Co-contractions of graphs and right-angled Artin groups

SANG-HYUN KIM

We define an operation on finite graphs, called *co-contraction*. Then we show that for any co-contraction $\hat{\Gamma}$ of a finite graph Γ , the right-angled Artin group on Γ contains a subgroup which is isomorphic to the right-angled Artin group on $\hat{\Gamma}$. As a corollary, we exhibit a family of graphs, without any induced cycle of length at least 5, such that the right-angled Artin groups on those graphs contain hyperbolic surface groups. This gives the negative answer to a question raised by Gordon, Long and Reid.

20F65, 20F36; 05C25

1 Introduction

In this paper, by a *graph* we mean a finite graph without loops and without multiedges. A *right-angled Artin group* is a group defined by a presentation with a finite generating set, where the relators are certain commutators between the generators. Such a presentation naturally determines the *underlying graph*, where the vertices correspond to the generators and the edges to the pairs of commuting generators. It is known that the isomorphism type of a right-angled Artin group uniquely determines the isomorphism type of the underlying graph by Droms [6] and Kim, Makar-Limanov, Neggers and Roush [13]. Also, right-angled Artin groups possess various group theoretic properties. To name a few, right-angled Artin groups are linear by Humphries [12], Hsu and Wise [11] and Davis and Januszkiewicz [4], biorderable by Duchamp and Thibon [8], biautomatic by Van Wyk [20] and moreover, admitting free and cocompact actions on finite-dimensional CAT(0) cube complexes by Charney and Davis [1], Meier and Van Wyk [15] and Niblo and Reeves [17].

On the other hand, it is interesting to ask what we can say about the isomorphism type of the underlying graph, if a right-angled Artin group satisfies a given group theoretic property. Let Γ be a graph. We denote the vertex set and the edge set of Γ by $V(\Gamma)$ and $E(\Gamma)$, respectively. The *complement graph* of Γ is the graph $\overline{\Gamma}$ defined by $V(\overline{\Gamma}) = V(\Gamma)$ and $E(\overline{\Gamma}) = \{\{u, v\} : \{u, v\} \notin E(\Gamma)\}$. For a subset S of $V(\Gamma)$ the *induced subgraph* on S, denoted by Γ_S , is defined to be the maximal subgraph of Γ with the vertex set S. This implies that $V(\Gamma_S) = S$ and $E(\Gamma_S) = \{\{u, v\} : u, v \in$ S and $\{u, v\} \in E(\Gamma)\}$. If Λ is another graph, an *induced* Λ in Γ means an induced

Published: 3 June 2008

subgraph isomorphic to Λ in Γ . We denote by C_n the cycle of length n. That is, $V(C_n)$ is a set of n vertices, say $\{v_1, v_2, \ldots, v_n\}$, and $E(C_n)$ consists of the edges $\{v_i, v_j\}$ where $|i - j| \equiv 1 \pmod{n}$. Let $A(\Gamma)$ be the right-angled Artin group with its underlying graph Γ . Then, the following are true.

- A(Γ) is coherent, if and only if Γ is *chordal*, ie Γ does not contain an induced C_n for any n ≥ 4; see Droms [5]. This happens if and only if [A(Γ), A(Γ)] is free; see H Servatius, Droms and B Servatius [19].
- A(Γ) is a virtually 3-manifold group, if and only if each connected component of Γ is a tree or a triangle; see Droms [5] and Gordon [9]
- A(Γ) is subgroup separable, if and only if no induced subgraph of Γ is a square or a path of length 3 by Metaftsis and Raptis [16]. This happens if and only if every subgroup of A(Γ) is also a right-angled Artin group, again by Droms [7].
- A(Γ) contains a hyperbolic surface group, ie the fundamental group of a closed, hyperbolic surface, if there exists an induced C_n for some n ≥ 5 in Γ; see Crisp and Wiest [3] and again Servatius, Droms and Servatius [19].

In [10], Gordon, Long and Reid proved that a word-hyperbolic (not necessarily rightangled) Coxeter group either is virtually free or contains a hyperbolic surface group. They also showed that certain (again, not necessarily right-angled) Artin groups do not contain a hyperbolic surface group, raising the following question.

Question 1.1 Does $A(\Gamma)$ contain a hyperbolic surface group if and only if Γ contains an induced C_n for some $n \ge 5$?

In this paper, we give the negative answer to the above question. Let Γ be a graph and B be a set of vertices of Γ such that Γ_B is connected. The *contraction* of Γ relative to B is the graph CO(Γ , B) obtained from Γ by collapsing Γ_B to a vertex, and deleting loops or multi-edges. We define the *co-contraction* $\overline{CO}(\Gamma, B)$ of Γ relative B, such that

$$\overline{\operatorname{CO}}(\Gamma, B) = \operatorname{CO}(\overline{\Gamma}, B).$$

Then we prove the following theorem, which will imply that $A(\overline{C_n})$ contains $A(\overline{C_5}) = A(C_5)$ and hence a hyperbolic surface subgroup, for $n \ge 5$ (see Figure 3). An easy combinatorial argument shows that $\overline{C_n}$ does not contain an induced cycle of length at least 5, for n > 5.

Theorem Let Γ be a graph and B be a set of vertices in Γ , such that $\overline{\Gamma_B}$ is connected. Then $A(\Gamma)$ contains a subgroup isomorphic to $A(\overline{CO}(\Gamma, B))$.

In this paper, the above theorem is proved in the following steps.

In Section 2, we recall basic facts on right-angled Artin groups and HNN extensions. A *dual van Kampen diagram* is described. We owe the notation to Crisp and Wiest [3] where a closely related concept, a *dissection*, was defined and used with great clarity.

In Section 3, we define *co-contraction* of a graph, and examine its properties.

In Section 4, we prove the theorem by exhibiting an embedding of $A(\overline{CO}(\Gamma, B))$ into $A(\Gamma)$. The main tool for the proof is a dual van Kampen diagram.

In Section 5, we compute intersections of certain subgroups of right-angled Artin groups. From this, we deduce a more detailed version of the theorem describing some other choices of the embeddings.

Acknowledgements I am deeply grateful to my thesis advisor, Andrew Casson, for his insights and guidance. I would like to also thank Daniel Spielman, for helpful comments.

2 Preliminaries on right-angled Artin groups

Let Γ be a graph. The *right-angled Artin group on* Γ is the group presented as

$$A(\Gamma) = \langle v \in V(\Gamma) \mid [a, b] = 1 \text{ if and only if } \{a, b\} \in E(\Gamma) \rangle.$$

Each element of $A(\Gamma)$ can be expressed as $w = \prod_{i=1}^{k} c_i^{e_i}$, where $c_i \in V(\Gamma)$ and $e_i = \pm 1$. Such an expression is called a *word* (of length k) and each $c_i^{e_i}$ is called a *letter* of the word w. We say the word w is *reduced*, if the length is minimal among the words representing the same element. For each $i_0 = 1, 2, \ldots, k$, the word $w_1 = \prod_{i=i_0}^{k} c_i^{e_i} \cdot \prod_{i=1}^{i_0-1} c_i^{e_i}$ is called a *cyclic conjugation* of $w = \prod_{i=1}^{k} c_i^{e_i}$. By a subword of w, we mean a word $w' = \prod_{i=i_0}^{i_1} c_i^{e_i}$ for some $1 \le i_0 < i_1 \le k$. A letter or a subword w' of w is on the *left* of a letter or a subword w'' of w, if $w' = \prod_{i=i_0}^{i_1} c_i^{e_i}$ for some $i_1 < j_0$.

The expression $w_1 = w_2$ shall mean that w_1 and w_2 are equal as words (letter by letter). On the other hand, $w_1 =_{A(\Gamma)} w_2$ means that the words w_1 and w_2 represent the same element in $A(\Gamma)$. For an element $g \in A(\Gamma)$ and a word w, $w =_{A(\Gamma)} g$ means that the word w is representing the group element g. 1 denotes both the trivial element in $A(\Gamma)$ and the empty word, depending on the context.

Let w be a word representing the trivial element in $A(\Gamma)$. A dual van Kampen diagram Δ for w in $A(\Gamma)$ is a pair (\mathcal{H}, λ) satisfying the following (Figure 1 (c)):

- (i) \mathcal{H} is a set of transversely oriented simple closed curves and transversely oriented properly embedded arcs in general position, in an oriented disk $D \subseteq \mathbb{R}^2$.
- (ii) λ is a map from \mathcal{H} to $V(\Gamma)$ such that γ and γ' in \mathcal{H} are intersecting *only if* $\lambda(\gamma)$ and $\lambda(\gamma')$ are adjacent in Γ .
- (iii) Enumerate the boundary points of the arcs in \mathcal{H} as v_1, v_2, \ldots, v_m so that v_i and v_j are adjacent on ∂D if and only if $|i - j| \equiv 1 \pmod{n}$. For each i, let a_i be the label of the arc that intersects with v_i . Put $e_i = 1$ if, at v_i , the orientation of ∂D coincides with the transverse orientation of the arc that v_i is intersecting, and $e_i = -1$ otherwise. Then w is a cyclic conjugation of $v_1^{e_1} v_2^{e_2} \cdots v_m^{e_m}$.

Figure 1: Constructing a dual van Kampen diagram from a van Kampen diagram, for $w = c^{-1}aba^{-1}b^{-1}$ in $\langle a, b, c | [a, b] = 1 \rangle$

Note that simple closed curves in a dual van Kampen diagram can always be assumed to be removed. Also, we may assume that two curves in Δ are minimally intersecting, in the sense that there does not exist any bigon formed by arcs in \mathcal{H} . See Crisp and Wiest [3] for more details, as well as generalization of this definition to arbitrary compact surfaces, rather than a disk.

Let $\widetilde{\Delta} \subseteq S^2$ be a (standard) van Kampen diagram for w, with respect to a standard presentation $A(\Gamma) = \langle V(\Gamma) | [u, v] = 1$ if and only if $\{u, v\} \in E(\Gamma) \rangle$ (Figure 1). Consider $\widetilde{\Delta}^*$, the dual of $\widetilde{\Delta}$ in S^2 , and name the vertex which is dual to the face $S^2 \setminus \widetilde{\Delta}$ as v_{∞} . Then for a sufficiently small ball $B(v_{\infty})$ around v_{∞} , $\widetilde{\Delta}^* \setminus B(v_{\infty})$ can be considered as a dual van Kampen diagram with a suitable choice of the labeling map. Therefore a dual van Kampen diagram exists for any word w representing the trivial element in $A(\Gamma)$. Conversely, a van Kampen diagram $\widetilde{\Delta}$ for a word can be obtained from a dual van Kampen diagram Δ by considering the dual complex again. So, the existence of a dual van Kampen diagram for a word w implies that $w =_{A(\Gamma)} 1$.

Given a dual van Kampen diagram Δ , divide ∂D into segments so that each segment intersects with exactly one arc in \mathcal{H} . Let the label and the orientation of each segment be induced from those of the arc that intersects with the segment. The resulting labeled and directed graph structure on ∂D is called the *boundary* of Δ and denoted by $\partial \Delta$.

We call each arc in \mathcal{H} labeled by $q \in V(\Gamma)$ as a q-arc, and each segment in $\partial \Delta$ labeled by q as a q-segment. Sometimes we identify the letter $q^{\pm 1}$ of w with the corresponding q-segment. A connected union of segments on $\partial \Delta$ is called an *interval*. By convention, a subword w_1 of w shall also denote the corresponding interval (called w_1 -interval) on $\partial \Delta$.

Now let $\Delta = (\mathcal{H}, \lambda)$ be a dual van Kampen diagram on $D \subseteq \mathbb{R}^2$. Suppose γ is a properly embedded arc in D, which is either an element in \mathcal{H} or in general position with \mathcal{H} . Then one can cut Δ along γ in the following sense. First, cut D along γ to get two disks D' and D''. Consider the intersections of the disks with the curves in \mathcal{H} . Then, let those curves in D' and D'' inherit the transverse orientations and the labeling maps from Δ . We obtain two dual van Kampen diagrams, one for each of D' and D''. Conversely, we can glue two dual van Kampen diagrams along identical words. γ is called an *innermost* q*-arc* if the interior of D' or D'' does not intersect any q-arc.

Definition 2.1 Let Γ be a graph. Let w be a word representing the trivial element in $A(\Gamma)$, and Δ be a dual van Kampen diagram for w. Two segments on the boundary of Δ are called a *canceling* q-*pair* if there exists a q-arc joining the segments. For any word w_1 , two letters of w_1 are called a *canceling* q-*pair* if there exist another word $w'_1 =_{A(\Gamma)} w_1$ and a dual van Kampen diagram Δ for $w_1 w'_1^{-1}$, such that the two letters are a canceling q-pair with respect to Δ . A canceling q-pair is also called as a q-*pair* for abbreviation. A *canceling pair* is a canceling q-pair for some $q \in V(\Gamma)$.

For a group G and its subset P, $\langle P \rangle$ denotes the subgroup generated by P. For a subgroup H of $A(\Gamma)$, $w \in H$ shall mean that w represents an element in H.

Lemma 2.2 Let Γ be a graph and q be a vertex of Γ . If a word w in $A(\Gamma)$ has a q-pair, then $w = w_1 q^{\pm 1} w_2 q^{\mp 1} w_3$ for some subwords w_1, w_2 and w_3 such that $w_2 \in \langle \text{link}_{\Gamma}(q) \rangle$. In this case, w is not reduced.

Proof There exists a word $w' =_{A(\Gamma)} w$ and a dual van Kampen diagram Δ for ww'^{-1} , such that a q-arc joins two segments of w.

Write $w = w_1 q^{\pm 1} w_2 q^{\mp 1} w_3$, where the letters $q^{\pm 1}$ and $q^{\mp 1}$ (identified with the corresponding segments on $\partial \Delta$) are joined by a q-arc γ as in Figure 2.

Figure 2: Cutting Δ along γ

Cut Δ along γ , to get a dual van Kampen diagram Δ_0 , which contains w_2 on its boundary. Give Δ_0 the orientation that coincides with the orientation of Δ on w_2 . Let \tilde{w}_2 be the word, read off by following γ in the orientation of Δ_0 . $\tilde{w}_2 \in \langle \text{link}_{\Gamma}(q) \rangle$, for the arcs intersecting with γ are labeld by vertices in $\text{link}_{\Gamma}(q)$. Since Δ_0 is a dual van Kampen diagram for the word $w_2 \tilde{w}_2$, we have $w_2 =_{\mathcal{A}(\Gamma)} \tilde{w}_2^{-1} \in \langle \text{link}_{\Gamma}(q) \rangle$. \Box

For $S \subseteq V(\Gamma)$, we let $S^{-1} = \{q^{-1} : q \in S\}$ and $S^{\pm 1} = S \cup S^{-1}$. The following lemma is standard, and we briefly sketch the proof.

Lemma 2.3 Let Γ be a graph and *S* be a subset of $V(\Gamma)$. Then the following are true.

- (1) $\langle S \rangle$ is isomorphic to $A(\Gamma_S)$.
- (2) Each letter of any reduced word in $\langle S \rangle$ is in $S^{\pm 1}$.

Proof (1) The inclusion $V(\Gamma_S) \subseteq V(\Gamma)$ induces a map $f: A(\Gamma_S) \to A(\Gamma)$. Let w be a word representing an element in ker f. Since $w =_{A(\Gamma)} 1$, there exists a dual van Kampen diagram Δ for the word w in $A(\Gamma)$. Remove simple closed curves labeled by $V(\Gamma) \setminus V(\Gamma_S)$, if there is any. Since the boundary of Δ is labeled by vertices in V(S), Δ can be considered as a dual van Kampen diagram for the word w in $A(\Gamma_S)$. So we get $w =_{A(\Gamma_S)} 1$.

(2) $w =_{A(\Gamma)} w'$ for some word w' such that the letters of w' are in S. Let Δ be a dual van Kampen diagram for ww'^{-1} . If w contains a q-segment for some $q \notin S$, then a q-arc joins two segments in Δ , and these segments must be in w. This is impossible by Lemma 2.2.

From this point on, $A(\Gamma_S)$ is considered as a subgroup of $A(\Gamma)$, for $S \subseteq V(\Gamma)$. Let H be a group and $\phi: C \to D$ be an isomorphism between subgroups of H. Then

we define $H*_{\phi} = \langle H, t | t^{-1}ct = \phi(c)$, for $c \in C \rangle$, which is the HNN extension of H with the amalgamating map ϕ and the stable letter t. Sometimes, we explicitly state what the stable letter is. If C = D and ϕ is the identity map, then we let $H*_C = \langle H, t | t^{-1}ct = t$ for $c \in C \rangle$.

For a vertex v of a graph Γ , the *link of* v is the set

 $link_{\Gamma}(v) = \{u \in V(\Gamma) : u \text{ is adjacent to } v\}.$

Lemma 2.4 Let Γ be a graph. Suppose Γ' is an induced subgraph of Γ such that $V(\Gamma') = V(\Gamma) \setminus \{v\}$ for some $v \in V(\Gamma)$. Let *C* be the subgroup of $A(\Gamma')$ generated by $link_{\Gamma}(v)$. Then the inclusion $A(\Gamma') \hookrightarrow A(\Gamma)$ extends to the isomorphism $f: A(\Gamma')*_{C} \to A(\Gamma)$ such that f(t) = v.

Proof Immediate from the definition of right-angled Artin groups.

We first note the following general lemma.

Lemma 2.5 Let *H* be a group and $\phi: C \to D$ be an isomorphism between subgroups *C* and *D*. Let *K* be a subgroup of *H* and $J = \langle K, t \rangle \leq H *_{\phi}$. We let $\psi: J \cap C \to J \cap D$ be the restriction of ϕ . Then the inclusion $J \cap H \hookrightarrow J$ extends to the isomorphism $f: (J \cap H) *_{\psi} \to J$ such that $f(\hat{t}) = t$, where \hat{t} and t denote the stable letters of $(J \cap H) *_{\psi}$ and $H *_{\phi}$, respectively.

Proof Note that $G = H *_{\phi}$ acts on a tree T, with a vertex v_0 and an edge $e_0 = \{v_0, t.v_0\}$ satisfying $\operatorname{Stab}(v_0) = H$ and $\operatorname{Stab}(e_0) = C$ [18]. Let T_0 be the induced subgraph on $\{j.v_0: j \in J\}$. For each vertex $j.v_0$ of T_0 , write $j = k_1 t^{\epsilon_1} k_2 t^{\epsilon_2} \cdots k_m t^{\epsilon_m}$, where $k_i \in K$ and $\epsilon_i = \pm 1$ for each i. Then the following sequence in $V(T_0)$

$$v_{0} = k_{1}.v_{0},$$

$$k_{1}t^{\epsilon_{1}}.v_{0} = k_{1}t^{\epsilon_{1}}k_{2}.v_{0},$$

$$k_{1}t^{\epsilon_{1}}k_{2}t^{\epsilon_{2}}.v_{0} = k_{1}t^{\epsilon_{1}}k_{2}t^{\epsilon_{2}}k_{3}.v_{0},$$

$$\dots$$

$$k_{1}t^{\epsilon_{1}}k_{2}t^{\epsilon_{2}}k_{3}\cdots t^{\epsilon_{m}}.v_{0} = j.v_{0}$$

gives rise to a path in T_0 from v_0 to $j.v_0$. Hence T_0 is connected. Note that $\psi: J \cap C = \operatorname{Stab}_J(e_0) \to J \cap D = \operatorname{Stab}_J(e_0)^t$. Since J acts on a tree T_0 , we have an isomorphism $J \cong \operatorname{Stab}_J(v_0) *_{\psi} = (J \cap H) *_{\psi}$.

3 Co-contraction of graphs

Let Γ be a graph and $B \subseteq V(\Gamma)$. We say B is *connected*, if Γ_B is connected. B is *anticonnected*, if $\overline{\Gamma_B}$ is connected.

Definition 3.1 Let Γ be a graph and $B \subseteq V(\Gamma)$.

(i) If *B* is connected, the *contraction of* Γ *relative to B* is the graph CO(Γ , *B*) defined by:

 $V(\operatorname{CO}(\Gamma, B)) = (V(\Gamma) \setminus B) \cup \{v_B\}$

 $E(\operatorname{CO}(\Gamma, B)) = E(\Gamma_{V(\Gamma) \setminus B}) \cup \{\{v_B, q\} : q \in V(\Gamma) \setminus B \text{ and } \operatorname{link}_{\Gamma}(q) \cap B \neq \emptyset\}$

(ii) If B is anticonnected, the *co-contraction of* Γ *relative to* B is the graph $\overline{CO}(\Gamma, B)$ defined by:

 $V(\overline{\text{CO}}(\Gamma, B)) = (V(\Gamma) \setminus B) \cup \{v_B\}$ $E(\overline{\text{CO}}(\Gamma, B)) = E(\Gamma_{V(\Gamma) \setminus B}) \cup \{\{v_B, q\} : q \in V(\Gamma) \setminus B \text{ and } \text{link}_{\Gamma}(q) \supseteq B\}$

(iii) More generally, if B_1, B_2, \ldots, B_m are disjoint connected subsets of $V(\Gamma)$, then inductively define

 $CO(\Gamma, (B_1, B_2, ..., B_m)) = CO(CO(\Gamma, (B_1, B_2, ..., B_{m-1})), B_m)$

and if B_1, B_2, \ldots, B_m are disjoint anticonnected subsets, then similarly,

 $\overline{\mathrm{CO}}(\Gamma, (B_1, B_2, \dots, B_m)) = \overline{\mathrm{CO}}(\overline{\mathrm{CO}}(\Gamma, (B_1, B_2, \dots, B_{m-1})), B_m).$

In a graph Γ , if *B* is connected, then CO(Γ , *B*) is obtained by (homotopically) collapsing Γ_B onto one vertex and removing any loops or multi-edges. If *B* is anticonnected, one has (see Figure 3)

$$\overline{\mathrm{CO}}(\Gamma, B) = \mathrm{CO}(\overline{\Gamma}, B).$$

If $B \subseteq V(\Gamma)$ and $\operatorname{link}_{\Gamma}(q) \supseteq B$, then we say that q is a common neighbor of B.

The following lemma states that the co-contraction of a set of anticonnected vertices can be obtained by considering a sequence of co-contractions of two nonadjacent vertices. The proof is immediate by considering the complement graphs.

Lemma 3.2 Let Γ be a graph and $B \subseteq V(\Gamma)$ be anticonnected. Then there exists a sequence of graphs

$$\Gamma_0 = \Gamma, \Gamma_1, \Gamma_2, \dots, \Gamma_p = \overline{\text{CO}}(\Gamma, B)$$

such that for each i = 0, 1, ..., p-1, Γ_{i+1} is a co-contraction of Γ_i relative to a pair of nonadjacent vertices of Γ_i .

Algebraic & Geometric Topology, Volume 8 (2008)

Figure 3: Note that $\{q: \operatorname{link}_{\overline{C_6}}(\underline{q}) \supseteq \{a, b\}\} = \{c, f\}$, is *c* and *f* are common neighbors of $\{a, b\}$. Hence in $\overline{CO}(\overline{C_6}, \{a, b\})$, $v_{\{a, b\}}$ is adjacent to *c* and *f*. This can be also viewed by looking at the complement graph of $\overline{C_6}$, namely C_6 , and collapsing the edge $\{a, b\}$.

Lemma 3.3 (i) If *B* is a connected subset of *p* vertices of C_n , then $CO(C_n, B) \cong C_{n-p+1}$.

(ii) If B is an anticonnected subset of p vertices of $\overline{C_n}$, then $\overline{CO}(\overline{C_n}, B) \cong \overline{C_{n-p+1}}$.

Proof (1) is obvious. Considering the complement graphs, (2) follows from (1). \Box

4 Co-contraction of graphs and right-angled Artin groups

Let Γ be a graph and B be an anticonnected subset of $V(\Gamma)$. Fix a word $\tilde{w} \in \langle B \rangle$ in $A(\Gamma)$. If a vertex x of $\overline{CO}(\Gamma, B)$ is adjacent to v_B , then x is a common neighbor of B in Γ , and so, $[x, \tilde{w}] =_{A(\Gamma)} 1$. This implies that there exists a map $\phi: A(\overline{CO}(\Gamma, B)) \to A(\Gamma)$ satisfying:

$$\phi(x) = \begin{cases} \widetilde{w} & \text{if } x = v_B \\ x & \text{if } x \in V(\overline{\text{CO}}(\Gamma, B)) \setminus \{v_B\} = V(\Gamma) \setminus B \end{cases}$$

In this section, we show that this map ϕ is injective for a suitable choice of the word \tilde{w} . First, we prove the injectivity for the case when $B = \{a, b\}$ and $\tilde{w} = b^{-1}ab$.

Lemma 4.1 Let Γ be a graph. Suppose *a* and *b* are nonadjacent vertices of Γ . Then there exists an injective map ϕ : $A(\overline{CO}(\Gamma, \{a, b\})) \rightarrow A(\Gamma)$ satisfying:

$$\phi(x) = \begin{cases} b^{-1}ab & \text{if } x = v_{\{a,b\}} \\ x & \text{if } x \in V(\Gamma) \setminus \{a,b\} \end{cases}$$

Proof Let $\widehat{\Gamma} = \overline{CO}(\Gamma, \{a, b\}), \widehat{v} = v_{\{a, b\}}$ and $A = \{q : q \in V(\Gamma) \setminus \{a, b\}\}$. For $q \in A$, let \widehat{q} denote the corresponding vertex in $\widehat{\Gamma}$, and $\widehat{A} = \{\widehat{q} : q \in A\}$.

Define $\phi: A(\widehat{\Gamma}) \to A(\Gamma)$ by:

$$\phi(x) = \begin{cases} b^{-1}ab & \text{if } x = \hat{v} \\ q & \text{if } x = \hat{q} \in \hat{A} \end{cases}$$

Suppose ϕ is not injective. Choose a word \hat{w} of the minimal length in ker $\phi \setminus \{1\}$. Write $\hat{w} = \prod_{i=1}^{k} \hat{c}_{i}^{e_{i}}$, where $\hat{c}_{i} \in \hat{A} \cup \{\hat{v}\}$ and $e_{i} = \pm 1$. As $\hat{\Gamma}_{\hat{A}}$ is isomorphic to Γ_{A} , ϕ maps $\langle \hat{A} \rangle$ isomorphically onto $\langle A \rangle$ (Figure 4). So $\hat{c}_{i} = \hat{v}$ for some *i*.

Let $w = \prod_{i=1}^{k} \phi(\hat{c}_i)^{e_i}$. Since $w =_{A(\Gamma)} 1$, there exists a dual van Kampen diagram $\Delta = (\mathcal{H}, \lambda)$ for w in $A(\Gamma)$. In Δ , choose an innermost a-arc α . By considering a cyclic conjugation of \hat{w} if necessary, one may write $\hat{w} = \hat{v}^{\pm 1} \cdot \hat{w}_1 \cdot \hat{v}^{\mp 1} \cdot \hat{w}_2$ and $w = b^{-1}a^{\pm 1}b \cdot w_1 \cdot b^{-1}a^{\mp 1}b \cdot w_2$, so that $w_1 = \phi(\hat{w}_1), w_2 = \phi(\hat{w}_2)$ and α joins the leftmost $a^{\pm 1}$ of w and the $a^{\pm 1}$ between w_1 and w_2 (Figure 5). Then the interval w_1 does not contain any a-segment. Since each b-segment in w_1 , either. Hence, $w_1 \in \langle A \rangle = A(\Gamma_A)$ and $\hat{w}_1 \in \langle \hat{A} \rangle = A(\hat{\Gamma}\hat{A})$. Note that $\Gamma_A \cong \hat{\Gamma}\hat{A}$. Since \hat{w}_1 is reduced, so is w_1 .

Figure 5: Δ in the proof of Lemma 4.1

Let β be the *b*-arc that meets the letter *b*, following $a^{\pm 1}$ on the left of w_1 in *w*. β does not intersect α , for $[a, b] \neq 1$. Since w_1 does not contain any *b*-segment, β intersects with the letter b^{-1} between w_1 and w_2 .

 w_1 does not contain any canceling pair, for w_1 is reduced. So each segment of w_1 is joined to a segment in w_2 by an arc in \mathcal{H} . Such an arc must intersect both α and β . This implies that the segments in w_1 are labeled by vertices in $\text{link}_{\Gamma}(a) \cap \text{link}_{\Gamma}(b) = \phi(\text{link}_{\widehat{\Gamma}}(\widehat{v}))$. It follows that $\widehat{w}_1 \in (\text{link}_{\widehat{\Gamma}}(\widehat{v}))$, from the following diagram.

But then, $\hat{w} = \hat{v}^{\pm 1} \hat{w}_1 \hat{v}^{\mp 1} \hat{w}_2 =_{A(\hat{\Gamma})} \hat{w}_1 \hat{w}_2$, which contradicts to the minimality of the length of \hat{w} .

Theorem 4.2 Let Γ be a graph and *B* be an anticonnected subset of $V(\Gamma)$. Then $A(\Gamma)$ contains a subgroup isomorphic to $A(\overline{CO}(\Gamma, B))$.

Proof Proof is immediate from Lemma 3.2 and Lemma 4.1.

Figure 4 and Lemma 4.1 show the existence of an isomorphism:

$$\phi: A(C_5) \to \langle b^{-1}ab, c, d, e, f \rangle \leq A(\overline{C_6})$$

More generally, we have the following corollary.

Corollary 4.3 (1) $A(\overline{C_n})$ contains a subgroup isomorphic to $A(\overline{C_{n-p+1}})$ for each $1 \le p \le n$.

Algebraic & Geometric Topology, Volume 8 (2008)

(2) If Γ contains an induced C_n or $\overline{C_n}$ for some $n \ge 5$, then $A(\Gamma)$ contains a hyperbolic surface group.

Proof (1) Immediate from Lemma 3.3 and Theorem 4.2.

(2) $A(C_n)$ contains a hyperbolic surface group for $n \ge 5$ [19]. One has an embedding $\phi: A(C_5) = A(\overline{C_5}) \hookrightarrow A(\overline{C_n})$, for $n \ge 5$.

A simple combinatorial argument shows that for n > 5, the induced subgraph of $\overline{C_n}$ on any five vertices contains a triangle. So $\overline{C_n}$ does not contain an induced C_m for any $m \ge 5$. From the Corollary 4.3 (2), we deduce the negative answer to Question 1.1 as follows.

Corollary 4.4 There exists an infinite family \mathcal{F} of graphs satisfying the following.

- (i) Each element in \mathcal{F} does not contain an induced C_n for $n \ge 5$.
- (ii) Each element in \mathcal{F} is not an induced subgraph of another element in \mathcal{F} .
- (iii) For each $\Gamma \in \mathcal{F}$, $A(\Gamma)$ contains a hyperbolic surface group.

Proof Set $\mathcal{F} = \{\overline{C_n} : n > 5\}.$

5 Contraction words

In Lemma 4.1, the word $b^{-1}ab$ was used to construct an injective map from the group $A(\overline{CO}(\Gamma, \{a, b\}))$ into $A(\Gamma)$. This can be generalized by considering a *contraction word*, defined as follows.

- **Definition 5.1** (1) Let Γ_0 be an anticonnected graph. A sequence b_1, b_2, \ldots, b_p of vertices of Γ_0 is a *contraction sequence of* Γ_0 , if the following holds: for any $(b, b') \in V(\Gamma_0) \times V(\Gamma_0)$, there exists $l \ge 1$ and $1 \le k_1 < k_2 < \cdots < k_l \le p$ such that, $b_{k_1}, b_{k_2}, \ldots, b_{k_l}$ is a path from b to b' in $\overline{\Gamma}$.
 - (2) Let Γ be a graph and B be an anticonnected set of vertices of Γ. A reduced word w = Π^p_{i=1} b^{e_i}_p is called a *contraction word of B* if b_i ∈ B, e_i = ±1 for each i, and b₁, b₂,..., b_p is a contraction sequence of Γ_B. An element of A(Γ) is called a *contraction element*, if it can be represented by a contraction word.

Remark 5.2 If *a* and *b* are nonadjacent vertices in Γ , then any word in $\langle a, b \rangle \setminus \{a^m b^n : m, n \in \mathbb{Z}\}^{\pm 1}$ is a contraction word of $\{a, b\}$.

Algebraic & Geometric Topology, Volume 8 (2008)

We first note the following general lemma.

Lemma 5.3 Let Γ be a graph and $g \in A(\Gamma)$. Then $g =_{A(\Gamma)} u^{-1}vu$ for some words u, v such that $u^{-1}v^m u$ is reduced for each $m \neq 0$.

Proof Choose words u, v such that $u^{-1}vu$ is a reduced word representing g and the length of u is maximal. We will show that $u^{-1}v^m u$ is reduced for any $m \neq 0$.

Assume that $u^{-1}v^m u$ is not reduced for some $m \neq 0$. We may assume that m > 0. Let w be a reduced word for $u^{-1}v^m u$. Draw a dual van Kampen diagram Δ for $u^{-1}v^m u w^{-1}$. Let v_i denote the v-interval on $\partial \Delta$ corresponding to the i-th occurrence of v from the left in $u^{-1}v^m u$ (Figure 6 (a)).

Figure 6: Proof of Lemma 5.3

By Lemma 2.2, there exists a q-arc γ joining two q-segments of $u^{-1}v^m u$ for some $q \in V(\Gamma)$. Let w_0 denote the interval between those two q-segments. We may choose q and γ so that the number of the segments in w_0 is minimal. Then any arc intersecting with a segment in w_0 must intersect γ . It follows that any letter in w_0 should commute with q. Moreover, w_0 does not contain any q-segment.

Case 1 The intervals u^{-1} and u do not intersect with γ .

Because w_0 does not contain any q-segment, γ joins v_i and v_{i+1} for some i(Figure 6 (b)). So one can write $v = w_1 q^{\pm 1} w_2 q^{\mp 1} w_3$ for some subwords w_1, w_2, w_3 of v such that and $w_0 = w_3 w_1$. $[w_3, q] =_{A(\Gamma)} 1 =_{A(\Gamma)} [w_1, q]$. So $u^{-1} v u =_{A(\Gamma)} u^{-1} q^{\pm 1} w_1 w_2 w_3 q^{\mp 1} u$, which contradicts to the maximality of u.

Case 2 γ intersects *u* - or u^{-1} –interval.

Suppose u^{-1} intersects γ . Since $u^{-1}v$ is reduced, γ cannot intersect v_1 . So, w_0 contains v_1 . Since w_0 does not contain any *q*-segment, *v* does not contain the letters

q or q^{-1} and so, γ cannot intersect any v_i for i = 1, ..., m. γ should intersect with the *u*-interval of $u^{-1}v^m u$ (Figure 6 (c)). This implies that γ intersects with the leftmost *q*-segment in the *u*-interval of $u^{-1}v^m u$. One can write $u^{-1}v^m u = u_2^{-1}q^{\pm 1}u_1^{-1}v^m u_1q^{\mp 1}u_2$ such that any letter in $w_0 = u_1^{-1}v^m u_1$ commutes with *q*, ie $[q, u_1] =_{A(\Gamma)} 1 =_{A(\Gamma)} [q, v]$. But then $u^{-1}vu =_{A(\Gamma)}u_2^{-1}u_1^{-1}vu_1u_2$, which is a contradiction to the assumption that $u^{-1}vu$ is reduced.

Lemma 5.4 (1) Any reduced word for a contraction element is a contraction word.

(2) Any nontrivial power of a contraction element is a contraction element.

Proof (1) Let $w = \prod_{i=1}^{p} b_p^{e_i}$ be a contraction word of an anticonnected set B in $V(\Gamma)$. Here, $b_i \in B$ and $e_i = \pm 1$ for each i. Suppose w' is a reduced word, such that $w' =_{A(\Gamma)} w$. There exists a dual van Kampen diagram Δ for ww'^{-1} . Note that any properly embedded arc of Δ meets both of the intervals w and w', since w and w' are reduced (Lemma 2.2). Now let $b, b' \in B$. w is a contraction word, so one can find $l \ge 1$ and $1 \le k_1 < k_2 < \cdots < k_l \le p$ such that, b_{k_i} and $b_{k_{i+1}}$ are nonadjacent for each $i = 1, \ldots, l-1$, and $b = b_{k_1}, b' = b_{k_l}$. Let γ_i be the arc that intersects with the segment b_{k_i} of w. Since $\gamma_1, \gamma_2, \ldots, \gamma_l$ are all disjoint, the boundary points of those arcs on w' will yield the desired subsequence of the letters of w'.

(2) Let $u^{-1}vu$ be a reduced word for g as in Lemma 5.3. Note that a sequence, containing a contraction sequence as a monotonic subsequence, is again a contraction sequence. So the reduced word $u^{-1}v^m u$ is a contraction word of B, for each $m \neq 0$. \Box

Definition 5.5 Let Γ be a graph, and P and Q be disjoint subsets of $V(\Gamma)$. Suppose P_1 is a set of words in $\langle P \rangle \leq A(\Gamma)$. A canonical expression for $g \in \langle P_1, Q \rangle$ with respect to $\{P_1, Q\}$ is a word $\prod_{i=1}^{k} c_i^{e_i}$, where

- (i) $c_i \in P_1 \cup Q$
- (ii) $e_i = 1 \text{ or } -1$
- (iii) $\prod_{i=1}^{k} c_i^{e_i} =_{A(\Gamma)} g$

such that k is minimal. k is called the *length* of the canonical expression.

Remark 5.6 In the above definition, a canonical expression exists for any element in $\langle P_1, Q \rangle$. In the case when $P_1 \subseteq P$, a word is a canonical expression with respect to $\{P_1, Q\}$, if and only if it is reduced in $A(\Gamma)$.

Now we compute intersections of certain subgroups of $A(\Gamma)$.

Lemma 5.7 Let Γ be a graph, P, Q be disjoint subsets of $V(\Gamma)$ and P_1 be a set of words in $\langle P \rangle \leq A(\Gamma)$. Let R be any subset of $V(\Gamma)$.

- (1) If w is a canonical expression with respect to $\{P_1, Q\}$, then there does not exist a q-pair of w for any $q \in Q$.
- (2) $\langle P_1, Q \rangle \cap \langle R \rangle \subseteq \langle P_1, Q \cap R \rangle$. Moreover, the equality holds if $P \subseteq R$.
- (3) Let \widetilde{w} be a contraction word of P, and $P_1 = {\widetilde{w}}$. Assume $P \not\subseteq R$. Then $\langle P_1, Q \rangle \cap \langle R \rangle = \langle Q \cap R \rangle$.

Proof (1) Let w be a canonical expression, Suppose there exists a q-pair of w for some $q \in Q$. Then by Lemma 2.2, one can write $w = w_1 q^{\pm 1} w_2 q^{\mp 1} w_3$ for some subwords w_1, w_2 and w_3 such that $w_2 \in \langle \text{link}_{\Gamma}(q) \rangle$. It follows that $w =_{A(\Gamma)} w'' = w_1 w_2 w_3$. Since $P \cap Q = \emptyset$, w_1, w_2 and w_3 are also canonical expressions with respect to $\{P_1, Q\}$. This contradicts to the minimality of k.

(2) Let w be a canonical expression of an element in $\langle P_1, Q \rangle \cap \langle R \rangle$, and $w' =_{A(\Gamma)} w$ be a reduced word. Consider a dual van Kampen diagram Δ for ww'^{-1} .

Suppose that there exists a q-segment in w, for some $q \in Q$. Then by (1), the q-segment should be joined, by a q-arc, to another q-segment of w'. Since w' is a reduced word representing an element in $\langle R \rangle$, each segment of w' is labeled by $R^{\pm 1}$ (Lemma 2.3 (2)). Therefore, $q \in Q \cap R$.

If $P \subseteq R$, then $\langle P_1, Q \cap R \rangle \subseteq \langle P_1, Q \rangle \cap \langle R \rangle$ is obvious.

(3) $\langle Q \cap R \rangle \subseteq \langle P_1, Q \rangle \cap \langle R \rangle$ is obvious.

To prove the converse, suppose $w \in (\langle P_1, Q \rangle \cap \langle R \rangle) \setminus \langle Q \cap R \rangle$. *w* is chosen so that *w* is a canonical expression with respect to $\{P_1, Q\}$, and the length (as a canonical expression) is minimal.

Let $w = \prod_{i=1}^{k} c_i^{e_i}$ ($c_i \in \{P_1, Q\}$, $e_i = \pm 1$), w' be a reduced word satisfying $w' =_{A(\Gamma)} w$, and $\Delta = (\mathcal{H}, \lambda)$ be a dual van Kampen diagram for ww'^{-1} (Figure 7). From the proof of (2), $c_i \in P_1 \cup (Q \cap R) = \{\widetilde{w}\} \cup (Q \cap R)$ for each *i*. Also, any shorter canonical expression than w, for an element in $\langle P_1, Q \rangle \cap \langle R \rangle$, is in $\langle Q \cap R \rangle$. This implies that $c_1 = \widetilde{w} = c_k$. Note that each segment of w' is labeled by $R^{\pm 1}$.

Now suppose $c_i = \tilde{w}$ for some *i*. Fix $b \in P \setminus R$. Choose the *b*-arc β that intersects with the leftmost *b*-segment in *w* on $\partial \Delta$. Note that this *b*-segment is contained in the leftmost \tilde{w} -interval in *w*.

Write $w = \tilde{w}^m w_1 \tilde{w}^e w_2$ for some subwords w_1, w_2 of $w, m \in \mathbb{Z} \setminus \{0\}$ and $e \in \{1, -1\}$. Here, w_1 and w_2 are chosen so that the letters of w_1 are in $(Q \cap R)^{\pm 1}$ and β intersects with a segment in the interval $\tilde{w}^e w_2$. Without loss of generality, we may assume m > 0.

Figure 7: Δ in the proof of Lemma 5.7

Let b' be any element in P. By Lemma 5.4, any reduced word for \tilde{w}^m is a contraction word of P. So, one can find a sequence of arcs $\beta_1, \beta_2, \ldots, \beta_l \in \mathcal{H}$ such that

- (i) $\lambda(\beta_1) = b, \lambda(\beta_l) = b',$
- (ii) $\lambda(\beta_i)$ and $\lambda(\beta_{i+1})$ are nonadjacent in Γ , for each i = 1, 2, ..., l-1, and
- (iii) each β_i intersects with a segment in the interval $\tilde{w}^e w_2$.

Note that (iii) comes from the assumptions that β_i does not join two segments from \tilde{w}^m (by reducing \tilde{w}^m first), and that the letters of w_1 are in $(Q \cap R)^{\pm 1}$, which is disjoint from P.

As in the proof of (2), each segment of w_1 is joined to a segment in w'. In particular, $[b', w_1] = [\lambda(\beta_l), w_1] =_{A(\Gamma)} 1$. Since this is true for any $b' \in P$, $w =_{A(\Gamma)} w_1 \tilde{w}^{m+e} w_2$. One has $\tilde{w}^{m+e} w_2 \in (\langle P_1, Q \rangle \cap \langle R \rangle) \setminus \langle Q \cap R \rangle$, for $w \notin \langle Q \cap R \rangle$ and $w_1 \in \langle Q \cap R \rangle$. By the minimality of w, we have $w_1 = 1$. This argument continues, and finally one can write $w = \tilde{w}^{m'}$ for some $m' \neq 0$. In particular, any reduced word for w is a contraction word of P (Lemma 5.4). This is impossible since $w \in \langle R \rangle$ and $P \nsubseteq R$. \Box

Lemma 5.8 Let Γ be a graph, *B* be an anticonnected set of vertices of Γ and *g* be a contraction element of *B*. Then there exists an injective map ϕ : $A(\overline{CO}(\Gamma, B)) \rightarrow A(\Gamma)$ satisfying:

$$\phi(x) = \begin{cases} g & \text{if } x = v_B \\ x & \text{if } x \in V(\Gamma) \setminus B \end{cases}$$

Proof As in the proof of Lemma 4.1, let $\widehat{\Gamma} = \overline{CO}(\Gamma, B)$, $\widehat{v} = v_B$ and $A = \{q : q \in V(\Gamma) \setminus B\}$. For $q \in A$, let \widehat{q} denote the corresponding vertex in $\widehat{\Gamma}$, and $\widehat{A} = \{\widehat{q} : q \in A\}$.

There exists a map $\phi: A(\widehat{\Gamma}) \to A(\Gamma)$ satisfying:

$$\phi(x) = \begin{cases} g & \text{if } x = \hat{v} \\ q & \text{if } x = \hat{q} \in \hat{A} \end{cases}$$

To prove that ϕ is injective, we use an induction on |A|.

If $A = \emptyset$, then $V(\Gamma) = B$ and $\widehat{\Gamma}$ is the graph with one vertex \widehat{v} . So, ϕ maps $\langle \widehat{v} \rangle = A(\widehat{\Gamma}) \cong \mathbb{Z}$ isomorphically onto $\mathbb{Z} \cong \langle g \rangle \leq A(\Gamma)$.

Assume the injectivity of ϕ for the case when |A| = k, and now let |A| = k + 1.

Choose any $t \in A$. Let $A_0 = A \setminus \{t\}$ and $\hat{A}_0 = \{\hat{q} : q \in A_0\}$. Let Γ_0 be the induced subgraph on $A_0 \cup B$ in Γ , and $\hat{\Gamma}_0$ be the induced subgraph on $\hat{A}_0 \cup \{\hat{v}\}$ in $\hat{\Gamma}$. We consider $A(\Gamma_0)$ and $A(\hat{\Gamma}_0)$ as subgroups of $A(\Gamma)$ and $A(\hat{\Gamma})$, respectively, so that $A(\Gamma_0) = \langle A_0, B \rangle$ and $A(\hat{\Gamma}_0) = \langle \hat{A}_0, \hat{v} \rangle$. Let $K = \langle A_0, g \rangle = \phi(A(\hat{\Gamma}_0))$ and $J = \langle A, g \rangle = \phi(A(\hat{\Gamma}))$. By the inductive hypothesis, ϕ maps $A(\hat{\Gamma}_0)$ isomorphically onto K (Figure 8).

Figure 8: Proof of Lemma 5.8. Note that $V(\Gamma) = A \sqcup B = A_0 \cup \{t\} \cup B$ and $V(\widehat{\Gamma}) = \widehat{A} \sqcup \{\widehat{v}\} = \widehat{A}_0 \cup \{\widehat{t}\} \cup \{\widehat{v}\}.$

From Lemma 2.4, we can identify $A(\Gamma) = A(\Gamma_0) *_C$, where $C = \langle \text{link}_{\Gamma}(t) \rangle$ and t is the stable letter. Since $J = \langle A_0, g, t \rangle = \langle K, t \rangle$, Lemma 2.5 implies that we can also identify $J = (J \cap A(\Gamma_0)) *_{J \cap C}$, where t is the stable letter again. Also, we identify $A(\widehat{\Gamma}) = A(\widehat{\Gamma}_0) *_D$, where $D = \langle \text{link}_{\widehat{\Gamma}}(\widehat{t}) \rangle$ and \widehat{t} is the stable letter.

By Lemma 5.7 (2), $J \cap A(\Gamma_0) = \langle g, A \rangle \cap \langle A_0, B \rangle = \langle g, A \cap (A_0 \cup B) \rangle = \langle g, A_0 \rangle = \phi(A(\widehat{\Gamma}_0)).$

Applying Lemma 5.7 (2) and (3) for the case when $R = \text{link}_{\Gamma}(t)$, we have:

$$J \cap C = \langle g, A \rangle \cap \langle \operatorname{link}_{\Gamma}(t) \rangle$$
$$= \begin{cases} \langle \operatorname{link}_{\Gamma}(t) \cap A, g \rangle & \text{if } B \subseteq \operatorname{link}_{\Gamma}(t) \\ \langle \operatorname{link}_{\Gamma}(t) \cap A \rangle & \text{otherwise} \end{cases}$$

From the definition of a co-contraction, we note that:

$$D = \operatorname{link}_{\widehat{\Gamma}}(\widehat{t}) = \begin{cases} \{\widehat{q} : q \in \operatorname{link}_{\Gamma}(t) \cap A\} \cup \{\widehat{v}\} & \text{if } B \subseteq \operatorname{link}_{\Gamma}(t) \\ \{\widehat{q} : q \in \operatorname{link}_{\Gamma}(t) \cap A\} & \text{otherwise} \end{cases}$$

Hence, $J \cap C = \phi(D)$. This implies that $\phi: A(\widehat{\Gamma}) \to J$ is an isomorphism, as follows.

Now the following theorem is immediate by an induction on m.

Theorem 5.9 Let Γ be a graph and B_1, B_2, \ldots, B_m be disjoint subsets of $V(\Gamma)$ such that each B_i is anticonnected. For each i, let v_{B_i} denote the vertex corresponding to B_i in $\overline{CO}(\Gamma, (B_1, B_2, \ldots, B_m))$, and g_i be a contraction element of B_i . Then there exists an injective map ϕ : $A(\overline{CO}(\Gamma, (B_1, B_2, \ldots, B_m))) \rightarrow A(\Gamma)$ satisfying:

$$\phi(x) = \begin{cases} g_i & \text{if } x = v_{B_i} \text{, for some } i \\ x & \text{if } x \in V(\Gamma) \setminus \bigcup_{i=1}^m B_i \end{cases}$$

We conclude this article by noting that there is another partial answer to the question of which right-angled Artin groups contain hyperbolic surface groups. Namely, if Γ does not contain an induced cycle of length ≥ 5 , and either Γ does not contain an induced C_4 (hence chordal), or Γ is triangle-free (hence bipartite), then $A(\Gamma)$ does not contain a hyperbolic surface group [14]. In [2], an independent study by Crisp, Sapir and Sageev proves a similar result, as well as the complete classification of graphs with up to eight vertices, on which the corresponding right-angled Artin groups contain hyperbolic surface subgroups.

References

[1] **R Charney, M W Davis**, *Finite* $K(\pi, 1)$ *s for Artin groups*, from: "Prospects in topology (Princeton, NJ, 1994)", Ann. of Math. Stud. 138, Princeton Univ. Press (1995) 110–124 MR1368655

- J Crisp, M Sapir, M Sageev, Surface subgroups of right-angled Artin groups arXiv: 0707.1144
- [3] J Crisp, B Wiest, Embeddings of graph braid and surface groups in right-angled Artin groups and braid groups, Algebr. Geom. Topol. 4 (2004) 439–472 MR2077673
- [4] **MW Davis**, **T Januszkiewicz**, *Right-angled Artin groups are commensurable with right-angled Coxeter groups*, J. Pure Appl. Algebra 153 (2000) 229–235 MR1783167
- [5] C Droms, Graph groups, coherence, and three-manifolds, J. Algebra 106 (1987) 484– 489 MR880971
- [6] C Droms, *Isomorphisms of graph groups*, Proc. Amer. Math. Soc. 100 (1987) 407–408 MR891135
- [7] C Droms, Subgroups of graph groups, J. Algebra 110 (1987) 519–522 MR910401
- [8] G Duchamp, J-Y Thibon, Simple orderings for free partially commutative groups, Internat. J. Algebra Comput. 2 (1992) 351–355 MR1189240
- C M Gordon, Artin groups, 3-manifolds and coherence, Bol. Soc. Mat. Mexicana (3) 10 (2004) 193–198 MR2199348
- [10] C M Gordon, D D Long, A W Reid, Surface subgroups of Coxeter and Artin groups, J. Pure Appl. Algebra 189 (2004) 135–148 MR2038569
- T Hsu, D T Wise, On linear and residual properties of graph products, Michigan Math. J. 46 (1999) 251–259 MR1704150
- [12] SP Humphries, On representations of Artin groups and the Tits conjecture, J. Algebra 169 (1994) 847–862 MR1302120
- [13] K H Kim, L Makar-Limanov, J Neggers, F W Roush, Graph algebras, J. Algebra 64 (1980) 46–51 MR575780
- [14] **S Kim**, *Hyperbolic surface subgroups of right-angled Artin groups and graph products of groups*, PhD thesis, Yale University (2007)
- [15] J Meier, L Van Wyk, *The Bieri–Neumann–Strebel invariants for graph groups*, Proc. London Math. Soc. (3) 71 (1995) 263–280 MR1337468
- [16] V Metaftsis, E Raptis, On the profinite topology of right-angled Artin groups arXiv: math.GR/0608190
- [17] G A Niblo, L D Reeves, The geometry of cube complexes and the complexity of their fundamental groups, Topology 37 (1998) 621–633 MR1604899
- [18] J-P Serre, Trees, Springer Monographs in Math., Springer, Berlin (2003) MR1954121Translated from the French original by J Stillwell, Corrected 2nd printing of the 1980 English translation
- [19] H Servatius, C Droms, B Servatius, Surface subgroups of graph groups, Proc. Amer. Math. Soc. 106 (1989) 573–578 MR952322

[20] L Van Wyk, Graph groups are biautomatic, J. Pure Appl. Algebra 94 (1994) 341–352 MR1285550

Department of Mathematics, University of Texas 1 University Station C1200, Austin, TX 78712-0257, USA

shkim@math.utexas.edu

Received: 4 January 2008