitely generated SG –module Hi

such that .Hi/n ŠHi.BnG/.

Corollary 4.1 Assume that Questions 1 and 2 have an affirmative answer. For each i

and n, write

Hi.BnG/Š Zbi .n/˚

M
p prime

M
j�1

.Z=pj Z/mp;i;j .n/:

Then:
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(1) There exists a polynomial Pi.t/2QŒt � of degree �E�1 such that Pi.n/Dbi.n/

for all n� 0.

(2) There exists a positive integer ei , independent of n, such that the exponent of
Hi.BnG/ is at most ei .

(3) For each prime p and positive integer j , there is a polynomial Pi;pj .t/ 2QŒt �

such that Pi;pj .n/Dmp;i;j .n/ for n� 0. In particular, there is a finite set of
primes pi;1; : : : ;pi;l and polynomials mi;pj .n/ such that the order of the torsion
subgroup of Hi.BnG/ is precisely pmpi;1

.n/
1

� � �pmpi;l
.n/

l
.

Proof This follows from standard facts in the study of graded modules over integral
polynomial rings.

The work of Ko and Park [15, Theorem 3.6] shows that H1.BnG/ has a torsion subgroup
annihilated by 2, and that the multiplicity of this torsion is eventually constant in n.
Their work also implies that the rank of H1.BnG/ will be constant whenever G is
sufficiently connected. In contrast to this, affirmative answers to Questions 1 and 2
would imply that the top homology of BnG always grows as fast as possible.

Theorem 4.2 Assume that Questions 1 and 2 have an affirmative answer. Then the
Hilbert function

n 7! dimQ.HNG
.BnGIQ//

is equal to a polynomial of degree E � 1 for n� 0.

Proof Corollary 2.21 implies that the Euler characteristic of UConfn.G/ is a poly-
nomial of degree E � 1. On the other hand, Remark 3.4 implies the lower homology
groups have Hilbert functions which grow strictly slower than this. It follows that the
rank of HNG

.BnG/ must eventually grow like a polynomial of degree E � 1.

Note that Theorem 2.6 implies that HNG
.BnG/ is torsionfree. We have therefore seen

that H1.BnG/ can only have 2–torsion, while the top homology HNG
.BnG/ does

not have any torsion. It is an interesting question to ask what other types of torsion can
appear in the intermediate homologies.

While an affirmative answer to Questions 1 and 2 would be a step in the right direction,
the work of Ko and Park [15] would suggest that the action of SG on Mi;� described
in Section 3.2 is perhaps nonoptimal. We have already discussed that the result [15,
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Theorem 3.6] implies that the braid groups of biconnected graphs have eventually
constant first homologies. However, the action of SG defined in Section 3.2 only
detects the connectivity of a chosen spanning tree of G . In particular, is it possible that
one can improve on this action by accounting for connectivity granted by the deleted
edges?

Question 3 Let G be a graph which is neither a circle nor a line segment. Does there
exist an action of SG on Mi;� which interacts in a nontrivial way with the deleted
edges of G? More specifically, can one define this action so that if c is a critical
i –cell, then there is a Z–linear relation between xe1

� c and xe2
� c whenever the two

essential edges e1 and e2 are in the same connected component of G with the edges
of c removed?

The existence of such an action would actually suggest something quite strong about
what kind of invariants of G are encoded by the homology of its braid groups. If G is a
graph, recall that we define �i

G
to be the maximum number of connected components

G can be broken into by removing exactly i vertices.

Conjecture 4.3 Let G be a graph which is neither a line segment nor a circle. Then
for all i and all n� i , the Betti number

bi.n/ WD dimQ.Hi.BnGIQ//

agrees with a polynomial of degree ��i
G
� 1.

Note that Theorem 4.2 is a specific case of this conjecture. Also note, if G is bicon-
nected, then the above implies that b1.n/ is eventually constant. This fact is proven in
the work of Ko and Park [15, Theorem 3.6]. The above conjecture therefore proposes
a generalization of one aspect of that work.

Finally, we think about the ramifications of this work on the spaces UConfn.G/. The
action of SG on Mi;� is defined in a purely formal way. However, in the study of
more classical configuration spaces, stability phenomena often arise from maps on the
underlying spaces UConfn.G/!UConfnC1.G/ (see for instance [6; 18]). Is that also
the case here?

Question 4 If G is a tree, is the action of SG on Mi;� induced by a map of topological
spaces UConfn.G/! UConfnC1.G/? If G is a general graph, and Questions 1 and 2
have affirmative answers, is the action of SG on the homologies of BnG induced in a
similar way?
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Of course, Question 4 is highly relevant for Questions 1 and 2. If one understands the
action of SG topologically, then it might make the existence of such an action on the
homologies of general graph braid groups more apparent.

Remark 4.4 Very recent work of An, Drummond-Cole and Knudsen [2] drastically
extends the scope of the current work. In doing so, they provide affirmative answers to
most of the questions of this section. It is unclear, however, whether their work directly
implies Conjecture 4.3. This remains an interesting open question.
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