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Cross curvature flow on a negatively curved solid torus

JASON DEBLOIS
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ANDREA YOUNG

The classic 2� –Theorem of Gromov and Thurston constructs a negatively curved
metric on certain 3–manifolds obtained by Dehn filling. By Geometrization, any such
manifold admits a hyperbolic metric. We outline a program using cross curvature flow
to construct a smooth one-parameter family of metrics between the “2� –metric” and
the hyperbolic metric. We make partial progress in the program, proving long-time
existence, preservation of negative sectional curvature, curvature bounds and integral
convergence to hyperbolic for the metrics under consideration.

53C44; 57M50, 58J35, 58J32

1 Introduction

In this note, we outline a program that uses cross curvature flow to answer certain
questions inspired by the 2� –Theorem of Gromov and Thurston. We begin and
make partial progress toward completing this program. More specifically, we consider
cross curvature flow on a class of negatively curved metrics on the solid torus, the
simplest nontrivial handlebody. This is motivated by the “Dehn surgery” construction
in 3–manifold topology, of which we give a brief account below. We apply the flow
to a negatively curved metric described by Gromov–Thurston on a solid torus with
prescribed Dirichlet boundary conditions.

Perelman’s use of Ricci flow with surgery to prove the Geometrization Conjecture
demonstrates the considerable power of geometric flows to address questions about
3–manifolds [25; 26]. Subsequent work, that of Agol–Storm–Thurston [3], for example,
shows that Ricci flow may give information even about 3–manifolds known a priori
to admit a metric of constant curvature. The results of [3] are obtained by using the
monotonicity of volume under Ricci flow with surgery.

Ricci flow is nonetheless an imperfect tool for analyzing hyperbolic 3–manifolds –
those admitting metrics with constant negative sectional curvatures. According to
Geometrization, such manifolds form the largest class of prime 3–manifolds. Paradox-
ically, they are also the least understood class. In particular, the facts that Ricci flow
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does not preserve negative curvature and that singularities must be resolved by surgery
leaves certain basic questions unanswered. For example, one may ask whether the
space of negatively curved metrics on a manifold M is connected or contractible, or
analogous questions for the space of metrics with negative curvature satisfying various
pinching conditions. In higher dimensions, these questions are known to have negative
answers (see Farrell and Ontaneda [14; 12; 13]); but it has been conjectured and seems
plausible that their answers should be positive if M is a hyperbolic 3–manifold.

Such questions have particular relevance to the study of hyperbolic 3–manifolds,
because in practice one frequently encounters 3–manifolds on which it is possible
explicitly to describe a metric of nonconstant negative curvature and to discern certain
geometric information; however, the relationship between this metric and the hyperbolic
metric – which exists by Geometrization – is unclear. Such metrics are constructed
by Namazi and Souto in [24], for example, as well as in the famous 2� –Theorem of
Gromov–Thurston [16], which motivates our work here.

The 2� –Theorem belongs to a family of results describing the geometry of “fillings” –
that is, manifolds which result from Dehn surgery on cusps of a finite-volume hyperbolic
3–manifold. We describe this construction in greater detail in Section 2. The initial
such result, the “hyperbolic Dehn surgery theorem,” of Thurston [28] asserts that most
fillings of a hyperbolic 3–manifold admit hyperbolic metrics of their own, but it does
not explicitly describe the set of hyperbolic fillings. The 2� –Theorem remedies this
deficiency, but with a weaker conclusion, supplying a metric with negative sectional
curvatures on a filling that satisfies a certain explicit criterion. Another result in the
spirit of the 2� –Theorem is the 6–Theorem due to Agol [2] and, independently,
Lackenby [21]. This relaxes the hypotheses of the 2� –Theorem at the expense of
weakening its conclusion to a purely topological statement, one that nonetheless implies
hyperbolizability using Geometrization.

A program more in the spirit of this paper is that of Hodgson–Kerckhoff [17; 18; 19],
which, under somewhat stronger hypotheses, describes a family of “cone” metrics.
These are hyperbolic but singular along an embedded one-manifold, and interpolate
between the original smooth hyperbolic metric and that on the filling. The goal of our
program is to give an alternate construction of an interpolating family. We propose using
cross curvature flow (XCF) to construct a one-parameter family of smooth metrics, with
negative but nonconstant sectional curvatures, which interpolate between the metric
supplied by the 2� –Theorem and the hyperbolic metric guaranteed by Geometrization.

In [11], Chow and Hamilton introduced the XCF of metrics on a 3–manifold with
uniformly signed sectional curvatures. They established certain properties of the flow
and conjectured that if the initial datum is a metric with strictly negative sectional
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curvatures, then XCF (suitably normalized) should exist for all time, preserve negative
sectional curvature and converge asymptotically to a metric of constant curvature. This
conjecture would imply contractibility for the space of negatively curved metrics on a
hyperbolic 3–manifold. An additional benefit of a proof of this conjecture is that it
should be easier to track the evolution of relevant geometric quantities in a flow without
singularities than it is to track their evolution across surgeries.

XCF is a fully nonlinear, weakly parabolic system of equations, which can be defined as
follows: let PabDRab�

1
2
Rgab denote the Einstein tensor, and let P ij DgiagjbPab .

One can define the cross curvature tensor X by

(1-1) Xij D
1

2
PuvRiuvj :

Then the cross curvature flow of .M 3;g0/ is

@

@t
g D�2X;(1-2)

g.x; 0/D g0.x/:(1-3)

Since its introduction in [11], several papers concerning XCF have appeared in the
literature. Buckland established short-time existence of XCF for smooth initial data
on compact manifolds using DeTurck diffeomorphisms to create a strictly parabolic
system [7]. (Like Ricci flow, XCF is only weakly parabolic.) Chen and Ma showed
that certain warped product metrics on 2–torus and 2–sphere bundles over the circle
are solutions to XCF [22]. Solutions on locally-homogeneous manifolds have recently
been studied by Cao, Ni and Saloff-Coste [9; 10]. Glickenstein explored what happens
to compact quotients of homogeneous solutions of XCF [15]. The second two authors
of this paper have shown that (normalized) XCF is asymptotically stable at hyperbolic
metrics [20]. Also, in unpublished earlier work, Andrews has obtained interesting
estimates for more general solutions of XCF.

Here we consider a family of negatively curved metrics on the solid torus D2�S1 , with
initial data that arise in the proof of the 2� –Theorem. We (1) show short-time existence
of XCF with prescribed boundary conditions for metrics in this family, (2) establish
curvature bounds depending only on the initial data (showing in particular that negative
curvature is preserved for this family), and (3) demonstrate long-time existence.

Although they fall short of confirming the Chow–Hamilton conjectures (even for metrics
in this family), our results do provide evidence in favor of those conjectures. On one
hand, it is encouraging that negative curvature is preserved and long-time existence
holds. On the other hand, the fully nonlinear character of XCF and the high topological
complexity of negatively curved manifolds have not yet allowed a complete proof of
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convergence to hyperbolic. In fact, we are not yet able to rule out convergence to a
soliton. Note that recent studies of XCF (properly defined) on homogeneous manifolds
admitting curvatures of mixed sign display a much greater variety of behaviors than
the corresponding examples for Ricci flow (cf [9; 10; 15]).

The purpose of this paper is to introduce our program and to report on partial progress
toward its resolution. The paper is organized as follows. In Section 2, we give a
brief description of the 2� –Theorem and related work. In Section 3, we describe the
proposed program and give some of its motivations. In Section 4, we derive relevant
curvature equations and establish appropriate boundary conditions. In Section 5, we
report on our progress thus far, summarizing the new results established in this paper
that support the program. To streamline the exposition, the (sometimes lengthy) proofs
of these theorems are collected in Section 6.

We hope that the results in this paper contribute to further progress in the program,
and ultimately to further applications of curvature flows to the study of hyperbolic
3–manifolds.

The first author is partially supported by NSF grant DMS-0703749. The second author
acknowledges NSF support in the form of grants DMS-0505920 and DMS-0545984.

2 Dehn filling and the 2�–Theorem

Suppose M is a compact 3–manifold with a single boundary component: a torus
T 2 Š S1 �S1 . A closed manifold may be produced from M by Dehn filling @M , a
well known construction in which a solid torus is glued to M by a homeomorphism of
their boundaries. More precisely:

Definition 1 Suppose M is a compact 3–manifold with a torus boundary compo-
nent T . Let D2 be the unit disk in R2 ; let h be a homeomorphism from @.D2�S1/D

@D2 �S1 to T ; and for p 2 S1 , take �D h.@D2 � fpg/. Define the manifold M.�/

obtained by Dehn filling M along � by

M.�/D
M t .D2 �S1/

x � h.x/; x 2 @D2 �S1
:

We call the isotopy class of � in T the filling slope, and the image in M.�/ of D2�S1

the filling torus.

Clearly, the topology of M.�/ may vary depending on the choice of h, but it is a
standard fact that it is determined up to homeomorphism by the choice of filling slope.
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Now suppose that M is a hyperbolic 3–manifold with finite volume. (That is, M

is a smooth manifold equipped with a complete, finite-volume Riemannian metric
which has sectional curvatures � �1.) It follows from the Margulis Lemma [23]
(cf [27, Theorem 12.5.1]) that if M is noncompact, each of its cusps is diffeomorphic
to T 2 � RC . (Here a “cusp” is a component of the complement of a sufficiently
large compact submanifold-with-boundary.) Thus removing the cusps of M yields a
compact 3–manifold �M whose boundary is a disjoint union of tori.

Suppose for simplicity that M has a single cusp. The hyperbolic Dehn surgery Theorem,
due to Thurston [28, Section 5], asserts that for all but finitely many choices of slope �
on @ �M , the closed manifold �M .�/ admits a hyperbolic metric. In the past thirty years,
an enormous quantity of work has been devoted to explicitly describing the set of
“hyperbolic filling slopes”, and investigating the relationship between the hyperbolic
metrics on M and �M .�/. This is the context of the 2� –Theorem, due to Gromov and
Thurston [16] (cf [6, Theorem 9]).

A further consequence of the Margulis Lemma is that a parameterization �W T 2�RC!
M for the cusp of M may be chosen so that the hyperbolic metric on M pulls back
to a warped product metric on T 2 �RC which restricts on each level torus T 2 � ftg

to a Euclidean metric. (We will precisely describe this metric below.) We call such a
parameterization “good”.

Theorem 1 (Gromov–Thurston) Let M be a one-cusped hyperbolic 3–manifold
with a good parameterization �W T 2 �RC!M of the cusp of M , and suppose �
is a slope on @ �M such that ��1.�/ has a geodesic representative with length greater
than 2� in some level torus. Then �M .�/ admits a Riemannian metric with negative
sectional curvatures.

The proof is constructive, yielding a metric on �M .�/ which on �M is isometric to
the metric inherited from M , and on the filling torus has variable negative curvature.
Below we will sketch a proof, describing the metrics under consideration on D2 �S1 .
It will be convenient to use cylindrical coordinates .�; �; r/ 2 Œ0; 1/� Œ0; 1/� Œ0; 1�,
where with D2 �S1 naturally embedded in R2 �R2 , we have

x1 D r cos.2��/; x2 D cos.2��/;

y1 D r sin.2��/; y2 D sin.2��/:

The core of D2�S1 is the set f.0; 0/g�S1Df.0; �; 0/g, and a meridian disk is of the
form D2 � fpg D f.�; �0; r/g for fixed p or �0 . The standard rotations of D2 �S1

are of the form .�; �; r/ 7! .�C�0; �; r/, fixing the core and rotating each meridian
disk, or .�; �; r/ 7! .�; �C �0; r/. All of the metrics we use will be rotationally
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symmetric, and diagonal in cylindrical coordinates, which implies that they have the
form

(2-1) G.r/D f 2.r/ d�2
Cg2.r/ d�2

C h2.r/ dr2:

Here the functions f , g , and h must satisfy the following regularity conditions at
r D 0 to ensure that they extend smoothly across the core.

Lemma 1 G extends to a smooth metric on D2 �S1 if and only if g.r/ and h.r/

extend to smooth even functions on R with g.0/; h.0/ > 0, and f extends to a smooth
odd function on R with fr .0/D 2�h.0/.

Because this is a standard result in Riemannian geometry, we omit the proof.

In a rotationally-symmetric diagonal metric on D2 � S1 , it will frequently prove
convenient to parameterize by an outward-pointing radial coordinate which measures
distance from the core:

(2-2) s.r/D

Z r

0

h.�/ d�:

Then G may be written in the form

(2-3) G.s/D f 2.s/ d�2
Cg2.s/ d�2

C ds2; s 2 Œ0; s0�:

Here s0 is the distance from the core to the boundary. The smoothness criteria of the
lemma above translate to the requirements that f extends to a smooth odd function
of s , and g to an even function of s , such that fs.0/D 2� and g.0/ > 0.

Example 1 There is a standard description of the cusp of a hyperbolic manifold as
the quotient of a horoball in hyperbolic space H3 by a group of isometries � ' Z2 .
We will use the upper half-space model for H3 , namely f.x;y; z/ 2R3 j z > 0g with
the Riemannian metric Gh D z�2.dx2 C dy2 C dz2/. Then a standard horoball is
H1 D f.x;y; z/ j z � 1g, and the elements of � are Euclidean translations fixing the z

coordinate, each of the form �.a;b/W .x;y; z/ 7! .xC a;yC b; z/ for .a; b/ 2R2 .

Without loss of generality, we may assume that � is generated by elements of the form
�.M;0/ and �.x0;L/ , where M;L> 0. Then M is the length of a “meridian” geodesic
of the torus T D @.H1=�/D f.x;y; 1/g=� , and L is the length of an arc joining the
meridian geodesic to itself, perpendicular to it at both ends. (The final constant x0 of
the definition is a sort of “twisting parameter” and does not enter into computations
using the metrics under consideration here.)

Algebraic & Geometric Topology, Volume 10 (2010)



Cross curvature flow on a negatively curved solid torus 349

There is a map from the complement of the core in D2 � S1 to H1=� , given in
cylindrical coordinates by

‰.�; �; r/D

�
M�;L�;

1

r

�
; r 2 .0; 1�:

Using ‰ , the hyperbolic metric pulls back to

‰�Gh DM 2r2 d�2
CL2r2 d�2

C
dr2

r2
; r 2 .0; 1�:

Using an outward-pointing radial coordinate which measures distance to the boundary,

s.r/D�

Z 1

r

1

�
d� D log r;

the hyperbolic metric takes the form

Gcusp DM 2e2s d�2
CL2e2s d�2

C ds2; s 2 .�1; 0�:

Sketch of proof of Theorem 1 One seeks a rotationally symmetric diagonal metric
on D2 � S1 of the form (2-3), which in addition has negative sectional curvatures.
One further requires that in a neighborhood U of @.D2�S1/, f and g take the form

(2-4) f .s/DMes�s0 ; g.s/DLes�s0 :

If this is the case, then the map hW .�; �; s/ 7! .�; �; s� s0/ takes U isometrically to
a neighborhood of @.H1=�/ with the metric Gcusp . Note also that for any p 2 S1 ,
� D h.@D2 � fpg/ is a geodesic on T with length M ; thus in this case, there is a
metric on �M .�/ yielding the theorem. A computation establishes that the sectional
curvatures of G.s/ are as follows:

K�� D�
fsgs

fg
; K�s D�

gss

g
; K�s D�

fss

f
:

Since f and g are positive on .0; s0�, and fs.0/ D 2� , it follows that all sectional
curvatures are negative if and only if fs , gs , fss , and gss are positive on .0; s0�. Since
the components of G must satisfy (2-4) near the boundary, one has fs.s0/DM . Thus
since fss > 0, M must be greater than fs.0/D 2� . One can show that this necessary
condition is also sufficient for there to exist a metric of the form (2-3) satisfying our
conditions. (See Bleiler and Hodgson [6, Theorem 9].)

Algebraic & Geometric Topology, Volume 10 (2010)



350 Jason DeBlois, Dan Knopf and Andrea Young

3 Description of the program

We now outline our proposed program. As was discussed above, the 2� –Theorem
constructs a negatively curved metric on certain 3–manifolds obtained by Dehn filling.
By Geometrization, any such manifold admits a hyperbolic metric. Our goal is to
use XCF to construct a smooth one-parameter family of metrics between the “2� –
metric”and the hyperbolic metric. Motivated by the Hodgson–Kerckhoff constructions
[17; 18; 19], one might expect the program to work for slopes � on @ �M such that
��1.�/ has a geodesic representative of length �L, for some L> 2� . (Because our
method depends on a stability result, one does not expect to be able to take LD 2� .)

The hyperbolic Dehn surgery theorem asserts that the manifolds �M .�/ “approach M

geometrically” in the following precise sense: for fixed z 2 int �M , and �;R > 0,
there exists L > 0 such that if ��1.�/ has geodesic length greater than L, there is
an injection f taking B.z;R/ �M to �M .�/ such that d.f ���; �/ < � . Here ��
and � are the (unique) hyperbolic metrics on M.�/ and M , respectively, and their
distance is measured in the C1 topology. See Benedetti and Petronio [5, Section E.1]
or Canary, Epstein and Green [8, Section I.3] for discussions of geometric convergence,
and Benedetti and Petronio [5, Section E.5] and Thurston [28, Chapter 5] for statements
of the hyperbolic Dehn surgery theorem.

Since �M � M is compact, for any fixed z 2 int �M there is some R such that�M � B.z;R/. The hyperbolic Dehn surgery theorem thus implies that for any � > 0,
there exists L> 0 so that for slopes � with geodesic length greater than L, the metrics
that �M inherits from M and �M .�/, respectively, are �–close in the C1 topology.
Given such a slope �, a metric on �M .�/ that is �–close to the hyperbolic metric may
be produced using a metric on D2 �S1 that matches �j@ �M under the gluing map h

and is itself �–close to hyperbolic. We hope to use XCF on D2�S1 to flow to a metric
with these properties.

The first step is to take as an initial datum a negatively curved metric G.s; 0/ on
a solid torus given by Equation (2-3). We evolve this metric by cross curvature
flow. Because this is a manifold-with-boundary, we impose time dependent Dirichlet
boundary conditions corresponding to a homothetically evolving hyperbolic metric.
(Example 2 below motivates this choice.) In this paper, we show that the flow exists
for all time and preserves negative sectional curvatures. Inspired by the conjecture
of Hamilton and Chow, we conjecture that (after normalization) G.� ; t/ converges
uniformly to a hyperbolic metric in C 2;˛ as t!1, at least on sets compactly contained
in the complement of the boundary, ie on Œ0; 1/� Œ0; 1/� Œ0; r�� for any r� 2 .0; 1/.
The results in this paper support this conjecture.
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Now suppose the conjecture is proved. Recall that the metric on �M is isometric to the
hyperbolic metric inherited from M . The Dirichlet boundary conditions on the solid
torus are deliberately chosen so that at each time, they match the boundary conditions
on �M , with this metric evolved by a homothety. One can argue, assuming convergence
on the boundary, that the second fundamental form of our boundary torus should
converge to that of a torus in the truncated hyperbolic cusp of �M . This suggests that
for the second step it should be possible, using a local perturbation that is very small
for large t , to glue the two components while matching the metrics in C2C˛ . In turn,
this allows one to eventually apply the asymptotic stability of hyperbolic metrics under
normalized cross curvature flow (proved by the second two authors [20]) to establish
exponential convergence to a metric of constant negative curvature. Note that this step
will in general change the metric on the entire (closed) manifold.

A successful completion of this program would exhibit a one-parameter family of
negatively curved metrics connecting the “2� metric”on �M .�/ to the hyperbolic
metric that, according to Geometrization, this manifold must admit.

4 Basic equations and boundary conditions

Let M 3 DD2 �S1 be the solid torus, a 3–manifold with boundary. As above, we
restrict our attention to evolving metrics G on M 3 which are rotationally symmetric.
These are metrics that are diagonal in cylindrical coordinates, and for which the isometry
group acts transitively on each torus consisting of the locus of points a fixed distance
from the core. We may write G as

G.s; t/D f 2.s; t/ d�2
Cg2.s; t/ d�2

C ds2(4-1a)

D e2u.s;t/ d�2
C e2v.s;t/ d�2

C ds2;(4-1b)

where s is arclength measured outward from the core, as defined in (2-2).

The following example describes the prototypical negatively curved diagonal metric on
a solid torus: the hyperbolic metric of constant curvature �1. This explains our choice
of boundary conditions.

Example 2 The metric on a regular neighborhood of a closed geodesic in a hyperbolic
manifold is given by

Ghyp D

�
2

1� r2

�2�
r2 d�2

C
b

4
.1C r2/2 d�2

C dr2

�

Algebraic & Geometric Topology, Volume 10 (2010)



352 Jason DeBlois, Dan Knopf and Andrea Young

for r 2 .0; 1/, where b is the length of the geodesic. Using the geodesic radial coordinate

s.r/D

Z r

0

2

1� �2
d� D log

�
1C r

1� r

�
;

this takes the form

Ghyp D 4� sinh2 s d�2
C b cosh2 s d�2

C ds2:

The solution of XCF on any closed hyperbolic manifold with initial data G0 is G.t/D
p

1C 4t G0 . On the solid torus, the solution of XCF with initial data Ghyp is similarly
G.t/D

p
1C 4t Ghyp .

The principal sectional curvatures of the metric G given by (4-1) are

K�� D�
fsgs

fg
D�usvs;(4-2a)

K�r D�
gss

g
D�.vssC v

2
s /;(4-2b)

K�r D�
fss

f
D�.ussCu2

s /:(4-2c)

We are interested in the case that G has negative sectional curvatures. This occurs
when f and g , in addition to being positive, are monotonically increasing convex
functions of s that satisfy the following conditions at the origin:

lim
s!0

gs

f
D lim

s!0

gss

fs
D lim

s!0
gss > 0;(4-3a)

lim
s!0

fss

f
D lim

s!0

fsss

fs
D lim

s!0
fsss > 0:(4-3b)

One finds from the first equality in (4-3) that the sectional curvatures K�� and Kr�

are identical at the core. This reflects the fact that rotation about the core is an isometry,
and so the sectional curvatures tangent to any two planes containing @=@� are equal.

Henceforth, we assume the initial metric G0 has negative sectional curvatures. We
denote the absolute values of the principal sectional curvatures by ˛ , ˇ and 
 , namely

(4-4) ˛ D�K��; ˇ D�K�r ; 
 D�K�r :

The assumption of negative sectional curvature imposes certain constraints on the initial
values of f , g and h, as mentioned above. Namely, we require that f .1; 0/D `1> 2�

and that the initial radius r0 D s.1; 0/ satisfies 1< r0 < `1=2� . We also assume that
the metric G0DG.� ; 0/ obeys a global C 2C� bound and that G0 has constant negative
sectional curvature at the core – namely, that ˛ D ˇ D 
 > 0 at r D 0.
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We now apply cross curvature flow to a metric of the form (4-1). The evolution of this
metric under XCF is equivalent to the system

ft D
fsgs

fg
fss;(4-5a)

gt D
fsgs

fg
gss;(4-5b)

ht D
fssgss

fg
h:(4-5c)

Notice that these equations remain nondegenerate only as long as fsgs=.gf / remains
strictly positive.

Sometimes, it is more tractable to work with the equations for

(4-6) uD logf; v D log g; w D log h:

These quantities evolve by

ut D ˛
 D usvsussCu3
s vs;(4-7a)

vt D ˛ˇ D usvsvssC v
3
s us;(4-7b)

wt D ˇ
 D ussvssC v
2
s ussCu2

s vssCu2
s v

2
s :(4-7c)

Remark 1 Given w.� ; 0/, the evolution of w is determined by us , vs , uss , and vss .
So we may (and usually do) suppress its equation in what follows.

Remark 2 Observe that system (4-5) for f and g – equivalently, system (4-7) for u

and v – is strictly parabolic. This is because our choice to parameterize by arclength s

fixes a gauge and thereby breaks the diffeomorphism invariance of XCF. This effectively
replaces the DeTurck diffeomorphisms in our proof of short-time existence (Theorem 2,
below). This simplification is possible because, in contrast to the more general situation
considered by Buckland [7], the spatial dependence of our metrics is only on the radial
coordinate r 2 Œ0; 1�. A similar situation occurs for rotationally invariant Ricci flow
solutions; compare the system for ' and  considered by Angenent and the second
author [4], for example. As in that paper, one pays for parabolicity with a commutator;
in our case, this is

(4-8) Œ@t ; @s �D�ˇ
@s:
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Because the solid torus is a manifold-with-boundary, one must prescribe boundary
conditions. We prescribe the Dirichlet boundary conditions given by

u.x; t/D log
�
f .1; 0/.1C 4t/1=4

�
;(4-9a)

v.x; t/D log
�
g.1; 0/.1C 4t/1=4

�
;(4-9b)

w.x; t/D log
�
.1C 4t/1=4

�
:(4-9c)

As noted above, our choice of boundary conditions are those attained by a homothetically
evolving hyperbolic metric.

Lemma 2 As long as a solution exists, the values of the curvatures on the boundary
are given by

˛.s.1; t/; t/D ˇ.s.1; t/; t/D 
 .s.1; t/; t/D
1

p
4t C 1

:

Proof We define U.t/Dut .s.1; t/; t/, V .t/Dvt .s.1; t/; t/ and W .t/Dwt .s.1; t/; t/.
The result follows from the observation that the evolution equations for u, v , and w
imply that ˛2 D U V =W , ˇ2 D V W =U , and 
 2 D U W =V on the boundary.

In particular, a simple computation using Ghyp in Example 2 shows that the curvatures
on the boundary are those of a homothetically evolving hyperbolic metric.

5 Summary of results

We now state our results that establish long-time existence and preservation of negative
sectional curvature for the metrics under consideration in this paper. To streamline the
exposition, we postpone the proofs until the next section.

5.1 Long-time existence and uniqueness

We first establish short-time existence and uniqueness. Since we are considering XCF

on a manifold-with-boundary, these results do not immediately follow from [7]. So we
use the machinery of [1]. Fix � 2 .0; 1/.

Definition 2 Given � > 0, let E� denote the space

E� WD C 1C�
�
Œ0; � �;C 0.S�;C N /

�
\L1

�
Œ0; �/;C 2C2� .S�;C N /

�
;

endowed with the norm

jj EX jjE�
WD sup

t2Œ0;��

jj EX jjC 0 C ŒDt
EX �C � C sup

t2Œ0;��

ŒD2
x
EX �C 2� :

Here, C rC� denotes the usual Hölder norm, and L1 has its standard meaning.
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Theorem 2 There exists �0 > 0 such that the fully nonlinear parabolic system (4-7)
has a unique solution .u; v; w/ 2E�0

.

It is not known in general whether solutions to cross curvature flow exist for all time.
However, in the particular case of our rotationally symmetric metric on the solid torus,
we can show a priori bounds on the derivatives of the sectional curvatures.

Theorem 3 Let G be a rotationally symmetric metric on the solid torus given by
Equation (4-1). For every � > 0 and m 2N , there exists a constant Cm depending on
m; �; and K such that if

ˇ.s; t/; 
 .s; t/�K for all s 2M and t 2 Œ0; � �;ˇ̌̌̌
@m

@sm
ˇ.s; t/

ˇ̌̌̌
�

Cm

tm
for all s 2M and t 2 Œ0; � �then ˇ̌̌̌

@m

@sm

 .s; t/

ˇ̌̌̌
�

Cm

tm
for all s 2M and t 2 Œ0; � �:and

We use these estimates together with the fact that the curvatures stay bounded to show,
in the usual way, long-time existence of solutions to Equations (4-5).

Theorem 4 The solution .u; v; w/ to XCF on the solid torus exists for all time.

5.2 Curvature estimates

One can compute the following evolution equations for the sectional curvatures:

˛t D ˛˛ssC
�
2˛.usC vs/CˇusC 
vs

�
˛sC 2˛.˛2

� 2ˇ
 /;(5-1a)

ˇt D ˛ˇssC .3ˇusC 
vs � 2˛us/ˇsC 2ˇ
�
u2

s .˛�ˇ/�˛

�
;(5-1b)


t D ˛
ssC .3
vsCˇus � 2˛vs/
sC 2

�
v2

s .˛� 
 /�˛ˇ
�
:(5-1c)

This system is well behaved as long as ˛ > 0, since this makes ˛.@2=@s2/ an elliptic
operator. In particular, a maximum principle then applies at interior points. We say
s.r; t/ is an interior point if r 2 .0; 1/.

Our goal, in the context of Section 3, is to use these evolution equations to show
convergence to hyperbolic. Here we collect various estimates that represent progress
toward that goal. Define

K0 D sup
M�f0g

f˛; ˇ; 
 g and L0 D inf
M�f0g

f˛; ˇ; 
 g:
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Theorem 5 (1) For as long as a solution exists, ˛ > 0. Thus the XCF operator
remains elliptic.

(2) The quantities ˛; ˇ; and 
 are bounded from above by K0 .

(3) The quantities ˛; ˇ , and 
 are bounded from below by L0e�4K 2
0

t .

(4) Negative sectional curvature is preserved.

(5) Over the course of the XCF evolution, one has

˛ �
L0

4K0L0t C 1
:

Finally, we follow [11] to obtain evidence that our solution converges to a hyperbolic
metric in an integral sense. We use their notation and define

(5-2) J D

Z
M

�
P

3
� .det P /1=3

�
dV ;

where P D gij P ij . Notice the integrand is nonnegative (by the arithmetic-geometric
mean inequality) and is identically zero if and only if gij has constant curvature.
Hamilton and Chow’s theorem does not directly apply to our setting, as we have a
manifold with boundary. However, we are able to prove the analogous theorem.

Theorem 6 Under XCF of a rotationally-symmetric metric on the solid torus, one has

dJ

dt
� 0:

6 Collected proofs

6.1 Proofs of long-time existence and uniqueness

We first use the theory of [1] for short-time existence and regularity of solutions to
fully nonlinear parabolic systems. Consider the second-order system

@t
EX D F.t;x; EX ;D EX ;D2 EX / for .t;x/ in Œ0;T ��S�;

H.t;x; EX ;D EX /D 0 for .t;x/ in Œ0;T �� @�;

EX .0;x/D �.x/ for x in S�

where T >0, � is a bounded, smooth domain of Rn , and F;H are smooth CN –valued
functions.
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The short-time existence theory requires the following hypotheses:

� Regularity : The boundary of � and the functions F;H; � satisfy

@� 2 C 2C2� ; � 2 C 2C2� .�;CN /;

F 2 C 2.�;CN /;

H 2 C 3.� 0N /; .� 2 .0; 1=2//;

where � WD Œ0;1/�S��CN �CnN �Cn2N and � 0 WD Œ0;1/�S��CN �CnN .

� Compatibility : The initial datum � satisfies

H.0;x; �.x/;D�.x//D 0;x 2 @�:

If these hypotheses are satisfied, one has:

Theorem 7 There exists �0 > 0 such that the fully nonlinear parabolic system has a
unique solution EX 2E�0

, where

E� WD C 1C�
�
Œ0; � �;C 0.S�;C N /

�
\L1

�
Œ0; �/;C 2C2� .S�;C N /

�
;

with the norm

jj EX jjE�
WD sup

t2Œ0;��

jj EX jjC 0 C ŒDt
EX �C � C sup

t2Œ0;��

ŒD2
x
EX �C 2� :

Proof of Theorem 2 As explained in Remark 2, the parameterization by arclength s ,
as defined in (2-2), makes XCF a strictly parabolic system; furthermore, this parameter-
ization respects the stated Dirichlet boundary conditions.

Thus we may apply Theorem 7 to the system of equations (4-7) with boundary conditions
given by (4-9). Clearly, the regularity hypotheses for F and H are satisfied, because our
initial data are C1 . Moreover, one has u.x; 0/D logf .1; 0/, v.x; 0/D log g.1; 0/,
and w.x; 0/D 0 for x on the boundary torus, so that the compatibility hypothesis is
likewise met. Hence Theorem 2 follows.

The proof of long-time existence of solutions to the flow is standard once we obtain
a priori derivative estimates. So we will first outline the proof of Theorem 3. We prove
this using estimates of Bernstein–Bando–Shi type.

Sketch of proof of Theorem 3 Define MC WD tˇs C �1ˇ
2C �2


2 , where �1 and
�2 are two constants to be chosen later. (We will see that they depend only on the
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initial conditions and the length of the time interval under consideration.) When one
computes the evolution of MC , one sees that it has the following structure:

@MC

@t
D ˛.MC/ssC .MC/sF1C 3t.ˇs/

2usC tˇs
svs

C tˇsF2C t
sF3� 2˛�1.ˇs/
2
� 2˛�2.
s/

2;

where Fi D Fi.˛; ˇ; 
 / are polynomials depending on the curvatures.

Now let � > 0 be some real number, and consider the evolution equation on Œ0; � �.
Using bounds on the curvatures and multiple applications of Cauchy–Schwarz, one
can show that
@MC

@t
� ˛.MC/ssC .MC/sF1C .ˇs/

2.F2� 2K�1/C .
s/
2.F3� 2K�2/CF4;

where K > 0 is the lower bound for ˛ on Œ0; � �, and the Fi (which may differ from
above) also depend on � .

Since all of the Fi are bounded from above, we choose �1 and �2 so that the terms
F2� 2K�1 and F3� 2K�2 are both negative. Then we have

.MC/t � ˛.MC/ssC .MC/sF1CC;

where C is a constant depending only on the initial data. Thus by the parabolic
maximum principle, we have

sup
x2M 3

MC.x; t/� C t CD � C� CD;

for all t 2 Œ0; � �, where again D is a constant just depending on the initial data. Hence,
on this bounded time interval,

ˇs �
C

t
:

Notice that in an analogous fashion, we can obtain a lower bound for ˇs on a bounded
time interval by considering M� WD �tˇs ��1ˇ

2��2

2 . Thus we obtain our desired

result that jˇsj � C=t on Œ0; � �, where C depends only on the initial data and on � .

Similarly, to estimate 
s , one considers NC WD t
sC �1ˇ
2C 
 2 along with N� WD

�t
s ��1ˇ
2��2


2 and shows that in fact j
sj � C=t , for C as above.

We then use induction to show that higher-order estimates j@mˇ=@smj; j@m
=@smj �

C=tm hold on Œ0; � � for any m> 0.

In order to show long-time existence of solutions to the system given by (4-5), we will
prove a theorem analogous to that for Ricci flow.
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Theorem 8 Let G0 be a metric on the solid torus M 3 given by (4-1). Then unnor-
malized cross curvature flow has a unique solution G.t/ such that G.0/D G0 . This
solution exists on a maximal time interval Œ0;T /. If T �1, then at least one of

lim
t!T

�
sup

s2M 3

j˛.s; t/j

�
; lim

t!T

�
sup

s2M 3

jˇ.s; t/j

�
; lim

t!T

�
sup

s2M 3

j
 .s; t/j

�
is infinite.

Proof As for Ricci flow, we prove the contrapositive of this statement. Suppose that
the solution exists on a maximal time interval Œ0;T /, and that there exists K > 0

such that sup0�t<T j˛.s; t/j, sup0�t<T jˇ.s; t/j, and sup0�t<T j
 .s; t/j � K . The
key idea is to show that G.s;T / is a smooth limit metric on the solid torus of the form
given in (4-1). We can define f .T / and g.T / to be

f .s;T /D f .s; �/C

Z T

�

˛
f .s; t/ dt ;

g.s;T /D g.s; �/C

Z T

�

˛ˇg.s; t/ dt ;

where � 2 Œ0;T / is arbitrary. Using this formulation to compute derivatives of f .T /
and g.T /, one can use Theorem 3 to bound the curvature quantities, thereby showing
that both f .T / and g.T / are smooth. It remains to show that the metric G.T / D

f .T /2 d�2Cg.T /2 d�2Cds2 extends to a smooth metric on the solid torus; namely,
that g.T / extends to an even function such that g.0;T / > 0 and that f .T / extends
to an odd function with fs.0;T / D 1. These facts can be seen from the integral
formulation above, if one recalls that the curvatures extend to even functions. Then
G.T / is a smooth metric on the solid torus, so Theorem 2 implies that a solution exists
on ŒT;T C �/ for some � > 0. This contradicts T being maximal.

Corollary 1 (Theorem 4) Let G0 be as in (4-1). Then the solution G.t/ to cross
curvature flow with G.0/DG0 exists for all time.

Proof By Parts (2) and (3) of Theorem 5, we obtain uniform bounds for ˛; ˇ; 
 . Thus
Theorem 8 implies T D1, to wit, that the flow exists for all time.

6.2 Analysis of core conditions

Recall that one of our requirements on the metric G was that f D 0 on the core
circle. Then the form in which the evolution equations (4-7) are written involves the
quantity us D fs=f , which blows up as s& 0. Because of this, we treat the core as a
special case for the curvature evolution equations. We do this in a standard way using
l’Hôpital’s rule, beginning with the following lemma.
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Lemma 3 On the solid torus, one has

lim
s!0

u2
s .˛�ˇ/D lim

s!0

1

3
.ˇ
 �ˇ2

�ˇss/:

Proof Writing the expression us.˛�ˇ/ in terms of f and g and their derivatives,
we obtain

u2
s .˛�ˇ/D

f 2
s

f 2

�
fsgs

fg
�

gss

g

�
D
f 2

s

g

�
fsgs �fgss

f 3

�
:

The quantity outside the parentheses above has a well-defined limit as s! 0, and both
the numerator and denominator of the fraction inside the parentheses approach 0 as
s! 0. We apply l’Hôpital’s rule three times to obtain the following:

lim
s!0

u2
s .˛�ˇ/D lim

s!0

fs

g

�
fssgs �fgsss

3f 2

�
D lim

s!0

1

g

�
fsssgsCfssgss �fsgsss �fgssss

6f

�
D lim

s!0

1

3

�
fsss

gss

g
�

gssss

g

�
:

A quick computation of the limit of ˇss as s! 0 reveals that

lim
s!0

ˇss D lim
s!0

gssss

g
�

g2
ss

g2
;

and this together with the fact that fsss and 
 have the same limit as s! 0 yields the
conclusion.

From the result above, the following description of the curvature evolution at the core
follows readily.

Lemma 4 At the core, the evolution equations for the curvatures are as follows:

˛t D 4˛˛ssC 2˛3
� 4˛2
;

ˇt D
4

3
˛ˇss �

2

3
ˇ3
�

4

3
ˇ2
;


t D 2˛
ss � 2˛2
:

Proof We recall that the curvatures all extend past the origin to smooth even functions
of s . Using this fact and l’Hôpital’s rule, we have

lim
s!0

us˛s D lim
s!0

˛ss;

Algebraic & Geometric Topology, Volume 10 (2010)



Cross curvature flow on a negatively curved solid torus 361

with similar identities holding for ˇ and 
 . The lemma follows readily from this fact
and Lemma 3, using the fact that ˛ D ˇ at the core.

Remark 3 It may be noted that since ˛ D ˇ at the core, their evolution equations
should be identical. In fact this is true; the missing ingredient is the fact that

lim
s!0

˛ss D lim
s!0

1

3
.ˇssC 2ˇ
 � 2ˇ2/:

This may be proved by explicitly writing the formula for ˛ss in terms of f and g and
their derivatives, and using l’Hôpital’s rule to simplify the limit as s! 0, as above.

6.3 Proofs of curvature estimates

Here we provide the proofs of the curvature estimates, using the maximum principle.

Lemma 5 As long as a smooth XCF solution exists with ˛ > 0, one has ˇ � 0 and

 � 0.

Proof This is a standard maximum principle argument, slightly tweaked to accom-
modate the core and boundary conditions. We give the proof for ˇ ; the proof for 
 is
similar. Suppose a smooth solution with ˛ > 0 exists on the time interval Œ0; � �. Let
C0 be the maximum attained by the function u2

s .˛ � ˇ/� ˛
 on this time interval.
(Recall that although us blows up at the origin, u2

s .˛�ˇ/ is at least continuous there
by Lemma 3.) Define C1 to be the maximum achieved by �2=3.ˇ2C 2ˇ
 / at the
core on the time interval Œ0; � �, and let C be the maximum of C0 and C1 . Define
�.s; t/D e�C tˇ.s; t/. The evolution equation for � is

�t D ˛�ssC .3ˇusC 
vs � 2˛us/�sC�.u
2
s .˛�ˇ/�˛
 �C /

on the interior, and at the core it is

�t D
4

3
˛�ssC�

�
�

2

3
.ˇ2
C 2ˇ
 /�C

�
:

At a local minimum for � in the interior or at the core, one has �ss � 0 and �s D 0;
and from our definition of C , it follows that if � < 0 at such a local minimum, then
�t � 0 there.

For ı > 0, consider the function � C ı.t C 1/. Initially this function has all values
larger than 0, since ˇ has all values larger than 0 initially. If there is a first time in
.0; � � that �.s; t/C ı.t C 1/D 0 for some s , then the observations above imply that
.�C ı.t C 1//t D �t C ı � ı there. (Such a minimum cannot occur on the boundary,
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since values of ˇ are always positive there.) But since t is the first time that such a
minimum occurs, computing the time derivative .�C ı.t C 1//t from below shows
that this quantity must be less than or equal to 0, a contradiction. Thus �C ı.t C 1/ is
positive on Œ0; � �, and since ı > 0 is arbitrary, so is � . But then so is ˇ , since � is a
positive multiple of ˇ .

Lemma 6 Suppose a solution exists for 0� t � T . Define K D supM 3�Œ0;T �fˇ; 
 g.
Then for all t 2 Œ0;T �, one has

˛min.t/� ˛min.0/e
�4K 2t :

Proof Note that ˛min.0/�K , since the curvatures are all equal to �1 at the origin at
time t D 0. For ı > 0, define the barrier function A.t/D ˛min.0/e

�4K 2t � ı . Then
˛ � AC ı at t D 0. If there is a first time t 2 .0;T � such that ˛min.t/D A.t/, then
˛min.t/ is attained either at an interior point or the core.

In the former case, one has 8̂<̂
:
˛t �A0;

˛˛ss DA˛ss � 0;

˛s D 0:

By hypothesis ˇ �K and 
 �K . Hence at .s; t/, one has

A02.AC ı/� ˛t > �4˛ˇ
 � �4K2A:

This is evidently impossible.

If the minimum occurs at the core, then appealing to the evolution equation there shows
that ˛t � �4˛2
 � �2A2K . This yields

A02.AC ı/� ˛t � �2A2K:

Since K� ˛min.0/ and K� 1 we have K>A at t . Plugging into the above inequality
yields

A02.AC ı/� �4A2K > �4K2A:

This is plainly a contradiction. Since ı was arbitrary and ˛ is controlled on the
boundary, the lemma follows.

Corollary 2 (Part (1) of Theorem 5) For as long as a solution exists, ˛ > 0.

This follows immediately from the lemma, and shows that the XCF operator remains
elliptic for as long as the flow exists.

Now let K0 D supM�f0gf˛; ˇ; 
 g.
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Lemma 7 Suppose a solution exists for 0� t � T . Define

K0 Dmax
�

K0; sup
M�Œ0;T �

˛

�
:

Then with K as in Lemma 6, we have K �K0 .

Proof We first consider the case of 
 . The key observation is that at an interior
maximum .s; t/ with 
 .s; t/� ˛ , we have


t .s; t/� 2ˇ.v2
s .˛� 
 /�˛ˇ/� �2˛ˇ
 � 0:

This follows from the evolution equation for 
 after observing that at such a point,
one has ˛
ss � 0 and 
s D 0. The corresponding fact at the core follows from the
evolution equations in Lemma 4.

Now for ı > 0, define 
ı.s; t/D 
 .s; t/�ı.tC1/. Then 
ı is initially smaller than K0 .
If there is a first time t with 
ı.s; t/DK0 , then by the above we have .
ı/t � �ı at
such a point. But we must have .
ı/t � 0, a contradiction. Since ı > 0 was arbitrary
and 
 is controlled on the boundary, the lemma follows.

The proof for ˇ is analogous.

Notice that the estimates of Lemma 6 and Lemma 7 do not give a priori bounds (in
terms of the initial data) on the curvatures, as they ultimately rely on the upper bound
attained by ˛ over the course of the evolution. We now show that an upper bound is in
fact the quantity K0 .

Lemma 8 For as long as the flow exists, ˛.s; t/�K0 .

Proof Define ˛ı.s; t/D ˛.s; t/� ı.t C 1/. Then ˛ı.� ; 0/ <K0 . Suppose there is a
first time t0 at which ˛ı attains the value K0 . We claim that the value K0C ı.t0C1/

attained by ˛ at ı0 is the maximum value it attains on the interval Œ0; t0�. To see this,
suppose there were some t < t0 such that ˛.s; t/DK0C ı.t0C 1/ for some s . Then
˛ı.s; t/DK0C ı.t0 � t/ >K0 , a contradiction to our hypothesis that t0 is the first
time ˛ı attains the value K0 . Thus by Lemma 7, the values of ˇ and 
 are bounded
above by K0 C ı.t0 C 1/ on the interval Œ0; t0�. In particular (this is the important
point), at the maximum of ˛ at time t0 , we have ˛ � ˇ and ˛ � 
 . Appealing to
the evolution equation for ˛ recorded in (5-1), one may obtain a contradiction in the
usual way if the quantity ˛2�2ˇ
 < 0. The difficult case (and the reason we have not
given a priori bounds to this point) is when this inequality does not hold. To deal with
this, we use the fact that ˛ D usvs to rewrite the evolution equation for ˛ . Recall that
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˛s D ˇusC 
vs �˛.usC vs/. Using this, we rewrite the evolution equation for ˛ as
follows:

˛t D ˛˛ssC
�
ˇusC
vs

�
˛sC2˛

�
.usCvs/˛sC˛

2
�2ˇ


�
D ˛˛ssC

�
ˇusC
vs

�
˛sC2˛

�
u2

s .ˇ�˛/Cv
2
s .
�˛/C˛ˇC˛
�˛

2
�2ˇ


�
D ˛˛ssC

�
ˇusC
vs

�
˛s�2˛

�
u2

s .˛�ˇ/Cv
2
s .˛�
 /C.˛�ˇ/.˛�
 /Cˇ


�
:

(6-1)

At the maximum for ˛ at time t0 , we have already observed that ˇ � ˛ and 
 � ˛ .
Therefore the zero-order term of the differential equation (6-1) is nonpositive, and
a contradiction is obtained using the maximum principle in the standard way. Since
ı > 0 was arbitrary, the Lemma is proved if the maximum occurs in the interior. If the
maximum occurs at the core, we note since ˛ D ˇ there and ˇ �K0C ı.t0C 1/, this
must also be a local maximum for ˇ . Using the evolution equation for ˇ at the core,
we find that ˇt D ˛t � 0, also contradiction. Hence the lemma is proved.

The following theorem is an immediate corollary of Lemma 7 and Lemma 8.

Theorem 9 (Part (2) of Theorem 5) For as long as the flow exists, ˛ , ˇ , and 
 are
bounded above by K0 .

The universal upper bound of Theorem 9 may be used to give a universal lower bound
for the sectional curvatures, as in Lemma 6.

Theorem 10 (Part (3) of Theorem 5) Let L0 D infM�f0gf˛; ˇ; 
 g. For as long as
the flow exists, ˛ , ˇ , and 
 are bounded below by L0e�4K 2

0
t .

Proof The case of ˛ follows immediately from Lemma 6, after noting that Theorem 9
implies that the constant K in the Lemma is less than or equal to K0 , and that
˛min.0/�L0 .

We next address the case of 
 . As in the proof of Lemma 6, for ı > 0 we define a
barrier function A.t/DL0e�4K 2

0
t
� ı . Then 
 >A at t D 0. If there is a first time

t > 0 such that 
min.t/DA.t/, then at such a point one has8̂<̂
:

t �A0;

˛
ss � 0;


s D 0:

Note that at this point, one has ˛ > 
 , since the inequality holds for ˛ . If the minimum
occurs in the interior, then by the evolution equation satisfied by 
 there and the fact
that ˛ �K0 and ˇ �K0 , we have

A0 D�4K2
0.AC ı/� 
t > �2˛ˇ
 � �2K2

0A:
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This is a contradiction. If the minimum occurs at the core, appealing to the evolution
equation there (see Lemma 4) yields

A0 D�4K2
0.AC ı/� 
t > �2˛2
 � �2K2

0A;

again yielding a contradiction. Since ı > 0 is arbitrary the result is proved for 
 .

The case of ˇ is analogous.

Theorem 9 and Theorem 10 combine to give bounds for the sectional curvatures that
hold for all positive times.

Theorem 10 has another important consequence:

Corollary 3 (Part (4) of Theorem 5) For as long as a the solution of XCF exists,
negative sectional curvature is preserved.

We can slightly improve the lower bound for ˛ .

Lemma 9 The evolution equation for ˛ in the interior may be written in the following
forms:

˛t D ˛˛ssC
�
ˇusC 
vsC 2˛.usC vs/

�
˛sC 2˛.˛2

� 2ˇ
 /(6-2a)

˛t D ˛˛ssC
�

vs � 3ˇusC 2˛.usC vs/

�
˛sC 4u2

sˇ.ˇ�˛/� 2˛2.2ˇ�˛/(6-2b)

˛t D ˛˛ssC
�
ˇus � 3
vsC 2˛.usC vs/

�
˛sC 4v2

s 
 .
 �˛/� 2˛2.2
 �˛/(6-2c)

˛t D ˛˛ssC
�
ˇusC 
vs

�
˛s(6-2d)

� 2˛
�
u2

s .˛�ˇ/C v
2
s .˛� 
 /C .˛�ˇ/.˛� 
 /Cˇ


�
:

Proof Equations (a) and (d) above were previously obtained; they are Equations (5-1a)
and (6-1), respectively. Equation (b) is obtained from (a) by separating off a factor of
4ˇus˛s , so that one obtains

˛t D ˛˛ssC
�

vs � 3ˇusC 2˛.usC vs/

�
˛sC 4ˇus˛sC 2˛3

� 4˛ˇ
:

It is easily computed that ˇus˛s D ˇu2
s .ˇ�˛/C˛ˇ
 �˛

2ˇ . Substituting this in the
equation above and simplifying yields the result. Equation (c) is obtained analogously,
but by separating off a factor of 4
vs˛s instead of 4ˇus˛s .

We use the new equations below to improve the lower bound on the decay of ˛ from
exponential to polynomial. Recall that K0 is the supremum of the curvatures of the
initial metric, and that L0 is the infimum.
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Theorem 11 (Part (5) of Theorem 5) Over the course of the evolution, one has

˛ �
L0

4K0L0t C 1
:

Proof For ı > 0, we define the barrier function

A.t/D
L0

4K0L0t C 1
� ı;

and note that ˛.� ; 0/>A.0/. Suppose there is a first time t > 0 at which ˛.s; t/DA.t/

for some s . If this point s is in the interior, the fact that it is a minimum for ˛ implies
that ˛ss � 0 and ˛s D 0 there. Furthermore, we must have

˛t �A0.t/D�4K0.AC ı/
2:

At this point the analysis breaks up into three cases depending on the relationship of ˛
with the other curvatures.

Suppose first that ˛.s; t/ < ˇ.s; t/. Then using Equation (6-2a), we see from the above
that

�4K0.AC ı/
2
� ˛t D 4u2

sˇ.ˇ�˛/� 2˛2.2ˇ�˛/ > �4K0˛
2
D�4K0A2:

This is a contradiction.

If ˛.s; t/ < 
 .s; t/, an analogous analysis using Equation (6-2b) yields a contradiction
in the same way.

It remains to consider the case that ˛ � ˇ; 
 . In this case, we use the original evolution
equation (5-1) for ˛ . This yields

�4K0.AC ı/
2
� ˛t D 2˛.˛2

� 2ˇ
 /� �2˛3
� �2K0A2;

and again a contradiction is obtained.

Finally, if the minimum occurs at the core, appealing to the evolution equation there
(see Lemma 4) yields

˛t D�2˛2.2
 �˛/� �4K0˛
2;

and an analysis similar to the above yields a contradiction. Since ı > 0 was arbitrary,
the result is proved.
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6.4 Integral convergence to hyperbolic

Here we prove Theorem 6. Recall that we defined

J D

Z
M

�
P

3
� .det P /1=3

�
dV

in (5-2), where P here denotes the trace of the Einstein tensor. Notice that the integrand
is nonnegative (by the arithmetic-geometric mean inequality) and is identically zero if
and only if the metric has constant curvature.

The only difficulty is that we are considering a manifold-with-boundary. Because the
proof of monotonicity in [11] relies on integration by parts, we must be able to control
the boundary terms that arise in our situation. In what follows, we adopt their notation
and use the following result.

Lemma 10 (Chow–Hamilton) The evolution of the Einstein tensor under XCF is

(6-3)
@

@t
P ij
Drkrl.P

klP ij
�P ikP jl/� det Pgij

�XP ij ;

where X D gij Xij is the trace of the cross curvature tensor.

Proof See Chow and Hamilton [11].

Lemma 11 For every smooth � defined on our solid torus solution, one has

(6-4)
d

dt

Z si .t/

0

� ds D

Z s1.t/

0

.�t Cˇ
 / ds :

Proof Straightforward computation.

We now prove the final result of this paper.

Proof of Theorem 6 We begin by computing

d

dt

Z s1.t/

0

P ds

D

Z s1.t/

0

.Pt Cˇ
P / ds

D

Z s1.t/

0

�
gij

�
rkrl.P

klP ij
�P ikP jl/

�
� 3 det P �XP C 2Xij P ij

Cˇ
P
�

ds

D

Z s1.t/

0

.3 det P �˛ˇP �˛
P / ds C

�
@

@s
;Pkl

rlP �P jl
rlP

k
j

�ˇ̌̌̌s1.t/

0

:

Algebraic & Geometric Topology, Volume 10 (2010)



368 Jason DeBlois, Dan Knopf and Andrea Young

In terms of our metric, the boundary term becomes

�
˛.ˇsC 
s/�

f̌s.˛�ˇ/

f
�

gs.˛� 
 /

g

�ˇ̌̌̌s1.t/

0

:

Let Vij denote the inverse of P ij . Then

d

dt

Z s1.t/

0

.det P /1=3 ds

D

Z s1.t/

0

�
@t .det P /1=3Cˇ
 .det P /1=3

�
ds

D

Z s1.t/

0

.det P /1=3
�

1

3
Vijrkrl.P

klP ij
�P ikP jl/

�
ds

C

Z s1.t/

0

.det P /1=3
�

1

3
Vij .� det Pgij

�XP ij /C 2X /Cˇ


�
ds

DW I1C I2:

Let us first consider I2 . Because V D .det P /�1X , one has

Z s1.t/

0

.det P /1=3
�

1

3
Vij .� det Pgij

�XP ij /C 2X /Cˇ


�
ds

D

Z s1.t/

0

.det P /1=3
�

1

3
X �˛
 �˛ˇ

�
ds :

Now we do integration by parts on I1 to obtain

I1 D�
1

2

Z s1.t/

0

rk

�
.det P /1=3Vij

�
.Pkl
rlP

ij
�P jl

rlP
ik/ ds

C

�
.det P /1=3Vij ˝

@

@s
;Pkl

rlP
ij
�P jl

rlP
ik

�ˇ̌̌̌s1.t/

0

D
1

3

Z s1.t/

0

�
1

2

ˇ̌̌̌
Eijk

�Ejik

ˇ̌̌̌2
V

C
1

6
jT i
j
2
V

�
.det P /1=3 ds

C

�
.det P /1=3Vij ˝

@

@s
;Pkl

rlP
ij
�P jl

rlP
ik

�ˇ̌̌̌s1.t/

0

;

where Eijk , et cetera, have the same meanings as in [11].
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A computation shows that the boundary term is

�
.det P /1=3Vij ˝

@

@s
;Pkl
rlP

ij
�P jl

rlP
ik

�ˇ̌̌̌s1.t/

0

D .det P /1=3Vij T 1ij
ˇ̌̌s1.t/

0

D .˛ˇ
 /1=3
�
˛

ˇ
ˇsC

˛




sC

fs

f
.ˇ�˛/C

gs

g
.
 �˛/

�ˇ̌̌̌s1.t/

0

:

Now we collect all of the terms above to see that

d

dt
J D

Z s1.t/

0

�
det P �

1

3
˛ˇP �

1

3
˛
P � .det P /1=3

�
X

3
�˛
 �˛ˇ

��
ds

D�
1

3

Z s1.t/

0

�
1

2
jEijk

�Ejik
j
2
V C

1

6
jT i
j
2
V

�
.det P /1=3 ds

C ˛.ˇsC 
s/�
f̌s.˛�ˇ/

f
�

gs.˛� 
 /

g

ˇ̌̌̌s1.t/

0

� .˛ˇ
 /1=3
�
˛

ˇ
ˇsC

˛




sC

fs

f
.ˇ�˛/C

gs

g
.
 �˛/

�ˇ̌̌̌s1.t/

0

:

d

dt
J � �

Z s1.t/

0

.det P /1=3
�

X

3
� .det h/1=3

�
dsHence

�

Z s1.t/

0

˛ˇ

�
P

3
� .det P /

1
3

�
ds

�

Z s1.t/

0

˛


�
P

3
� .det P /

1
3

�
ds

C

 
˛.ˇsC 
s/�

f̌s.˛�ˇ/
f

�

gs.˛�
/

g

�.˛ˇ
 /1=3.˛
ˇ
ˇsC

˛



sC

fs

f
.ˇ�˛/C gs

g
.
 �˛/

!
.s1/

C .˛ˇ
 /1=3

 
.˛
ˇ
ˇsC

˛



sC

fs

f
.ˇ�˛/C gs

g
.
 �˛/

�˛.ˇsC 
s/�
f̌s.˛�ˇ/
f

�

gs.˛�
/

g

!
.0/:

Recall that all of the curvatures are equal at the outer boundary. At the core, ˛D ˇ and
all of the curvatures as well as g extend to even functions. Thus all of the boundary
terms cancel. The result follows.
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