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Thompson’s group F and uniformly finite homology

DANIEL STALEY

We use the uniformly finite homology developed by Block and Weinberger to study
the geometry of the Cayley graph of Thompson’s group F . In particular, a certain
class of subgraph of F is shown to be nonamenable (in the Følner sense). This shows
that if the Cayley graph of F is amenable, these subsets, which include every finitely
generated submonoid of the positive monoid of F , must necessarily have measure
zero.

20F65, 05C25; 43A07

1 Introduction

In 1965, Richard Thompson introduced his group F , which is finitely presented, has
exponential growth, and contains subgroups isomorphic to F�F . Every proper quotient
of F is a quotient of Z�Z. The question as to whether F is amenable was first posed
in 1979. F is, in a sense, “on the edge of amenability”, as it is not elementary amenable
but does not contain a free subgroup on two generators (see Brin and Squier [4]). If F

is not amenable, it provides a finitely-presented counterexample to the Von Neumann
conjecture. Very few such examples are known (Ol’shanskii and Sapir provided the
first in 2000 [8]).

In 1955, Følner provided a geometric criterion for the amenability of a group based on
the existence of subsets of the Cayley graph that satisfy a “small boundary” condition [6].
This criterion holds for semigroups as well (one may find a proof in Namioka [7]), and
allows one to extend the definition of “amenable” to graphs of bounded degree. In 1992,
Block and Weinberger extended the definition to a broad class of metric spaces [3].
They defined the uniformly finite homology groups H uf

n .M / of a metric space M and
proved that M is amenable if and only if H uf

0
.M / ¤ 0. This paper seeks to apply

the results of Block and Weinberger to subgraphs of the Cayley graph of Thompson’s
group F .

The main result of this paper is the following:
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Theorem 1.1 Let k; l be nonnegative integers, with l > 0. Let � l
k

be the subgraph of
the Cayley graph of F consisting of vertices that can be expressed in the form

a1 : : : amb1 : : : bn;

where m � k , a1; : : : ; am 2 fx0;x1;x2; : : :g, and b1; : : : ; bn 2 fx0; : : : ;xlg. Let the
edge set of � l

k
include all edges in the Cayley graph of F that connect such vertices.

Then � l
k

is not amenable.

The case k D 1; l D 1 was proved by D Savchuk in [9].

A corollary of this theorem is that all finitely-generated submonoids of the positive
monoid of F are not amenable. It follows that if F is amenable these sets have measure
zero.

Section 2 provides a very brief overview of Thompson’s group F , and defines amenabil-
ity and Følner’s criterion. Readers interested in a more in-depth introduction are
referred to Belk [1] or Canon and Floyd [5]. Section 3 discusses the results of Block
and Weinberger and defines Ponzi flows. In Section 4 we prove the main result.

The author would like to thank Steve Ferry and the referee for numerous helpful
comments and suggestions.

2 Thompson’s group F

Thompson’s group F can be described as the group with the following infinite presen-
tation:

hx0;x1;x2;x3; : : : j xj xi D xiC1xj for i > j i

From this presentation, we see that xiC1 D x0xix
�1
0

for i � 1. Thus this group is
finitely generated by fx0;x1g. F is finitely presented as well (see [1] or [5] for a
proof). However, it is still useful to consider the infinite generating set fx0;x1;x2; : : :g.
We have the following definition:

Definition 2.1 The positive monoid of F is the submonoid of F consisting of elements
that can be expressed as words in fx0;x1;x2; : : :g without using inverses.

Any element of F can be expressed as an element of the positive monoid multiplied
by the inverse of such an element. Elements of F have a normal form which is such a
product. The reader is referred to [1] or [5] for proofs.

In [1], the group F is studied using two-way forest diagrams. We will make extensive
use of these diagrams when studying the positive monoid in Section 4. We describe
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the two-way forest diagrams of the positive monoid here, referring the reader to [1] for
the proofs.

Definition 2.2 A binary forest is an infinite sequence of binary trees, such that all but
finitely many of the trees are trivial (ie have a single node):

. . .r r r r r r r r r�
�
��

S
S
SS

��S
SS

��SS

Figure 1

Definition 2.3 A pointed forest is a binary forest with a distinguished, or “pointed”,
tree:

. . .r r r r r r r r�
��
��S
SS

�
�
��

SS ��S
S
SS

?

Figure 2

For the remainder of this paper, we will omit the ellipses and assume a forest diagram
or pointed forest diagram has an infinite number of trivial trees continuing to the right.

Each element of the positive monoid of F can be identified with a pointed forest. The
identity element is the pointed forest consisting only of trivial trees, with the the pointer
on the leftmost tree.

Right multiplication by x0 moves the pointer one tree to the right (Figure 3).

r r r r r r r�
��
��S
SS

��SS ��SS

?r r r r r r r�
��
��S
SS

��SS ��SS

?

Figure 3: Multiplication by x0

Right multiplication by x1 adds a caret between the pointed tree and the tree imme-
diately to its right, making a new tree whose left child is the pointed tree and whose
right child is the tree to its right. This new tree becomes the pointed tree (Figure 4).
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r r r r r r r�
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��S
SS?

Figure 4: Multiplication by x1

Since xi D xi�1
0

x1x
�.i�1/
0

, we can see that right multiplication by xi moves the
pointer i � 1 trees to the right, adds a caret, and then moves the pointer i � 1 trees to
the left again. This is equivalent to adding a caret between the trees i � 1 and i steps
to the right of the pointed tree (Figure 5).

r r r r r r r�
��
SS S
SS

��SS
?r r r r r r r��SS ��SS

?

Figure 5: Multiplication by x3

Multiplication of pointed forests corresponds to “putting one on top of the other”: If P

and Q are pointed forests, then PQ is the forest obtained by using the trees of P as
the nodes of Q with the pointed tree in P attaching to the leftmost node of Q (Figure
6).

r r r r r��SS ��SS
?

r r r�
�
��

�
�
S
S
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?

r r r r r�
�
�
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SS �
��
��S
S
S
SS

?

Figure 6: Multiplying the two pointed forests on the left yields the pointed
forest on the right

The pointer is then placed above whatever tree was pointed in Q.

Definition 2.4 A group G is called amenable if there exists a right-invariant measure
on G –a function � that assigns to each subset A�G a value 0��.A/� 1 such that:

(1) �.G/D 1.

(2) � is finitely additive: If A and B are disjoint subsets of G , then �.A/C�.B/D
�.A[B/.

(3) � is G –invariant: For any g 2G and any A�G , �.A/D �.Ag/.
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A useful result for determining amenability is Følner’s Criterion, which uses the
Cayley graph of G . Recall that the Cayley graph of G is the graph obtained by taking
a generating set S and using G as the vertex set, connecting two vertices g and g0 by
an edge if g0 D gs for some s 2 S .

Theorem 2.5 (Følner’s Criterion) A group G is amenable if and only if, for any
� > 0, there exists a finite subset A of vertices in the Cayley graph of G such that

#@.A/
#A

< �;

where #A is the number of vertices in A, and #@.A/ is the number of edges connecting
vertices of A to vertices outside A.

Følner’s criterion can be applied to any graph of finite valence. In particular, we say
such a graph is amenable if Følner’s criterion holds for that graph. This allows us to
state the following proposition:

Proposition 2.6 Let � be the subgraph of the Cayley graph of Thompson’s group F

(using the x0;x1 generating set) consisting of vertices in the positive monoid of F and
all edges between such vertices. Then � is amenable if and only if F is amenable.

For a proof see Savchuk [9]. The essential fact is that any finite subset of F can be
translated into the positive monoid.

3 Uniformly finite homology

This section describes the uniformly finite homology of Block and Weinberger defined
in [3]. We will always be considering a graph � of bounded degree, though many of
their results apply to a much broader class of metric spaces.

Definition 3.1 Let � be a graph of bounded degree with vertex set V . A uniformly
finite 1–chain with integer coefficients on � is a formal infinite sum

P
ax;y.x;y/,

where the .x;y/ are ordered pairs of vertices of � , ax;y 2 Z, such that the following
properties are satisfied:

(1) There exists K > 0 such that jax;y j<K for all vertices x and y .

(2) There exists R> 0 such that ax;y D 0 whenever d.x;y/ >R.

Notice that condition (2) guarantees that for any fixed x 2 V , the set of pairs .x;y/
such that ax;y ¤ 0 is finite. This allows us to make the following definition:
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Definition 3.2 A uniformly finite 1–chain is a Ponzi scheme if, for all x 2 � , we haveP
v2� av;x �

P
v2� ax;v > 0.

We now state the main result of [3] that we will use in this paper:

Theorem 3.3 Let � be a graph of bounded degree. A Ponzi scheme exists on � if
and only if � is not amenable.

We will use a rephrased version of this theorem for the case of our graphs:

Definition 3.4 Let � be a graph of bounded degree with vertex set V . A Ponzi flow
on � will mean a function ˆW V �V ! Z with the following properties:

(i) ˆ.a; b/D 0 if there is no edge from a to b in � ,.

(ii) ˆ.a; b/D�ˆ.b; a/ for all a; b 2 V .

(iii) The function ˆ is bounded.

(iv) For each a 2 V ,
P

b2V ˆ.b; a/ > 0.

Note that the sum in condition (iv) is guaranteed to be finite by condition (i). A Ponzi
flow is almost exactly a Ponzi scheme in different language, with the exception that all
“pairs” must be of distance 1. However, this difference is unimportant:

Proposition 3.5 Let � be a graph of bounded degree. There exists a Ponzi scheme on
� if and only if there exists a Ponzi flow on � .

Proof The “if” direction is trivial: Given a Ponzi flow, we simply define our formal
sum to be

P
ˆ.x;y/.x;y/. This will be a uniformly finite 1–chain with integer

coefficients, as condition (1) is implied by (iii), and condition (2) is implied by (i). This
1–chain will be a Ponzi scheme by conditions (ii) and (iv).

To see the “only if” direction, one can take the coefficients ax;y with d.x;y/ > 1 and
“reroute the flow” by replacing them with a sequence of distance-one steps along a
shortest path from x to y . Since the graph has bounded degree and the coefficients
ax;y are bounded, the result is still a Ponzi scheme, with ax;y nonzero only when
d.x;y/D1. This is easily converted into a Ponzi flow by setting ˆ.x;y/Dax;y�ay;x .

This completes the proof.

A quantitative treatment of Proposition 3.5 and of Ponzi flows can be found in Benjamini,
Lyons, Perez and Schramm [2].

If a Ponzi flow exists on a Cayley graph, there can be no right-invariant measure on the
group since the group cannot be amenable. Indeed, the following proposition follows
from the results of Block and Weinberger:
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Proposition 3.6 If a group � is amenable but its Cayley graph contains a nonamenable
subgraph P , then for any right-invariant measure � on � , �.P /D 0.

4 Large nonamenable subgraphs of F

In this section we will prove Theorem 1.1.

We begin by characterizing the two-way forest diagrams of � l
k

. Given any binary tree
T on n nodes, we define s.T / to be the forest obtained by removing all the carets
along the left edge of T (Figure 7).

r r r r r r�
�
�
�
��

SS

S
S
S
SS

�
��
SS S
SS

��SS r r r r r r�
��
SS S
SS

��SS

Figure 7: Applying s to a tree removes the left carets as shown

We extend the definition of s to apply to forests, as well as single trees, by applying
s separately to each nontrivial tree in the forest. We will define the complexity of a
tree or forest to be the minimum number of applications of s required to turn it into a
forest of only trivial trees.

Note that applying s to a tree T gives a forest whose rightmost tree is the right child
of T , and the remainder of the forest is s applied to the left child of T . This gives the
following:

Proposition 4.1 The complexity of a tree is the maximum of the complexity of its left
child and one more than the complexity of its right child.

We record here two basic properties of complexity and the function s :

Proposition 4.2 Let T be a tree on n nodes, and let R be an n–tree forest. Denote
by RT the tree obtained by attaching the roots of R to the nodes of T . If T has
complexity j , then sj .RT / consists only of carets in R, ie every caret from T is
removed by sj . (Figure 8.)

Proof This is easy to see, as we can determine whether a caret is removed by sj by
examining its relationship with those above it. Namely, when we examine the unique
path from a caret to the root of the tree, it consists of moves to the right and moves
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Figure 8: A 4–node tree T of complexity 2(top left) and a 4–tree forest
R(bottom left) multiply to give RT (top right), and each caret of T is
removed in s2.RT /(bottom right)

to the left. An application of s removes all carets whose path consists only of moves
to the right. Further, any caret’s path to the root hits the left edge at some point, and
consists only of moves to the right afterwards. After s is applied, the path is truncated,
starting from the move that reaches the left edge (which is a move to the left). Thus
each new path from a remaining caret to the root of its new tree is left with one less
move to the left after applying s . So sj removes all carets whose paths contain j � 1

or fewer moves to the left. Since this property is unchanged in the carets of T whether
or not it sits on R, the effect of sj is the same on carets of T , ie it removes them
all.

Proposition 4.3 A pointed forest diagram consisting of a single nontrivial tree T of
complexity j in the leftmost position, with the pointer on that tree, can be expressed as
word in x1; : : : ;xj .

Proof We will proceed by induction on the number of carets in the tree T . Suppose
the statement is true for all trees with n or fewer carets, and let T be a tree with nC 1

carets and complexity j . Then the left child of T has no more than n carets and
complexity no more than j by Proposition 4.1. Thus by the inductive hypothesis the
left child can be constructed as a word w in x1; : : : ;xj . The right child of T has no
more than n carets and complexity no more than j � 1 by Proposition 4.1, thus can be
constructed as a word v in x1; : : : ;xj�1 . We can construct the desired pointed forest
as wx0vx�1

0
x1 , since this will construct the left child, move the pointer to the right,

construct the right child, move the pointer back to the left child, and finally construct
the top caret. However, since xiDx0xi�1x�1

0
, by inserting x�1

0
x0 between each letter

of v we can rewrite x0vx�1
0

as a word in x2; : : : ;xj . Thus, the word wx0vx�1
0

x1

can be rewritten as a word in x1; : : : ;xj , and the proposition is proved.

For a positive integer j , we define a function �j from pointed forests to forests in the
following way: Apply sj to the pointed tree and every tree to its left. For each positive
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integer q < j , apply sj�q to the tree that is q trees to the right of the pointed tree.
That is, apply sj�1 to the tree to the immediate right of the pointed tree, sj�2 to next
tree to the right, etc.

For the proof of the main theorem we will use the following lemma. Recall that
� l

k
is the subgraph of the Cayley graph of F consisting of vertices that can be ex-

pressed in the form a1 : : : amb1 : : : bn , with m � k , a1; : : : ; am 2 fx0;x1;x2; : : :g,
and b1; : : : ; bn 2 fx0; : : : ;xlg.

Lemma 4.4 A pointed forest P lies in � l
k

if and only if �l.P / has k or fewer carets.

Proof Let P 2 � l
k

. First suppose that k D 0. In this case P can be expressed as
a word v in fx0; : : : ;xlg, and the proposition says it is annihilated by �l , ie �l.P /

consists only of trivial trees. We proceed by induction on the length of v . If �l.v/

consists only of trivial trees, then so does �l.vx0/, since �l.vx0/ is a subforest of
�l.v/ (each tree has s applied to it either the same number of times or one more time,
since the pointer has simply moved one tree to the right).

For 0< i � l , multiplying by xi adds a caret to the right of the tree i � 1 trees from
the pointer, combining it with the next tree to make a new tree. Since the left and right
children of this new tree were i � 1 and i trees to the right of the caret, respectively,
by induction their respective complexities are no more than .l � .i � 1// and .l � i/.
Thus by Proposition 4.1 the new tree has complexity no more than .l � i C 1/. Since
this new tree is i � 1 trees to the right of the pointer, it is still annihilated by �l . The
trees to the left of the new caret are unchanged, and the trees to the right of the caret
have each been brought 1 tree closer to the pointer since two of the intervening trees
have been merged. Thus �l applies s an additional time to each of these trees. This
means that they will still be annihilated by �l , and so the new pointed forest is still
turned into a trivial forest by �l .

The above argument shows that �l.v/ is trivial if v 2 � l
0

. Now let P D wv , where
wD a1 : : : am with ai 2 fx0;x1; : : :g and m� k as in Theorem 1.1. Then wv attaches
the trees of w to the nodes of v . Thus all the carets added in each tree of v are still
removed by �l by Proposition 4.2, since s is applied the same number of times to each
tree. Thus �l.wv/ has at most the same number of carets as w , ie k or fewer. This
proves the “only if” direction of the Lemma.

To prove the reverse direction, suppose that P is a pointed forest such that �l.P / has
k or fewer carets. We can then create w as above to put these carets in place without
moving the pointer (the generator xi creates a caret on the i th tree without moving
the pointer).
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Consider the element w�1P . This is the pointed forest obtained by taking the trees in
P that remain after applying �l , and replacing them with trivial trees (Figure 9).
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S
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�
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�
�
S
S
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�
�
S
S

?

Figure 9: For l D 2 , if P is the forest in the top left then w is �2.P / with
the pointer on the first tree (bottom left), and w�1P is shown on the right.

The resulting pointed forest is then annihilated by �l by Proposition 4.2, and so each
tree under or to the left of the pointer has complexity at most l . Thus, we may construct
these trees as words in x1; : : : ;xl using Proposition 4.3 and inserting x0 between
each word. This will result in building the first tree, moving the pointer to the right,
building the next tree, etc. Further, the tree that is j trees to the right of the pointer has
complexity at most l � j , and so Proposition 4.3 says we can construct it as x

j
0
ux
�j
0

,
where u is a word in x1; : : : ;xl�j . As above, we then insert x

�j
0

x
j
0

between each
letter of u, which allows us to rewrite it as a word in xjC1; : : : ;xl . Repeating this
for each j and appending these words in increasing order constructs all trees to the
right of the pointer. This completes the construction of w�1P as a word in x0; : : : ;xl ,
which we will call v . Thus, P D ww�1P D wv , and the proof is complete.

We are now ready to prove the main theorem, which will occupy the remainder of this
section.

Proof of Theorem 1.1 Let P 2 � l
k

. Note that applying �l to P affects at most l

trees under or to the right of the pointer. Thus, by Lemma 4.4 there are at most kC l

nontrivial trees under or to the right of the pointer in P , otherwise, �l.P / would have
more than k nontrivial trees and thus certainly have more than k carets.

For any P 2 � l
k

, let c.P / be the number of nontrivial trees T to the left of the pointed
tree such that if the pointer is moved to T the resulting pointed forest remains in � l

k
. By

the preceding paragraph c.P / is never more than kC l . Now define ˆW � l
k
�� l

k
! Z

as follows: For each pointed forest P ,

� If Px�1
0
2 � l

k
, set ˆ.P;Px�1

0
/D c.P / and ˆ.Px�1

0
;P /D�c.P /.

� If the pointed tree in P is nontrivial, and Px�1
1
2 � l

k
, set ˆ.P;Px�1

1
/D 1 and

ˆ.Px�1
1
;P /D�1.
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� For all other pairs .P;P 0/, set ˆ.P;P 0/D 0.

We claim that ˆ is a Ponzi flow.

It is clear from the definition that ˆ satisfies conditions (i) and (ii) in Definition 3.4,
and since c.P / � kC l for each P , ˆ also satisfies condition (iii). It thus remains
only to check condition (iv). So we shall consider a pointed forest P 2 � l

k
.

For ease of notation we will use the convention ˆ.P 0;P /D 0 if either P 0 or P is not
in � l

k
. Since each vertex has 4 neighbors in the Cayley graph, this lets us stateX

P 02�l
k

ˆ.P 0;P /Dˆ.Px0;P /Cˆ.Px�1
0 ;P /Cˆ.Px1;P /Cˆ.Px�1

1 ;P /:

We also have

ˆ.Px1;P /Cˆ.Px�1
1 ;P /� 1� 1D 0;

ˆ.Px0;P /Cˆ.Px�1
0 ;P /� c.Px0/� c.P /� 0:

The first inequality holds since Px1 is always in � l
k

, and the second holds since any
tree to the left of of the pointed tree in P is also to the left of the pointed tree in Px0 ,
so c.P /� c.Px0/. Further, since the only tree counted in c.Px0/ but not in c.P / is
the pointed tree in P , we have that ˆ.Px0;P /Cˆ.Px�1

0
;P / > 0 exactly when the

pointed tree in P is nontrivial. Thus, if the pointed tree is nontrivial, condition (iv) is
satisfied since X

P 02�l
k

ˆ.P 0;P /�ˆ.Px0;P /Cˆ.Px�1
0 ;P / > 0:

If the pointed tree in P is trivial, Px�1
1

is not in � l
k

, so ˆ.Px1;P / D 1 and
ˆ.Px�1

1
;P /D 0, and thusX
P 02�l

k

ˆ.P 0;P /Dˆ.Px0;P /Cˆ.Px�1
0 ;P /Cˆ.Px1;P /� 1

Thus condition (iv) holds for all pointed forests where the pointed tree is trivial as well,
and so ˆ is a Ponzi flow.

We close with some immediate corollaries:

Corollary 4.5 If F is amenable, then for any right-invariant measure �, �.� l
k
/D 0.

Proof By Theorem 1.1, � l
k

has a Ponzi flow, and thus by Proposition 3.6 it always
has measure zero.
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Corollary 4.6 If F is amenable, then for any right-invariant measure �, and any
finitely generated submonoid M of the positive monoid, �.M /D 0.

Proof Letting p1; : : : ;pn be generators of M , express each as a word in the generat-
ing set fx0;x1;x2; : : :g. Let L be the maximum index of the xi used to express the
pj ; then M is a subset of the monoid generated by x0;x1; : : : ;xL . But this monoid is
exactly �L

0
, which by the previous corollary has measure zero. Thus, �.M /D 0.
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