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The cobordism class of the multiple points of immersions

GÁBOR BRAUN

Using generating functions, we derive a multiple point formula for every generic
immersion f W M m # N n between even dimensional oriented manifolds. This
produces explicit formulas for the signature and Pontrjagin numbers of the multiple
point manifolds. The formulas take a particular simple form in many special cases,
for example, when f is nullhomotopic, we recover Szűcs’s formulas in [3]. They
also include Hirzebruch’s virtual signature formula [1, 9.3(4’)].

57R20, 57R42; 57R75, 16W60

1 Introduction

Let f W M m #N n be a generic immersion between oriented compact even dimensional
smooth manifolds.

Aims Let M�k be the cartesian product of k copies of M and f �k W M�k!N �k

be the map induced by f between the products. Let

�B f.x;x; : : : ;x/ W x 2N g �N �k

be the (narrow) diagonal in N �k . Then the k –tuples of the multiple points of f form
the manifold

(1–1) z�k.f /B f.x1; : : : ;xk/ 2 .f
�k/�1.�/ W xi ¤ xj if i ¤ j g:

Note that by permuting the coordinates, the symmetric group Sk acts on z�k.f /.
Factoring out with the action leads to the manifold of k –tuple points of f :

�k.f /B z�k.f /=Sk :

If the action of Sk on z�k.f / preserves orientation (ie n�m is even or k D 1), then
the factor �k.f / is naturally oriented.

We are going to express the signature and the characteristic numbers of the manifold of
k –tuple points of f in terms of cohomological invariants of M , N and f (formulas
(2–4), (2–6) and (2–10)).
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582 Gábor Braun

Special cases Our formulas are particularly simple in many special cases as shown
in Subsection 2.3. For example, if N is a sphere, we recover Szűcs’s formulas (here
(2–20) and (2–21)) from [3, Theorems 4 and 5].

Our formula also generalizes Hirzebruch’s virtual signature formula, which we recall
now.

Let f W M !N be a union of embeddings of codimension 2 manifolds M1; : : : ;Mk

into N . Recall that every codimension 2 embedded manifold is the set of zeros of a
transversal section of a 2 dimensional vector bundle. Let Vi be such a bundle for Mi ,
and let us denote the Euler class of this bundle by ei . The manifold �k.f / of k –tuple
points of f is exactly the intersection of the submanifolds M1; : : : ;Mk . Hirzebruch’s
virtual signature formula from [1, 9.3(4’)] states that its signature is

(1–2) �.�k.f //D

�
L.N /

kY
iD1

eiL.Vi/
�1; ŒN �

�
;

where L.N / is the Hirzebruch class of the tangent bundle of N and, similarly, L.Vi/

is the Hirzebruch class of Vi .

Hirzebruch uses “index” for “signature” and also uses a different notation. We can get
back Hirzebruch’s original formula by replacing in the above formula � with � , the
number k with r , the manifold �k.f / with V n�2r , the manifold N with M , the ex-
pression h�; ŒN �i with ~nŒ��, the class L.N / with

P1
iD0 Li.p1.M

n/; : : : ;pi.M
n//,

and eiL.Vi/
�1 with tanh vi . All but the last replacement are just changes in notation.

To justify the last replacement, note that the dual class vi of Mi is the Euler class ei

of Vi and hence

(1–3) eiL.Vi/
�1
D ei

tanh ei

ei
D tanh ei D tanh vi :

Our Corollary 2.3 generalizes Hirzebruch’s formula to generic immersions with even
codimension by introducing the cohomology class Bk.f / in (2–12) such that for any
immersion f W M # N , we get:

(1–4) �.�k.f //D
1

k!
hL.N /Bk.f /; ŒN �i:

When M is the disjoint union of manifolds Mi , each of which is embedded by f ,
then Bk.f / factors into a product of some classes of the Mi (see Theorem 2.4). If
all Mi has codimension 2, then this formula reduces to Hirzebruch’s (1–2) (see the
discussion after Theorem 2.4).
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Equation (1–4) has a version in (2–10) using the cohomology of M instead of the
cohomology of N . Szűcs obtained this version in the special case when N is a
Euclidean space in [3, Theorem 4], which we reproduce as (2–20).

The main idea Using the definition in (1–1), let ik W z�k.f / ! M�k denote the
inclusion and jk W

z�k.f /!M the projection to the first coordinate. What we essen-
tially do is deduce an explicit formula for jk!i

�
k

(Theorem 2.2). The formulas for the
characteristic numbers are applications of this formula.

How do we compute jk!i
�
k

? First, in Section 4, we apply Ronga’s Clean Intersection
Theorem [2, Proposition 2.2] (repeated here as Theorem 4.2) to obtain the recur-
sion (4–1) for this map. Then in Section 5 we interpret this recursion using generating
functions, which produces an easy way to solve it.

Acknowledgements This work was partially supported by Hungarian National Re-
search Fund, grant No T 042 769. The author thanks András Szűcs for his encourage-
ment and support.

2 Main results

2.1 Notation

We fix our notation for the rest of the paper. Let f W M m # N n be a generic immersion
of compact oriented smooth manifolds with even codimension. The dimension of the
components of the manifolds need not be the same. Let m be the dimension function
of M which maps every component of M to its dimension, and, similarly, let n be
the dimension function of N . Now, f having even codimension means that for every
x 2M the number n.f .x//�m.x/ is even.

Cohomology classes We fix notation for some cohomology classes. Let � be the
normal bundle of f and let e D e.�/ be the Euler class of � . Let L.�/ be the
Hirzebruch class of the bundle � . For a manifold X , we write L.X / for L.TX /, the
Hirzebruch class of the tangent bundle of X . Similarly, we define P .�/ to be the total
Pontrjagin class of � , and let P .X / B P .TX / be the total Pontrjagin class of the
manifold X . We use similar notation for Chern classes with c instead of P .

We need further notation from [3]. Let J D .j1; j2; : : : ; jl/ be a sequence of non-
negative integers. For a total cohomology class a, let ai be its i dimensional part,
and let aJ B aj1

aj2
� � � ajl

. For example, if X is a compact manifold, then pJ ŒX �B

Algebraic & Geometric Topology, Volume 8 (2008)



584 Gábor Braun

hP .X /J ; ŒX �i is the Pontrjagin number of X corresponding to J (assuming that
P

ji

is the dimension of X ).

We write cup products either as ordinary products or with the symbol [ for the operation.
We use � for cross products.

Equivalence relations Equivalence relations naturally arise in our treatment; see
Section 4 or Szűcs [3], which is the starting point of our investigation.

Let Eq.k/ be the set of all equivalence relations on f1; : : : ; kg. We will think of an
equivalence relation ˛ as the set of its equivalence classes, thus ‚ 2 ˛ will denote that
‚ is an equivalence class of ˛ . Every ‚ 2 ˛ is a subset of f1; : : : ; kg and so ‚ is
ordered by the usual ordering on integers. Moreover, there is an ordering among the
equivalence classes themselves: ‚1 <‚2 if and only if the smallest element of ‚1 is
smaller than the smallest element of ‚2 . Hence every equivalence relation ˛ is the
ordered set of its equivalence classes.

Let ˛Œi � be the equivalence class of ˛ containing i . In particular, ˛Œ1� is the smallest
equivalence class of ˛ .

We will let 0 D 0.k/ denote the trivial equivalence relation, under which different
elements are not equivalent. Let 1D 1.k/ denote the universal equivalence relation,
under which all elements are equivalent.

Whenever we write
Q
‚2˛ we assume that the terms of the product appear in the order

determined by the ordering of ˛ . Similar remark applies to
Q

i2‚ and other products
with ordered index set.

We will denote by jX j the number of elements of the set X . For example, j˛j is the
number of equivalence classes of ˛ .

Maps We list the maps between topological spaces we will use in our formulas. These
are variants of the diagonal map and the graph of f �k . Below k is a positive integer and
˛ is an equivalence relation on f1; : : : ; kg. Moreover, xi denotes the i –th coordinate
of x . For an element x of M�j˛j and ‚ 2 ˛ , let x‚ denote the ‚–coordinate of x .
We define x‚ similarly for M �N �.j˛j�1/ , where M is the ˛Œ1�–coordinate and the
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other coordinates are identified with the other classes of ˛ .

�1.k/
D�k W M !M�k ; �k.x/i B x

�˛W M�j˛j
!M�k ; �˛.x/i B x˛Œi�

�1.k/
D �k W M !M �N �.k�1/; �k.x/i B

(
x if i D 1

f .x/ if i > 1

�˛W M �N �.j˛j�1/
!M �N �.k�1/; �˛.x/i B

8<:f .x˛Œi�/ if ˛Œi �D ˛Œ1�
and i > 1

x˛Œi� otherwise

Note that if M DN and f is the identity, then �˛ D�˛ . Occasionally, we will use
�k for manifolds other than M . The context will always make this clear.

We need two maps from the multiple point manifold z�k.f / defined in (1–1): the
canonical inclusion ik W z�k.f /!M�k and the projection jk W

z�k.f /!M to the
first coordinate of M�k . When we want to include f in the notation, we write i

.f /

k

and j
.f /

k
.

Abbreviation To make formulas more readable, we introduce a shorthand notation
for a frequent constant:

Ak B .�1/k�1.k � 1/!(2–1)

2.2 The general formula

Now we state our main results, which will be proved in later sections.

Let f W M m # N n be a generic immersion of oriented compact manifolds with even
codimension. We start with the general formula for signature and characteristic numbers:

Theorem 2.1 The signature and the Pontrjagin numbers of �k.f / are

�.�k.f //D
1

k!

�
jk!i
�
k

�
L.M /�

k�
iD2

L.�/�1

�
; ŒM �

�
(2–2)

D
1

k!

�
L.N /f!jk!i

�
k

� k�
iD1

L.�/�1

�
; ŒN �

�
;(2–3)

pJ Œ�k.f /�D
1

k!

�
jk!i
�
k

�
P .M /�

k�
iD2

P .�/�1

�
J

; ŒM �

�
:(2–4)
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If M and N are almost complex, then we have a similar formula for Chern numbers:

cJ Œ�k.f /�D
1

k!

�
jk!i
�
k

�
C.M /�

k�
iD2

C.�/�1

�
J

; ŒM �

�
:(2–5)

Formulas (2–4) and (2–5) can also be written in the form analogous to (2–3).

To make these formulas explicit, we have to compute jk!i
�
k

(or f!jk!i
�
k

). Recall that
e D e.�/ is the Euler class of the normal bundle of f .

Theorem 2.2 For every cohomology class x 2H�.M�k/

jk!.i
�
k .x//D

X
˛2Eq.k/

��
j˛j.1�f

�.j˛j�1//!

���
‚2˛

Aj‚je
j‚j�1

�
��˛�.x/

�
;(2–6)

f!.jk!.i
�
k .x///D

X
˛2Eq.k/

��
j˛jf

�j˛j
!

���
‚2˛

Aj‚je
j‚j�1

�
��˛�.x/

�
:

(2–7)

In particular, if x1; : : : ;xk 2H 2�.M / (ie the xi have even dimension), then

jk!i
�
k .x1 � � � � �xk/D

X
˛2Eq.k/

�
Aj˛Œ1�je

j˛Œ1�j�1
Y

i2˛Œ1�

xi

�

�

Y
‚2˛
‚>˛Œ1�

�
Aj‚jf

�f!

�
ej‚j�1

Y
i2‚

xi

��
;

(2–8)

f!jk!i
�
k .x1 � � � � �xk/D

X
˛2Eq.k/

Y
‚2˛

�
Aj‚jf!

�
ej‚j�1

Y
i2‚

xi

��
:(2–9)

The two theorems together provide explicit formulas for the characteristic numbers and
signature. We state only the signature formula:
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Corollary 2.3 The signature of the k –fold intersection manifold of f is

�.�k.f //D
X

lC
Pk�1

iD1 iliDk

.�1/k�1�
Pk�1

iD1 li

k
Qk�1

iD1 i li � li !

�

�
L.M /el�1L.�/1�l

k�1Y
iD1

�
f �f!

�
ei�1L.�/�i

��li

; ŒM �

�
(2–10)

D

X
Pk

iD1 iliDk

.�1/k�
Pk

iD1 liQk
iD1 i li � li !

�
L.N /

kY
iD1

�
f!

�
ei�1L.�/�i

��li

; ŒN �

�

where the indices li run through the non-negative integers and the index l runs through
the positive integers.

So the general signature formula is similar to Hirzebruch’s formula (1–2):

�.�k.f //D
1

k!
hL.N /Bk.f /; ŒN �i;(2–11)

where Bk.f / generalizes the product in (1–2):

Bk.f /B f!jk!i
�
k

� k�
iD1

L.�/�1

�

D

X
Pk

iD1 iliDk

k!.�1/k�
Pk

iD1 liQk
iD1 i li � li !

kY
iD1

�
f!

�
ei�1L.�/�i

��li

:

(2–12)

We now examine how this formula reduces to Hirzebruch’s (1–2), ie the case when M

has several components.

Theorem 2.4 Let M be the disjoint union of manifolds M1; : : : ;Ml . Let fi denote
the restriction of f to Mi . Then we can compute Bk.f / as

(2–13) Bk.f /D
X

k1C���CklDk

k!

k1! � � � kl !

lY
iD1

Bki
.fi/;

where the ki run through the non-negative integers, and B0.fi/B 0 by definition.

In particular, if the Mi are embedded manifolds, then

(2–14) Bl.f /D

lY
iD1

B1.fi/D

lY
iD1

fi!.L.�i/
�1/
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where �i is the normal bundle of fi .

Let Vi be a 2 dimensional vector bundle over N . Let Mi be the set of zeros of a
transversal section of Vi . Let fi be the inclusion of Mi into N . Then the normal
bundle of fi is the restriction of Vi to Mi , which means �i D f

�
i .Vi/. Thus we have

(2–15) fi!.L.�i/
�1/D fi!.f

�
i .L.Vi/

�1//D eiL.Vi/
�1

where ei is the Euler class of Vi . Finally, Hirzebruch’s formula (1–2) is obtained by
combining (2–11), (2–14) and (2–15).

Theorem 2.2 will be proved in Section 4 and Section 5. The other results will be proved
in Section 6.

2.3 Special cases

We present some special cases when the formulas above reduce to a product. We leave
the proofs to Section 6.

e , L.�/ comes from N If the cohomology classes e and L.�/ are in the image of
f � , then the formulas simplify:

jk!i
�
k .f

�k/�.y/D��k.f
�k/�.y/

k�1Y
iD1

.f �f!.1/� ie/(2–16)

leading to

�.�k.f //D
1

k!

�
L.M /L.�/�.k�1/

k�1Y
iD1

.f �f!.1/� ie/; ŒM �

�
(2–17)

pJ Œ�k.f /�D
1

k!

��
P .M /P .�/�.k�1/

�
J

k�1Y
iD1

.f �f!.1/� ie/; ŒM �

�
(2–18)

cJ Œ�k.f /�D
1

k!

��
C.M /C.�/�.k�1/

�
J

k�1Y
iD1

.f �f!.1/� ie/; ŒM �

�
:(2–19)

e D 0 In case e D 0, the only nonzero summand in (2–6) corresponds to ˛ D 0.

jk! ı i�k D �
�
k ı .1�f

�.k�1//!
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leading to

�.�k.f //D
1

k!

D
L.M /.f �f!L.�/

�1/k ; ŒM �
E

D
1

k!

D
L.N /

�
f!.L.�/

�1/
�k
; ŒN �

E
pJ Œ�k.f /�D

1

k!

�
��kf

�k
!

�
P .M /�

k�
iD2

P .�/�1

�
J

; ŒN �

�

cJ Œ�k.f /�D
1

k!

�
��kf

�k
!

�
C.M /�

k�
iD2

C.�/�1

�
J

; ŒN �

�
:

f �f! D 0 If f �f! D 0 (this is the case if f is nullhomotopic and n > 0) then the
only nonzero summand in (2–8) corresponds to ˛ D 1. Hence the formulas reduce to
simple products:

jk!i
�
k .x1 � � � � �xk/DAkek�1.x1 � � �xk/D .�1/k�1.k � 1/!ek�1x1 � � �xk

leading to

�.�k.f //D
.�1/k�1

k

D
ek�1L.M /L.�/1�k ; ŒM �

E
pJ Œ�k.f /�D

.�1/k�1

k

D
ek�1

�
P .M /P .�/1�k

�
J
; ŒM �

E
cJ Œ�k.f /�D

.�1/k�1

k

D
ek�1

�
C.M /C.�/1�k

�
J
; ŒM �

E
:

In particular, if f is nullhomotopic, then f �.TN / is a trivial bundle and hence
L.�/�1 D L.M / and P .�/�1 D P .M /, so the formulas reduce to those in [3,
Theorems 4 and 5] (up to minor notational differences), where these are claimed
only when N is Rn (which we can replace by the sphere Sn if we want N to be
compact):

�.�k.f //D
.�1/k�1

k

D
ek�1L.M /k ; ŒM �

E
(2–20)

pJ Œ�k.f /�D
.�1/k�1

k

D
ek�1.P .M /k/J ; ŒM �

E
:(2–21)

This also corrects a typo (missing sign) in [3, Theorem 4].
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3 Sketch of proof

From a technical point of view, the main result is formula (2–6). The other results
easily follow from it, as we show in Section 6. In this section, we sketch the proof of
formula (2–6).

Briefly, the proof splits into two parts: The first part (Section 4) studies the geometric
situation to obtain formula (4–1). The second part is an algebraic rewrite of this formula
to achieve our goal: (2–6).

In more detail, as in [3], the geometric idea is the description of the preimage of
the (narrow) diagonal �k.N / under f �k . Its components are parametrized by the
equivalence relations on k elements. The component belonging to an equivalence
relation with l equivalence classes is canonically isomorphic to the manifold of l –
tuple points of f . Ronga’s Clean Intersection Theorem translates this geometric
decomposition into formula (4–1).

The algebraic manipulation of (4–1) is guided by an interpretation of this formula as a
power series equation: G D F ıH , where F collects the unknowns jk!i

�
k

. The power
series H turns out to be invertible so we can rewrite the formula as F D G ıH�1 ,
which is just (2–6).

4 From topology to algebra

In this section we derive the recursion (4–1) on jk!i
�
k

.

Subcartesian diagram We will use Ronga’s theorem on clean intersections [2, Propo-
sition 2.2]. We recall the notion of clean intersection:

Definition 4.1 Two smooth functions f W A!M and gW B!M intersect cleanly
if for every a 2A and b 2B such that f .a/D g.b/, there are local maps around a of
A, around b of B and around f .a/D g.b/ of M such that both f and g are linear
in these maps. It follows that

Z B f.a; b/ 2A�B j f .a/D g.b/g

is a submanifold of A�B , which we shall call the clean intersection of f and g . The
projections of Z to A and B form a so called subcartesian diagram together with f
and g , see Figure 1. The excess vector bundle is the bundle TM=.TACTB/ over Z ,
where we have omitted the obvious pullback functions in the notation as an abuse of
language.
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Z A

B M

˛ //

ˇ

��
f

��g //

Figure 1: A subcartesian diagram

Ronga’s theorem states a cohomological identity for subcartesian diagrams:

Theorem 4.2 (Clean Intersection Theorem [2, Proposition 2.2]) For every subcarte-
sian diagram we have, using the notation of the above definition:

g�.f!.x//D ˇ!.e �˛
�.x// .x 2H�.A//;

where e is the Euler class of the excess bundle.

Main argument In this paragraph we apply the Clean Intersection Theorem to the
maps 1�f �.k�1/ and �k to obtain (4–1).

First, the clean intersection of the maps is the preimage of the image of �k under
1�f �.k�1/ , or, equivalently, the preimage of the diagonal �D�k.N / of N �k under
f �k . As in [3], this preimage is the disjoint union of closed submanifolds

M˛ B
˚
.x1; : : : ;xk/ 2 .f

�k/�1.�/
ˇ̌
xi D xj () i ˛ j

	
;

where ˛ runs over the equivalence relations on f1; : : : ; kg. The manifold M˛ is
canonically isomorphic to z�j˛j.f /, and its inclusion into M�k factors as

M˛

ij˛j //M�j˛j �
˛

//M�k .

Among these, M0.k/ D
z�k.f / is the manifold whose characteristic numbers we want

to compute.

Second, we determine the maps in the subcartesian diagram. The map from M˛ into
M�k is just the canonical embedding. The map from M˛ to the factor M of �k is
the projection to the first coordinate.

All in all, the subcartesian diagram of 1�f �.k�1/ and �k looks as the outer square
of Figure 2. The inner square just explains some maps of the outer square.

We are going to compute the excess vector bundle. We will omit the pullback maps to
simplify our notation since the context will always make it clear which map is missing.
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S
˛2Eq.k/M˛ M�k

M˛ M�j˛j

M M �N �.j˛j�1/

M M �N �.k�1/
�� �k //

//

1�f �.k�1/

��

jj˛j

��

eeLLLLLLLLLL

�j˛j //

rrrrrrrrrrrr

rrrrrrrrrrrr

ij˛j //

1�f �.j˛j�1/

��

�˛

66mmmmmmmmmmmmmm

�˛

((QQQQQQQQQQQQQ

Figure 2: Multiple point manifolds of a generic immersion (top left) fitted
into a subcartesian diagram (the outer square). The inner square is just for
giving the maps of the outer square.

We fix an equivalence relation ˛ on f1; : : : ; kg and determine the excess vector bundle
restricted to M˛ . Therefore we consider all vector bundles pulled back to M˛ .

Recall that the excess vector bundle is the factor of T .M �N �.k�1// by TM�k and
TM . Notice that the inner square of the diagram is a transverse intersection because
f is generic, so the sum of TM�j˛j (which is contained in TM�k ) and TM is
T .M �N �.j˛j�1//. Thus the excess vector bundle is the factor of T .M �N �.k�1//

by TM�k and T .M �N �.j˛j�1//.

At this point, we notice that the factor makes sense even on M�j˛j . Hence from now
on we consider all vector bundles pulled back to M�j˛j .

Let ‚i denote the i –th equivalence class of ˛ . We will write l� for the direct sum of
l copies of a vector bundle � .

The embeddings of TM�k and T .M �N �.j˛j�1// into T .M �N �.k�1// factor
into the components of M�j˛j . For i > 1 on the i –th component we have j‚i jTM

and TN embedded into j‚i jTN . The bundle TN is embedded diagonally, and the
embedding of j‚i jTM is induced by f . Hence the factor is .j‚i j � 1/� , where � is
the normal bundle of f . The case of i D 1 is similar.

Thus, the factor on M�j˛j is .j‚1j � 1/� � � � � � .j‚l j � 1/� where l B j˛j. Last, the
excess vector bundle restricted to M˛ is the restriction of this bundle from M�j˛j to
M˛ .
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Finally, applying the Clean Intersection Theorem (Theorem 4.2) to the diagram, one
obtains:

(4–1) ��k .1�f
�.k�1//!.x/D

X
˛2Eq.k/

jj˛j!

�
i�
j˛j

��
‚2˛

ej‚j�1

�
� i�
j˛j�

˛�x

�
:

Recall that e D e.�/ is the Euler class of � .

5 The power series identity

Now we have the recursion formula (4–1) on jk!i
�
k

. To make this recurrence relation
transparent, we interpret it as a power series equality. Then our theorems will be
reduced to routine calculations.

5.1 Power series

The general definition Power series are morphisms of the following category. Objects
are sequences A D .Ak/

1
kD1

of modules. Let A D .Ak/
1
kD1

and B D .Bk/
1
kD1

be
two sequences of modules. A morphism or power series F from A to B is a collection
of homomorphisms .F˛W Ak ! Bj˛j j ˛ 2 Eq.k/; k D 1; : : : ;1/. Given two power
series F W A! B and GW B! C , we define their composite G ıF by

(5–1) .G ıF /˛ D
X
ˇ�˛

G˛=ˇ ıFˇ:

Here ˇ and ˛ are equivalence relations on the same set. The notation ˇ�˛ means that
every class of the equivalence relation ˛ is a union of some classes of the equivalence
relation ˇ (this is the usual ordering of equivalence relations). Thus ˛ induces an
equivalence relation ˛=ˇ on the classes of ˇ : namely, those classes of ˇ are equivalent
which belong to the same class of ˛ . There is a unique identification between the
ordered set of classes of ˇ and the ordered set f1; : : : ; jˇjg. Thus we may regard ˛=ˇ
as an equivalence relation on the latter set. This explains the notation in the above
formula.

We leave the easy verifications of the axioms of category to the reader. The unit
elements are of the form EW A!A defined as E˛ D 1 if ˛ D 0 2 Eq.k/ for some k ,
and E˛ D 0 for all other ˛ .

Classical examples Now we shall see that this definition is an extension of the usual
definition of formal power series. Classically, given an analytic function f W U !
V between real vector spaces, its (exponential) power series is the sequence of its
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derivatives at a point u of U . Let us denote by .fk W U
�k ! V W k D 1; : : : ;1/

the k –th derivative of f at u, it is a (symmetric) k –linear map. In our setting, this
corresponds to F W .U˝k/1

kD1
! .V ˝k/1

kD1
defined by

(5–2) F˛.u1˝ � � �˝uk/B
O
‚2˛

fj‚j.ui W i 2‚/:

(The arguments of fj‚j are the elements ui W i 2‚ in some order. The order does not
matter since the function fj‚j is symmetric.) Our definition of composition generalizes
the composition of usual power series, since Equation (5–1) is the generalization of the
formula for the derivatives of a composite function.

By the above formula (5–2), we can define for all modules U and V and every
sequence .fk W U

�k ! V W k D 1; : : : ;1/ of symmetric multilinear maps a power
series F W .U˝k/1

kD1
! .V ˝k/1

kD1
. Let us call power series of this form classical.

They are clearly closed under composition. We will use classical power series for the
ZŒx�–modules U D V D ZŒx�. In this special case, every k –linear function is of the
form fk.x1; : : : ;xk/D ax1 � � �xk for some constant a 2 ZŒx�.

5.2 Power series in cohomology

We are only interested in power series from the sequence of cohomology groups
.H�.M�k//1

kD1
to itself. We will denote this sequence by xH�.M /.

Special series We want to map the monoid of classical power series of the ZŒx�–
module ZŒx� to the monoid of power series of xH�.M /. Substitution of an element
e 2 H�.M / for x defines a ring homomorphism ZŒx�! H�.M /, which maps a
polynomial a into the cohomology class a.e/. Note that a classical power series of
ZŒx� is just a sequence .ak/

1
kD1

of elements of ZŒx�. We map such a sequence to the
power series F defined by

(5–3) F˛.y/B

��
‚2˛

aj‚j.e/

�
[�˛�.y/ .y 2H�.M�k/; ˛ 2 Eq.k//:

Note that the exponential power series of many real functions, like the exponential
function exp and the natural logarithm ln, have integer coefficients and hence are
Z! Z and ZŒx�! ZŒx� series.

Solving the recursion We are now ready to analyze our recursion (4–1), which we
repeat here in a slightly simpler form:

(5–4) ��k .1�f
�.k�1//!.x/D

X
˛2Eq.k/

.jj˛j! ı i�
j˛j/

��
‚2˛

ej‚j�1
��˛�x

�
:
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Our main observation is that the right-hand side is a special case of the composition
formula (5–1). Let us form a power series from the unknown functions jk! ı i�

k
:

F˛ B

(
jk! ı i�

k
if ˛ D 1.k/ for some k

0 otherwise.

Note that in the exponential power series expansion of the function

H.x/B
exp.ex/� 1

e
D

1X
kD1

ek�1

k!
xk

the coefficient of the k –th term is ek�1 , a polynomial in e . Therefore we may treat
H as a power series via (5–3) with ak D ek�1 . So the right-hand side of (5–4) is
just .F ıH /1.k/ . Clearly, .F ıH /˛ D 0 for ˛ ¤ 1.k/. Therefore, similarly to the
definition of F , we can define a power series G from the left-hand side of (5–4):

G˛ B

(
��

k
.1�f �.k�1//! if ˛ D 1.k/ for some k

0 otherwise,

so that our recursion (5–4) simply means

G D F ıH:

The power series H comes from an invertible function, and hence is invertible. The
inverse is induced by the inverse function

H�1.y/D
ln.1C ey/

e
D

1X
kD1

.�1/k�1.k � 1/!ek�1

k!
yk
D

1X
kD1

Akek�1

k!
;

where Ak B .�1/k�1.k � 1/! as declared in (2–1). We see that the coefficients are
polynomials in e with integer coefficients and hence we may treat H�1 as a power
series from xH�.M / to itself via (5–3) with ak DAkek�1 . Hence the solution of our
recursion is F DG ıH�1 , and this means

jk!.i
�
k .x//D

X
˛2Eq.k/

��
j˛j.1�f

�.j˛j�1//!

��
‚2˛

Aj‚je
j‚j�1

��˛�x

�
:

This is exactly Equation (2–6). Applying f! to it and using the identity

f!�
�
j˛j.1�f

�.j˛j�1//! D�
˛�f

�j˛j
!

;

we obtain (2–7). Substituting x1 � � � � �xk for x into these two formulas yield (2–8)
and (2–9). We indicate below only how one can deduce (2–9) from (2–7). Recall that
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the xi are assumed to be even dimensional in Theorem 2.2, so no sign appears when
we permute them.

�˛�.x1 � � � � �xk/D
�
‚2˛

Y
i2‚

xi(5–5) ��
‚2˛

Aj‚je
j‚j�1

���
‚2˛

Y
i2‚

xi

�
D

�
‚2˛

�
Aj‚je

j‚j�1
Y
i2‚

xi

�
(5–6)

f
�j˛j

!

��
‚2˛

Aj‚je
j‚j�1

Y
i2‚

xi

�
D

�
‚2˛

Aj‚jf!

�
ej‚j�1

Y
i2‚

xi

�
(5–7)

6 Finishing the computation

We have done the hard job in the previous sections. Now we derive the other results in
Section 2 from Theorem 2.2 by direct computation.

6.1 Proof of Theorem 2.1

Recall, eg from [1, 5.1 and Theorem 8.2.2], that for every manifold X

�.X /D hL.X /; ŒX �i;(6–1)

pJ ŒX �D hP .X /J ; ŒX �i:(6–2)

We start by determining the normal bundle of z�k.f / in M�k using the diagram in
Figure 3, where pk B f ı jk .

z�k.f /

pk

��

ik // M�k

f �k

��
N

�k // N �k

Figure 3: Multiple point manifold as part of a transverse intersection

Note that z�k.f / is the transverse preimage of the diagonal of N �k under f �k at
least in a neighbourhood of z�k.f /. So the normal bundle of z�k.f / in M�k is the
pullback of the normal bundle of the diagonal in N �k :

�.ik/D p�k�.�/D p�k

� k�1M
TN

�
D i�k .1�f

�TN � � � � �f �TN„                     ƒ‚                     …
k�1

/:
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Hence one obtains for the Hirzebruch class of z�k.f /:

2L.z�k.f //D 2i�k .L.M
�k// �L.�.ik//

�1

D 2i�k
�
.L.M /� � � � �L.M // � .1�L.f �TN /�1

� � � � �L.f �TN /�1/
�

D 2i�k
�
L.M /�L.�/�1

� � � � �L.�/�1
�
:

We have multiplied everything with 2 to get rid of eventual torsion parts. This has no
consequence when computing the signature. We get by (6–1)

�.z�k.f //D hi
�
k .L.M /�L.�/�1

� � � � �L.�/�1/; Œz�k.f /�i

D hjk!i
�
k .L.M /�L.�/�1

� � � � �L.�/�1/; ŒM �i:

This gives (2–2) of Theorem 2.1 since �.�k.f //D �.z�k.f //=k!. Formula (2–3) is
obtained by using 2L.M /D 2f �.L.N // �L.�/�1 . The formulas (2–4) and (2–5) are
proved similarly.

6.2 Hirzebruch’s virtual signature formula

Proof of Corollary 2.3 The corollary is obtained by simply plugging Equation (2–8)
directly into (2–2) and plugging (2–9) into (2–3). Substituting xi DL.�/�1 for all i

into (2–9), the summand corresponding to ˛ will depend only on the number of elements
of the classes of ˛ . Hence we can collect those summands together which are shown
equal by this observation. Adding the collected terms, we obtain a new summation
whose index will run through all tuples of non-negative integers l1; : : : ; lk for whichPk

iD1 i li D k , corresponding to the equivalence relations ˛ with exactly li pieces
of i –element classes. There are exactly k!=.

Qk
iD1 i !li � li !/ many such equivalence

relations. Hence

f!jk!i
�
k

� k�
iD1

L.�/�1

�
D

X
Pk

iD1 iliDk

k!Qk
iD1 i !li � li !

kY
iD1

�
Aif!.e

i�1L.�/�i/
�li

D

X
Pk

iD1 iliDk

k!.�1/k�
Pk

iD1 liQk
iD1 i li � li !

kY
iD1

�
f!.e

i�1L.�/�i/
�li :

Recall from (2–1) that Ai D .�1/i�1.i � 1/!, which is used in the second equation
above.

This gives the second formula of Corollary 2.3. The first formula is obtained in a
similar way using (2–8) but now the equivalence class of 1 is special. Therefore the
summation runs through the tuples .l; l1; : : : ; lk�1/ corresponding to those equivalence
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relations for which the class of 1 has l elements and there are exactly li classes with
i elements which does not contain 1. The number of such equivalence relations is
.k � 1/!=..l � 1/!

Qk
iD1 i !li � li !/. Therefore

jk!i
�
k .L.M /�

k�
iD2

L.�/�1/D
X

lC
Pk�1

iD1 iliDk

.k � 1/!

.l � 1/!
Qk�1

iD1 i !li � li !
Ale

l�1L.M /

�L.�/1�l
k�1Y
iD1

�
Aif

�f!.e
i�1L.�/�i/

�li

D

X
lC
Pk�1

iD1 iliDk

.k � 1/!.�1/k�1�
Pk

iD1 liQk�1
iD1 i li � li !

L.M /el�1

�L.�/1�l
k�1Y
iD1

�
f �f!.e

i�1L.�/�i/
�li :

(6–3)

The exponent of .�1/ in both formulas of the Corollary is the difference between k

and the number of equivalence classes.

Proof of Theorem 2.4 Now we examine the case when M is a disjoint union of
manifolds M1; : : : ;Ml . Then the cartesian power M�k is the disjoint union of prod-
ucts Ml1

� � � � �Mlk
for all 1� l1; : : : ; lk � l . This decomposition also decomposes

z�k.f /, which leads to a decomposition of jk!i
�
k

, and hence Bk.f /, into a sum. We
are gong to determine the summands.

Therefore, let us fix a tuple .l1; : : : ; lk/. Let zjk denote the restriction of jk to z�k.f /\

Ml1
� � � � �Mlk

, and, similarly, let zik denote the restriction of ik .

Let kt be the multiplicity of t in the tuple, so that Ml1
� � � � �Mlk

Š
�l

tD1 M
�kt

t

by a permutation of coordinates. Let s denote the inclusion of this space into M�k .

Under this identification, z�k.f / \Ml1
� � � � �Mlk

is clearly a subspace of the
product

�l
tD1
z�kt

.ft /. Actually, it is the preimage of the diagonal of N �l under�l
tD1.f ı j .ft /

kt
/, so the square in Figure 4 is a transverse intersection since f is

generic. In the diagram p denotes the obvious inclusion map.

By transversality, we have (eg as a special case of Theorem 4.2):

(6–4) f!
zjk!p

�
D��l

� l�
tD1

f ı j .ft /
kt

�
!

:
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z�k.f /\
�l

tD1 Mlt

�l
tD1
z�kt

.ft /
�l

tD1 M
�kt

t M�k

N
�l

tD1 N

p //

f ı zjk

��

�l
tD1 i.ft /

kt //

�l
tD1 f ıj

.ft /
kt

��

s //

�l //

Figure 4: Decompositions of multiple point manifold for immersion of a
nonconnected manifold

The composition of the top row is zik , so we obtain

f!
zjk!
zik
�
D f!

zjk!p
�

� l�
tD1

i .ft /
kt

��
s� D��l

� l�
tD1

f ı j .ft /
kt

�
!

� l�
tD1

i .ft /
kt

��
s�:

Evaluating the expression at
�k

iD1 L.�/�1 , we obtain the summand of Bk.f / cor-
responding to .l1; : : : ; lk/. We write �t for the normal bundle of ft , which is the
restriction of � to Mt .

��l

� l�
tD1

f ı j .ft /
kt

�
!

� l�
tD1

i .ft /
kt

��
s�
� k�

iD1

L.�/�1

�

D��l

� l�
tD1

f ı j .ft /
kt

�
!

� l�
tD1

i .ft /
kt

��� l�
tD1

.L.�t /
�1/�kt

�

D

lY
tD1

ft !j
.ft /
kt ! .i

.ft /
kt

/�.L.�t /
�1/�kt D

lY
tD1

Bkt
.ft /:

The class Bk.f / is the sum of the last expression for all tuples .l1; : : : ; lk/, which
leads to (2–13). Note that a tuple k1; : : : ; kl appears exactly for k!=.k1! � � � kl !/ many
tuples .l1; : : : ; lk/.

6.3 Proof of the special cases

Most of the special cases in Subsection 2.3 follow easily from the general formula,
since almost all summands become zero in (2–6). Let us examine Equation (2–6) in
more detail. If e D 0 then all summands containing e become zero and hence only the
summand corresponding to ˛ D 1 can be nonzero. If f �f! D 0 then we use (2–8) and
see that the only summand which does not contain f �f! corresponds to ˛ D 0, and
hence the other summands are zero.
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Finally, the case “e , L.�/ comes from N ” requires more calculations. We will use
power series again to save some computations. Let us evaluate (2–6) at x D 1.

(6–5) jk!.1/D
X

˛2Eq.k/

� Y
‚2˛

Aj‚je
j‚j�1

�
.f �f!.1//

j˛j�1
D @k

3q.e; f �f!.1/; 0/;

where the sum is again a special case of the formula of composition of power series (or
higher order derivatives). Namely, the two functions we compose are

g.y; z/B
exp yz� 1

y

h.x; z/B
ln.1Cxz/

x

and q is their composition:

q.x;y; z/B g.y; h.x; z//D
1

y

�
exp

�
y

ln.1Cxz/

x

�
� 1

�
:

Now we find the terms of the power series q using ordinary power series. Recall that

exp.t ln.1Cx//D .1Cx/t D

1X
nD0

�
t

n

�
xn:

Substituting y=x for t and xz for x this becomes

1Cyq.x;y; z/D exp
�

y
ln.1Cxz/

x

�
D

1X
nD0

�
y=x

n

�
xnzn:

Thus the n–th partial derivative of q in its third variable z is

@n
3q.x;y; 0/D

n!

y

�
y=x

n

�
xn
D

n�1Y
iD1

.y � ix/:

Plugging this into (6–5), we obtain

jk!.1/D

k�1Y
iD1

.f �f!.1/� ie/;

jk!i
�
k .f

�k/�.y/D��k.f
�k/�.y/jk!.1/D�

�
k.f

�k/�.y/

k�1Y
iD1

.f �f!.1/� ie/:

The last formula is exactly (2–16), from which (2–17), (2–18) and (2–19) are straight-
forward.
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