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Classification of tight contact structures
on small Seifert fibered L–spaces

IRENA MATKOVIČ

We identify tight contact structures on small Seifert fibered L–spaces as exactly
the structures having nonvanishing contact invariant, and classify them by their
induced Spinc structures. The result (in the new case of M.�1I r1; r2; r3/) is based
on the translation between convex surface theory and the tightness criterion of Lisca
and Stipsicz.
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1 Introduction

By small Seifert fibered 3–manifold we mean a Seifert fibration over the sphere S2

with three singular fibers, standardly given as M.e0I r1; r2; r3/, where e0 2 Z and
ri 2Q\ .0; 1/ with r1 � r2 � r3 . For a surgery presentation of this manifold, see the
bottom diagram of Figure 1.

L–spaces (by definition, Heegaard Floer homology lens spaces) among Seifert fibered
manifolds are geometrically characterized by absence of transverse contact structures —
see Lisca and Stipsicz [11, Theorem 1.1] — which is essential for our classification.
The restriction can be simply described in terms of the Seifert constants: L–spaces
are all manifolds with e0 � 0 and with e0 ��3, while for e0 D�1;�2 some explicit
numerical inequalities (see Section 4.4) are imposed on the triple .r1; r2; r3/.

Problem to classify tight contact structures up to contact isotopy is usually asked for
prime atoroidal manifolds; the first because tight contact structures respect connected
sum decomposition of 3–manifolds, the second because an embedded essential torus
is a known source of infinitely many nonisotopic tight structures. Small Seifert fibered
manifolds, beside hyperbolic ones, share these properties. On the other hand, the
existence question for Seifert manifolds has been completely answered by Lisca and
Stipsicz [13]: only the ones which belong to a one-parameter family of .2n�1/–
surgeries on the torus knot T2;2nC1 — equivalently, which are orientation-preserving
diffeomorphic to M

�
�1I 1

2
; n
2nC1

; 1
2nC3

�
for some n 2 N — do not admit any tight
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structure. Classification then arises from the comparison of bounds: the lower bound is
obtained constructively by contact surgery complemented with the use of invariants,
and for the upper bound the convex surface theory is applied.

The main invariant in the classification of tight Seifert fibered manifolds is the maximal
twisting number (that is, the difference between the contact framing and the fibration
framing, maximized in the smooth isotopy class of a regular fiber) — applied in convex
surface theory, it allows one to give upper bounds on the number of tight structures. By
the results of Wu [20] all tight contact structures when e0 ��2 have negative maximal
twisting, while for e0 � 0 they are all zero-twisting; in the work of Ghiggini [3]
the negative maximal twisting is further related to the existence of transverse contact
structures. This, in the case of L–spaces, results in a simple division: maximal twisting
is equal to zero when e0 � �1, and has value �1 when e0 � �2. The fixed maximal
twisting of a regular fiber in all the cases gives some unique contact structure on the
complement of singular fibers relative to boundary, pushing the classification into
tubular neighborhoods of the three singular fibers.

The classification whenever e0 ¤�1 is then finished by Legendrian surgery construc-
tion — the diagrams are simply given by Legendrianization of the standard presentation
of a Seifert manifold; this has been done by Wu [20] for e0 ¤�2;�1; 0, by Ghiggini,
Lisca and Stipsicz [4] for e0 � 0, and by Ghiggini [3] for L–spaces with e0 D�2. In
particular, all these tight structures are Stein fillable, and are classified by the first Chern
class of their fillings (according to Lisca and Matić [10]), equivalently by their Spinc

structure, or closer to the present context by their contact Ozsváth–Szabó invariants
(according to Plamenevskaya [17]).

The remaining case of M.�1I r1; r2; r3/ has been partly addressed already by Ghiggini,
Lisca and Stipsicz [5]. Here, the constructive side needs to be attacked differently
because of the existence of nonfillable tight structures. Invoking that all tight structures
are zero-twisting [3], Lisca and Stipsicz gave a uniform description of all possible tight
structures by certain surgery diagrams.

Proposition 1.1 [11, Proposition 6.1] Each tight contact structure with maximal
twisting equal to zero on the small Seifert fibered space M.�1I r1; r2; r3/ is given by
one of the surgery presentations of Figure 1, top left.

This reduces the classification problem to the recognition of tightness and isotopies
between the finite collection of structures, listed by the associated Thurston–Bennequin
and rotation numbers.
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Figure 1: Contact structures on M.�1I r1; r2; r3/ , followed by the
smoothened surgery diagram of the underlying 3–manifold and its standard
presentation; when referring to them as 4–manifolds, we assume inverse
slam-dunks to be done.

The underlying topological question, classification of oriented 2–plane fields � 2„
up to homotopy, is given by their induced Spinc structure t� together with the 3–
dimensional invariant d3.�/. (Recall that �0.„/ can be identified with homotopy
classes of maps ŒM; S2�, which can, through Pontryagin–Thom construction, be given
by framed links in M ; here a link up to oriented cobordism represents the class in
H1.M IZ/, equivalently t� , while the framing corresponds to the Hopf invariant as a
3–dimensional obstruction for homotopies between plane fields.)

To detect tightness, we basically use the Ozsváth–Szabó contact invariant [16], implicitly
expecting all tight structures to have nonvanishing one. But we address it indirectly, by
showing the sufficient condition of Lisca and Stipsicz.

Theorem 1.2 [11, Theorem 1.2] If for a contact structure � of Figure 1 on Seifert
fibered L–space M DM.�1I r1; r2; r3/ the equality d3.�/D d.M; t�/ holds, then its
contact invariant c.M; �/ 2 �HF.�M; t�/ does not vanish.

Then, to confirm the overtwistedness of all undetected structures and to obtain the
isotopies between tight ones, as always, convex surface theory is applied.

Algebraic & Geometric Topology, Volume 18 (2018)



114 Irena Matkovič

The observations accumulate in the confirmation of Conjecture 4.7 of Stipsicz [18].

Theorem 1.3 Let M be a small Seifert fibered L–space of the form M.�1I r1; r2; r3/.
Then a contact structure � on M is tight if and only if it is given by a contact surgery
presentation of Figure 1 and its 3–dimensional invariant d3.�/ is equal to the d –
invariant d.M; t�/. Moreover, two tight structures �1 and �2 on M are contact
isotopic if and only if their induced Spinc structures t�1 and t�2 are isomorphic.

Expressed in terms of the Ozsváth–Szabó contact invariant, all tight structures on small
Seifert fibered L–spaces satisfy the following:

Corollary 1.4 Let � be a contact structure on a small Seifert fibered L–space M D
M.e0I r1; r2; r3/. Then � is tight if and only if its contact invariant c.�/ 2 �HF.�M; t�/
is nonzero. Moreover, two tight structures �1 and �2 are isotopic if and only if their
contact invariants c.�1/ and c.�2/ coincide, if and only if their induced Spinc structures
t�1 and t�2 are isomorphic.

Proof If there are less than three singular fibers, the manifold considered is a lens
space. Here as well as when e0 ¤�1, all tight structures are Stein fillable according
to previous results: by Eliashberg [2] for the 3–sphere, by Honda [7] for the lens
spaces, and due to Wu [20], Ghiggini, Lisca and Stipsicz [4] and Ghiggini [3] in the
small Seifert fibered cases. By that and Theorem 1.3 above, a tight structure on any
considered M has nonvanishing contact invariant.

The fillable structures are classified by the contact invariant due to Plamenevskaya [17].
In fact, for L–spaces the nontrivial contact invariant of � is the unique generator of�HF.�M; t�/, hence � is the only tight representative of its induced Spinc structure.
Its 3–dimensional invariant d3.�/ is specified as the absolute grading of the contact
invariant, which equals d.M; t�/.

Our result reduces the classification problem to a well-understood computation of
invariants. Although our method does not result in the number of tight structures on a
given small Seifert manifold, the problem is translated to a completely combinatorial (so
not geometric) count. Indeed, in any special case the number can be easily determined
by, say, a computer calculation (as here both d3 and d are computable, and the Spinc

structure can be given as an element of H1 ). What is more, since there is a surgery
presentation of considered contact manifolds, we have a very explicit description of
tight structures.
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Remark 1.5 In contrast to the cases with e0 ¤ �1, not all tight structures on
M.�1I r1; r2; r3/ are fillable. Whenever r1 C r2 < 1, in the language of Lecuona
and Lisca [9] for manifolds of special type, the existence of Stein filling is even
topologically obstructed. And as all contact structures of the form given by Figure 1
are known to be supported by open books with planar pages Lisca and Stipsicz [11],
the theorem of Wendl [19] implies they are not fillable at all. Most manifolds with
r1C r2 � 1 admit Stein fillable as well as nonfillable tight structures, as specified in
Matkovič [14].

Overview

In Section 2 we explain the structure of our proof of Theorem 1.3, and review main
concepts behind it. Then in Section 3 we illustrate the suggested approach by reproving
the classification on Mp WD M

�
�1I 1

2
; 1
2
; 1
p

�
; see Ghiggini, Lisca and Stipsicz [5].

Technical details are given in the last two sections. In Section 4 we establish paths of
characteristic covectors separating the presentations into classes with the same contact
invariant. Finally, in Section 5, with the help of convex surface theory, the presentations
of the same class are realized to be contact isotopic, more, the failure of the tightness
criterion is related to overtwistedness.

Acknowledgement I am indebted to András Stipsicz for his insightful mentoring.

2 Outline of the proof

Following the classification scheme given in the Introduction, we need a construction, a
method to detect tightness (Section 2.1), and finally a proof that it is complete (that is, a
way to recognize overtwistedness and isotopies between possibly different presentations
of the same contact structure; Section 2.2).

To construct tight structures on L–spaces of the form M.�1I r1; r2; r3/, by Proposition
1.1 the contact surgery presentations of Figure 1 suffice. This gives a finite collection
of contact structures, on which we need to run the following two-step analysis.

2.1 Detect tightness

In order to detect tightness we examine the equality between the 3–dimensional
homotopy invariant d3 of the contact structure and the d –invariant of the induced
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Spinc structure (according to Theorem 1.2). The advantage of this condition over the
Ozsváth–Szabó contact invariant is that these two invariants are easily computable.
They can be described in terms of characteristic covectors on plumbings bounded
by ˙M, which brings them into the same picture (as presented below).

We exploit two 4–manifolds, naturally arising as fillings of our M, one given by the
smoothened surgery diagram (Figure 1, top right) — call it X — and another given by
standard smooth presentation of Seifert fibration (Figure 1, bottom) — say W DW�
as we can think of it as a simple plumbing along the graph � . They are related by
X #CP 2ŠW #2CP 2 . Further, the plumbing description of �M will play the central
role in what follows. Call it W� 0 , where � 0 stands for the plumbing graph dual to � .

Now, the 3–dimensional invariant of the contact bundle � can be directly read off from
the surgery presentation d3.�/D 1

4
.c2.X; J /� 3�.X/� 2b2.X//C #.C1–surgeries/

[1, Corollary 3.6], where c.X; J / stands for the characteristic element, determined
by the �–induced almost complex structure J of Xnfa point in each C1–handleg.
While the d –invariant corresponds to the reversely oriented �M (which bounds a
negative-definite plumbing) together with an induced Spinc structure t� . It is realized
by the characteristic 2–cohomology class, which gives a Spinc cobordism from S3 to
.�M; t�/ whose associated map in Heegaard Floer homology decreases the absolute
grading the least. These are recognized by full paths [15, Section 3.1]. To establish
some terminology let us recollect:

Full path Assume that � 0 is a negative-definite plumbing with at most one bad
vertex. A t –tuple .K1; : : : ; Kt / of characteristic covectors on W� 0 forms a full path
if its elements are connected by the following 2PD steps: for some vertex v with
hKi ; vi D �v � v , the vector KiC1 is given by KiC1 DKi C 2PD.v/. (In particular,
all its elements induce the same Spinc structure on the boundary @W� 0 D �M as
they differ only by twice generators of H 2.W� 0 ;�M IZ/. Further, their (common)
degree can be computed by the formula 1

4
.K2i Cj�

0j/.) The path either ends at some
characteristic vector K which exceeds the bounds v � v � hKi ; vi � �v � v at some
v 2 � 0 — we will say that it drops out — or the path reaches the proper ends in the
initial vector K1 satisfying v �vC2� hK1; vi � �v �v for all v 2 � 0 and the terminal
vector Kt satisfying v � v � hKt ; vi � �v � v� 2 for all v 2 � 0 — such an ending full
path according to [15] determines a nontrivial element of �HF.�M/.

Embedding into blown-up CP2 According to [13, Lemma 4.2] we can embed M
as a hypersurface in a closed oriented 4–manifold R such that Rn�.M/DW� [W� 0 .
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The configuration of both intersection graphs � and � 0 is obtained by blowing up the
initial lines l1; l2; l3 � CP 2 with l1 \ l2 \ l3 D fpg, and l � CP 2 with p … l (see
Figure 2).

p
l2

l3

l1

l

!

0
�1 C1

0

0

�CP 2 # CP 2 ! � � � ! �
�1

�1

�1
� 0

Figure 2: Construction of the 4–manifold RDCP 2 #nCP 2 ; at the end, the
two plumbings are glued together along the exceptional spheres from the last
blow-up of each singular fiber, and (not shown) all regular fibers.

Denote standard generators of H2.RIZ/ as follows: h .h2 D 1/ for the initial
CP 1 �CP 2 and ei .e2i D�1/ for exceptional curves. Then the above description of
the embedding W� [W� 0 ,!R gives:

� fz D center of �g 7! e1 ;

� fz0 D center of � 0g 7! h� e2� e3� e4 ;

� fxi D first vertex of the leg Li � �g 7! h� e1� eiC1�
P
ej for i D 1; 2; 3;

� fv vertex, v ¤ z; z0; xig 7! ej �
P
ek , for example

fx0i D first vertex of the dual leg L0i � �
0
g 7! eiC1�

X
ek for i D 1; 2; 3:

We will refer to � as the manifold side and � 0 as the dual side. Throughout, we will
follow the convention that primed notation belongs to the dual graph: apart from the
special vertices denoted above, let vij be the j th vertex of Li and vi

0

j the j th vertex
of L0i .

Tightness criterion We have d3 given by a characteristic covector on W� , d given
by a characteristic covector on W� 0 and, what is more, we can glue these two plumbings
along a rational homology sphere M, giving a blown-up CP 2 (called R). Having a
characteristic covector c on R which agrees with the ones providing d3 and d on W�
and W� 0 , respectively, the equality d3.�/D d.M I t�/ can be rewritten as c2 D �.R/.
This can be understood as a geometrization of Theorem 1.2.

Theorem 2.1 [13, Theorem 3.3] Let M DM.�1I r1; r2; r3/ be an L–space. Then
a sufficient condition for a contact structure � on M to be tight (even for c.M; �/¤ 0)
is in the existence of a characteristic cohomology class c 2H 2.RIZ/ such that:
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(i) d3.�/ D
1
4
..cjW� /

2 � 3�.W�/� 2b2.W�//C 1, that is, cjW� corresponds to
c.X; J /.

(ii) cjW�0 belongs to an ending full path on W� 0 , that is, gives rise to a class of�HF.�M; t�/.

(iii) c2 D �.R/.

.1/

�1

.rot20�1/

�a20 D tb20

.rot10�1/

�a10 D tb10

.rot30�1/

�a30 D tb30

�a11 D tb11�1

.rot11/

�a21 D tb21�1

.rot21/

�a31 D tb31�1

.rot31/

�a1
k1
D tb1k1 �1

.rot1
k1
/

�a2
k2
D tb2k2 �1

.rot2
k2
/

�a3
k3
D tb3k3 �1

.rot3
k3
/

:::

:::

:::

�a3
0

k0
3

�a1
0

k0
1

�a2
0

k0
2

�a3
0

0

�a2
0

0

�a1
0

0

�2

:::

:::

:::

z D e1;

x1 D h� e1� e2�
X

ei � � � ;

x2 D h� e1� e3�
X

ei � � � ;

x3 D h� e1� e4�
X

ei � � � ;

z0 D h� e2� e3� e4;

x01 D e2�
X

ei � � � ;

x02 D e3�
X

ei � � � ;

x03 D e4�
X

ei � � � ;

Figure 3: Plumbing graph � (left) and its dual � 0 (right) with denoted self-
intersections and evaluations of characteristic covector c , . � /Dhc; vi , on the
manifold side; the central and the first vertices on legs are given in generating
classes of H2.RIZ/ .

For a given surgery presentation, the conditions read as follows (see Figure 3):

(i) c on W� is determined by c.X; J /, on generators of H2.X/ evaluated as
rotation numbers (central blow-up decreases all the (neighboring) values by 1).

(ii) This is to be checked given the constraints from (i).

(iii) We can give c as PD.c/D ˛hC
P
˛iei , where ˛; ˛i 2 f˙1g, by construction

fulfilling the equality c2 D �.R/.

Technically speaking, given a tuple .cv/v2� of c–evaluations .cv/D hc; vi as in (i),
we list all possible ˙1 distributions in the expression PD.c/ of (iii), and calculate
corresponding values on � 0 . We know that these different � 0–evaluations are, for
each given surgery presentation, only different representatives of the same connected
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component of full paths. We continue these paths towards their ends, so that we connect
to them all the characteristic covectors which can be obtained by allowed 2PD steps.
Taking all .cv/–tuples, this results in the separation of the characteristic lattice into
components; denote them by P� according to the contact structure � to which they
belong. By abuse of notation, we call P� a full path; we say that P� drops out or
properly ends if any (hence, every) path in the component has this property.

In this language, Theorem 1.3 takes the following working form:

Theorem 2.2 The contact structure � on M.�1I r1; r2; r3/ given by surgery diagram
is tight if and only if its full path P� properly ends in the initial and terminal vector.
Two such contact structures �1 and �2 are isotopic if and only if their paths P�1 and
P�2 meet (hence, coincide).

2.2 Prove overtwistedness and describe contact isotopies

Finally, to close our classification we need that the zero elements (drop-outs) correspond
to overtwistedness, and for the second part of Theorem 1.3 (Theorem 2.2) that elements
giving the same �HF.M/–generator (sharing the same path) are actually contact isotopic.

Here, convex surface theory comes in. We need to translate contact surgeries back into
convex decomposition. Natural convex decomposition of the manifold M separates
the three singular tori from the rest of the manifold. Then the coefficients in the
continued fraction expansions of the three surgeries, along with the chosen stabilizations,
determine basic slice decompositions of the three tori.

Contact surgery Contact surgery in addition to ordinary surgery prescribes for the
contact structure to be preserved in the complement of a tubular neighborhood of
the core link, while the extension to glued-up tori needs to be tight. The extended
contact structure is determined by the boundary slope [7, Theorem 2.3], given by the
surgery coefficient. Contact surgery diagrams [1] encode a basic slice decomposition
of the glued-up solid torus. The slope uniquely determines continued fraction blocks.
Concretely, writing out the continued fraction expansion of the surgery coefficient

�
1

ri
D�ai0�

1

: : : � 1

�ai
ki

D Œai0; : : : ; a
i
ki
�

(we use the convention of [5] with aij � 2), continued fraction blocks are toric annuli in
the layering of the solid torus with boundary slope Œai

ki
; : : : ; ai0�, cut out by pairs of tori

of slopes Œai
ki
; : : : ; aijC1�1� and Œai

ki
; : : : ; aij �1� (the outermost being Œai

ki
; : : : ; ai0�,

Algebraic & Geometric Topology, Volume 18 (2018)



120 Irena Matkovič

and the innermost �1). In a surgery diagram, they are represented in a chain of pushed-
off knots with appropriate integral surgery coefficients (after turning into ˙1 surgeries,
captured by Thurston–Bennequin invariants). The remaining ambiguity in the signs
of the basic slices within each continued fraction block is reflected in the choice of
stabilizations of the corresponding Legendrian knot (equivalently their differences as
their total number is determined by the surgery coefficient), so given by its rotation
number. In the translation, positive and negative basic slices in the decomposition of a
continued fraction block correspond to positive and negative stabilizations (down- and
up-cusps) of corresponding Legendrian knot. The loss of basic slice ordering in the
transition is explained by the shuffling property [7, Lemma 4.14] of basic slices within
a single block.

What we need is to relate steps in the full path with appropriate state traversals, and
drop-outs to nontight basic slice configurations.

In other words, we have set up two ways to describe rotation numbers. Provided the
surgery coefficient is fixed, they can be equally given by either the number of negative
basic slices (up-cusps) or the number of negative signs on the generators forming the
corresponding part of the dual leg. Then the nice thing — to be shown — is that the
full path connections reflect the known behavior of basic slices.

3 First example

We illustrate our strategy on small Seifert fibered L–spaces Mp WDM
�
�1I 1

2
; 1
2
; 1
p

�
.

The classification on these manifolds was first obtained by Ghiggini, Lisca and Stipsicz
in [5]; wherever applicable, we use their notation. First we describe tight structures on
Mp using Theorem 1.3, then we prove Theorem 1.3 in this special case.

Claim 3.1 The manifold Mp admits exactly three tight contact structures up to isotopy.

The finite collection of contact structures, given by Figure 1, can be encoded in the
following table of invariants:

surgery coefficient tb rot.j rot j � � tb�1/

+1 �1 0
C1 �1 0

�1 �2 rot1 2 f�1; 1g
�1 �2 rot2 2 f�1; 1g
�1 �p rot3 2 f�pC 1;�pC 3; : : : ; p� 1g
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As an application of the theorem, the tightness and isotopies can be recognized solely
from the induced Spinc structures and the two invariants. In our case these are as
follows:

d3.�/D
1
4
.c2.X; J /� 3�.X/� 2b2.X//C q

D
1
4
..0; 0; rot1; rot2; rot3/Q�1X .0; 0; rot1; rot2; rot3/T � 3 � .�1/� 2 � 5/C 2:

So, for mixed .rot1; rot2/ D .˙1;�1/, the d3 is always zero, as for .rot1; rot2/ D
.˙1;˙1/ it runs through the values

˚
1
4
.2�p/; : : : ; 1

4
.�2C 3p/

	
by the step ˙1 as

rot3 increases.

There are exactly four Spinc structures for each p (as jH1.MpIZ/j D 4):

H1.�MpIZ/D

*
�;�a; �b; �c

ˇ̌̌̌ 0BB@
1 1 1 1

1 p 0 0

1 0 2 0

1 0 0 2

1CCA
0BB@
�

�a
�b
�c

1CCAD 0
+

D

�
h�bI 4�b D 0i Š Z4 for p odd;
h�b; �c I 2�b D 2�c D 0i Š Z2˚Z2 for p even:

They can be given by the set ft1 D t4C�b; t2 D t4C�c ; t3 D t4C�a; t4g. And
corresponding four characteristic 2–cohomology classes, realizing d.�Mp; ti /, are on
the generators of H2.W� 0/ given by

.0/ .2/

.0/

.0/ .0/
:::

K1

.0/ .0/

.2/

.0/ .0/
:::

K2

.0/ .0/

.0/

.0/ .0/ .2/
:::

K3

.0/ .0/

.0/

.0/ .0/
:::

K4

Therefore,

d.�Mp; ti /Dmax
˚
1
4
.c1.s/

2
Cj� 0j/ W s 2 Spinc.W� 0/; sj�Mp D ti

	
D

8̂<̂
:
0 if i D 1; 2;
1
4
.p� 2/ if i D 3;
1
4
.pC 2/ if i D 4:

Applying Theorem 1.3, the above computations already give that for distinct rot1; rot2
all structures are tight, and belong to two different isotopy classes, while for equal rot1
and rot2 the only tight triples are .˙1;˙1;�.p� 1//, and they are isotopic to each
other. This proves Claim 3.1.
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Claim 3.2 Theorem 1.3 holds for Mp .

We show this following the two-step analysis described in Section 2.

3.1 Detect tightness

The condition we use to recognize tight structures among all .Mp; �/ presented by
surgery diagrams of Figure 1 is an existence of the characteristic covector c as in
Theorem 2.1.

We give c as PD.c/D˛hC
P
˛iei , where ˛; ˛i 2f˙1g, and such that .ci /Dhc; xi iD

roti �1. Concretely, the c–evaluations on � belong to one of the following:

.1/

�1

.�2/ or .0/

�2

.�2/ or .0/

�2

.�p/ or .�pC 2/ or . . . or .p� 2/
�p

z D e1;

x1 D h� e1� e2� e5;

x2 D h� e1� e3� e6;

x3 D h� e1� e4�
pC5P
7

ei :

Then, for each such .˛; ˛i / we compute cj� 0 , and check how its full path ends:

�2 �2 �2

�2

�2

�2

:::

z0 D h� e2� e3� e4;

x01 D e2� e5;

x02 D e3� e6;

x03 D e4� e7; e7� e8; : : : ; epC4� epC5:

In Tables 1 and 2 we tabulate all possible .˛; ˛i / for each given triple .c1; c2; c3/. We
will make explicit how some cj� 0 drop out, and connect the others to the right initial
and terminal vector. Also, we will emphasize the appearance of the same characteristic
covectors cj� 0 in some pairs of c–triples.

First observe that (on the level of paths) the order of signs on generators of each
leg is unimportant, as they can be shuffled using ˙2PD.v0/–steps for hc; v0i D ˙2.
Then there are essentially only two different sign-vectors .˛; ˛i / for a chosen c–
triple, differing in the sign of h. The two are connected by ˙2PD.z0/, applied when
hc; z0i D ˙2. Notice that all these different sign configurations belong to the same
surgery presentation.

In the light of the previous paragraph, we record only the number of positive and negative
signs on exceptional generators of each leg. Write fmC; n�gi when there are m

Algebraic & Geometric Topology, Volume 18 (2018)



Classification of tight contact structures on small Seifert fibered L–spaces 123

c3
.�2;�2; c3/ .0; 0; c3/

.h�/ .hC/ .h�/ .hC/

f1C; 1�g1 f0C; 2�g1 f2C; 0�g1 f1C; 1�g1
f1C; 1�g2 f0C; 2�g2 f2C; 0�g2 f1C; 1�g2

p� 2 fpC; 0�g3 f.p� 1/C; 1�g3 fpC; 0�g3 f.p� 1/C; 1�g3
p� 4 f.p� 1/C; 1�g3 f.p� 2/C; 2�g3 f.p� 1/C; 1�g3 f.p� 2/C; 2�g3
:::

:::
:::

:::
:::

�p f1C; .p� 1/�g3 f0C; p�g3 f1C; .p� 1/�g3 f0C; p�g3

Table 1

positive and n negative generators of Li (counted without h and e1 ); not to be confused
with vectors of signs which record exact sign configuration on corresponding generators.
In addition, let .hC/.c1;c2;c3/ and .h�/.c1;c2;c3/ denote any of the sign configurations
which belongs to .c1; c2; c3/ and has positive and negative sign, respectively, on h.
We look separately at the cases with the same, and later with distinct .c1; c2/.

For .�2;�2; c3/ with c32fp�4; : : : ;�pg, there exists a configuration .h; e2; e3; e4/D
.�;�;�;�/ which drops out: hc; z0i D h�h� e2 � e3 � e4; h� e2 � e3 � e4i D �4.
Similarly, .0; 0; c3/ with c3 2 fp � 2; : : : ;�p C 2g drops out at .h; e2; e3; e4/ D
.C;C;C;C/. Therefore, the paths possibly end only for the triples .�2;�2;p� 2/
and .0; 0;�p/.

Furthermore, we observe that .�2;�2; p� 2/ and .0; 0;�p/ belong to the same full
path because the configurations .h�/.�2;�2;p�2/ and .hC/.0;0;�p/ give the same char-
acteristic vector (zeroes on the third leg, and .h; e4/W .�;C/$ .C;�/ with the same
evaluation on z0D h� e2� e3� e4 ). This proves also that their (common) path indeed
ends, namely at K3 — given by .h; e4; e7; : : : ; epC4; epC5/ D .�;�;�; : : : ;�;C/

for .0; 0;�p/— on the initial side and at �K3 — as .h; e4; e7; : : : ; epC4; epC5/ D
.C;C;C; : : : ;C;�/ for .�2;�2; p� 2/ — on the terminal.

Sign configurations adapted to any c–triple with distinct c1 and c2 build a connected
part of (one of the two) full paths. Indeed, let us see how these parts patch together
into a path. For k 2 f1; : : : ; p� 1g, we have

.hC/.�2;0;p�2k/ D
cj�0

.h�/.0;�2;p�2k�2/ �
cj�
.hC/.0;�2;p�2k�2/

D
cj�0

.h�/.�2;0;p�2k�4/;
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c3
.�2; 0; c3/ .0;�2; c3/

.h�/ .hC/ .h�/ .hC/

f1C; 1�g1 f0C; 2�g1 f2C; 0�g1 f1C; 1�g1
f2C; 0�g2 f1C; 1�g2 f1C; 1�g2 f0C; 2�g2

p� 2 fpC; 0�g3 f.p� 1/C; 1�g3 fpC; 0�g3 f.p� 1/C; 1�g3
p� 4 f.p� 1/C; 1�g3 f.p� 2/C; 2�g3 f.p� 1/C; 1�g3 f.p� 2/C; 2�g3
:::

:::
:::

:::
:::

�p f1C; .p� 1/�g3 f0C; p�g3 f1C; .p� 1/�g3 f0C; p�g3

Table 2

where the first and the last equality denote the same characteristic covector on � 0 , while
the middle equivalence means (different sign distributions of) the same presentation.
This separates all characteristic vectors arising from presentations with mixed .c1; c2/
into two full paths. One starting at K1 — as �h�e2Ce5Ce3Ce6Ce4Ce7C� � �CepC5
for .�2; 0; p�2/ — and ending at �K2 — as Ch�e2�e5Ce3�e6�e4�e7�� � ��epC5
for .�2; 0;�p/— or �K1 — as ChC e2 � e5 � e3 � e6 � e4 � e7 � � � � � epC5 for
.0;�2;�p/. The other starting at K2 — as �hCe2Ce5�e3Ce6Ce4Ce7C� � �CepC5
for .0;�2; p�2/ — and ending at �K1 — as ChCe2�e5�e3�e6�e4�e7�� � ��epC5
for .0;�2;�p/— or �K2 — as Ch� e2 � e5C e3 � e6 � e4 � e7 � � � � � epC5 for
.�2; 0;�p/. The two terminal possibilities depend on the parity of p (odd or even).

In conclusion, translated back into rotation numbers we have obtained the following
paths of tight structures, each sharing the same invariants:

� .�1;�1; p� 1/ and .1; 1;�pC 1/ with Spinc D t4C�a and d3 D
2�p
4

.

� .�1; 1; p�1/ and .1;�1; p�3/ and .�1; 1; p�5/ and . . . with SpincD t4C�b

and d3 D 0.

� .1;�1; p�1/ and .�1; 1; p�3/ and .1;�1; p�5/ and . . . with SpincD t4C�c

and d3 D 0.

3.2 Prove overtwistedness and describe contact isotopies

In our (simplest possible) cases with boundary slopes 1
k

for k 2 Z, there is a single
continued fraction block for each special fiber. Contact surgery presents a direct
translation between positive and negative stabilizations (down- and up-cusps) of core
Legendrian unknots and positive and negative basic slices in the decomposition of
a continued fraction block with slopes �1 and �k . The generators forming the
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corresponding leg (and by that, the dual vertices) in the plumbings above can be
thought of as another way of layering solid torus into k slices.

We need contact topological interpretation for the steps in full paths.

First, the unimportance of sign permutations in the legs coincide with the shuffling
of basic slices within a single continued fraction block [7, Lemma 4.14]. Moreover,
Section 6 of [5] provides sufficient isotopy moves between contact structures presented
by different surgery diagrams. Let us spell this out. Since the moves in [5] are given
by the matrices of signs whose coefficients are qij , the number of positive basic slices
in the j th continued fraction block of the i th leg — in our case only .q10 ; q

2
0 ; q

3
0/—

we rewrite the previously obtained paths of tight structures in this language, changing
rotation numbers to the qi0 :

� .0; 0; p� 1/ and .1; 1; 0/.

� .0; 1; p� 1/ and .1; 0; p� 2/ and .0; 1; p� 3/ and . . . .

� .1; 0; p� 1/ and .0; 1; p� 2/ and .1; 0; p� 3/ and . . . .

Now we notice that the conditions which caused a full path to drop out, and so
prevented our tightness criterion from working, exactly agree with the condition for
which overtwistedness can be proved. And, finally, there are contact isotopies between
pairs of surgery presentations which share the same path. Let us compare.

Proposition 3.3 [5, Propositions 6.3, 6.1 and 6.4] Let a contact structure on Mp be
given by .q10 ; q

2
0 ; q

3
0/ as above. Then the triples .1; 1; q30/ with q30 ¤ 0 and .0; 0; q30/

with q30 ¤ p� 1 present overtwisted structures. Between other presentations, there are
the following contact isotopies:

.1; 0; q30/'

�
.0; 1; q30 C 1/ when q30 < p� 1;
.0; 1; q30 � 1/ when q30 > 0;

and .1; 1; 0/' .0; 0; p� 1/:

Problems in general

The examples shown above are special in several ways. In general, it can happen that the
full path associated to some presentation .cv/v2� drops out, although all characteristic
covectors computed from .˛; ˛i /–configurations which restrict to .cv/v2� satisfy the
bounds v � v � hc; vi � �v � v for all v 2 � 0 . Also, not all the steps in a full path
need to be presentable, that is, arising from some tuple of rotation numbers. (For
examples of such paths, look at the two “applications” in [13].) That said, we need to
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find out how the (subsequent) presentations of the same path are related when neither
of their characteristic covectors on � 0 coincides (Corollary 4.14). Finally, we need
new conditions for overtwistedness (Proposition 5.1) and isotopies (Proposition 5.2),
which will explain such behavior of full paths.

4 Characteristic covectors, tightness, and full paths

In Section 2.1, we have associated characteristic covectors on � 0 to any given surgery
presentation. Here we investigate their full paths. Namely, how these paths end, and
which presentations share the same path. In order to do so, we first observe that certain
2PD–steps do not change the presentation (Section 4.1). Then we explore the only
remaining central step — concretely, we explain it on the level of homology generators
(Section 4.2). In the following subsections, we are then concerned with the associated
change in cj� , whether this new cj� comes from some presentation and when it leads
to the end of the path (Section 4.3). Moreover, we describe (in Section 4.4) the first
presentable cj� (or the end of path) following any possible starting point.

Notation 4.1 We describe a characteristic 2–cohomology class c 2 H 2.RIZ/ as
PD.c/ D ˛hC

P
˛iei , where ˛; ˛i 2 f˙1g. In the following, vectors of signs cor-

respond to parts of the coefficient-vector .˛; ˛i /, covering generators of (usually) a
single �– or � 0–vertex.

We often call a single vertex by its self-intersection. When a vertex is written out in
generating classes, these are called starting, middle and last, according to the position;
explicitly, if v D es �

Pl
jDsC1 ej , then es is starting, el is last, and all others are

middle. On legs, the starting generator of a vertex and the last generator of the previous
vertex coincide.

Presentability will be assigned to dual vectors and it means that the corresponding
manifold side arises from a contact presentation, that is, the manifold-side evaluations
can be expressed by rotation numbers as in Figure 3.

Let our starting point be a characteristic vector which comes from a contact presentation,
and which satisfies v � v � hc; vi � �v � v (otherwise we have already dropped out).
We will follow the path only in one direction — towards the initial vector. Recall that
the corresponding step is given by �2PD.v/ for some v with hc; vi D v � v , and the
vector we aim at satisfies v � vC 2 � hc; vi � �v � v . Everything could be verbatim
repeated with opposite signs in the direction of the terminal vector.
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4.1 Steps on legs

First, we observe that steps taken for v ¤ z0 never change the presentation considered,
nor does the path drop out at any of these vertices. (To the remaining case v D z0 we
dedicate Section 4.2.)

Lemma 4.2 Characteristic vectors c and c � 2PD.v/ for v ¤ z0 with hc; vi D v � v
always belong to the same surgery presentation.

Proof As these vertices (v 2 � 0 and v ¤ z0 ) are described by v D ei �
P
ej , the

evaluation of the characteristic covector c reaches the self-intersection when presenting
generators all admit the same sign as in the vertex. So �2PD.v/ changes their signs
from .C� � � � �/ to .�C � � �C/. But this change has no effect on the evaluation of c
on any of the � –vertices.

Indeed, from the way how the exceptional classes are chosen we see that each ej starts
some new vertex, either one on the manifold side or one on the dual side. So the
starting and the last generator of v are nonstarting on the manifold side, while all its
middle generators are starting (and last) generators of manifold vertices. Hence, the
restriction of c to the generators of v evaluates trivially on � , that is, hcjv; �i D 0,
and is therefore independent of sign.

Since these (manifold-side) evaluations directly correspond to rotation numbers, with
neither of these moves do we switch between presentations.

Lemma 4.3 All drop-outs occur in the center z0 D h� e2� e3� e4 of the dual star.

Proof We notice that all the vertices in legs of � 0 are formed by exactly as many
generators (the ej ) as the value of their self-intersections. Hence, there is no way to
drop out at any of them. So the only possible drop-out happens at z0 when the signs
of generators h and e2 , e3 and e4 are all the same — .CCCC/ or .����/ — and
hc; z0i D ˙4.

In sum, we may assume the initial condition v � vC 2 � hc; vi � �v � v is violated
only at the central vertex z0 — such a vector can be easily reached by finishing all
possible �2PD–steps on legs, which either sweep out the problem or transfer it to
the center. (As each �2PD–step pushes the problem to the neighboring vertices, we
are successively completing the steps, as long as we do not run into a vertex v which
despite of the �2–change does not evaluate as v �v , or we reach the end of the leg.) In
particular, neither noncentral vertex is of the form .C� � � � �/.
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4.2 Central step

After the above reduction, covector c either drops out at z0 , presents the initial
vector or it reaches self-intersection at z0 . For the latter, the generators forming
z0 D h� e2 � e3 � e4 take values either .C���/ or .�C��/, up to reordering the
legs. The �2PD–step taken next changes exactly these generators by twice .�CCC/.
In the first case we stay in the same presentation, as the step only switches the signs in
the pairs .h; ei / for i D 2; 3; 4, preserving the evaluation on all the influenced manifold
vertices, x1 , x2 and x3 . In the second case, we can (on the level of generators)
instead of simply adding �2z0 to the given description of PD.c/, first change the sign
configuration, without changing the dual cj� 0 and with controlled (seen later) change
on the manifold side cj� , and then do the �2PD–step as above, not influencing the
manifold side.

Algorithm 4.4 (central step or turn) Whenever we arrive, after possibly renumbering
the legs, at c with .h; e2; e3; e4/ D .�C��/ and hc; vi ¤ v � v for all v ¤ z0 , the
next step in the full path is given by the characteristic covector Nc as follows. Denoting
vertices of L01 by fv00; : : : ; v

0
k0
1
g and their generators as v0i D ei1 �

Pli
jD2 e

i
j with

ei
li
D eiC11 and e01 D e2 , define PD. Nc/D PD.c/C2h�2e2 and modify it as follows:

for i 2 f0; : : : ; k01g if h Nc; ei1i ¤ hc; e
i
1i W

for j 2 f2; : : : ; lig if hc; eij i D C1 W
PD. Nc/D PD.c/� 2eij
endfor

if h Nc; ei1i D hc; e
i
1i W

stop

Then add �2z0 to the so-obtained sign configuration PD. Nc/.

To prove well-definedness, we need that this reformulation always exists (the inner
loop in our algorithm always stops; see Lemma 4.5) and that uniqueness, ensured by
always taking the first positive generator (chosen ordering of the inner loop), can be
explained by the independence of order, at least as far as contact presentations are
concerned (Lemma 4.6).

Lemma 4.5 Every characteristic vector c� 0 with PD.cjz0/D.�C��/ can be achieved
by another distribution of signs, with positive sign on h; it is associated to a different
manifold vector (possibly nonpresentable).
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Proof Starting at the center z0 , the two distributions are given by .�C��/ and
.C���/. The switch of the h–sign with the opposite sign of e2 does not impose any
change into the second and the third dual leg. For the first leg, the appropriate adaptation
of signs, which results in the same dual evaluation, exists because of the exclusion of
any .C� � � � �/–configurations (that is, the assumption hc; vi ¤ v � v for any v ¤ z0 ).

Lemma 4.6 If a sign on one middle generator of a dual vertex is changed, all of them
need to be changed (independent of order) before we get back into presentable. A
turn of the last generator can result in a presentable vector only when all prior middle
generators are negative.

Proof For a covector to be presentable, all dual vertices have to have same-signed
middle generators, because these generators on the manifold side are forming a chain
of �2s, zero being their only possible rotation number.

For the second claim, suppose on the contrary the middle signs on some v0 are positive.
Changing the sign of its last generator (from positive to negative) forces a switch of
all the signs in the following chain (if any) of dual �2s (to preserve dual evaluations).
Then, this influences the evaluation on the next non-.�2/ dual vertex w0 , which can
be corrected by changing one of its later generators from positive to negative. If the
middle generators of w0 are already negative or if we get them all negative by the
current turn, we have found (independent of further changes) a manifold-side vertex
which starts at positive (second last) generator in v0 and has all further signs negative.
If by the change of one middle generator not all of them are negative, the vector is
nonpresentable by the first part. If all generators of w0 are positive, and we turn the last
one, we need to repeat the same argument with w0 in place of v0 . It remains to check
whether we could get presentable result by correcting only starting and last generators
of all following (necessarily, fully positive) dual vertices. But if not before, the process
ends in nonpresentable, giving .C� � � � �/ on the last manifold vertex.

To sum up, the central turns are the only significant steps in following possible changes
on manifold vectors, and by that, in presentations. We may assume that after each
central turn also all �2PD–steps on legs are finished.

4.3 On turning sequences and presentability

To begin, notice how to recognize the ends of a full path.
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Lemma 4.7 If after a central step, the covector c on the starting dual vertices evaluates
as their self-intersection, that is, hc; x0i i D x

0
i � x
0
i , on

� at most one leg, we have arrived at the initial end;

� two legs, the full path continues;

� all three legs, this causes a drop-out.

Proof The maximal starting dual evaluations tell us on how many legs we need further
�2PD–steps. The evaluation hc; z0i on z0 right after a central turn is C2. If further
turns are needed for one leg only, we do not reach a �2 central evaluation again and the
corresponding vector is initial; with two we get back to hc; z0i D �2 and we continue
with another central turn; three gives a drop-out in .h; e2; e3; e4/D .����/.

Corollary 4.8 A presentation � whose P� properly ends necessarily admits a leg,
starting in a fully positive vertex. (If the presentation corresponds to the initial vector,
there are two fully positive starting vertices.)

Proof For PD.c/ take a sign configuration which evaluates on manifold vertices
according to the rotation numbers of � , which takes minus sign on h, and for which
hc; v0i ¤ v0 � v0 for all v0 2 � 0nfx0i W i D 1; 2; 3g. (This is the stage right after a central
turn.) As in Lemma 4.7 above, there is a leg, say L1 , for which hc; x01i ¤ x

0
1 � x
0
1 . We

prove that on this leg hc; x1i D a10 � 2 holds, that is, the generators of x1 (apart from
h and e1 ) are positive.

Write out x1 as h�e1�e2�e5�� � ��eJ . The signs on the generators up to eJ�1 are
positive as otherwise we would have shuffled the negative sign to e5 by �2PD–steps
on consecutive dual vertices of square �2 (resulting in hc; x01i D�2 for x01D e2�e5 ).
The positivity of eJ follows from presentability via the following claim.

Claim A presentable covector on neither dual vertex takes the form .C� � � � �C/.

Proof A proof of this fact is basically the same as the second part of the proof of
Lemma 4.6. Suppose on the contrary, there is such a dual vertex; it is not the last
vertex of the dual leg, because it would give the last vertex on the manifold side with
self-intersection �2 and C2 c–evaluation. But then, every non-.�2/ dual vertex
further on the dual leg needs to have again negative middle signs (otherwise we have
found a manifold vertex, starting in the negative sign of the previous non-.�2/ with all
following generators positive) and positive last one (because of .C� � � � �/ exclusion).
After all, we end in the impossible last dual vertex.
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Since also .C� � � � �/–configuration on any dual vertex, except x0i , is excluded by
hc; v0i ¤ v0 �v0 , and since middle generators of any dual vertex are same-signed, we get
that eJ is positive. It is a middle generator of a dual vertex starting in positive eJ�1 .

The leg with fully positive starting vertex is the one which in the reordering of
Algorithm 4.4 takes the role of L1 . When we wish to emphasize the leg according to
which the central step is done, we refer to it as a turn of Li .

Since the evaluation of characteristic covector on Li –vertices changes only by turns
of Li , we may separately study their influence.

Lemma 4.9 Let c be a presentable noninitial characteristic covector. Assume that it
evaluates on the vertices of some leg LD .�a0;�a1; : : : ;�aj ;�ajC1; : : : ;�ak/ as

hc; Li D .a0� 2; a1� 2; : : : ; aj � 2; ajC1� 2� 2njC1; : : : ; ak � 2� 2nk/;

where k � j , njC1; : : : ; nk � 0 and njC1 > 0.

The path runs into the next possibly presentable covector Nc , only after

1C 1C .a1� 1/C .a2� 1/.a1� 1/C � � �C .aj�1� 1/ � � � .a1� 1/ turns of L;

in

h Nc; Li D .�a0;�a1C 2; : : : ;�aj C 2; ajC1� 2njC1; : : : ; ak � 2� 2nk/:

Proof To be illustrative, we explicitly write out all the generators involved in the first
few turns. Below are the two sides, L1 and L01 , in homology generators; the �–symbol
stands for truncation only:

L1W x1 D h� e1� e2� e5� � � � � eJ�1� eJ

eJ � eJC1

eJC1� eJC2
: : :

eK�1� eK � eKC1��;

L01W x01 D e2� e5
: : :

eJ�2� eJ�1

eJ�1� eJ � eJC1� � � � � eK

� :
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In this notation, the starting part of L1 and the evaluation of c on it take values

L1 D .�J C 3;�2; : : : ;�2„ ƒ‚ …
K�J�1

;�T;�S;�/ and hc; L1i D .J � 5; 0; : : : ; 0;M;N;�/:

By the first turn, according to the algorithm, we change generators up to eJ — it does
not influence further dual vertices, but a new vector can be presentable only when all
the middle generators eJ ; : : : ; eK�1 are same-signed. Therefore, in order to (possibly)
reach a presentable vector again we have to repeat turning of this particular leg K �J
times. The resulting manifold vector is of the form .�J C3; 0 : : : ; 0;M C2;N;�/; its
presentability depends on the .C2/–changed manifold vertex eK�1� eK � eKC1��.

In terms of generators, we have reached another presentation exactly when the eK –
sign is negative. The positive eK –sign, on the other hand, requires another turn, but
this forces some further changes to preserve the dual. Namely, we need to change
signs on generators of the following chain of �2s, and one (without loss of generality,
first) middle generator afterwards. The resulting vector is not necessarily presentable,
provided the starting point was; it depends on presentability of the vertex starting in the
(last changed) middle generator (C2 rotation change). But if it is, the new presentation
is .�JC3; 0; : : : ; 0;�TC2;NC2;�/; for this, we need to turn this leg K�JC1 times.

Continuing in the same manner, we trace similar behavior at all levels. Concretely:
We are successively turning fully positive vertices, which influences the evaluation on
the following manifold vertex by C2. If the result is presentable, we have finished.
Otherwise, the following vertex was also fully positive, at the moment its evaluation
is minus self-intersection, and it will have turned under the influence of another turn
of the previous vertex. For that we need to bring the previous vertex back to maximal
rotation, using (again) influence of the previous vertices on the leg. But notice that each
vertex is influenced only by turns of the vertex just before it. Therefore, to come from
maximal rotation through minus self-intersection to minimal rotation on some vertex
vkC1 , we need to influence it by two turns of its immediately previous vertex vk . This
in turn is obtained by ak � 1 turns of its previous vertex vk�1 , first to get from minus
self-intersection to minimal rotation, and then by the step of C2 to maximal rotation.
This explains the number of steps and finishes the proof.

Obviously, the leg (its vertices with self-intersections) together with the sign configura-
tion (in presentable, rotation numbers) determine when the leg is turned. In particular,
it specifies the gaps between the subsequent turnings of the same leg, when some other
leg needs to be turned in order for the path to continue. Actually, the reverse also holds.
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Lemma 4.10 A form of a leg together with a distribution of signs on its generators is
completely described by the sequence of its turns.

Proof As before, we separately state (and argue for) the first step.

Claim Between two subsequent turnings of the same leg L, there are always either
a0� 2 or a0� 1 turnings of other legs.

Proof Remember that all generators (except possibly the last) of the starting manifold
vertex on the turning leg are positive. Since by each turn of other legs we change
starting evaluation by C2 (through the change of h–sign from negative to positive),
the gap is determined by the number of generators of the starting vertex. Its variation
by one is due to whether the dual vertex following �2s is also fully negative after the
L–turn.

That said, given a turning sequence, we get a0 out of the size of gap between subsequent
turnings. If the gap is always the same (a0� 1), this means that v0 is the only vertex
on L, and its self-intersection is �a0 .

Call this number of central turns between two turns of L, the 0th period of L. Let us
define higher periods for a turning sequence:

1st period Number of times the 0th period is a0� 2 before it turns to a0� 1.

2nd period Number of times the 1st period is a00� 1 before it turns to a00� 2.

kth period Number of times the .k�1/st period is a0
k�2
�1 before it turns to a0

k�2
�2.

The numbers should not be read from the first time round. As suggested by notation,
they correspond to the self-intersections of dual vertices, hence they determine L0 , and
from that L. The initial distribution of signs can be now recognized from the values of
periods before the first change.

4.4 Restrictions on the whole structure

We look at all possible (presentable) entries. For each we continue its path as long
as it reaches another presentation, or otherwise it ends, either by a drop-out or a
(nonpresentable) initial vector. Throughout we assume that the (normalized) Seifert
constants are ordered r1 � r2 � r3 . In order to reduce the possibilities we invoke the
L–space condition.
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L–space condition Recall the numerical condition for M to be an L–space: there
are no coprime integers m and a such that 1=r1 > m=a , 1=r2 > m=.m � a/ and
1=r3 > m; we say that the coefficients .r1; r2; r3/ are not realizable. As a direct
consequence of this condition we observe that:

(i) r1�
1
2

; equivalently, one leg starts with �2 (otherwise the realizability condition
is satisfied for coprime mD 2; aD 1).

(ii) If

L1 D .�2; : : : ;�2„ ƒ‚ …
k

;�/; so 1

r1
>
kC2

kC1
D�.Œ2; : : : ; 2�„ ƒ‚ …

kC1

/;

then 1=r2 � kC 2; equivalently, x2 � x2 � �k� 2.

Dual configurations In the following arguments, there will frequently appear a pair
of (truncated) legs which are dual to each other, that is, describing a lens space and its
dual. Recall that the coefficients of the two are related as follows (here, �2�b� means
a chain of b�–many �2s):

Li D .�b1� 2;�2
�b2 ;�b3� 3; : : : ;�bm� 2/;

Lj D .�2
�b1 ;�b2� 3;�2

�b3 ; : : : ;�2�bm/:

The inverses of the continued fractions they describe add up to �1.

So, our starting point is a presentable characteristic covector, which does not present an
initial end, or a drop-out. Thus, exactly one leg of the corresponding presentation starts
in a fully positive vertex. We separate the cases: in Proposition 4.11 we gather presen-
tations for which either v10 or v20 is stabilized fully positively, and in Proposition 4.13
we cover presentations for which v30 is fully positively stabilized.

Proposition 4.11 Let c be a presentable noninitial characteristic covector, associated
to a presentation with fully positive starting vertex on Li , either L1 or L2 . This means
that it evaluates on the vertices of

Li D .�a
i
0;�a

i
1; : : : ;�a

i
j ;�a

i
jC1; : : : ;�a

i
ki
/

as in Lemma 4.9:

hc; Li i D .a
i
0� 2; a

i
1� 2; : : : ; a

i
j � 2; a

i
jC1� 2� 2n

i
jC1; : : : ; a

i
ki
� 2� 2niki /

for some 0� j � ki , nijC1; : : : ; n
i
ki
� 0 and nijC1 > 0.
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Denote coefficients on other two legs by a�� , and let c evaluate as hc; v30iDa
3
0�2�2n

3
0

on the first vertex of the third leg L3 , and

hc; Lli D .�a
l
0;�a

l
1C 2; : : : ;�a

l
kC 2; a

l
kC1� 2� 2n

l
kC1; : : : ; a

l
kl
� 2� 2nlkl /

on the leg Ll for l ¤ i; 3 for some �1� k � kl and nl
kC1
� al

kC1
� 3.

Furthermore, define m and N l
mC1 as follows:

m WDmaxf� � k W denominator of Œal0; : : : ; a
l
� ; N �� n

3
0 for some N g;

N l
mC1 WD

�
nl
kC1
C 1 if the denominator of Œal0; : : : ; a

l
k
; nl
kC1
C 1��1 � n30;

N otherwise.

where N 2 Œ1; almC1/ is such that the denominator of Œal0; : : : ; a
l
m; N �

�1 � n30 and
the denominator of Œal0; : : : ; a

l
m; N C 1�

�1 > n30 . Then the full path of c behaves as
follows:

(1) If �Œai0; : : : ; a
i
j�1�

�1� Œal0; : : : ; a
l
m; N

l
mC1�

�1 < 1, the full path drops out.

(2) If �Œai0; : : : ; a
i
j�1�

�1 � Œal0; : : : ; a
l
m; N

l
mC1�

�1 D 1 and m D k and N l
mC1 D

nl
kC1
C 1, we reach a new presentation Nc which on the three legs takes the

following values:

h Nc; Li i D .�a
i
0;�a

i
1C 2; : : : ;�a

i
j C 2; a

i
jC1� 2n

i
jC1; : : : ; a

i
ki
� 2� 2niki /;

h Nc; Lli D .a
l
0� 2; a

l
1� 2; : : : ; a

l
kC1� 2; a

l
kC2� 2n

l
kC2; : : : ; a

l
kl
� 2� 2nlkl /;

h Nc; v30i D a
3
0 � 2� 2n

3
0C 2D;

where D stands for the denominator of Œal0; : : : ; a
l
k
; nl
kC1
C 1��1 and the evalu-

ations on the rest of L3 remain the same as for c .

(3) Otherwise, the path continues in nonpresentable and reaches the nonpresentable
initial end.

Remark 4.12 Rewrite the coefficients up to aij in the b–notation used for dual
configurations above, so for appropriate b� � 0 (notice b1 > 0 on L1 ):

Li D .�2
�b1 ;�b2� 3;�2

�b3 ; : : : ;�2�bJ ;�aijC1; : : : ;�a
i
ki
/:

Also for Ll , truncated as continued fractions in the proposition, take

.al0; : : : ; a
l
m; N

l
mC1/D .�b

0
1� 2;�2

�b0
2 ;�b03� 2; : : : ;�b

0
J � 2/:

Then the conditions, given in the proposition in terms of continued fraction sums, can
be restated as:
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� The two continued fractions add up to 1 when b0
k
D bk for all k .

� The sum is greater than 1 when, for K Dminfk W b0
k
¤ bkg, b0K < bK if K is

odd and b0K > bK if K is even.

� The sum is smaller than 1 when, for K Dminfk W b0
k
¤ bkg, b0K > bK if K is

odd and b0K < bK if K is even.

Proof of Proposition 4.11 We need to observe how specific behavior of the path
restricts possible forms of a covector, and by that, of a presentation.

To meet another presentation, recall that we need to swap the signs of all generators
forming the fully positive vertices vi0; : : : ; v

i
j (Lemma 4.9). To achieve this, we need

certain number of Li –turns, which are arranged in the turning sequence, uniquely
determined by the form of Li . So, any turn of other two legs should appear at exactly
specified nonturning stages of Li .

Now notice that any turn of L3 (before finishing the specified sequence) would imme-
diately end the path (in nonpresentable). Indeed, it has to appear after k (or kC 1)
turns of L1 (which is the 1st period of L1 ). So after it L2 needs to be turned (its
starting coefficient being a20 � kC 2, hence its 0th period being at most kC 1) and
also L1 needs to be turned (having 0th period 0 or 1). But this already means we have
arrived at the initial end; see Lemma 4.7.

Therefore, the turning sequence of Li (up to its .jC1/st vertex) exactly specifies the
turning sequence of Ll (needed to reach presentability on Li again), its turns being
in nonturning points of Li , and vice versa. It is exactly the turning sequence of the
dual leg with all evaluations fully negative. Rewritten in terms of relations between
continued fractions, the two legs are of dual forms if and only if the corresponding
continued fractions add up to one. In the dual (negative) leg for the last entry the
significant information is the number of negative signs, as turning sequence depends
only on whether we have reached maximal evaluation.

Taken together, we have obtained:

(1) If not all gaps in the turning sequence of Li are filled by turns of Ll , and at the
same time, the sequence is not quit by the turn of L3 before or at the time when
first such nonfilled gap appears, then the full path drops out.

(2) If the two continued fractions add up to exactly one, this means the turning
sequences of corresponding legs exactly fit together, and we reach another
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presentation — if and only if the evaluation on the starting vertex of the third leg
is negative enough, not to quit the sequence of turnings interchanging between
Li and Ll . That is, there have to be more negative generators than there are turns
of Li and Ll , which equals the denominator of the corresponding continued
fractions. The form of the new presentation is determined by Lemma 4.9.

(3) Otherwise, either we hit into some turning point of Ll before reaching the next
gap in the sequence of Li , or we reach a turning point of L3 at or before the
time when the Li –gap is not filled by the Ll –turn for the first time. As observed
above, in these cases, the full path properly ends with the initial vector, but it is
necessarily nonpresentable because we have not yet reached the first possibly
presentable stage as specified in Lemma 4.9.

Proposition 4.13 Throughout the path, there can be at most two noninitial characteris-
tic covectors for which the starting vertex of L3 is fully positive, that is hc; v30iDa

3
0�2.

If hc; v31i ¤ a31 � 2 or L3 D .v30/, the turn of L3 is presentable, the two presen-
tations differ in h Nc; v30i D �a

3
0 and h Nc; v31i D hc; v

3
1i C 2, and, for l D 1; 2, also

h Nc; vl0i D hc; v
l
0iC 2.

If hc; v31i D a31 � 2, and c is not terminal, the turn of L3 necessarily makes the
continuation of the path nonpresentable, and ends it in a nonpresentable initial end.

If hc; v31i D a
3
1�2, and c is terminal, let us write out the c–evaluations at the terminal

end:

hc; L1i D .�a
1
0;�a

1
1C 2; : : : ;�a

1
j C 2; a

1
jC1� 2� 2n

1
jC1; : : : ; a

1
k1
� 2� 2n1k1/;

hc; L2i D .�a
2
0;�a

2
1C 2; : : : ;�a

2
kC 2; a

2
kC1� 2� 2n

2
kC1; : : : ; a

2
k2
� 2� 2n2k2/;

for some 0� j � k1 and 0� k � k2 . Then:

(1) If for maximal J � j and K � k such that

�Œa10; : : : ; a
1
J ; 3�

�1
� Œa20; : : : ; a

2
K ; 2�

�1
D 1;

the denominator of the two fractions is smaller than a30 , then the full path drops
out.

(2) If hc; v32i ¤ a
3
2 � 2, and there exist J � j and K � k such that

�Œa10; : : : ; a
1
J ; 3�

�1
� Œa20; : : : ; a

2
K ; 2�

�1
D 1;

n1JC1 � 2 or L1 D .v10 ; : : : ; v
1
J /;

n2KC1 � 1 or L2 D .v20 ; : : : ; v
2
K/;
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and the denominator of the two fractions equals a30 , we reach a new presentation
Nc which on the three legs takes the values

h Nc; L1i D .a
1
0 � 2; a

2
1 � 2; : : : ; a

1
J � 2; hc; v

1
JC1iC 4; hc; v

1
� i
k1
�DJC2/;

h Nc; L2i D .a
2
0 � 2; a

2
1 � 2; : : : ; a

2
K � 2; hc; v

2
KC1iC 2; hc; v

2
�i
k2
�DKC2/;

h Nc; L3i D .�a
3
0;�a

3
1; hc; v

3
2iC 2; hc; v

3
�i
k3
�D3/:

This Nc presents the initial end of the full path.

(3) Otherwise, the path continues in nonpresentable and reaches the nonpresentable
initial end.

Proof As observed in the proof of Proposition 4.11, any time when the path runs into a
presentation with fully positive v30 (not at its terminal end), it reaches the initial vector,
either before or after a turn of L3 . Therefore, if the characteristic vector before the L3–
turn is noninitial and presentable, the only other presentation which can appear as we
continue the path can occur straight after this turn. The resulting vector is presentable if
and only if hc; v31i¤a

3
1�2 (when it exists). The relation between the two presentations

is as always read from Lemma 4.9 (the simplest possible — one-turn — case).

The only remaining option is to have a presentable terminal end with hc; v30i D a
3
0 � 2.

In that case the turn of L3 does not end the path, and if this turn is not presentable
itself, we need to look for any possible following presentation. Since presentability
on L3 can be recovered only by a turn of L3 , and since according to the above this
turn ends the path, we might meet such a presentation (only) at the initial end. This
in particular means that turns of L1 and L2 in between the two turns of L3 should
begin and end with a vector which is presentable on these two legs. The first turn after
the L3–turn and the last turn before another L3–turn are done according to L1 .

As before, we inductively determine that, in order for the turning sequences of L1
and L2 to fit together (being interchangeably turned until the second L3–turn), the
two legs need to have fully negative starting vertices, forming almost dual vectors —
“almost” in the sense that there is no “last pair”, that is, the two vectors as given in the
paragraph on dual configurations end with �bm� 3 and �2�bm instead of �bm� 2
and �2�bm . In other words, they are dual when enlarged by 3 and 2, respectively.

The three possibilities are now given as before:
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(1) We have not reached the turning point of L3 yet, but the sequence of turnings
of L1 and L2 cannot continue.

(2) The turn of L3 appears exactly in the moment when neither L1 nor L2 can be
turned, and the sign configuration on them is presentable. Additionally, we need
that hc; v32i ¤ a

3
2 � 2 to reach presentability of L3 as well.

(3) Otherwise, either the first two legs hit a common turning point, the third leg
finishes the sequence early, not having enough negative generators, or (simply)
the terminal vector obtained as in (2) is not presentable because hc; v32i D a

3
2�2

(hence, after the L3–turn, h Nc; v32i D a
3
2 ). In all the cases, the path stops in a

nonpresentable initial end.

Above we described how the successive presentations in the path are related to each
other and indicate what property causes a drop-out. Any given presentation can now
be either walked through these stages to the proper ends of the full path or it drops out.
Joining results (taking into account also their analogues obtained by following the path
in the terminal direction) we obtain the following picture. Here, the presentations are
given as evaluations of characteristic covectors on generators of H2.W�/, written as
triples of vectors ci whose entries are cij D hc; v

i
j i. Vectors are truncated — we write

out only the relevant part and hide the rest into �.

Corollary 4.14 (full path components) If a given presentation � does not admit both
a fully positive and a fully negative starting vertex, its full path drops out at � . Moreover,
a full path drops out when it runs into a presentation given by either of the following
characteristic covectors cj� , independently of how the three vectors continue in the
hidden �–part.

For some .i; l/ 2 f.1; 2/; .2; 1/g,

cj� D

0BBBBBBBB@

ai0� 2

ai1� 2:::

aij � 2

aijC1� 2� 2n
i
jC1

�

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌

–al0
–al1C 2:::

al
kC1
� 2� 2nl

kC1

al
kC2
� 2� 2nl

kC2

�

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌
a30 � 2� 2n

3
0

�

1CCCCCCCCA
for which �Œai0; : : : ; a

i
j�1�

�1� Œal0; : : : ; a
l
m; N

l
mC1�

�1 < 1 holds for N l
mC1 defined as

in Proposition 4.11, or

Algebraic & Geometric Topology, Volume 18 (2018)



140 Irena Matkovič

cj� D

0BBBBBBB@

�a10
�a11C 2:::

�a1j C 2

a1jC1� 2� 2n
1
jC1

�

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

–a20
–a21C 2:::
�a2

k
C 2

a2
kC1
� 2� 2n2

kC1

�

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ
a30 � 2

a31 � 2

�

1CCCCCCCA
such that for maximal J � j;K � k with �Œa10; : : : ; a

1
J ; 3�

�1� Œa20; : : : ; a
2
K ; 2�

�1D 1,
the denominator of the two fractions is smaller than a30 .

In the terminal direction, symmetrically, a drop-out occurs at presentations with oppo-
sitely stabilized surgery link (that is, surgery diagrams given by the same but reversely
oriented link).

Any two presentations �1 and �2 whose associated characteristic vectors meet at the
same path P�1 D P�2 are related by the sequence of rotation number changes, each
taking one of the following forms. The pairs are presented in the form of cj� and they
have to be identical on all further generators, hidden in �.

Either for .i; l/ 2 f.1; 2/; .2; 1/g,0BBBBBBB@

ai0� 2

ai1� 2:::

aij � 2

aijC1� 2� 2n
i
jC1

�

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

�al0
�al1C 2:::

al
kC1
� 2� 2nl

kC1

al
kC2
� 2� 2nl

kC2

�

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ
a30 � 2� 2n

3
0

�

1CCCCCCCA

'

0BBBBBBB@

�ai0
�ai1C 2:::

�aij C 2

aijC1� 2n
i
jC1

�

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

al0� 2

al1� 2:::

al
kC1
� 2

al
kC2
� 2nl

kC2

�

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ
a30 � 2� 2.n

3
0�D/

�

1CCCCCCCA
;

where D is the denominator of Œal0; : : : ; a
l
k
; nl
kC1
C 1��1 , and k and nl

kC1
satisfy

1D�Œai0; : : : ; a
i
j�1�

�1
� Œal0; : : : ; a

l
k; n

l
kC1C 1�

�1;
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or0@ a10�2�2n10
�

ˇ̌̌̌
ˇ̌ a20�2�2n20�

ˇ̌̌̌
ˇ̌ a30�2

a31�2�2n
3
1

�

1A'
0@ a10�2n10

�

ˇ̌̌̌
ˇ̌ a20�2n20�

ˇ̌̌̌
ˇ̌ �a

3
0

a31�2n
3
1

�

1A;
or0BBBBBBBBBBB@

–a10
–a11C 2:::
–a1J C 2:::
–a1j C 2

a1jC1� 2� 2n
1
jC1

�

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

–a20
–a21C 2:::
–a2K C 2:::

–a2
k
C 2

a2
kC1
� 2� 2n2

kC1

�

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

a30 � 2

a31 � 2

a32 � 2� 2n
3
2

�

1CCCCCCCCCCCA

'

0BBBBB@
a10 � 2:::

a1J � 2

a1JC1C 2� 2n
1
JC1

�

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌

a20 � 2:::

a2K � 2

a2KC1� 2n
2
KC1

�

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌
�a30
�a31C 2

a32 � 2n
3
2

�

1CCCCCA ;
where, for J � j;K � k ,

�Œa10; : : : ; a
1
J ; 3�

�1
� Œa20; : : : ; a

2
K ; 2�

�1
D 1;

n1JC1 � 2 or L1 D .v10 ; : : : ; v
1
J /;

n2KC1 � 1 or L2 D .v20 ; : : : ; v
2
K/;

and the denominator of the two fractions equals a30 .

5 Convex surface theory, overtwistedness and isotopies

To prove that the isotopic classification of tight structures is contained in the full paths
of their dual covectors, we need to observe that presentations sharing the same path are
indeed isotopic, and relate drop-outs to overtwistedness. This section covers part of the
proof outlined in Section 2.2.

To begin with, remember two simple properties of full paths, which have a direct
convex-theoretic interpretation. The first is the shuffling property of basic slices within
a single continued fraction block [7, Section 4.4.5], which can be, in the Heegaard Floer
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interpretation, recovered by 2PD steps on the consecutive dual vertices of square �2.
The second is a necessary condition for tightness, that the presentation contains both a
leg starting in a fully positive vertex and a leg starting in a fully negative vertex. In full
paths, a fully positive starting vertex is required by Corollary 4.8, and a fully negative
one by its analogue when following the path in the terminal direction. In convex surface
theory, other presentations can be seen to fail the conditions of the gluing lemma [7,
Theorem 4.25], as in [5, Proposition 6.3], but can be also understood as a special case
of overtwistedness, proved below.

Let us now state the result as predicted from the Heegaard Floer picture, as in
Corollary 4.14. We encode contact presentations into “matrices of negative signs”, that
is, triples of vectors qi , possibly of different length, whose coefficients are qij , the
number of negative basic slices in the j th continued fraction block of the i th singular
fiber. The three vectors in the propositions are truncated, so that we write out only
the relevant part (on which overtwistedness is decided, or which behaves nontrivially
under isotopy moves) and hide the rest into �. Analogously, we can define “matrices
of positive signs”. Notice that the ones counting negative slices directly correspond to
the relations obtained in the initial direction of the full path in Section 4. With positive
slices they correspond to symmetric relations in the terminal direction. To describe
isotopy moves it is enough to give only pairs of matrices of negative (or only positive)
signs, while to encode conditions for overtwistedness, the two are different.

Proposition 5.1 (overtwistedness conditions) Let a contact presentation be described
by either of the following matrices of signs, negative or positive:

(O1) For some .i; l/ 2 f.1; 2/; .2; 1/g,

.qi j ql j q3/D

0BBBBBBBBBB@

0

0
:::

0

nijC1
�

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌

al0� 1

al1� 2:::

al
k
� 2

nl
kC1

nl
kC2

�

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
n30
�

1CCCCCCCCCCA
for which �Œai0; : : : ; a

i
j�1�

�1 � Œal0; : : : ; a
l
m; N

l
mC1�

�1 < 1 holds for N l
mC1

defined as in Proposition 4.11.
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(O2) Or

.q1 j q2 j q3/D

0BBBBBBB@

a10 � 1

a11 � 2:::

a1j � 2

n1jC1
�

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

a20 � 1

a21 � 2:::

a2
k
� 2

n2
kC1

�

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ
0

0

�

1CCCCCCCA
such that for maximal J � j and K � k with

�Œa10; : : : ; a
1
J ; 3�

�1
� Œa20; : : : ; a

2
K ; 2�

�1
D 1;

the denominator of the two fractions is smaller than a30 .

Then, independently of the basic slice decompositions of further continued fraction
blocks (the �–part of vectors), the corresponding contact structure is overtwisted.

Proposition 5.2 (isotopy conditions) The following pairs of matrices give isotopic
contact structures, provided all coefficients are in the range nij 2 Œ0; a

i
j � 2� and

ni0 2 Œ0; a
i
0� 1�, and the further basic slice decompositions (the �–parts) are the same.

(I1) On .qi j ql j q3/, for .i; l/ 2 f.1; 2/; .2; 1/g,0BBBBBBBBBB@

0

0
:::

0

nijC1
�

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌

al0� 1

al1� 2:::

al
k
� 2

nl
kC1

nl
kC2

�

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
n30
�

1CCCCCCCCCCA
'

0BBBBBBBBB@

ai0� 1

ai1� 2:::

aij � 2

nijC1� 1

�

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌

0

0
:::

0

0

nl
kC2
� 1

�

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌
n30�D

�

1CCCCCCCCCA
;

where D is the denominator of Œal0; : : : ; a
l
k
; nl
kC1
C 1��1 , and k and nl

kC1

satisfy

1D�Œai0; : : : ; a
i
j�1�

�1
� Œal0; : : : ; a

l
k; n

l
kC1C 1�

�1:

(I2) On .q1 j q2 j q3/,0@ n10
�

ˇ̌̌̌
ˇ̌ n20�

ˇ̌̌̌
ˇ̌ 0n31
�

1A'
0@ n10� 1
�

ˇ̌̌̌
ˇ̌ n20� 1�

ˇ̌̌̌
ˇ̌ a
3
0 � 1

n31� 1

�

1A :
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(I3) On .q1 j q2 j q3/,0BBBBBBBBBBBB@

a10 � 1

a11 � 2:::

a1J � 2:::

a1j � 2

n1jC1
�

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌

a20 � 1

a21 � 2:::

a2K � 2:::

a2
k
� 2

n2
kC1

�

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌

0

0

n32
�

1CCCCCCCCCCCCA
'

0BBBBB@
0
:::

0

n1JC1� 2

�

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌

0
:::

0

n2KC1� 1

�

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌
a30 � 1

a31 � 2

n32� 1

�

1CCCCCA ;

where for J � j;K � k ,

�Œa10; : : : ; a
1
J ; 3�

�1
� Œa20; : : : ; a

2
K ; 2�

�1
D 1;

n1JC1 � 2 or L1 D .v10 ; : : : ; v
1
J /;

n2KC1 � 1 or L2 D .v20 ; : : : ; v
2
K/;

and the denominator of the two fractions equals a30 .

The proof of both propositions is postponed till the end of the section, after a note on
contact topological foundations of isotopies and some general computation of slopes.

5.1 State traversals and contact isotopies

Convex decomposition of the Seifert fibrations we are working with consists of the
neighborhoods of the three singular fibers Fi and the background circle bundle over
the pair of pants. To ensure the product structure in the complement of the Fi we
use nonnormalized coefficients M.0I r1� 1; r2; r3/. The results here rely on Honda’s
classification of tight structures on separated pieces, namely solid tori [7] and circle
bundles over the pair of pants † [8, Section 5.1]. In the context of isotopies, we are
mostly concerned with the changes of boundary slopes obtained by thickening tubular
neighborhoods of singular fibers Fi . The corresponding picture is the 3–punctured
sphere with given boundary slopes.

Concretely, we recognize correspondences between presentations relying on the fol-
lowing lemma, due to Ghiggini and Schönenberger.

Lemma 5.3 [6, Lemma 4.13] Let † be a pair of pants and � a tight contact structure
on †�S1 whose boundary �@.†�S1/D T1[T2[T3 consists of tori in standard
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form with #�Ti D 2 for i D 1; 2; 3, and slopes s.T1/ D �p1=q , s.T2/ D �p2=q
and s.T3/ D1. Suppose that there exists a pair of pants †0 � † such that †� S1

decomposes as †�S1D†0�S1[C1[C2 , where Ci D Ti �I , with �jCi minimally
twisting, and where �j†0�S1 is a tight contact structure with infinite boundary slopes
such that the section †0 � f�g for some � 2 S1 is convex with dividing set consisting
of arcs, each connecting two different boundary components.

If s.T2/ D �p2=q < 0 and both �jCi decompose into basic slices of the same sign,
there exists a convex annulus A bounded by the Legendrian rulings of T1 and T2 , and
without boundary parallel dividing curves.

In our case, the decomposition †�S1 D†0 �S1[C1[C2 always exists as we are
dealing with the zero-twisting structures; both thickened tori are minimally twisting
[8, Lemma 5.1]. The condition on the background structure — no boundary parallel
dividing curves on the convex section — follows (as in [5, Lemma 5.4]) from the fact
that � is appropriate on † � S1 (such that there is no embedded T 2 � I with T 2

isotopic to a boundary component and I –twisting at least � ). And the latter is satisfied
for any †�S1, cut as a background out of tight small Seifert manifold [20, Lemma 2.4].
With the addition of [3, Section 3], Lemma 5.3 can be reformulated in the sense of [5,
Lemmas 5.7–5.8].

Lemma 5.4 Let † be a pair of pants and let � be an appropriate contact structure
on † � S1 with convex boundary �@.† � S1/ D T1 [ T2 [ T3 with #�Ti D 2 for
i D 1; 2; 3, and boundary slopes s.T1/D�p1=q , s.T2/D�p2=q and s.T3/D1.

(L1) If there exists a collar neighborhood C3 � †� S1 of T3 , which is minimally
twisting with boundary slopes 1 and .p1Cp2� 1/=q , whose basic slices are
all same-signed, and for which �j.†�S1/�C3 coincides with the unique tight
structure with boundary slopes �p1=q , �p2=q and .p1 C p2 � 1/=q , and
maximal twisting �q , then signs of basic slices in the decomposition of C1 and
C2 are all opposite to C3–signs.

(L2) And conversely, if C1 and C2 decompose into same-signed basic slices, then
there exists C3 composed of opposite-signed slices, with boundary slopes1 and
.p1Cp2�1/=q , and such that its complement is a unique tight structure as above.

Proof (following [5]) For (L1), uniqueness of a tight structure with given properties
is stated in [3, Proposition 3.3]. The fact that the signs in the decomposition of collars
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are opposite can be read from the relative Euler class evaluation on vertical annuli
Ai � Ci , which have boundaries in vertical Legendrian divides on 1–side and in
Legendrian rulings on the other boundary. If we complete these annuli with annuli
through the pair of pants up to T3 for A1 and A2 , and up to T1 and T2 for A3 , we
get two pairs of homologically equivalent, but oppositely oriented, annuli. As the
Euler class evaluation on all the extended parts is zero (the first having boundary in
Legendrian divides, the second living inside �q–maximal twisting), the evaluation on
A1 and A2 is opposite to that of A3 . Therefore, the collars C1 and C2 decompose
into basic slices all of the same sign, opposite to the signs in C3 .

For (L2), we take the unique tight †00 � S1 (as described in (L1)) and attach to it a
thickened torus with slopes .p1 C p2 � 1/=q and 1, and slices signed oppositely
to the ones in C1 . Then according to (L1) the signs on collars in decomposition
†0 � S1 [ C1 [ C2 are again opposite. And we have built up a contact structure,
isotopic to the original in all three pieces (†0 �S1 has the same dividing set on the
pair of pants, while C1 and C2 have the same Euler class evaluations).

5.2 Slicing and continued fractions

We give a short reflection on the slopes of glued-up torus and its slicing. Denote by Vi
the standard convex neighborhood of Fi with boundary �@.MnVi / trivialized by

�
1
0

�
,

the horizontal direction of †� 1, and
�
0
1

�
, the direction of fiber, and from the other

side @Vi by the meridian and some longitude, the last being chosen so that translation
Ai W @Vi !�@.MnVi / is given by

Ai D

�
˛i ˛0i
�ˇi �ˇ

0
i

�
;

where ˇi=˛iDri (or r1�1 for the first leg); in terms of the continued fraction expansion
we have �˛i=ˇi D Œai0; : : : ; a

i
ki
�, �˛i=˛0i D Œa

i
ki
; : : : ; ai0� and �ˇi=ˇ0i D Œa

i
ki
; : : : ; ai1�.

Now, the 1–slope of a thickened neighborhood Ui of a singular fiber corresponds to
Œai
ki
; : : : ; ai0� in the torus basis, and the slopes of the factorization can be obtained in

order (from outside in) by decreasing the last entry of this fraction.

We will be interested in slopes of tori which peel off certain sequences of basic slices
from thickened neighborhoods Ui , and their expression in the background basis. Notice
the following general behavior:

Lemma 5.5 The slope of a torus which peels off
Pj�1
0 .ai� �2/Cm outer basic slices

from Ui , as seen from �@.MnVi /, is independent of inner continued fraction blocks
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in the decomposition of Ui , that is, of vertices aij ; : : : ; a
i
ki

, farther down the legs. It
equals Œai0; : : : ; a

i
j�1; m�

�1 , or Œai0; : : : ; a
i
j�1; m�

�1C 1 in the case i D 1.

Proof The slope of interest is in the torus basis expressed as Œai
ki
; : : : ; aij �m�.

Recall the matrix form of a negative continued fraction

Œaiki ; : : : ; a
i
0�$

� 
�ai

ki
1

�1 0

!�1
� � �

�
�ai0 1

�1 0

��1�2
D

��
�ˇ0i �˛

0
i

ˇi ˛i

��2
and notice that it is exactly the inverse of our identification AW @Vi !�@.MnVi /.

Hence, we get the desired slope in the second column of 
�ai0 1

�1 0

!
� � �

 
�aijC1 1

�1 0

!
� � �

 
�ai

ki
1

�1 0

! 
�ai

ki
1

�1 0

!�1
� � �

 
�aijC1 1

�1 0

!�1
„ ƒ‚ …

I

 
�aij Cm 1

�1 0

!�1

D

 
�ai0 1

�1 0

!
� � �

 
�aij 1

�1 0

! 
0 �1

1 �aij Cm

!

D

 
�ai0 1

�1 0

!
� � �

 
�aij�1 1

�1 0

! 
1 m

0 1

!
:

Indeed, this is independent of ai� for �� j .

Now, comparing the second columns,��
�ai0 1

�1 0

�
� � �

�
�aij�1 1

�1 0

��
1 m

0 1

��2
DW

�
A

B

�
$

�
�B

�A

�
D

��
0 �1

1 �ai0

�
� � �

�
0 �1

1 �aij�1

��
0 �1

1 �m

��2
;

we express the slope as Œai0; : : : ; a
i
j�1; m�

�1, or Œai0; : : : ; a
i
j�1; m�

�1C1 for i D 1.

This independence of inner layers allows us to compute the background-basis slope of
any sequence of slices (from outside in) on a truncated leg. In the opposite direction,
if the slope of peeled-off slices is Œai0; : : : ; a

i
j�1; m�

�1 , or Œai0; : : : ; a
i
j�1; m�

�1 C 1

if i D 1, this in the torus basis corresponds to Œai
k
; : : : ; aij �m� when m � aij � 1.

When m D aij , we get Œai
k
; : : : ; aijC1; 0�, undefined as a continued fraction, but in

terms of the chain of surgeries, the 0–framed meridian cancels ajC1 , which results in
Œai
k
; : : : ; aijC2�.
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5.3 Proofs

The proofs of Propositions 5.1 and 5.2 are stated for matrices of negative signs, but
they can be verbatim repeated for positive ones. Without loss of generality, basic slices
within each continued fraction block are shuffled so that the negative slices are outer.

Proof of Proposition 5.1 The guiding principle is as follows. Look at the two singular
tori U� and U� whose outermost slices are negative. If we can peel such sequences of
negative basic slices from U� and U� that their inner boundary tori T� and T� have
slopes with the same denominator, say �p�=q and �p�=q , we can use Lemma 5.3
to find a torus parallel to @U� of slope .p�C p� � 1/=q , call it T . Whenever this
slope is not greater than the critical slope of the singular fiber, Crit.F�/ (that is, the
slope of meridian of the glued-up torus in the background basis), there exists a torus
of critical slope between @U� and T , which proves overtwistedness (see also [12,
Section 2]). Furthermore, if the slope of T is such that the thickened torus between
@U� and T (whose basic slices are all positive by (L2)) forms a basic slice together
with some of the slices in the original decomposition of U� , any negative basic slice in
this glued-together basic slice implies overtwistedness by the gluing lemma. Below we
analyze the slopes in each of the cases separately.

(O1) Consider first the structures of the first kind with .i; l/D .1; 2/. Around F2 there
are only negative slices in the first kC 1 continued fraction blocks and n2

kC1
of them

in the block corresponding to the vertex v2
kC1

(here we shuffle them to be its outer).
Around F3 , on the other hand, we have n30 negative slices (again, shuffled so that they
are the outer). Thus, peeling off from U2 basic slices up to the .N 2

mC1/
th slice of the

�a2mC1–block, we obtain the slope Œa20; : : : ; a
2
m; N

2
mC1�

�1 (in the background basis),
which can be joined by cutting the annulus to the torus with slope � 1

D
around F3

(peeling off D slices from U3 , where D is the denominator of Œa20; : : : ; a
2
m; N

2
mC1�

�1 ,
which is at most n30 by assumption). That way, we have found a torus T parallel to T1
of slope �Œa20; : : : ; a

2
m; N

2
mC1�

�1 .

Now, observe that the critical slope of F1 satisfies

Œa10; : : : ; a
1
j�1� 1�

�1
C 1� Crit.F1/D Œa10; : : : ; a

1
k1
��1C 1� Œa10; : : : ; a

1
j�1�

�1
C 1:

Our assumed condition gives �Œa20; : : : ; a
2
m; N

2
mC1�

�1<Œa10; : : : ; a
1
j�1�

�1C1. If also a
bit more holds true, namely �Œa20; : : : ; a

2
m; N

2
mC1�

�1�Crit.F1/, the torus T embraces
the critical one. Otherwise, we have �Œa10; : : : ; a

1
k1
��1 � Œa20; : : : ; a

2
m; N

2
mC1�

�1 � 1

and we can truncate both fractions so that the truncations add up to exactly 1 [9,
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Lemma 3.2]. So �Œa10; : : : ; a
1
J �
�1� Œa20; : : : ; b

2
M �
�1D 1 for some J 2 fj; : : : ; k1g and

M 2 f0; : : : ; mC 1g, and b2M D a
2
M for M � m or b2M D N

2
mC1 for M D mC 1.

Peeling off from U2 only slices of the first M C 1 outer blocks and corresponding (as
many as the denominator of Œa20; : : : ; b

2
M �
�1 , which is certainly less than or equal to

D � n30 ) slices in U3 , the slope of T is Œa10; : : : ; a
1
J �
�1C 1 in the background basis.

By the text under Lemma 5.5 this equals Œa1
k1
; : : : ; a1JC2� in torus basis, and T bounds

a basic slice with a torus T1 of slope Œa1
k1
; : : : ; a1JC2�1�. For tightness, the conditions

of the gluing lemma require for all the subslices of a glued-together basic slice to be
positive, but this is not satisfied as the toric annulus bounded by T1 and T contains
the .jC1/st continued fraction block (J � j ) and n1jC1 > 0 by assumption.

For .i; l/D .2; 1/, the arguments are the same, but here the induced slope of T (built
from peeling-off tori in U1 and U3 ) equals Œa10; : : : ; a

1
m; N

1
mC1�

�1 C 1, while the
critical slope is given by

Œa20; : : : ; a
2
j�1� 1�

�1
� Crit.F2/D Œa20; : : : ; a

2
k2
��1 � Œa20; : : : ; a

2
j�1�

�1:

(O2) Structures of the second kind admit negative basic slices in the outer layers of
U1 and U2 . The background-basis slopes Œa10; : : : ; a

1
J ; 3�

�1C1 on T1 around F1 and
Œa20; : : : ; a

2
K ; 2�

�1 on T2 around F2 — which add up to zero — are reached by peeling
off the corresponding sequences of (negative) basic slices when v1JC1 and v2KC1 exist,
and by decreasing the twisting number of the Legendrian singular fibers F1 or F2 by
stabilizing when L1 D .v10 ; : : : ; v

1
J / or L2 D .v20 ; : : : ; v

2
K/. Joining the two tori T1

and T2 by an annulus interpolating between the rulings, and edge-rounding, we obtain
a torus T around F3 of slope � 1

D
, where D is the denominator of Œa10; : : : ; a

1
J ; 3�

�1 .
By assumption, the denominator D is not greater than a30 � 1, hence the obtained
slope � 1

D
is smaller than or equal to �1=.a30�1/ < Crit.F3/, that is, T embraces the

critical torus.

Proof of Proposition 5.2 Recognition of isotopies, in all cases, follows the same
steps. First, we apply (L2) to get an additional thickened torus C around the singular
torus U� with positive outermost slices — traverse outer layers, whose basic slices are
all negative, from U� and U� . This new collar together with some, say n, continued
fraction blocks around F� join into a thicker basic slice, separated into positive basic
subslices. The isotopy is now given by reversing all these signs. In case we have used
all continued fraction blocks of U� , it is interpreted in destabilization followed by
opposite stabilization of a core knot. Otherwise, C together with nC 1 outermost
continued fraction blocks in U� builds a continued fraction block. Its signs can be
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shuffled, resulting in the C2–change in its innermost .nC1/st block (one negative
slice replaced by positive) and turn of sign on all basic slices that form C and the first
n continued fraction blocks (from positive to negative). The basic slices around the
other two fibers, F� and F� , are then adapted according to (L1) — the peeled off ones
change their signs from negative to positive, others remain untouched. The relevant
slopes for the three isotopy moves are analyzed below.

(I1) Since the equality �Œai0; : : : ; a
i
j�1�

�1� Œal0; : : : ; a
l
k
; nl
kC1
C 1��1 D 1 holds and

n30 is at least as much as the denominator of the two fractions, we can peel off from
Ul and U3 as many negative slices that the slope of the torus T we get around Fi
via (L2) equals Œai

ki
; : : : ; aijC1� in the torus basis. The torus T bounds a basic slice

with the torus of slope Œai
ki
; : : : ; aijC1�1�, which cuts off the positive outermost slices

from Ui . The torus of slope Œai
k1
; : : : ; aijC2� then gives a continued fraction block

with the torus T .

(I2) These are essentially isotopies from [5, Proposition 6.4]. Peeling off a single
(negative outermost) basic slice from U1 and U2 , we obtain a torus of slope 0, expressed
in the background basis, around F3 . It corresponds to the slope Œa3

k3
; : : : ; a31�, and

forms a glued-together basic slice with the outermost continued fraction block (with
inner slope Œa3

k3
; : : : ; a31�1�), and hence, a continued fraction block with Œa3

k3
; : : : ; a32�.

(I3) In the proof of Proposition 5.1, for structures of the second kind (O2), we have
obtained that the slope of the torus T built via (L2) from the two tori of slopes
Œa10; : : : ; a

1
J ; 3�

�1 C 1 around F1 and Œa20; : : : ; a
2
K ; 2�

�1 around F2 , which sum up
to zero, equals � 1

D
for D the denominator of Œa10; : : : ; a

1
J ; 3�

�1. By assumption, D
equals a30 ; moreover, �1=a30 is in the torus basis expressed as Œa3k3 ; : : : ; a

3
2�. Thus, the

torus T bounds a basic slice with the torus of slope Œa3
k3
; : : : ; a32 � 1� and a continued

fraction block with the torus of slope Œa3
k3
; : : : ; a33� in the slicing of U3 .

Proof of Theorem 1.3 In Section 2 we have reduced Theorem 1.3 to Theorem 2.2.

Suppose we are given a contact surgery presentation � as in Figure 1, whose full path
P� properly ends. By Theorem 2.1 such a presentation describes a tight structure.
Furthermore, all presentations which share this same path induce the same Spinc

structure (defining the same class in �HF.�M/ [15]) and have the same 3–dimensional
invariant (which is, through the equality d3.�/D d.M; t�/ of Theorem 1.2, determined
by t� ). In Corollary 4.14 we identify how presentations in the same path are related to
each other, and in Proposition 5.2 we realize all these relations by contact isotopies.
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Any further isotopies are, of course, excluded by the fact that different paths present
nonhomotopic bundles.

On the other hand, if the path P� drops out (fails the tightness criterion), the corre-
sponding structure � admits one of the features recognized in Corollary 4.14 or it can be
walked through presentations, related by the above isotopy moves, to some presentation
which admits such a feature. Finally, for these structures either the existence of a
torus with critical slope or the gluing lemma argument proves their overtwistedness, in
Proposition 5.1.

This finishes the proof of Theorem 2.2, originally stated as Theorem 1.3.
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