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The eta-inverted sphere over the rationals

GLEN MATTHEW WILSON

We calculate the motivic stable homotopy groups of the two-complete sphere spec-
trum after inverting multiplication by the Hopf map � over fields of cohomological
dimension at most 2 with characteristic different from 2 (this includes the p–adic
fields Qp and the finite fields Fq of odd characteristic) and the field of rational
numbers; the ring structure is also determined.

14F42; 18G15, 55Q45, 55T15

1 Introduction

Guillou and Isaksen [7] laid the foundation for calculating ���.1^2/Œ�
�1�, the motivic

stable homotopy groups of the two-complete sphere spectrum after inverting multipli-
cation by �, over the complex numbers using the h1–inverted motivic Adams spectral
sequence. They conjectured a pattern of differentials in the h1–inverted motivic Adams
spectral sequence and identified the E1 page of the spectral sequence assuming
the conjecture. Shortly after Guillou and Isaksen’s paper appeared, Andrews and
Miller [2] proved Guillou and Isaksen’s conjecture. All together, these results show
���.1^2/Œ�

�1�Š F2Œ�
˙1; �; "�=."2/ [7, Conjecture 1.3]. Guillou and Isaksen [8] then

analyzed the h1–inverted motivic Adams spectral sequence over the real numbers and
gave a complete calculation of the ring ���.1^2/Œ�

�1� over the base field R.

The subject of this paper is the calculation of ���.1^2/Œ�
�1� over the field of rational

numbers Q and fields F with cd2.F /� 2 and characteristic different from 2, such as
the p–adic fields Qp and finite fields Fq of odd characteristic. We write �s;w.1^2/.F /
for the stable homotopy group SH.F /.†s;w1; 1^2/ and frequently abbreviate this to
�s;w.1^2/ if the base field F is clear from context.

We write M.F / for the motivic Adams spectral sequence at the prime 2 over the
field F at the motivic sphere spectrum. This spectral sequence has E2 page given by
M.F /

f;s;w
2

D Extf;sCf;wA��.F /
.H��.F /;H��.F // and conditionally converges:

M.F /f;s;w H) �s;w.1
^
H /.F /;
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where 1^
H

is the H–nilpotent completion of the sphere spectrum defined by Bousfield [4,
Section 5]. Hu, Kriz and Ormsby [9, Theorem 1] proved that 1^

H
is weakly equivalent

to 1^2 over a field F of characteristic 0 with cd2

�
F
�p
�1
��
<1. Wilson and Østvær

[20, Proposition 5.10] note that the same argument works over fields over positive
characteristic under the assumption that cd2

�
F
�p
�1
��
<1.

Given the conditionally convergent spectral sequence M.F /) ���.1^2/.F / and the
fact that � 2 �1;1.1^2/.F / is detected by h1 2M.F /1;1;1, one can try to calculate
���.1^2/.F /Œ�

�1� using the h1–inverted spectral sequence, defined as the following
colimit of spectral sequences:

M.F /Œh�1
1 �D colim.M.F /

h1�
��!M.F /

h1�
��!M.F / � � � /:

It is not obvious that M.F /Œh�1
1
� converges to ���.1^2/.F /Œ�

�1�. Guillou and Isaksen
show that it does converge for the complex numbers C in [7, Section 6] and the real
numbers R in [8, Section 5]. We address convergence for more general fields in
Section 2.

The Milnor–Witt t–stem of 1^2 over F is the group y…t .F /D
L

k2Z �kCt;k.1
^
2/.F /.

Note that y…0.F / is a ring and y…t .F / is a y…0.F /–module. Our main results will be
stated in terms of Milnor–Witt stems and the Witt group of quadratic forms W .F /. In
many cases, the two-complete �–inverted Milnor–Witt 0–stem can be can be described
in terms of the Witt ring of quadratic forms of the field.

Proposition 1 If F is a field for which the Witt group of quadratic forms W .F / is
finitely generated or W .F / has bounded 2–torsion exponent (if F DQ, for example),
then there is an isomorphism y…0.F /Œ�

�1�ŠW .F /^2 Œ�
˙1�.

Proof Morel [14] has shown there is an isomorphism �n;n.1/ Š W .F / for n � 1.
For n� 1 the homotopy group �n;n.1^2/ fits into the exact sequence

0! Ext.Z=21;W .F //! �n;n.1
^
2/! Hom.Z=21; �n�1;n.1//! 0

by [9, Equation (2)]. But as �n�1;n1 D 0 by Morel’s connectivity theorem [14,
Theorem 1.18], there is an isomorphism Ext.Z=21;W .F //! �n;n.1^2/.

If W .F / is finitely generated, there is an isomorphism Ext.Z=21;W .F //ŠW .F /^2
by a result of Bousfield and Kan [5, Chapter VI, Section 2.1], hence �n;n.1^2/ŠW .F /^2 .
If W .F / has bounded 2–torsion exponent, then 2nW .F /D 2mW .F / for all n and m

sufficiently large. The Mittag-Leffler condition is satisfied for the tower f2nW .F /g,
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hence lim
 ��

1
2nW .F /Š lim

 ��

1 Hom.Z=2n;W .F // vanishes. By the short exact sequence
of Weibel [19, Application 3.5.10],

0! lim
 ��

1 Hom.Z=2n;W .F //! Ext.Z=21;W .F //!W .F /^2 ! 0;

there is an isomorphism Ext.Z=21;W .F //ŠW .F /^2 , and so �n;n.1^2/ŠW .F /^2 .

Finally, there is an isomorphism y…0.F /Œ�
�1� Š W .F /^2 Œ�

˙1� since for any class
˛ 2 y…0.F / and n sufficiently large, the class �n˛ is an element of �k;k1ŠW .F /

with k � 1.

For finite fields Fq , the Milnor–Witt 0–stem is now determined by the calculation
of the Witt group of finite fields, a standard reference being Scharlau [17, Chapter 2,
Theorem 3.3]:

y…0.Fq/Œ�
�1�ŠW .Fq/

^
2 Œ�
˙1�D

�
Z=2 Œ�˙1;u�=u2 if q � 1 mod 4;

Z=4 Œ�˙1� if q � 3 mod 4:

We find in Theorem 9 that for a field F with cd2.F /� 2 and characteristic different
from 2, the two-complete �–inverted Milnor–Witt stems take the following form:

y…t .F /Œ�
�1�Š

�
W .F /^2 Œ�

˙1� if t � 0 and either t � 3 mod 4 or t � 0 mod 4;

0 otherwise.

This gives a complete calculation of y…�.Fq/Œ�
�1� for the finite fields Fq of odd

characteristic.

Theorem 19 calculates the ring y…�.Q/Œ��1�. In particular, the Milnor–Witt stems are

y…t .Q/Œ�
�1�Š

8̂̂̂<̂
ˆ̂:

W .Q/^2 Œ�
˙1� if t D 0;

W .Q/^2 Œ�
˙1�=2nC1 if t � 0; t � 3 mod 4; nD �2.t C 1/;

M if t � 0 mod 4; t � 4;

0 otherwise,

where �2.tC1/ is the 2–adic valuation of tC1 and M is the submodule of W .Q/^2 Œ�
˙1�

defined in Definition 18.

The method of proof for the calculations over Q of Theorem 19 follows the strategy
employed by Ormsby and Østvær [15] to calculate the homotopy groups of BP hni

over Q. First, for each completion Q� of Q one uses the �–Bockstein spectral
sequence to calculate Ext.Q�/Œh

�1
1
� and then the motivic Adams spectral sequence to

calculate ���.1^2/.Q�/Œ�
�1�. We next follow the motivic Hasse principle to identify

the differentials in the �–Bockstein spectral sequence and the motivic Adams spectral
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sequence over Q by comparing these spectral sequences with the associated spectral
sequences over the completions.

The result of Ormsby, Röndigs and Østvær [16, Proof of Theorem 1.5] shows that the
vanishing y…t .Q/Œ��1�D 0 when t � 1; 2 mod 4 occurs systematically for all formally
real fields F with cd2.F Œi �/ <1. Their calculation is used in this paper to show
that y…1.Q/Œ�

�1� vanishes, as it is unclear whether or not the motivic Adams spectral
sequence over Q converges strongly in Milnor–Witt stem 1.

Ananyevskiy, Levine and Panin [1] investigate the �–inverted sphere spectrum 1Œ��1�

over fields F of characteristic different from 2. They find that the stable homotopy
sheaf

L
n2Z �n;n1Œ��1� is isomorphic to the sheaf W Œ�˙1�, where W is the Nisnevich

sheaf associated to the presheaf of Witt groups (the Witt group W .X / of an algebraic
variety X is defined by Knebusch [12, Chapter I, Section 5]). The consequence of this
for calculating stable homotopy groups is thatM

n2Z

�n;n.1Œ�
�1�/.F /ŠW .F /Œ�˙1�

for all fields F of characteristic different from 2. In addition to this absolute statement
about the �–inverted Milnor–Witt 0–stem, they identify the rationalization of 1Œ��1�

with an object in the heart of the homotopy t–structure on SH.F / [1, Theorem 3.4]
and find that the sheaf �s;w.1Œ��1�Q/ takes the following form:

�s;w.1Œ�
�1�Q/D

�
WQ if s D w;

0 otherwise.

The calculations in this paper are about the �–inverted 2–complete sphere spectrum
1^2 Œ�

�1� in contrast to Ananyevskiy, Levine and Panin’s results about 1Œ��1� and
1Œ��1�Q .

We will follow the grading conventions for Ext.F /D ExtA��.F /.H��.F /;H��.F //
employed by Guillou and Isaksen [7, Section 2.1]. In particular, for a class x 2 Ext.F /
in Adams filtration f , stem s , and weight w , the Milnor–Witt stem of x is t D s�w

and the Chow weight of x is cD sCf �2w . We will write degrees as deg.x/D .f; t; c/
unless otherwise specified. We will frequently use the isomorphism Ext.C/Œh�1

1
�Š

F2Œh
˙1
1
; v4

1
; v2; v3; : : : � with deg.v4

1
/ D .4; 4; 4/ and deg.vn/ D .1; 2

n � 1; 1/ estab-
lished in [7, Theorem 3.4], and we adopt the convention of writing P for v4

1
.

Acknowledgements I would like to thank Dan Isaksen for teaching me how to use
Massey product shuffles, Elden Elmanto for the motivation to write up the convergence
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version of this work, Oliver Röndigs for helpful suggestions, and Paul Arne Østvær
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2 Convergence of the h1–inverted motivic Adams spectral
sequence

We refer the reader to Boardman’s notes on spectral sequences [3] for the terminology
concerning their convergence. The notion of a map of filtered groups compatible with
a map of spectral sequences is defined by Weibel in [19, page 126].

Consider a collection of cohomologically graded spectral sequences . iEr ;
idr / for

i 2N , where iEs
r D 0 for all s < 0 and all r , and each spectral sequence iE converges

strongly to an abelian group iG filtered by iFs . Here r indicates the page of the
spectral sequence and s indicates the internal degree. We will omit these subscripts
and superscripts where it is convenient. These assumptions on our spectral sequences
precisely mean the following conditions hold:

(1) The filtration is exhaustive with iF0 D
iG :

iG D iF0 �
iF1 �

iF2 � � � � :

(2) For all s 2 Z there are isomorphisms iEs
1 Š

iFs=
iFsC1 .

(3) The filtration is Hausdorff:
T

j
iFj D 0.

(4) The filtration is complete: lim
 ��j

iG= iFj Š
iG .

We assume the spectral sequences are Zk–graded in addition to the internal grading s .
In practice, k is either 1 or 2.

Let if W iE! iC1E be a directed system of maps of spectral sequences compatible with
igW iG! iC1G of degree a 2 Zk . The colimit of the directed system if W iE! iC1E

is again a spectral sequence zE D colim iE that converges weakly to zG D colim iG

filtered by zFj D colim iFj . Under what circumstances can we guarantee zE converges
strongly to zG ?
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The filtration zFj of zG may fail to be Hausdorff or complete. To see how the Hausdorff
condition may fail, consider iE D Z, iG D Z, and iFj D 0 for j � i and iFj D

iG

for j < i . If we define maps if D 0 and ig.1/D 1, then zE D 0, zG DZ, and zFj DZ

for all j � 0. The issue is that the class 1 2 iG is in filtration i , which shows 1 2 zG is
in filtration i for all natural numbers i .

Completeness can fail if each iG has a finite filtration but the colimit zG has an infinite
filtration. Consider iG DZ, iFj D 2j Z for j � i and iFj D 0 for j > i with the map
ig.1/D 1. Then zG D Z, yet zEs Š zFs= zFsC1 Š Z=2 for all s � 0, and lim

 ��s
zG= zFs is

isomorphic to the 2–adic integers Z2 .

Definition 2 Consider a directed system of Zk–graded spectral sequences if W iE!
iC1E of degree a, that is, for all i 2N and x 2 iE the degree of if .x/ is aCdeg.x/,
and if does not change the internal degree s . The directed system if has a horizontal
vanishing line of height N in the direction a if for any degree b there exists K 2N

for which the groups iEs;bCia vanish for all i >K and s >N .

The term horizontal vanishing line comes from the special case where for all i we
have iE DE and E D

L
s;pEs;p is a Z–graded spectral sequence in p with internal

degree s . If one makes a chart for iE where the vertical axis is the internal degree s

and the horizontal axis is p , a horizontal vanishing line of height N in the direction 1

says that Es;p vanishes when .s;p/ is above the horizontal line s D N and p is
sufficiently large.

Proposition 3 Suppose if W iE! iC1E is a directed system of Zk–graded spectral
sequences of degree a with a horizontal vanishing line of height N in the direction a.
The colimit spectral sequence zE then converges strongly to zG with respect to the
filtration zF .

Proof We first show the filtration zF of zG is complete. For b 2 Zk , the degree-b
component of zG is

zGb
D colim.0Gb

!
1GbCa

! � � � !
iGbCia

! � � � /:

The assumption that there is a horizontal vanishing line of height N in the direction a

implies for all i > K the filtration of iGbCia is finite. This is because the filtration
of iG is Hausdorff and iEs;bCia vanishes for s > N , so iFj is trivial for i > K
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and j >N . Since finite limits and directed colimits commute, it follows that

lim
 ��j

. zGb= zFb
j /Š lim

 ��j
.colim

i>K

iG= iFj /

Š colim
i>K

�
lim
 ��j

iG= iFj

�
Š colim

i>K

iGbCia

Š zGb:

We now show the filtration zFj of zG is Hausdorff. Let x 2 zGb be a nonzero element.
Lemma 4 shows there is some ix 2 iGbCia which maps to x 2 zGb for which ix

is detected by iy 2 iE
s;bCia
r and iCkC1y is nonzero for all k 2 N . Since if is

compatible with ig , it follows that iCkC1y detects iCkC1x D iCkg ı � � � ı ig. ix/ for
all k 2N . Furthermore, iCkx 2 iCkG is nonzero for all k 2N , and so iCky survives
to iCkE

s;bC.iCk/a
1 . Our assumption that the spectral sequences iE converge strongly

to iG means that
iCkE

s;bC.iCk/a
1 Š

iCkFs=
iCkFsC1:

Hence every class iCkx is in filtration s but not sC 1, so that x 2 zFs but x 62 zFsC1 .
It now follows that the filtration zF of zG is Hausdorff.

Lemma 4 Under the conditions of Proposition 3, consider a nonzero element x 2 zGb.
There exists some ix 2 iGbCia that maps to x 2 zGb for which ix is detected by
iy 2 iE

s;bCia
r and

iCkC1y D iCkf ı � � � ı if . iy/ 2 iCkC1Es;bC.iCkC1/a
r

is nonzero for all k 2N .

Proof There is some jx 2 jG which maps to x 2 zG . The classes

jCkx D jCk�1g ı � � � ı jg.jx/

are nonzero for all k � 1 and are therefore detected by some class jCky 2 jCkEsk ;�.
The vanishing line implies sk �N for k sufficiently large, and the compatibility of the
maps jf with jg implies sk is a nondecreasing function of k . Hence sk is eventually
constant, say for all kC j � i . Then ix has the desired property.

These results can be applied to inverting multiplication by h1 in the motivic Adams
spectral sequence at the prime 2 after reindexing the filtration. For a field F , write iEf
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for M.F /fCi . Here f is the internal degree of the spectral sequence (“f ” for
“filtration”). With this convention, the maps h1� W

iE ! iC1E form a directed sys-
tem of spectral sequences which is compatible with the maps �W iG! iC1G , where
ifj D FjCi.���.1^2//. The degree of multiplication by � is .s; w/D .1; 1/, where s

is the stem and w the weight. A horizontal vanishing line of height N in the direction
.1; 1/ is equivalent to the following condition: for any .s; w/ there exists k such that
for all i > k and f >N the group M.F /fCi;sCi;wCi vanishes. In the usual manner
of drawing a chart for M.F /, such as those made by Isaksen [10], the horizontal
vanishing line for the system iEf is transformed into a line of slope 1.

Such vanishing conditions occur over R in positive Milnor–Witt stems as proved by
Guillou and Isaksen [8, Lemma 5.1]. Over R it suffices to take N D 1, but one must
take larger values for other fields. For fields of cohomological dimension at most 2

and number fields, take N D 3 for the positive Milnor–Witt stems.

Corollary 5 The h1–inverted motivic Adams spectral sequence over fields of coho-
mological dimension at most 2 and the field of rational numbers Q converges strongly
to �s;w.1^2/Œ�

�1� when s�w > 1.

Proof Consider the directed system iEf DM.F /fCi with maps h1� W
iE! iC1E

as described above. With N D 3, the vanishing conditions required for Proposition 3
are satisfied for fields F of cohomological dimension at most 2. The �–Bockstein
spectral sequence for such a field has E1 page H��.F /˝F2Œ�� Ext.C/ and converges
off to Ext.F /. The E1 page of the �–Bockstein spectral sequence has the claimed
vanishing line in positive Milnor–Witt stem; hence Ext.F / does too.

An argument similar to the one given by Guillou and Isaksen in [8, Lemma 5.1]
establishes a vanishing line over Q in positive Milnor–Witt stems with N D 3. Their
choice of A works just as well over Q (A corresponds to k when s D 0 in the
notation above) because the �–inverted Hopf algebroid .H��.Q/Œ��1�;A��.Q/Œ��1�/

is isomorphic to the �–inverted Hopf algebroid over R. Their argument with the
�–Bockstein spectral sequence must only be modified to account for y being of the
form y D ˛ zy with zy 2 Ext.C/, and ˛ 2Hi;i.Q/ with i � 2 and ˛ not divisible by � .

The motivic Adams spectral sequence for fields F with cd2.F /� 2 and Q converges
conditionally to ���.1^2/ by [9, Theorem 1] of Hu, Kriz and Ormsby. The vanishing
line described above ensures that it also converges strongly in Milnor–Witt stem at
least 2, as in such degrees dr D0 for r sufficiently large. Hence we get the convergence
result of the h1–inverted Adams spectral sequences.
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3 Fields of cohomological dimension at most 2

Let F be a field of 2–cohomological dimension at most 2. The mod 2 Milnor K–theory
of such a field satisfies kM

n .F /D 0 for n� 3. We first calculate Ext.F /Œh�1
1
� using

the �–Bockstein spectral sequence and then observe that the structure of M.F /2 Š

Ext.F /Œh�1
1
� forces the h1–inverted motivic Adams spectral sequence to collapse at

the E2 page. See Figures 1 and 2 for a depiction of the �–Bockstein spectral sequence
E1 and E1 pages up to Milnor–Witt stem 24.

Proposition 6 For F a field with cd2.F /� 2, the E2 page of M.F /Œh�1
1
� is

Ext.F /Œh�1
1 �Š kM

� .F /˝Ext.C/Œh�1
1 �:

Proof If �1 is a square in F , it follows that Ext.F /ŠH��.F /˝F2Œ�� Ext.C/ by an
argument similar to [20, Proposition 7.1]. The class � is killed after inverting h1 , so
the result follows in this case.

If �1 is not a square in F , use the �–Bockstein spectral sequence. The E1 page of
the h1–inverted �–Bockstein spectral sequence is

E
�;�;�;�
1

Š ��kM
� .F /=�

�C1kM
� .F /˝Ext.C/Œh�1

1 �;

and the dr differential has degree .r; 1;�1; 0/ with respect to the grading .�;f; t; c/.

The differentials dr with r � 1 vanish on the generators P D v4
1

and vn for n � 2

of Ext.C/Œh�1
1
� for degree reasons. Any nonzero class x 2 Ext.C/Œh�1

1
� has t C c �

0 mod 4, but the degree of dr .x/ satisfies t C c � 3 mod 4. If F has cohomological
dimension at most 2, then any nonzero class in the h1–inverted �–Bockstein spectral
sequence satisfies t C c 6� 3 mod 4. Hence the h1–inverted �–Bockstein spectral
sequence collapses. There is no possibility for hidden extensions, so the proposition
follows.

Proposition 7 If xF is an algebraically closed field of characteristic different from 2,
the �–inverted motivic homotopy groups of spheres over xF are given by

���.1
^
2/.
xF /Œ��1�Š ���.1

^
2/.C/Œ�

�1�Š F2Œ�
˙1; �; "�=."2/;

where � 2 �9;5.1^2/ is the unique homotopy class detected by Ph1 and " 2 �8;5.1^2/
is the unique homotopy class detected by c0 .
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P 2v2
3

P 3v3

P 4v3

Figure 1: The E1 page of the h1–inverted �–Bockstein spectral sequence
over a field F with cd2.F /D 2 up to Milnor–Witt stem 24 . Solid vertical
lines indicate possible �–multiplications that depend on the field. Black dots
represent the group Z=2 Œh˙1

1
� , blue dots represent kM

1
.F /Œh˙1

1
� , and red

dots represent kM
2 .F /Œh˙1

1 � . Solid lines of slope 1
3

indicate multiplication
by v2 and arrows in this direction represent a tower of nonzero v2 multiples.
The horizontal axis t is the Milnor–Witt stem and the vertical axis c is the
Chow weight, while the Adams filtration is suppressed.

Proof If xF has characteristic zero, there is an isomorphism M. xF /ŠM.C/ by the
proof of [20, Lemma 6.4]. If xF has positive characteristic, the change of characteristic
argument [20, Corollary 6.1] comparing M. xF / to M.C/ via the motivic Adams
spectral sequence over the ring of Witt vectors of xF shows there is an isomorphism of
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1

v2
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Figure 2: The E1 page of the h1–inverted motivic Adams spectral sequence
over a field F with cd2.F /� 2 up to Milnor–Witt stem 24 . The notational
conventions of Figure 1 apply here.

spectral sequences M. xF /ŠM.C/. This isomorphism propagates to an isomorphism
after inverting multiplication by h1 . The now resolved conjecture of Guillou and
Isaksen in [7, Conjecture 1.3] gives the explicit description.

Proposition 8 The d2 differentials for the h1–inverted motivic Adams spectral se-
quence for a field F with characteristic different from 2 and cd2.F /� 2 follow from
d2.vn/D h2

1
v2

n�1
for n� 3 and d2.x/D 0 for x 2 kM

� .F / by using the Leibniz rule.
Furthermore, M.F /Œh�1

1
� collapses at the E3 page.
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Proof The inclusion of F into its algebraic closure xF induces a map of spectral
sequences

ˆW M.F /Œh�1
1 �!M. xF /Œh�1

1 �ŠM.C/Œh�1
1 �:

Andrews and Miller [2, Theorem 9.15] have proved that in M.C/Œh�1
1
� there are

differentials d2.vn/D h2
1
v2

n�1
for all n � 3. It follows that in M.F /Œh�1

1
� we must

have d2.vn/D h2
1
v2

n�1
up to some element in the kernel of the comparison map ˆ.

A class x 2 ker.ˆ/ satisfies t C c � 1 mod 4 or t C c � 2 mod 4, whereas d2.vn/

satisfies t C c � 0 mod 4. Hence d2.vn/ D h2
1
v2

n�1
is true on the nose. That the

spectral sequence collapses at the E3 page follows by degree reasons.

Theorem 9 For a field F with cd2.F / � 2 and characteristic different from 2, the
two-complete �–inverted Milnor–Witt stems of F are

y…t .F /Œ�
�1�Š

�
W .F /^2 Œ�

˙1� for t � 0 and either t � 3 mod 4 or t � 0 mod 4;

0 otherwise.

y…�.F /Œ�
�1� is the polynomial ring over W .F /^2 Œ�

˙1� on two classes fv2g and fPg in
Milnor–Witt stems 3 and 4 respectively, subject to the relation fv2g

2 D 0.

Proof y…0.F /Œ�
�1� is shown to be W .F /^2 Œ�

˙1� in Proposition 1. The remaining
stems and ring structure follow from the calculation of the h1–inverted motivic Adams
spectral sequence over F whose differentials are determined in Proposition 8.

We now identify some classes in ���.1^2/.Fq/ for finite fields Fq using the analysis of
the motivic Adams spectral sequence by Wilson and Østvær [20]. Over a finite field Fq

with q � 1 mod 4, define " 2 �8;5.1^2/Š .Z=2/
4 to be a class detected by c0 . The

class " is uniquely determined modulo u�". Write � for a class in �9;5.1^2/Š .Z=2/
4

detected by Ph1 . The class � is uniquely determined modulo u��.

Over a finite field Fq with q�3 mod 4, there is an isomorphism �8;5.1^2/ŠZ=4˚Z=4.
Recall there is a Hopf map � 2 �7;4.1^2/ defined by Dugger and Isaksen in [6]. The
class �� generates an order-four cyclic subgroup of �8;5.1^2/; define " 2 �8;5.1^2/
by the property that " generates �8;5.1^2/=.��/. The class " is detected by c0 and
well defined up to an odd multiple. Further, there is an isomorphism �9;5.1^2/ Š
Z=4˚ .Z=2/2 . Define � to be a class of order four that is detected by Ph1 ; the class
� is uniquely defined up to an odd multiple.
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Corollary 10 For a finite field Fq with q odd, the �–inverted Milnor–Witt stems are
as follows:

y…n.Fq/Œ�
�1�Š

�
W .Fq/

^
2 Œ�
˙1� if n� 0 and either n� 3 mod 4 or n� 0 mod 4;

0 otherwise.

The classes � and " generate y…�.Fq/Œ�
�1� as an algebra over y…0.Fq/Œ�

�1�, subject
to the relation "2 D 0. When q � 3 mod 4 this shows y…�.Fq/Š Z=4 Œ�˙1; �; ��=�2 ,
and for q � 1 mod 4 we have y…�.Fq/Š Z=2 Œ�˙1;u; �; ��=.u2; �2/.

Proof The mod 2 Milnor K–theory of a finite field with odd characteristic is given by
kM
� .Fq/DF2Œu�=u

2 , where u is the class of a nonsquare element of F�q . If q�3 mod 4

then uD�D Œ�1�. As h1� in M.Fq/Œh
�1
1
� detects multiplication by 2 in ���.1^2/, we

arrive at the claimed group structure. The product structure is clear given the products
in the h1–inverted motivic Adams spectral sequence.

Corollary 11 The �–inverted Milnor–Witt stems for a p–adic field Qp are as follows:

y…0.Qp/Œ�
�1�ŠW .Qp/

^
2 Œ�
˙1�Š

8<:
Z=2 Œ�˙1;u; ��=.u2; �2/ if p � 1 mod 4;

.Z=4˚Z=4/Œ�˙1� if p � 3 mod 4;

.Z=8˚Z=2˚Z=2/Œ�˙1� if p D 2;

y…n.Qp/Œ�
�1�Š

�
W .Qp/

^
2 Œ�
˙1� if n� 0 and either n� 3 mod 4 or n� 0 mod 4;

0 otherwise.

Proof The mod 2 Milnor K–theory of the p–adic fields can be calculated from
the result of Milnor [13, Lemma 4.6] in addition to the description of the Witt ring
for p–adic fields which is discussed by Serre in [18]. Explicitly, the mod 2 Milnor
K–theory of a p–adic field is

kM
� .Qp/D

8<:
Z=2 Œ�;u�=.�2;u2/ if p � 1 mod 4;

Z=2 Œ�; ��=.�2; �� C�2/ if p � 3 mod 4;

Z=2 Œ�; �;u�=.�3;u2; �2; �u; ��; �2Cu�/ if p D 2;

where �D Œp�, �D Œ�1�, u is the class of a lift of a nonsquare in F�p when p�1 mod 4,
and uD Œ5� when p D 2.

4 The field of rational numbers

We approach the calculation of y…�.Q/Œ��1� with the strategy suggested by the motivic
Hasse principle, following the method of Ormsby and Østvær in [15]. That is, we
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product conditions

Œ`�Œ2�D 0 `D 2 or `D�1

Œ�1�Œ`�D a` `D�1 or ` prime and `� 3 mod 4

Œ�1�Œ`�D 0 ` prime and `� 1 mod 4

Œ`�Œq�D .q j `/a`C .` j q/aq ` and q odd primes
Œ2�Œq�D

�
1
8
.q2� 1/ mod 2

�
aq q odd prime

Table 1: Products in kM
� .Q/

analyze the h1–inverted motivic Adams spectral sequence for Q using our knowledge
of the h1–inverted motivic Adams spectral sequence over the completions of Q.

We fix our notation for kM
� .Q/. The mod 2 Milnor K–theory of Q is generated by

the classes Œ�1� and Œp� for p a prime. Milnor shows in [13, Lemma A.1] that there is
a short exact sequence

0! kM
2 .Q/!

M
kM

2 .Q�/! Z=2! 0;

where the summation is over all completions Q� of Q. For every completion Q�

of Q there is an isomorphism kM
2
.Q�/ŠZ=2; write e� for the image of 1 under the

canonical map kM
2
.Q�/!

L
kM

2
.Q�/. For ` an odd prime or �1, write a` for the

class in kM
2
.Q/ that maps to e`Ce2 in

L
kM

2
.Q�/. For n� 3 the class �n generates

kM
n .Q/. The product structure in kM

� .Q/ can be deduced from the products given
in Table 1; we write .q j `/ for the Legendre symbol that takes values in the additive
group Z=2.

Lemma 12 The E1 page of the h1–inverted �–Bockstein spectral sequence over Q

is the Z=2–algebra

B.Q/Œh�1
1 �Š

M
n2N

�nkM
� .Q/=�

nC1
˝F2

Ext.C/Œh�1
1 �:

The class �n is in filtration � D n for all n 2 N , for ` � 3 mod 4 a prime a` is in
filtration 1, for `� 1 mod 4 a prime ap is in filtration 0, and Œp� for p a prime is in
filtration 0. The r th differential dr for the �–Bockstein spectral sequence has degree
.�; f; t; c/D .r; 1;�1; 0/. See Figure 3 for a chart of the E1 page up to Milnor–Witt
stem 15.

Proof The �–Bockstein spectral sequence arises from filtering the cobar complex
C�.Q/ by powers of � . The sth term of the cobar complex is

Cs.Q/DH��.Q/˝A��.Q/˝s;
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Figure 3: The E1 page of the h1–inverted �–Bockstein spectral se-
quence over Q up to Milnor–Witt stem 15 . Black dots represent the
group Z=2 Œh˙1

1
� , blue dots represent

L
p�3 .4/Z=2 Œh

˙1
1
� , red dots repre-

sent
L

p�1 .4/;pD2 Z=2 Œh˙1
1 � , and green dots represent

L
p�1 .4/ Z=2 Œh˙1

1 � .
Solid vertical lines indicate multiplication by � , and a vertical arrow means
that the tower of �–multiplications continues indefinitely. Every dot supports
an infinite tower of v2–multiples, however we only indicate this with lines and
arrows of slope 1

3
on the classes of Ext.C/Œh�1

1
� and kM

� .Q/ . The horizontal
axis t is the Milnor–Witt stem, and the vertical axis c is the Chow weight,
while the Adams filtration is suppressed.

where the tensor products are taken over H��.Q/, taking care to use the left and right
actions of H��.Q/ on A��.Q/ arising from the left and right units �L and �R . Any
class aŒx1j � � � jxs � can be reduced to a sum of monomials bŒy1j � � � jys �, where each yi

is a monomial in Z=2 Œ�0; �1; : : : ; �1; �2; : : : �. The class � is killed after inverting h1 ,

Algebraic & Geometric Topology, Volume 18 (2018)



1872 Glen Matthew Wilson

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

v2 v3 v4

v2
3

P 2v2

Figure 4: The E1 page of B.Q/Œh�1
1 � , which is also Ext.Q/Œh�1

1 � , up to
Milnor–Witt stem 15 . Black dots represent the group Z=2 Œh˙1

1 � , blue dots
represent

L
p�3 .4/Z=2 Œh

˙1
1
� , red dots represent

L
p�1 .4/;pD2Z=2 Œh˙1

1
� ,

and green dots represent
L

p�1 .4/ Z=2 Œh˙1
1 � . Solid vertical lines indi-

cate multiplication by � , and a vertical arrow means that the tower of
�–multiplications continues indefinitely. Multiplication by v2 is indicated
by lines of slope 1

3
, and an arrow of slope 1

3
indicates that the class supports a

tower of v2–multiplications. The d2 differentials of M.Q/Œh�1
1
� are indicated

with red lines of slope �1 .

hence every element of Cs.Q/ is a sum of monomials bŒy1j � � � jys �, where each yi is
a monomial in Z=2 Œ�0; �1; : : : ; �1; �2; : : : � and b 2 kM

� .Q/. The filtration of the cobar
complex now is determined by the filtration of kM

� .Q/ by powers of � .

Proposition 13 The differentials for the h1–inverted �–Bockstein spectral sequence
over Q are determined by d2n�1.v

2n

1
/D h2n

1
�2n�1vn for n � 2 and dr .vn/D 0 for

r � 1 and n� 2. (See Figure 4 for a chart of the E1 page up to Milnor–Witt stem 15).
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class .f; t; c/ �–torsion conditions

h˙1
1

.˙1; 0; 0/ 1

� .0; 0; 1/ 1

Œ2�C � .0; 0; 1/ 1
Œ`�P k .0; 0; 1/C k.4; 4; 4/ 1 ` prime, `� 1 .4/, k � 0

Œ`�P k .0; 0; 1/C k.4; 4; 4/ 2 ` prime, p � 3 .4/, k � 0

Œ2�P k .0; 0; 1/C k.4; 4; 4/ 1 k � 1

P 2kv2 .1; 3; 1/C k.8; 8; 8/ 3 k � 0

P 4kv3 .1; 7; 1/C k.16; 16; 16/ 7 k � 0

P 8kv4 .1; 15; 1/C k.32; 32; 32/ 15 k � 0
:::

:::
:::

:::

Table 2: Generators of Ext.Q/Œh�1
1
�

Proof The injection kM
� .Q/!

Q
� kM
� .Q�/ extends to an injection of h1–inverted

�–Bockstein spectral sequences at the E1 page:

B.Q/Œh�1
1 �!

Y
�

B.Q�/Œh
�1
1 �:

The differentials in the h1–inverted �–Bockstein spectral sequence over Qp vanish
for all primes p . Only the differentials in B.R/Œh�1

1
� contribute to the differentials

over Q, and these were identified by Guillou and Isaksen in [8, Lemma 3.1].

Proposition 14 The h1–inverted �–Bockstein spectral sequence for Q converges
strongly to Ext.Q/Œh�1

1
�, and there are no hidden extensions.

Proof The h1–inverted �–Bockstein spectral sequence is isomorphic to the �–
Bockstein spectral sequence obtained by filtering the Œ�1�–inverted cobar complex
C�.Q/, hence it converges strongly to Ext.Q/Œh�1

1
�. Guillou and Isaksen have shown

that there are no hidden extensions in the h1–inverted �–Bockstein spectral sequence
over R [8, Proposition 4.9] and there are no hidden extensions in the h1–inverted
�–Bockstein spectral sequence over the other completions of Q by Proposition 6.
We therefore conclude there are no hidden extensions since the Hasse map embeds
B.Q/Œh�1

1
�1) Ext.Q/Œh�1

1
� into

Q
�B.Q�/Œh

�1
1
�1)

Q
� Ext.Q�/Œh

�1
1
�.

Corollary 15 Ext.Q/Œh�1
1
� is generated by the classes in Table 2. The relations among

these generators over kM
� .Q/ include: Œ`�Pk � Œq�P j D Œ`� � Œq�PkCj for `, q primes

and k; j � 0; Œ`�P2n�1k � vn D Œ`� �P
2n�1kvn for ` a prime, n � 2, and k � 0; the
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Figure 5: The E3 page of M.Q/Œh�1
1
� up to Milnor–Witt stem 15 . The

d3 differentials are indicated with blue lines of slope �2 . The notational
conventions of Figure 4 apply here.

vanishing of the product of three or more generators of the form Œ`�Pk ; and the relations
which set the �–torsion of the generators.

Proof The generators can be determined by comparing Ext.Q/Œh�1
1
� to Ext.R/Œh�1

1
�,

and the latter was determined by Guillou and Isaksen in [8, Theorem 4.10]. The relations
stated are present in the �–Bockstein spectral sequence and persist to Ext.Q/.

The differentials in M.Q/Œh�1
1
�, the h1–inverted Adams spectral sequence over Q,

are determined by the differentials obtained from the comparison to Qp and R. See
Figures 4 and 5 for a depiction of the E2 and E3 pages up to Milnor–Witt stem 15.
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class .f; t; c/ �–torsion conditions

h˙1
1

.˙1; 0; 0/ 1

� .0; 0; 1/ 1

Œ2�C � .0; 0; 1/ 1
Œ`�P k .0; 0; 1/C k.4; 4; 4/ 1 ` prime, `� 1 .4/, k � 0

Œ`�P k .0; 0; 1/C k.4; 4; 4/ 2 ` prime, `� 3 .4/, k � 0

Œ2�P k .0; 0; 1/C k.4; 4; 4/ 1 k � 1

P 2kv2 .1; 3; 1/C k.8; 8; 8/ 3 k � 0

�3P 4kv3 .1; 7; 4/C k.16; 16; 16/ 4 k � 0

�7P 8kv4 .1; 15; 8/C k.32; 32; 32/ 8 k � 0
:::

:::
:::

:::

P 4.2jC1/v2
3

.2; 14; 2/C .2j C 1/.4; 4; 4/ 7 j � 0

P 8.2jC1/v2
4 .2; 30; 2/C .2j C 1/.4; 4; 4/ 15 j � 0

:::
:::

:::
:::

Table 3: Generators of M.Q/Œh�1
1 �3

Proposition 16 The d2 differential in M.Q/Œh�1
1
� is determined by the Leibniz rule

from the equations d2.P
2n�1kvn/DP2n�1kv2

n�1
for k�0 and n�3 and the vanishing

of d2 on the remaining generators. For r � 3, the differential dr in M.Q/Œh�1
1
� is

determined by the Leibniz rule from the equations

dr .�
2n�2n�rC2�rC2P2n�1kvn/D P2n�1kC2n�2�2n�r

v2
n�rC1

for n� r C 1 and the vanishing of dr on the remaining generators.

Proof Ext.Q/Œh�1
1
� injects into the product

Q
� Ext.Q�/Œh

�1
1
� under the base-change

maps obtained from Q!Q� . The map is seen to be injective by the explicit calculation
of Ext.Q/Œh�1

1
� given in Corollary 15, Ext.Qp/Œh

�1
1
� in Proposition 6, and Ext.R/Œh�1

1
�

in [8, Theorem 4.10]. The differentials d2.vn/D v
2
n�1

for n� 3 over Qp imply that
the class d2.P

2n�1kvn/ must map to d2.P
2n�1kvn/DP2n�1kv2

n�1
in Ext.Qp/Œh

�1
1
�.

Comparison to R also shows that the differential d2.P
2n�1kvn/ maps to P2n�1kv2

n�1

in Ext.R/Œh�1
1
� for n� 3, as determined by Guillou and Isaksen [8, Lemma 5.2]. The

differential d2 over Q vanishes on the classes Œ`�Pk by comparison to Qp for all p .
Finally, d2 vanishes on all elements of kM

� .Q/ for degree reasons. This accounts for
all of irreducible classes of Ext.Q/Œh�1

1
�; the generators for M.Q/3Œh

�1
1
� are given in

Table 3. Note that the classes P2.2jC1/v2
2

also survive but decompose as the product
P2.2jC1/v2 � v2 .
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Figure 6: The E1 page of M.Q/Œh�1
1
� up to Milnor–Witt stem 15 . The

notational conventions of Figure 4 apply here.

The Hasse map

M.Q/3Œh
�1
1 �!

Y
�

M.Q�/3Œh
�1
1 �

is still injective. Over the p–adic fields, all further differentials vanish, and over R the
differentials are determined by Guillou and Isaksen [8, Lemma 5.8]; these comparisons
determine the remaining differentials.

Proposition 17 The E1 page of M.Q/Œh�1
1
� is generated over kM

� .Q/ by the
classes �2n�n�2P2n�1kvn for k � 0 and n� 2. Such a class has degree

.2nC1kC 1; 2nC1kC 2n
� 1; 2nC1kC 2n

� n� 1/;

and its �–torsion is nC 1. (See Table 4 for some low-degree generators and Figure 6
for a chart of the E1 page up to Milnor–Witt stem 15).
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class .f; t; c/ �–torsion conditions

h˙1
1

.˙1; 0; 0/ 1

� .0; 0; 1/ 1

Œ2�C � .0; 0; 1/ 1

Œ`�P k .0; 0; 1/C k.4; 4; 4/ 1 ` prime, `� 1 .4/, k � 0

Œ`�P k .0; 0; 1/C k.4; 4; 4/ 2 ` prime, `� 3 .4/, k � 0

Œ2�P k .0; 0; 1/C k.4; 4; 4/ 1 k � 1

P 2kv2 .1; 3; 1/C k.8; 8; 8/ 3 k � 0

�3P 4kv3 .1; 7; 4/C k.16; 16; 16/ 4 k � 0

�10P 8kv4 .1; 15; 11/C k.32; 32; 32/ 5 k � 0
:::

:::
:::

:::

Table 4: Generators of M.Q/Œh�1
1
�1

Proof This is a consequence of the differential analysis of Proposition 16 and the
result of Guillou and Isaksen [8, Proposition 5.9].

Definition 18 Let M be the submodule of W .Q/^2 Œ�
˙1� generated by the rank-one

forms ` �X 2 for ` a prime. As an abelian group, M is isomorphic to

Z=2˚
M

p�3 .4/

Z=4˚
M

p�1 .4/

.Z=2/2Œ�˙1�:

Following the notational convention of Guillou and Isaksen [8, Section 7], write
P2n�1k�n for a class in y…t .Q/Œ��1� detected by �2n�n�2P2n�1kvn in M.Q/Œh�1

1
�,

where n� 2, k � 0 and t D 2nC1kC2n�1. Also, we abuse notation and write Œ`�Pk

for a class in y…4k.Q/Œ�
�1� detected by the class of the same name in M.Q/Œh�1

1
�.

Theorem 19 The �–inverted Milnor–Witt 0–stem of 1^2 over Q is

y…0.Q/Œ�
�1�ŠW .Q/^2 Œ�

˙1�:

The t th �–inverted Milnor–Witt stem of 1^2 over Q is as follows:

y…t .Q/Œ�
�1�Š

8<:
y…0.Q/Œ�

�1�=2nC1 if t � 0; t � 3 mod 4; nD �2.t C 1/;

M if t � 0 mod 4; t � 4;

0 otherwise.

Here �2.x/ is the 2–adic valuation of an integer x , and M is the y…0.Q/Œ�
�1�–module

of Definition 18.

Algebraic & Geometric Topology, Volume 18 (2018)



1878 Glen Matthew Wilson

The remaining product structure of y…�.Q/Œ��1� is determined by the following rela-
tions: the product of any two generators with Milnor–Witt stem congruent to 3 mod 4

is zero; Œq�P j � Œ`�Pk D Œq� � Œ`�P jCk for all primes ` and q and k; j � 0; Œq� � Œ`�Pk D 0

if q is a prime or �1 and Œq�Œ`�D 0 in kM
� .Q/.

Proof The zero stem was calculated in Proposition 1 and [16, Proof of Theorem 1.5]
shows the one stem vanishes. Proposition 17 identifies the structure of the E1 page of
the h1–inverted motivic Adams spectral sequence over Q and Corollary 5 shows that
M.Q/Œh�1

1
� strongly converges to y…�.Q/Œ��1� in Milnor–Witt stem at least 2. The

2–extensions are resolved because �h1 detects multiplication by 2, from which the
additive structure of the �–inverted stems follows.

The product structure in the E1 page of the h1–inverted motivic Adams spectral
sequence determines the y…0.Q/Œ�

�1�–module structure of the stems y…t .Q/Œ��1� for
t 6� 3 mod 4 and t � 3 mod 8. It only remains to identify the hidden product of Œ`�
for ` a prime with a class P2n�1k�n of y…t .Q/Œ��1� for u � 3, k � 0; note that
nD �2.t C 1/. Lemma 20 shows that the products Œ`� �P2n�1k�n and a` �P

2n�1k�n

are always nonzero; hence the canonical map y…0.Q/Œ�
�1�=2nC1! y…n.Q/Œ��1� is

an isomorphism.

The product of any two generators with Milnor–Witt stem congruent to 3 mod 4 is
zero for degree reasons. The remaining products are detected in the motivic Adams
spectral sequence.

Lemma 20 For n � 3 and k � 0, the products Œ`� � P2n�1k�n with ` a prime and
a` �P

2n�1k�n with ` an odd prime in y…�.Q/Œ��1� are nonzero.

Proof For m�0 and ` a prime, the Massey product h�P2mv2; �
2; Œ`�i in Ext.Q/Œh�1

1
�

contains Œ`�P2mC1 by Lemma 21 and this has no indeterminacy. The hypotheses of
Moss’s convergence theorem [11, Theorem 3.1.1] hold here;1 hence Œ`�P2mC1 detects
a class of h2P2m�2; 2

2; Œ`�i. The indeterminacy of this Toda bracket is Œ`� y…8mC4 ,
which is in higher filtration than Œ`�P2mC1 . We conclude h2P2m�2; 2

2; Œ`�i does not
contain zero.

The Massey product hv2; �P
2mv2; �

2i can be shown to contain �2n�n�2P2n�1kvn

using the Adams differential

dr .�
2n�n�4P2n�1kvn/D �P

2mv2
2 ;

1Observe that for r � 2 , c > t and t � 3 mod 4 , the groups E
t;c
2

are trivial in the h1–inverted motivic
Adams spectral sequence over Q .
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where nD �2.mC 1/C 3 and r D n� 1. This Massey product has trivial indetermi-
nacy. Moss’s convergence theorem shows that �2n�n�2P2n�1kvn detects a class of
h�2; 2P2m�2; 2

2i;2 hence P2n�1k�n is in the Toda bracket h�2; 2P2m�2; 2
2i.

We now use the shuffle relation

�2h2P2m�2; 2
2; Œ`�i D h�2; 2P2m�2; 2

2
iŒ`�:

Multiplication by �2 is an injection on the stems y…4j .Q/Œ�
�1�! y…4jC3.Q/Œ�

�1� by
the product structure in the motivic Adams spectral sequence, hence the left-hand side
of the shuffle relation does not contain zero. As Œ`� �P2n�1k�n is in the right-hand side
of the shuffle relation, we conclude that Œ`� �P2n�1k�n is nonzero.

A similar argument using the shuffle relation

�2h2P2kv2; 2
2; a`i D h�2; 2P2kv2; 2

2
ia`

establishes the claim that a` �P
2u�1k is nonzero.

Lemma 21 Let m � 0 and ` a prime. The Massey product h�P2mv2; �
2; Œ`�i in

Ext.Q/Œh�1
1
� contains Œ`�P2mC1 and has trivial indeterminacy.

Proof The �–Bockstein spectral sequence differential d3.P
2mC1/D�3P2mv2 shows

that h�P2mv2; �
2; Œ`�i contains Œ`�P2mC1 ; this Massey product has trivial indetermi-

nacy. To verify the hypotheses of May’s convergence theorem [11, Theorem 2.2.1], first
note the degree of �2Œ`� is �D 2, t D 0, and cD 1. All �–Bockstein spectral sequence
differentials vanish in this graded component. It remains to check dR differentials on
the graded piece with �0 � 3, t D 8mC 3, c D 8mC 4 and R> �0 corresponding to
�3P2mv2 .

We now look for elements of the E4 page of the �–Bockstein spectral sequence
which land in degrees .t; c/ for which t C c � 7 mod 8. Given the description of

2The condition to check for �P2mv2
2

in Moss’s theorem is that dr 0 W E
8mC7;c0

r 0
!E

8mC6;c00

r 0
must

be zero when c0 � 8mC 1 � �2.mC 1/ , c00 � 8mC 4 and r 0 D c00 � c0 . Nonzero differentials are
only possible in these Milnor–Witt stems on classes �?P ?vn ; it follows that �2.mC 1/ D n � 3 , so
r 0 � n . But by Proposition 16, nonzero differentials on such classes occur only when n � r 0C 1 . The
condition to check for the element �3P2mv2 is that dr 0 W E

8mC4;c0

r 0
! E

8mC3;c00

r 0
must be zero when

c0 � 8mC 2� �2.mC 1/ , c00 � 8mC 5 and r 0 D c00 � c0 . The classes in Milnor–Witt stems 4 mod 8

are generated by the classes � , h˙1
1

and Œ`�Pk . The Adams differentials vanish on these classes, so the
hypotheses of Moss’s theorem are true.
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the generators of the E4 page, it suffices to consider products of just vn for n � 3,
Œ`�P , v2 , and � . The sum t C c mod 8 for each of these generators is 0, 1, 4, and 1,
respectively. As .Œ`�P /2 D 0, �3v2 D 0, and �2Œ`�Pv2 D 0 in the E4 page, the only
nonzero product of these generators in degree .t; c/ with t C c � 7 mod 8 must be of
the form ��v

a3

3
� � � v

ai

i .

Suppose now that ��va3

3
� � � v

ai

i is in degree t D 8mC3, cD 8mC4 for some m. Let
AD

P
ai and j Dminfx j ax ¤ 0g. Under these assumptions it follows that

8mC 3D
X

ai.2
i
� 1/�A.2j

� 1/:

Hence � �A.2j � 2/C 1. Note that A must be at least 2 in order for the Milnor–Witt
stem t to be congruent to 3 modulo 8. It follows that if R> � , then R> 2j � 1 and
so the class ��va3

3
� � � v

ai

i is zero in the ER page, by the relation �2j�1vj D 0, which
arises from a d2j�1 differential. We conclude May’s convergence theorem applies in
this situation. It is straightforward to check that the indeterminacy is trivial.

References
[1] A Ananyevskiy, M Levine, I Panin, Witt sheaves and the �–inverted sphere spectrum,

J. Topol. 10 (2017) 370–385 MR

[2] M Andrews, H Miller, Inverting the Hopf map, preprint (2017) arXiv

[3] J M Boardman, Conditionally convergent spectral sequences, from “Homotopy invari-
ant algebraic structures” (J-P Meyer, J Morava, W S Wilson, editors), Contemp. Math.
239, Amer. Math. Soc., Providence, RI (1999) 49–84 MR

[4] A K Bousfield, The localization of spectra with respect to homology, Topology 18
(1979) 257–281 MR

[5] A K Bousfield, D M Kan, Homotopy limits, completions and localizations, Lecture
Notes in Math. 304, Springer (1972) MR

[6] D Dugger, D C Isaksen, Motivic Hopf elements and relations, New York J. Math. 19
(2013) 823–871 MR

[7] B J Guillou, D C Isaksen, The �–local motivic sphere, J. Pure Appl. Algebra 219
(2015) 4728–4756 MR

[8] B J Guillou, D C Isaksen, The �–inverted R–motivic sphere, Algebr. Geom. Topol.
16 (2016) 3005–3027 MR

[9] P Hu, I Kriz, K Ormsby, Convergence of the motivic Adams spectral sequence,
J. K-Theory 7 (2011) 573–596 MR

[10] D C Isaksen, Classical and motivic Adams charts, preprint (2014) arXiv

Algebraic & Geometric Topology, Volume 18 (2018)

http://dx.doi.org/10.1112/topo.12015
http://msp.org/idx/mr/3653315
http://msp.org/idx/arx/1710.08018
http://dx.doi.org/10.1090/conm/239/03597
http://msp.org/idx/mr/1718076
http://dx.doi.org/10.1016/0040-9383(79)90018-1
http://msp.org/idx/mr/551009
http://dx.doi.org/10.1007/978-3-540-38117-4
http://msp.org/idx/mr/0365573
http://nyjm.albany.edu:8000/j/2013/19_823.html
http://msp.org/idx/mr/3141814
http://dx.doi.org/10.1016/j.jpaa.2015.03.004
http://msp.org/idx/mr/3346515
http://dx.doi.org/10.2140/agt.2016.16.3005
http://msp.org/idx/mr/3572357
http://dx.doi.org/10.1017/is011003012jkt150
http://msp.org/idx/mr/2811716
http://msp.org/idx/arx/1401.4983


The eta-inverted sphere over the rationals 1881

[11] D C Isaksen, Stable stems, preprint (2014) arXiv

[12] M Knebusch, Symmetric bilinear forms over algebraic varieties, from “Conference on
Quadratic Forms — 1976” (G Orzech, editor), Queen’s Papers in Pure and Appl. Math.
46, Queen’s Univ., Kingston, Ont. (1977) 103–283 MR

[13] J Milnor, Algebraic K–theory and quadratic forms, Invent. Math. 9 (1969/1970)
318–344 MR

[14] F Morel, A1–algebraic topology over a field, Lecture Notes in Math. 2052, Springer
(2012) MR

[15] K M Ormsby, P A Østvær, Motivic Brown–Peterson invariants of the rationals, Geom.
Topol. 17 (2013) 1671–1706 MR

[16] K Ormsby, O Röndigs, P A Østvær, Vanishing in stable motivic homotopy sheaves,
preprint (2017) arXiv

[17] W Scharlau, Quadratic and Hermitian forms, Grundl. Math. Wissen. 270, Springer
(1985) MR

[18] J-P Serre, A course in arithmetic, Graduate Texts in Math. 7, Springer (1973) MR

[19] C A Weibel, An introduction to homological algebra, Cambridge Studies in Adv. Math.
38, Cambridge Univ. Press (1994) MR

[20] G M Wilson, P A Østvær, Two-complete stable motivic stems over finite fields, Algebr.
Geom. Topol. 17 (2017) 1059–1104 MR

Department of Mathematics, University of Oslo
Oslo, Norway

glenw@math.uio.no

Received: 30 August 2017 Revised: 26 October 2017

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://msp.org/idx/arx/1407.8418
https://epub.uni-regensburg.de/12783/
http://msp.org/idx/mr/0498378
http://dx.doi.org/10.1007/BF01425486
http://msp.org/idx/mr/0260844
http://dx.doi.org/10.1007/978-3-642-29514-0
http://msp.org/idx/mr/2934577
http://dx.doi.org/10.2140/gt.2013.17.1671
http://msp.org/idx/mr/3073932
http://msp.org/idx/arx/1704.04744v1
http://dx.doi.org/10.1007/978-3-642-69971-9
http://msp.org/idx/mr/770063
http://dx.doi.org/10.1007/978-1-4684-9884-4
http://msp.org/idx/mr/0344216
http://dx.doi.org/10.1017/CBO9781139644136
http://msp.org/idx/mr/1269324
http://dx.doi.org/10.2140/agt.2017.17.1059
http://msp.org/idx/mr/3623682
mailto:glenw@math.uio.no
http://msp.org
http://msp.org



	1. Introduction
	2. Convergence of the h1–inverted motivic Adams spectral sequence
	3. Fields of cohomological dimension at most 2
	4. The field of rational numbers
	References

