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Compact Stein surfaces as branched covers
with same branch sets

TAKAHIRO OBA

For each integer N � 2 , we construct a braided surface S.N / in D4 and simple
branched covers of D4 branched along S.N / such that the covers have the same
degrees and are mutually diffeomorphic, but Stein structures associated to the covers
are mutually not homotopic. As a corollary, for each integer N � 2 , we also construct
a transverse link L.N / in the standard contact 3–sphere and simple branched covers
of S3 branched along L.N / such that the covers have the same degrees and are
mutually diffeomorphic, but contact manifolds associated to the covers are mutually
not contactomorphic.

57M12, 57R17; 32Q28, 57R65

1 Introduction

A compact Stein surface is a sublevel set of an exhausting strictly plurisubharmonic
function on a 2–dimensional complex manifold. Such complex surfaces have been
studied by using complex and symplectic geometry. For example, Eliashberg [9]
characterized handle decompositions of compact Stein surfaces, and Gompf [14]
described how to draw Kirby diagrams of them. Since the early 2000s, the study of
them was dramatically altered after the seminal works of Loi and Piergallini [21] and
Akbulut and Ozbagci [1]. They showed that a smooth, oriented, compact 4–manifold X

with boundary admits a Stein structure if and only if X admits a positive allowable
Lefschetz fibration f W X !D2 ; see Section 2.3. It is known that Lefschetz fibrations
are studied through mapping class groups, so group-theoretical approaches help us to
deal with compact Stein surfaces. For example, such techniques yield a family of contact
3–manifolds with infinitely many Stein fillings; see Baykur and Van Horn-Morris [3; 4],
Dalyan, Korkmaz and Pamuk [8] and Ozbagci and Stipsicz [24]. For broader results,
we refer the reader to Ozbagci [23] for a survey on this subject.

Loi and Piergallini also showed that a smooth, oriented, compact 4–manifold X with
boundary admits a Stein structure if and only if X is a simple branched cover of
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1734 Takahiro Oba

a 4–disk D4 branched along a positive braided surface S ; see Definitions 2.1 and 2.2.
Unfortunately, although the fact is well known, little is known about how Stein structures
behave with respect to positive braided surfaces. We can describe braided surfaces by
using combinatorial tools such as chart descriptions, quandles, and braid monodromies;
see Kamada [18]. In order to use them effectively for the study of compact Stein surfaces,
we need to understand better interactions between Stein structures and braided surfaces.

In this paper, we consider whether or not, for a given positive braided surface S ,
there is more than one compact Stein surface realized as a cover of D4 branched
along S which have the same degrees and are mutually diffeomorphic, but which admit
mutually distinct Stein structures. The following theorem is an affirmative answer to
this problem.

Theorem 1.1 For a given integer N � 2, there is a positive braided surface S.N / and
simple branched covers X1.N /; : : : ;XN .N / of D4 branched along S.N / such that

(1) the degrees of these covers are same,

(2) X1.N /; : : : ;XN .N / are mutually diffeomorphic, and

(3) Stein structures on X1.N /; : : : ;XN .N / associated to the covers are mutually not
even homotopic as almost complex structures by any choice of diffeomorphism
of the underlying spaces.

We would like to emphasize that compact Stein surfaces Xj .N / can be taken to be
diffeomorphic to the D2–bundle over S2 with Euler number �2N . We also note that
in the above theorem, the Stein structure on the branched cover is given by a Lefschetz
fibration associated to the branched covering; see Remark 2.4.

This theorem becomes more interesting when compared with the case of covers of CP2

branched along cuspidal curves in CP2 . Here, a cuspidal curve is a projective plane
curve whose singular points are ordinary nodes and ordinary cusps. The Chisini
conjecture [7] claims that if S �CP2 is a cuspidal curve, a generic branched covering
of CP2 whose branch set is S and degree is at least 5 is unique up to covering
isomorphism. Kulikov [19; 20] showed that this conjecture is true under certain
conditions. In the proof of Theorem 1.1, we will construct a simple branched covering
of degree 3N �1 for each N � 2. In addition, according to a result of Rudolph [26], a
positive braided surface is isotopic to the intersection of a complex analytic curve with
D4 �C2 , and the converse is also true by a result of Boileau and Orevkov [6]. Hence
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an analogue of the Chisini conjecture does not hold for simple branched coverings
of D4 whose branch sets are the intersections of complex analytic curves with D4 .

Focusing on the boundary, we can reinterpret Theorem 1.1 in terms of contact 3–
manifolds and transverse links. Let M be an oriented, connected, closed 3–manifold.
A 2–plane field � on M is called a contact structure on M if there exists a 1–form
on M such that �DKer.˛/ and ˛^d˛>0 with respect to the orientation of M ; the pair
.M; �/ is called a contact manifold. An oriented link L in .M; �/ is called transverse
if L is transverse to the contact plane �x at any point x in L. Let .D2; id/ denote a
supporting open book decomposition of the standard contact 3–sphere .S3; �std/ whose
pages are diffeomorphic to a 2–disk and whose monodromy is its identity map; see
Etnyre [10] for example. Bennequin [5] showed that any transverse link in .S3; �std/

can be braided about the binding of .D2; id/.

Corollary 1.2 For a given integer N � 2, there is a transverse link L.N / in .S3; �std/

and simple branched covers M1.N /; : : : ;MN.N / of S3 branched along L.N / such that
(1) the degrees of these covers are same,

(2) M1.N /; : : : ;MN .N / are mutually diffeomorphic, and

(3) M1.N /; : : : ;MN .N / equipped with contact structures associated to the cov-
ers are mutually not contactomorphic by any choice of diffeomorphism of the
underlying spaces.

Here, a contact structure on a branched cover is given by the open book associated to
the branched covering.

This corollary turns out to be more interesting once we compare it with a work of
Harvey, Kawamuro and Plamenevskaya [16]. They considered cyclic branched covers
of .S3; �std/ whose branch sets are transversely nonisotopic knots, which are smoothly
isotopic, and proved that the covers are contactomorphic. On the other hand, in our
result, we fix the transverse link as the branch set and the branched covers are not
contactomorphic.

This article is organized as follows: In Section 2, we review some basic material such
as mapping class groups, braided surfaces and Lefschetz fibrations. In Section 3.1, we
first introduce the notion of braids satisfying a certain condition, called liftable braids,
and prove a lemma to construct branched covers of D4 . Using this lemma, we give a
proof of Theorem 1.1. In Section 3.2, the theorem is proven again in a different way
via transformations of Lefschetz fibrations. Finally, Section 3.3 is devoted to proving
Corollary 1.2 using an invariant of contact structures.
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2 Preliminaries

2.1 Mapping class groups

Let †k
g;r denote an oriented, connected genus g surface with k marked points and

r boundary components. We denote the mapping class group of †k
g;r by Mk

g;r .
More precisely, Mk

g;r is the group of isotopy classes of orientation-preserving self-
diffeomorphisms of †k

g;r which fix the marked points setwise and the boundary
pointwise. We also use the notation Mg;r if k D 0, and M†k

g;r
for Mk

g;r . For
a simple closed curve ˛ in †k

g;r , we denote by t˛ 2Mk
g;r the right-handed Dehn

twist along ˛ . Furthermore, for a simple arc a connecting two distinct marked points
in †k

g;r , write �a 2Mk
g;r for the right-handed half-twist along a. We will use the

opposite notation to the usual functional one for the products in Mk
g;r ; ie h1h2 means

that we apply h1 first and then h2 . Moreover, for a subset A�†k
g;r and h 2Mk

g;r ,
the notation .A/h means the image of A under h.

It is well known that the braid group Bm on m strands can be identified with the
mapping class group of a disk with m marked points as follows (see [12, Section 3.2]):
Consider an m–marked disk †m

0;1
as the closed unit disk Dm � C with m marked

points which lie on the real axis. Set P1< � � �<Pm as the m marked points. Let Ai be
a segment on the real axis connecting Pi and PiC1 . Then the i th standard generator �i

of Bm can be identified with the right-handed half-twist �Ai
2MDm

along Ai .

2.2 Braided surfaces

Let D2
1

and D2
2

be oriented 2–disks.

Definition 2.1 A properly embedded surface S in D2
1
� D2

2
is called a (simply)

braided surface of degree m if the first projection pr1W D
2
1
�D2

2
!D2

1
restricts to a

simple branched covering pS WD pr1jS W S !D2
1

of degree m.

We will review briefly braid monodromies of braided surfaces; see [2, Section 3; 18,
Chapters 16, 17; 27, Sections 1, 2] for more details. Before that, we recall a special
basis for the fundamental group of a punctured disk. Let � be a set of n points
x1; : : : ;xn in the interior of an oriented 2–disk D2 with the standard orientation and
let x0 be a point in @D2 . Since the fundamental group �1.D

2n�;x0/ is a free group
of rank n, we give a basis for this group as follows: Take a collection of oriented
paths s1; : : : ; sn starting from x0 to each xi , respectively. Assume that si and sj are
disjoint except x0 if i ¤ j , and the arcs s1; : : : ; sn are indexed so that they appear
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x0

x1 x2 xn

1 2 n

Figure 1: The standard Hurwitz system for .�;x0/

in order as we move counterclockwise about x0 . Using the path si , connect x0 to a
small oriented disk around each xi with the same orientation of D2 . Then we obtain
an oriented loop i based at x0 , and 1; : : : ; n freely generate �1.D

2 n�;x0/. The
ordered n–tuple .1; : : : ; n/ is called a Hurwitz system for .�;x0/; see Figure 1.

We now get back to braided surfaces. Let �.S/ D fx1; : : : ;xng � Int D2
1 be the set

of branch points of the branched covering pS W S !D2
1

. Fix a point x0 in @D2
1

and
Hurwitz system .1; : : : ; n/ for .�.S/;x0/. For each i , the restriction on pr1 to
pr�1

1
.i/ induces a trivial disk bundle over i . For any point x 2 i � D2

1
n�.S/,

the preimage p�1
S
.x/ consists of m points; that is, S and each fiber pr�1

1
.x/DD.x/

intersect at m points. Hence we associate an element bi 2 Bm to i as a motion of
the set D.x0/\S over i . By this correspondence, we can define a homomorphism
!S W �1.D

2
1
n�.S/;x0/! Bm by !S .i/D bi for each i . This homomorphism !S

is called a braid monodromy of S . The ordered n–tuple .!S .1/; : : : ; !S .n// is also
called a braid monodromy of S . Since pS is a simple branched covering, each !S .i/

is a conjugate w�1
j �

"i

j.i/wj of j .i/th standard generator of Bm or its inverse �"i

j.i/

for some wj 2 Bm and "i 2 f˙1g. It is known that, for a finite set � � IntD2
1

and
homomorphism !W �1.D

2
1
n�;x0/!Bm as above, we can construct a braided surface

of degree m whose branch set is Q and braid monodromy is ! . Obviously, the covering
pS has a covering monodromy, a representation �S W �1.D

2
1
n�.S/;x0/!Sm to the

symmetric permutation group Sm of degree m. Note that each �S .i/ 2 Sm is a
transposition because pS is simple. Furthermore, we also point out that !S is a lift
of �S to Bm .

At the end of this subsection, we define a crucial notion to study compact Stein surfaces
by braided surfaces.

Definition 2.2 A braided surface S is said to be positive if each !S .i/ is positive;
that is, every "i in a braid monodromy .w�1

1
�
"1

j.1/
w1; : : : ; w

�1
n �

"n

j.n/
wn/ of S is C1.

Algebraic & Geometric Topology, Volume 18 (2018)



1738 Takahiro Oba

2.3 Lefschetz fibrations and simple branched coverings

We will briefly review positive Lefschetz fibrations and their monodromies; see [15,
Chapter 8].

Let X be an oriented, connected, compact 4–manifold.

A smooth map f W X !D2 is called a positive Lefschetz fibration if there exists the
set �.f /D fx1; : : : ;xng � IntD2 such that

(1) f jf �1.D2 n�.f //W f �1.D2 n�.f //!D2 n�.f / is a smooth fiber bundle
over D2 n�.f / with fiber diffeomorphic to an oriented compact surface † with
boundary,

(2) x1; : : : ;xn are the critical values of f , and each singular fiber f �1.xi/ has a
unique critical point pi 2 f

�1.xi/, and

(3) for each pi and xi , there are local complex coordinate charts with respect
to the given orientations of X and D2 such that locally f can be written as
f .z1; z2/D z2

1
C z2

2
.

A positive Lefschetz fibration f W X ! D2 can be described by the mapping class
group M† of a surface † diffeomorphic to the fiber of f . Let x0 2 @D

2 be a fixed
base point. Fix a Hurwitz system .1; : : : ; n/ for .�.f /;x0/. We can consider a
homomorphism �f W �1.D

2 n�.f /;x0/!M† as follows: The positive Lefschetz
fibration f restricts to a fiber bundle f jf �1.i/W f

�1.i/! i for each i . This
bundle is isomorphic to a †–bundle whose monodromy is the Dehn twist t˛i

, where ˛i

is a simple closed curve in †. This ˛i is called a vanishing cycle of the singular fiber
f �1.xi/. Let us define �f W �1.D

2n�.f /;x0/!M† , called a monodromy of f , by
�f .i/D t˛i

for each i . We also call the ordered n–tuple .t˛1
; : : : ; t˛n

/ a monodromy
of f . A positive Lefschetz fibration is said to be allowable if all of its vanishing cycles
are homologically nontrivial in the fiber surface. After this, we call a positive allowable
Lefschetz fibration a PALF for short.

Theorem 2.3 (Loi and Piergallini [21, Theorem 3]) Let X be an oriented, connected,
compact 4–manifold with boundary. Then the following conditions are equivalent:

(1) X is a compact Stein surface; that is, X admits a Stein structure.

(2) X admits a PALF f W X !D2 .

(3) X is a simple branched cover of D4 branched along a positive braided surface.
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X

D2
1

D2
2

S

p

pr1pr1 ıp

Figure 2: The left (resp. right) square represents the total space X of p (resp.
D2

1 �D2
2 ). The red points in X (resp. D2

1 �D2
2 ) represents the critical points

of the PALF pr1 ıp (resp. the branched covering pS ).

We would like to point out that Akbulut and Ozbagci [1, Theorem 5] also showed the
equivalence between (1) and (2) in the above theorem.

According to [21, Proposition 1, 2] and the proof of Theorem 2.3, for a given PALF

f W X !D2 , we can construct a simple branched covering pW X !D4 whose branch
set is a positive braided surface S so that f D pr1 ıp and �.S/D�.f /. Conversely,
for a given simple branched covering pW X!D4 whose branch set is a positive braided
surface S , the composition f WD pr1 ıpW X !D2

1
is a PALF and �.f /D�.S/; see

Figure 2. Suppose that x 2D2
1

is a regular point of the PALF f D pr1 ıp . It is also a
regular point of pS . Since p is a simple branched covering branched along S , the
covering p restricts to a simple branched covering pjp�1.D.x//W p�1.D.x//!D.x/

whose branch set is the intersection S \D.x/. It is easy to check that p�1.D.x// is
the regular fiber f �1.x/ of f .

Remark 2.4 It is known that the total space of a PALF admits a Stein structure by
using the (Weinstein) handle decomposition given by the PALF; see [1, Theorem 5].
As mentioned above, a simple branched covering pW X !D4 ŠD2

1
�D2

2
branched

along a positive braided surface gives a PALF pr1 ıpW X !D2
1

. Thus, we equip the
cover X with a Stein structure coming from pr1 ıp .

2.4 First Chern classes of compact Stein surfaces

In the proof of Theorem 1.1, we use the first Chern class of a compact Stein sur-
face. To compute it, we make use of the following facts in [11, Section 3] and
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[14, Proposition 2.3]. Let f W X !D2 denote a PALF with fiber diffeomorphic to †
and let ˛1; : : : ; ˛n be its vanishing cycles. Thanks to Theorem 2.3, X admits a Stein
structure J . Once we choose a trivialization of the tangent bundle of the regular fiber
of f , the rotation number rot.˛/ of a simple closed curve ˛ is defined with respect to
this trivialization. Orient each vanishing cycle ˛i and regard it as a generator of the
chain group C2.X /; see [15, Section 4.2]. Then we have

hc1.X;J /; Œ˛i �i D rot.˛i/

for the first Chern class c1.X;J / of .X;J /.

Next we review how to compute the square of the Poincaré dual PD.c1.X;J // of the
class c1.X;J / to use it in the proof of Corollary 1.2; see [25, pages 107–108] for
more details. For our purpose, it suffices to see a compact Stein surface X admitting
a handle decomposition with only one 0–handle and one 2–handle h. Let K be
the attaching circle of h with framing coefficient k and D a small meridian disk
to K . The homology group H2.X IZ/ is generated by the closed surface † given
by gluing an orientable Seifert surface for K and the core of the 2–handle h, and
H2.X; @X IZ/ is generated by ŒD�. The maps '1W H2.X IZ/! H2.X; @X IZ/ and
'2W H2.X; @X IZ/!H1.@X IZ/ in the homology long exact sequence for .X; @X /
are given by

'1.Œ†�/D kŒD� and '2.ŒD�/D Œ@D�:

Suppose that the first Chern class c1.�/ of the contact structure � on @X induced
from J is a torsion class. Then '2.PD.c1.X;J ///D PD.c1.�// is a torsion class too,
and hence there exists an integer n > 0 such that '2.n � PD.c1.X;J /// D 0, which
implies that we obtain a lift c 2 H2.X IZ/ of PD.n � c1.X;J // with respect to '1 .
Using the element c , the square of PD.c1.X;J // is given by

.PD.c1.X;J ///
2
D

1

n2
c2:

It is obvious that this value is independent of the choice of n> 0.

3 Main results

3.1 Proof of Theorem 1.1

Let † be an oriented, compact surface with boundary. Suppose qW † ! D2 is a
simple branched covering of degree d . The covering q determines a covering mon-
odromy �qW �1.D

2 n�.q/;y0/!Sd for some base point y0 2 @D
2 . Identifying Bm

Algebraic & Geometric Topology, Volume 18 (2018)
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with Mm
0;1

as in Section 2.1, we associate to a given b 2 Bm the mapping class
hb 2Mm

0;1
. We call b 2 Bm or hb 2Mm

0;1
liftable with respect to the branched

covering qW †!D2 with m branch points if there exists an orientation-preserving
diffeomorphism Hb of † such that q ıHb D h ı q for some representative h of hb .
Note that, in this definition, the base disk D2 with m branch points is identified
with Dm and we consider Mm

0;1
as the mapping class group of Dm . Hereafter, we fix

such an identification unless otherwise specified. In [22, Lemma 4.3.3], it is shown
that, if hb 2Mm

0;1
is liftable with respect to q , then we have

�q ı hb� D �q(1)

for the induced isomorphism hb�W �1.D
2 n�.q/;y0/! �1.D

2 n�.q/;y0/.

The following lemma is useful for constructing simple branched covers of D4 .

Lemma 3.1 Let S be a positive braided surface of degree m whose braid monodromy is

.w�1
1 �j.1/w1; : : : ; w

�1
n �j.n/wn/;

and x0 a fixed base point in @D2
1

. Suppose that qW †!D.x0/ is a simple branched
covering of degree d with branch set S \D.x0/ and covering monodromy �q . If each
w�1

i �j.i/wi 2 Bm is liftable with respect to q , then there is an oriented, connected,
compact 4–manifold X and a simple branched covering pW X ! D4 such that its
branch set is S and pjp�1.D.x0//D q .

Proof Fix a point y0 2 @D.x0/. Let . 0
1
; : : : ;  0m/ be the standard Hurwitz system for

.D.x0/nS;y0/ as in Figure 1. It is known that

�1.D
4
nS;y0/D

˝
 01; : : : ; 

0
m j .

0
j.i//wi� D .

0
j.i/C1/wi�; i D 1; : : : n

˛
;

where each wi� is the Artin automorphism of the free group h 0
1
; : : : ;  0mi defined by

. 0j /�i� D

8<:
 0i
0
iC1

 0
�1
i ; j D i;

 0i ; j D i C 1;

 0j ; j ¤ i; i C 1:

More precisely, we refer to [13, page 133; 27, Proposition 4.1; 17, pages 120–121] about
this fundamental group. If we show that �q..

0
j.i/
/wi�/D�q..

0
j.i/C1

/wi�/ for each i ,
we conclude that �q induces a homomorphism �W �1.D

4nS;y0/!Sd , and this �
determines a simple branched covering pW X!D4 of degree d whose branch set is S .

Algebraic & Geometric Topology, Volume 18 (2018)



1742 Takahiro Oba

a.N / b.N /

c1.N / c2.N / cN�2.N / cN�1.N /

d1.N / d2.N / dN�2.N / dN�1.N /

Figure 3: Arcs a.N / , b.N / , ci.N / , d i.N /

For each i , we have

. 0j.i//wi� D
�
. 0j.i/C1/�j.i/�

�
wi�

D . 0j.i/C1/.wi�.wi/
�1
� /�j.i/�

wi�

D
�
. 0j.i/C1/wi�

�
.w�1

i �j.i/wi/�:

Since each w�1
i �j.i/wi is liftable, by (1),

�q..
0

j.i//wi�/D �q

�
.. 0j.i/C1/wi�/.w

�1
i �j.i/wi/�

�
D
�
�q ı .w

�1
i �j.i/wi/�

�
.. 0j.i/C1/wi�/

D �q..
0

j.i/C1/wi�/:

According to the above construction of p , we can easily check pjp�1.D.x0//D q .

Proof of Theorem 1.1 Fix x0 in @D2
1

and y0 in @D.x0/. To construct a braided
surface, we give arcs a.N /, b.N /, ci.N /, d i.N / for i D 1; 2; : : : ;N � 1 in a
.5N�3/–marked disk as depicted in Figure 3. Let us define a braided surface S.N /

of degree 5N � 3 to be one whose braid monodromy is

.�a.N /; �b.N /; �c1.N /; : : : ; �cN�1.N /; �d1.N /; : : : ; �dN�1.N //:(2)

To apply Lemma 3.1, we need appropriate simple branched covers of D.x0/. Define
a simple branched covering qj .N /W †0;2N ! D.x0/ of degree 3N � 1 for each
j D 1; : : : ;N as shown in Figure 4. According to [22, Lemma 3.2.3] for example,
we can check that each braid of the tuple (2) is liftable with respect to each covering
qj .N /; see Figure 5. It follows from Lemma 3.1 that there exists a simple branched

Algebraic & Geometric Topology, Volume 18 (2018)
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qj .N /

1

2

D.xo/

3

4

5

3j�3

3j�2

3j�1

3j

3jC1

3jC2

3N�3

3N�2

3N�1

j � 1 N � j

Figure 4: Covering qj .N /W †0;2N !D.x0/: each label indicates the index
of each sheet of the covering.

covering pj .N /W Xj .N /!D4 branched along S.N / such that for each j ,

pj .N /j.pj .N /�1.D.x0///D qj .N /:

Next, we show that X1.N /; : : : ;XN .N / are mutually diffeomorphic. To see this,
we will draw a Kirby diagram of Xj .N / via Lefschetz fibration. As discussed in
Section 2.3, the composition pr1 ıpj .N /W Xj .N /!D2

1
is a PALF whose monodromy

is the lift of the braid monodromy (2) of S.N / with respect to qj .N /. Write

.tAj .N /; tBj .N /; tC 1
j
.N /; : : : ; tC N�1

j
.N /; tD1

j
.N /; : : : ; tDN�1

j
.N //

for this monodromy, where the simple closed curves Aj .N /, Bj .N /, C i
j .N /, Di

j .N /

are the lift of the arcs a.N /, b.N /, ci.N /, d i.N /, respectively, with respect to qj .N /.
An isotopy of the surface †0;2N makes a configuration of vanishing cycles as shown
in Figure 6. This leads to a Kirby diagram of Xj .N / depicted in Figure 7 (top). Let
Aj .N /, Bj .N /, C i

j .N /, Di
j .N / also denote the 2–handles whose attaching spheres

are these curves, respectively. Sliding the 2–handle Aj .N / over C i
j .N / and Di

j .N /

and canceling the 1– /2–handle pairs related to C i
j .N / and Di

j .N /, we obtain the
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~

~

Aj .N /

Bj .N /

C i
j .N /

�

Di
j .N /

�
Aj .N /

Bj .N /

C i
j .N /

?

Di
j .N /

?

Aj .N /
Bj .N /

C i
j .N /�

Di
j .N /�

Aj .N /

Bj .N /

C i
j .N /

?

Di
j .N /

?

3iC2

3iC1

3i

2

3iC2

3iC1

3i

2

Figure 5: Parts of lifts of arcs a.N / , b.N / , ci.N / , d i.N / with respect
to qj .N / . Top: sheets labeled 2 , 3i , 3i C 1 , 3i C 2 for i D 1; : : : ; j � 1 .
Bottom: sheets labeled 2 , 3i , 3i C 1 , 3i C 2 for i D j ; : : : ;N � 1 .

diagram depicted in Figure 7 (bottom left). We reach the one depicted in Figure 7
(bottom right) by sliding the .�2NC1/–framed 2–handle over the other and eliminating
the remaining 1– /2–handle pair. From the last diagram, we conclude that all Xj .N /

are diffeomorphic to the D2–bundle over S2 with Euler number �2N .

To finish the proof, we compute the first Chern class of each .Xj .N /;Jj .N //, where
Jj .N / is the Stein structure associated to pj .N /. Strictly speaking, c1.Xj .N /;Jj .N //

can evaluate on the generator of H2.Xj .N /IZ/. According to the above argument
about Kirby diagrams, it turns out that its generator is given by

Zj .N / WDŒAj .N /�� ŒBj .N /��

N�1X
iD1

ŒC i
j .N /�C

j�1X
iD1

ŒDi
j .N /��

N�1X
iDj

ŒDi
j .N /�:(3)

Here all 2–handles are oriented as indicated in Figure 7 (top). One can take a trivializa-
tion of the bundle T†0;2N so that the rotation number of each vanishing cycle is C1.
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Aj .N /
-

Bj .N /
@@R

C 1
j .N /

��	

C
j�1

j .N /

��	

C
j

j .N /

��	

D
j
j .N /

��	

C N�1
j .N /

?

DN�1
j .N /

?

D1
j .N /
���

D
j�1
j .N /
���

Figure 6: Vanishing cycles of the PALF pr1 ıpj .N /W Xj .N /!D2
1

all 2-handle framings �1

�1�

�2N C 1
�2N

Figure 7: Kirby diagrams of Xj .N /: the dashed arrows indicate how we
slide a 2–handle over another one.
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Hence, we have

hc1.Xj .N /;Jj .N //;Zj .N /i D rot.Aj .N //� rot.Bj .N //�

N�1X
iD1

rot.C i
j .N //

C

j�1X
iD1

rot.Di
j .N //�

N�1X
iDj

rot.Di
j .N //

D .C1/� .C1/�

N�1X
iD1

.C1/C

j�1X
iD1

.C1/�

N�1X
iDj

.C1/

D�2.N � j /:

Since this value is unchanged under any diffeomorphism of Xj .N /, we conclude
that c1.Xj .N /;Jj .N //¤ c1.Xj 0.N /;Jj 0.N // if j ¤ j 0 . Therefore, Stein structures
J1.N /; : : : ;JN .N / are mutually not even homotopic as almost complex structures.

Remark 3.2 In the above proof, the case N D2 is crucial, so we explain how the author
found the braided surface S.2/. First, we fixed two different branched coverings q1.2/

and q2.2/ and considered liftable braids with respect to both coverings. We observed
how corresponding lifts changed if we changed q1.2/ into q2.2/, and we chose some
braids among them to obtain the braided surface S.2/. Finally, drawing Kirby diagrams
of the two corresponding covers branched along S.2/, we checked whether these covers
satisfied the conditions of our theorem. Hence, this construction is very ad hoc. As far
as the author knows, there is no systematic construction of such a braided surface.

3.2 Alternative proof of Theorem 1.1

The key of the second proof is a T–move, introduced by Apostolakis, Piergallini
and Zuddas in [2]. This move is a transformation between two Lefschetz fibrations,
satisfying some conditions. For our purpose, here we will deal with specific T–moves;
see [2, Section 7] for more general cases.

Let f W X !D2 (resp. f 0W X 0!D2 ) be a PALF whose fibers are diffeomorphic to
a surface † (resp. †0 ), and the collection of vanishing cycles are f˛1; : : : ; ˛ng (resp.
f˛0

1
; : : : ; ˛0ng). Suppose that two surfaces † and †0 satisfy the following: First, there

are subsurfaces F �† and F 0 �†0 each of which is decomposed into a 1–handle h

(resp. h0 ) and an annulus whose boundary meets @† (resp. @†0 ) along the four arcs
indicated in Figure 8, left (resp. right). Next, † and †0 are diffeomorphic, and † nF

and †0 nF 0 coincide. Finally, F (resp F 0 ) contains ˛i ; ˛iC1 (resp. ˛0i ; ˛
0
iC1

), and the
other vanishing cycles of f and f 0 lie outside the 1–handles h and h0 and mutually
coincide. Then the transformation T W f $ f 0 is called a T–move. Using Kirby
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{

{
@†

@†
h

˛i˛iC1

@†0

@†0

h0

˛0i˛0
iC1

Figure 8

diagrams, one can check that any T–move preserves the diffeomorphism type of the
total space of a PALF.

The following proposition helps us to detect the difference between Stein structures.

Proposition 3.3 (see [2, Proposition 13]) Let f; f 0W X !D2 be PALFs related by
a single T–move as in Figure 8. Write J and J 0 for Stein structures on X associated
to f and f 0 , respectively. Suppose that vanishing cycles ˛i ; ˛iC1 and ˛0i ; ˛

0
iC1

are
oriented as in Figure 8. Then c1.X;J

0/� c1.X;J /D�2Œ˛�i �, where ˛�i 2 C 2.X / is
the dual element of ˛i 2 C2.X /.

Proof of Theorem 1.1 We will show via T–moves that the coverings defined in the
previous proof, namely pj .N /W Xj .N /!D4 , are the desired ones. We use here the
same notation in the previous section.

Set gj .N / D pr1 ıpj .N /W Xj .N /! D2
1

. Comparing Figure 6 with Figure 8, two
PALFs gj .N / and gjC1.N / are related by a single T–move. Hence so are any two
gj .N / and gj 0.N / by a sequence of T–moves, and Xj .N / and Xj 0.N / are mutually
diffeomorphic.

To see the distinction of Stein structures associated the coverings pj .N /, we show that

c1.Xj .N /;Jj .N //� c1.Xj 0.N /;Jj 0.N //¤ 0

for any j ; j 0 2 f1; : : : ;N g with j < j 0 . It follows from Proposition 3.3 that

c1.Xj .N /;Jj .N //� c1.Xj 0.N /;Jj 0.N //

D

j 0�1X
iDj

�
c1.Xi.N /;Ji.N //� c1.XiC1.N /;JiC1.N //

�
D

j 0�1X
iDj

.�2ŒDi
iC1.N /��/D

j 0�1X
iDj

.�2ŒDi
j 0.N /��/:
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The last equality follows from the canonical identification of D
j�1
j .N / with D

j�1
jC1

.N /.
Thus we conclude that˝

c1.Xj .N /;Jj .N //� c1.Xj 0.N /;Jj 0.N //; Zj 0.N /
˛
D�2.j 0� j /;

where Zj 0.N / is a generator of H2.Xj 0.N /IZ/ defined by (3) in Section 3.1. This
implies that two Stein structures mutually are not homotopic.

The proof tells us that gjC1.N / is obtained from gj .N / by a single T–move, which
raises the following question.

Question 3.4 Let fj W X !D2 (j D 1; 2) be PALFs related by a single T–move. Is
there a braided surface S and branched coverings pj W X ! D4 of the same degree
whose branch sets coincide with S and which satisfy fj D pr1 ıpj ?

3.3 Proof of Corollary 1.2

The boundary of a braided surface S is contained in @D2
1
�D2

2
, and it is the closure

of a braid. Letting U be the core of D2
1
� @D2

2
, we obtain from the product structure

on @D2
1
�D2

2
, an open book decomposition of S3 Š @D4 Š @.D2

1
�D2

2
/ whose page

is a disk and binding is U . This open book supports the standard contact structure �std

on S3 . Thus, we can regard @S as a transverse link in .S3; �std/ by a result of
Bennequin [5].

To distinguish contact structures, we introduce an invariant of them, following [15,
Section 11.3]. Let .M; �/ be a contact 3–manifold with Stein filling .X;J /. Suppose
that c1.�/ is a torsion class. For such .M; �/, define �.�/ to be

.PD.c1.X;J ///
2
� 2�.X /� 3�.X /;

where �.X / and �.X / are the Euler characteristic and the signature of X , respectively.
Note that �.�/ depends only on .M; �/; see [15, Theorem 11.3.4].

Proof of Corollary 1.2 Let L.N /be the boundary of S.N / in the proof of Theorem 1.1.
By the previous argument, L.N / can be seen as a transverse link in .S3; �std/. Let
Mj .N /D @Xj .N /. Then 3–manifolds M1.N /; : : : ;MN .N / are mutually diffeomor-
phic to L.2N; 1/. The covering pj .N /W Xj .N /!D4 restricts to the simple branched
covering of S3 branched along L.N / on the boundary Mj .N /. Set

 j .N /D tAj .N /tBj .N /tC 1
j
.N / � � � tC N�1

j
.N /tD1

j
.N / � � � tDN�1

j
.N / 2M0;2N :
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Through the PALF pr1 ıpj .N /, the cover Mj .N / admits the open book whose page is
diffeomorphic to †0;2N and monodromy is  j .N /. The Stein surface .Xj .N /;Jj .N //

serves as a Stein filling of the contact manifold .Mj .N /; �j .N // compatible with the
open book .†0;2N ;  j .N //.

Now, we compute the invariant �.�j .N //. Since

H 2.Mj .N /IZ/ŠH 2.L.2N; 1/IZ/Š Z2N ;

the Chern class c1.�j .N // is a torsion class, and in particular, 2N �c1.�j .N //D0. From
the proof of Theorem 1.1 in Section 3.1, it follows that PD.c1.Xj .N /;Jj .N /// D

�2.N � j /ŒD.N /�, where D.N / is a small meridian disk to the unknot depicted
in Figure 7 (bottom right). Hence, the class PD.2N � c1.Xj .N /;Jj .N /// lifts to
2.N � j /Zj .N / with respect to the map H2.Xj .N /IZ/!H2.Xj .N /; @Xj .N /IZ/,
which shows that

.PD.c1.Xj .N /;Jj .N ////2 D
1

.2N /2
.2.N � j //2Zj .N /2 D�

2.N � j /2

N
:

Therefore,

�.�j .N //D�
2.N � j /2

N
� 2 � 2� 3 � .�1/

for .Mj .N /; �j .N // and .Xj .N /;Jj .N //. The invariants �.�j .N // for j D1; : : : ;N

are mutually different values, and hence the contact manifolds .Mj .N /; �j .N // are
mutually not contactomorphic, which completes the proof.
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