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Non-commutative multivariable Reidemester torsion and the
Thurston norm

SHELLY HARVEY

STEFAN FRIEDL

Given a 3–manifold the second author defined functions ınW H
1.M IZ/! N , gen-

eralizing McMullen’s Alexander norm, which give lower bounds on the Thurston
norm. We reformulate these invariants in terms of Reidemeister torsion over a non-
commutative multivariable Laurent polynomial ring. This allows us to show that
these functions are semi-norms.

57M27; 57N10

1 Introduction

Let M be a 3–manifold. Throughout the paper we will assume that all 3–manifolds
are compact, connected and orientable. Let � 2H 1.M IZ/. The Thurston norm of �
is defined as

k�kT Dminf��.S/ jS �M properly embedded surface dual to �g;

where for a surface S with connected components S1; : : : ;Sk we write ��.S/ DPk
iD1 maxf0;��.Si/g. We refer to Thurston [18] for details.

Generalizing work of Cochran [1], the second author introduced in [7] a function

ınW H
1.M IZ/! N0[f�1g

for every n 2N and showed that ın gives a lower bound on the Thurston norm. These
functions are invariants of the 3–manifold and generalize the Alexander norm defined
by C McMullen in [11]. We point out that the definition we use in this paper differs
slightly from the original definition when n D 0 and a few other special cases. We
refer to Section 4.3 for details.

The relationship between the functions ın and the Thurston norm was further strength-
ened in Harvey [8] (cf also Cochran [1] and Friedl [4]) where it was shown that the
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ın give a never decreasing series of lower bounds on the Thurston norm, ie for any
� 2H 1.M IZ/ we have

ı0.�/� ı1.�/� ı2.�/� � � � � k�kT :

Furthermore it was shown in Friedl–Kim [5] that under a mild assumption these
inequalities are an equality modulo 2.

In his original paper [18], Thurston showed that k� kT is a semi-norm. It is therefore
a natural question to ask whether the invariants ın are semi-norms as well. In [7] this
was shown to be the case for nD 0. The following theorem, which is a special case of
the main theorem of this paper (cf Theorem 4.2), gives an affirmative answer to this
question for n� 1.

Theorem 1.1 Let M be a 3–manifold with empty or toroidal boundary. Assume that
ın.�/¤�1 for some � 2H 1.M IZ/, then

ınW H
1.M IZ/! N0

is a semi-norm.

In particular, this allows us to show that the sequence fıng is eventually constant. That
is, there exists an N 2 N such that ın D ıN for all n�N (cf Proposition 4.4).

Before we address whether the ın are norms, we discuss a more algebraic problem.
Recall that given a multivariable Laurent polynomial ring FŒt˙1

1
; : : : ; t˙1

m � over a com-
mutative field F we can associate to any non–zero f D

P
˛2Zm a˛t˛ 2 FŒt˙1

1
; : : : ; t˙1

m �

a semi-norm on hom.Zm;R/ by

k�kf WD supf�.˛/��.ˇ/ j a˛ ¤ 0; aˇ ¤ 0g:

Thus, to any square matrix B over FŒt˙1
1
; : : : ; t˙1

m � with det.B/¤ 0, we can associate
a norm using det.B/ 2 FŒt˙1

1
; : : : ; t˙1

m �.

Generalizing this idea to the non-commutative case, in Section 2.1 we introduce the
notion of a multivariable skew Laurent polynomial ring KŒt˙1

1
; : : : ; t˙1

m � of rank m

over a skew field K . Given a square matrix B over KŒt˙1
1
; : : : ; t˙1

m � we can study
its Dieudonné determinant det.B/ which is an element in the abelianization of the
multiplicative group K.t1; : : : ; tm/nf0g where K.t1; : : : ; tm/ denotes the quotient field
of KŒt˙1

1
; : : : ; t˙1

m �. This determinant will in general not be represented by an element
in KŒt˙1

1
; : : : ; t˙1

m �. Our main technical result (Theorem 2.2) is that nonetheless there
is a natural way to associate a norm to B that generalizes the commutative case.
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Given a 3–manifold M and a ‘compatible’ representation

�1.M /! GL.KŒt˙1
1 ; : : : ; t˙1

m �; d/

we will show in Section 3 that the corresponding Reidemeister torsion can be viewed
as a matrix over KŒt˙1

1
; : : : ; t˙1

m �. Moreover, we will show in Section 4.3 that for
appropriate representations the norm that we can associate to this matrix that agrees
with �n , ın . This implies Theorem 1.1. We conclude this paper with examples of links
for which we compute the Thurston norm using the results in this paper.

As a final remark we point out that the results in this paper completely generalize the
results in [6]. Furthermore, the results can easily be extended to studying 2–complexes
together with the Turaev norm which is modeled on the definition of the Thurston norm
of a 3–manifold. We refer to Thurston [21] for details.
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2 The non-commutative Alexander norm

In this section we will introduce the notion of a multivariable skew Laurent polynomial
ring and we will then show that matrices over such rings give rise to semi-norms.

2.1 Multivariable Laurent polynomials

Let R be a (non-commutative) domain and 
 W R!R a ring homomorphism. We
denote by RŒs˙1� the one-variable skew Laurent polynomial ring over R. Specifically,
the elements in RŒs˙1� are formal sums

Pn
iDm ais

i (m�n2Z) with ai 2R. Addition
is given by addition of the coefficients, and multiplication is defined using the rule
sia D 
 i.a/si for any a 2 R (where 
 i.a/ stands for .
 ı � � � ı 
 /.a/). We point
out that any element

Pn
iDm ais

i 2RŒs˙1� can also be written uniquely in the formPn
iDm sizai , indeed, zai D s�iais

i 2R.

In the following let K be a skew field. We then define a multivariable skew Laurent
polynomial ring of rank m over K (in non-commuting variables) to be a ring R which
is an algebra over K with unit (ie we can view K as a subring of R) together with a
decomposition RD˚˛2ZmV˛ such that the following hold:

(1) V˛ is a one-dimensional K–vector space,
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(2) V˛ �Vˇ D V˛Cˇ and

(3) V.0;:::;0/ D K .

In particular R is Zm –graded. Note that these properties imply that any V˛ is invariant
under left and right multiplication by K , that any element in V˛ nf0g is a unit, and that
R is a (non-commutative) domain. The example that the reader should keep in mind is
a commutative Laurent polynomial ring FŒt˙1

1
; : : : ; t˙1

m �. Indeed, let t˛ WD t
˛1

1
� � � � � t

˛m
m

for ˛ D .˛1; : : : ; ˛m/, then V˛ D Ft˛; ˛ 2 Zm has the required properties.

Let R be a multivariable skew Laurent polynomial ring of rank m over K . To make our
subsequent definitions and arguments easier to digest we will always pick t˛ 2 V˛ nf0g

for ˛ 2 Zm . It is easy to see that we can in fact pick t˛; ˛ 2 Zm such that tn˛ D .t˛/n

for all ˛ 2 Zm and n 2 Z. Note that this choice implies that t .0;:::;0/ D 1. Using the
above choices, the set of t˛ for ˛ 2 Z satisfies the following properties:

(1) t˛t z̨t�.˛Cz̨/ 2 K� for all ˛; z̨ 2 Zm and

(2) t˛KD Kt˛ for all ˛ .

This shows that the notion of multivariable skew Laurent polynomial ring of rank m is
a generalization of the notion of twisted group ring of Zm as defined in Passman [13,
page 13]. If mD 1 then we have t .n/ 2 V.n/ such that t .n/ D .t .1//n for any n 2 Z.
We write tn D t .n/ . In particular, when m D 1, R is a one-variable skew Laurent
polynomial ring as above.

The argument of Dodziuk et al [3, Corollary 6.3] can be used to show that any such
Laurent polynomial ring is a (left and right) Ore domain and in particular has a (skew)
quotient field. We normally denote a multivariable skew Laurent polynomial ring of
rank m over K suggestively by KŒt˙1

1
; : : : ; t˙1

m � and we denote the quotient field of
KŒt˙1

1
; : : : ; t˙1

m � by K.t1; : : : ; tm/.

2.2 The Dieudonné determinant

In this section we recall several well-known definitions and facts about the Dieudonné
determinant. Let K be a skew field; in our applications K will be the quotient field of
a multivariable skew Laurent polynomial ring. First define GL.K/ WD lim

�!
GL.K; n/,

where we have the maps GL.K; n/! GL.K; nC 1/ in the direct system, given by
A 7!

�
A 0
0 1

�
, then define K1.K/D GL.K/=ŒGL.K/;GL.K/�. For details we refer the

reader to Milnor [12] or Turaev [19].

Let A a square matrix over K . After elementary row operations and destabilization we
can arrange that in K1.K/ the matrix A is represented by a 1� 1–matrix .d/. Then
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the Dieudonné determinant det.A/ 2 K�
ab
WD K�=ŒK�;K�� (where K� WD K n f0g)

is defined to be d . It is well-known that the Dieudonné determinant induces an
isomorphism detW K1.K/ ! K�

ab
. We refer to Rosenberg [14, Theorem 2.2.5 and

Corollary 2.2.6] for more details.

2.3 Multivariable skew Laurent polynomial rings and semi-norms

In this section we show that matrices defined over a multivariable skew Laurent polyno-
mial ring give rise to a semi-norm. We also relate this norm to degrees of one-variable
polynomials.

Let KŒs˙1� be a one-variable skew Laurent polynomial ring and let f 2KŒs˙1�. If f D
0 then we write deg.f /D�1, otherwise, for f D

Pn
iDm ais

i 2 KŒs˙1� with am ¤

0; an ¤ 0 we define deg.f / WD n�m. This extends to a homomorphism degW K.t/ n

f0g ! Z via deg.fg�1/ D deg.f /� deg.g/. Since deg is a homomorphism to an
abelian group this induces a homomorphism degW K.t/�

ab
! Z. Note that throughout

this paper we will apply the convention that �1< a for any a 2 Z.

For the remainder of this section let KŒt˙1
1
; : : : ; t˙1

m � be a multivariable skew Laurent
polynomial ring of rank m together with a choice of t˛; ˛ 2 Zm as above. Let
f 2KŒt˙1

1
; : : : ; t˙1

m �. We can write f D
P
˛2Zm a˛t˛ for some a˛ 2K . We associate

a semi-norm k�kf on hom.Rm;R/ to f as follows. If f D 0, then we set k�kf WD 0.
Otherwise we set

k�kf WD supf�.˛/��.ˇ/ j a˛ ¤ 0; aˇ ¤ 0g:

Clearly k�kf is a semi-norm and does not depend on the choice of t˛ . This semi-norm
should be viewed as a generalization of the degree function.

Now let � 2 K1.K.t1; : : : ; tm// and let fn; fd 2 KŒt˙1
1
; : : : ; t˙1

m � n f0g such that
det.�/D fnf

�1
d
2 K.t1; : : : ; tm/

�
ab

. Then define

k�k� WDmaxf0; k�kfn
�k�kfd

g

for any � 2 hom.Rm;R/. By the following proposition this function is well-defined.

Proposition 2.1 Let � 2K1.K.t1; : : : ; tm//. Let fn; fd ;gn;gd 2 KŒt˙1
1
; : : : ; t˙1

m � n

f0g such that det.�/D fnf
�1

d
D gng�1

d
2 K.t1; : : : ; tm/

�
ab

. Then

k�kfn
�k�kfd

D k�kgn
�k�kgd

:

We postpone the proof to Section 2.4.
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Let B be a matrix defined over KŒt˙1
1
; : : : ; t˙1

m �. In general, it is not the case that
det.B/ can be represented by an element in KŒt˙1

1
; : : : ; t˙1

m �. But we still have the
following result which is the main technical result of this paper.

Theorem 2.2 If � 2K1.K.t1; : : : ; tm// can be represented by a matrix defined over
KŒt˙1

1
; : : : ; t˙1

m �, then k�k� defines a semi-norm on hom.Rm;R/.

We postpone the proof to Section 2.5.

Now let �W Zm! Z be a non-trivial homomorphism. We will show that k�kB can
also be viewed as the degree of a polynomial associated to B and � . We begin with
some definitions. Consider

KŒKer.�/� WD
M

˛2Ker.�/

Kt˛ � KŒt˙1
1 ; : : : ; t˙1

m �:

This clearly defines a subring of KŒt˙1
1
; : : : ; t˙1

m � and the argument of Dodziuk et al
[3, Corollary 6.3] shows that KŒKer.�/� is an Ore domain with skew field which we
denote by K.Ker.�//.

Let d 2 Z such that Im.�/ D dZ and pick ˇ D .ˇ1; : : : ; ˇm/ 2 Zm such that
�.ˇ/ D d . Let � WD tˇ . Then we can form one-variable Laurent polynomial rings
.KŒKer.�/�/Œs˙1� and K.Ker.�//Œs˙1� where sk WD �k��1s for all k 2 KŒKer.�/�
respectively for all k 2 K.Ker.�//. We get an isomorphism


� W KŒt˙1
1
; : : : ; t˙1

m �
Š
�! .KŒKer.�/�/Œs˙1�P

˛2Zm k˛t˛ 7!
P
˛2Zm k˛t˛���.˛/=ds�.˛/=d ;

where k˛ 2 K for all ˛ 2 Zm . Note that k˛t˛���.˛/=d 2 KŒKer.�/�. An easy
computation shows that 
� is an isomorphism of rings. We also get an induced
isomorphism K.t1; : : : ; tm/

Š
�! .K.Ker.�///.s/.

Let B be a matrix over K.t1; : : : ; tm/. Define deg�.B/ WD deg.det.
�.B/// where we
view 
 .B/ as a matrix over K.Ker.�//.s/.

Theorem 2.3 Let B be a matrix over K.t1; : : : ; tm/. Let � 2 hom.Zm;Z/ be non-
trivial and let d 2 N such that Im.�/D dZ. Then

k�kB D d maxf0; deg�.B/g:

In particular, this shows that deg�.B/ is independent of the choice of ˇ . The above
theorem is a generalization of [7, Proposition 5.12] to the non-commutative case.
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Proof Since 
 and deg are homomorphisms it is clearly enough to show that for any
g 2 KŒt˙1

1
; : : : ; t˙1

m � n f0g we have

k�kg D d deg.
�.g//:

Write g D
P
˛2Zm a˛t˛ with a˛ 2 K . Let d; ˇ; � and 
 W KŒt˙1

1
; : : : ; t˙1

m �
Š
�!

.KŒKer.�/�/Œs˙1� as above. Note that Ker.�/˚Zˇ D Zm , hence

g D
P

i2Z

P
˛2Ker.�/ a˛Ciˇt˛Ciˇ;


�.g/ D
P

i2Z

�P
˛2Ker.�/ a˛Ciˇt˛Ciˇ��i

�
si :

Note that a˛Ciˇt˛Ciˇ��i � Kt˛ . Since KŒKer.�/�D˚˛2Ker.�/Kt˛ we get the fol-
lowing equivalences:P

˛2Ker.�/ a˛Ciˇt˛Ciˇ��i D 0

, a˛Ciˇt˛Ciˇ��i D 0 for all ˛ 2 Ker.�/
, a˛Ciˇ D 0 for all ˛ 2 Ker.�/:

Therefore

k�kg D d maxi2Zfthere exists ˛ 2 Ker.�/ such that a˛Ciˇ ¤ 0g

� d mini2Zfthere exists ˛ 2 Ker.�/ such that a˛Ciˇ ¤ 0g

D d maxi2Zf
P
˛2Ker.�/ a˛Ciˇt˛Ciˇ��i ¤ 0g

� d mini2Zf
P
˛2Ker.�/ a˛Ciˇt˛Ciˇ��i ¤ 0g

D d deg.
�.g//:

Thus the theorem is proved.

2.4 Proof of Proposition 2.1

We start out with the following three basic lemmas.

Lemma 2.4 Let f;g 2 KŒt˙1
1
; : : : ; t˙1

m � n f0g, then k�kfg D k�kf Ck�kg .

This lemma is well-known. It follows from the fact that the Newton polytope of
non-commutative multivariable polynomials fg is the Minkowski sum of the Newton
polytopes of f and g . We refer to Sturmfels [16, page 31] for details.

Lemma 2.5 Let d 2K.t1; : : : ; tm/ and let fn; fd ;gn;gd 2KŒt˙1
1
; : : : ; t˙1

m � such that
d D fnf

�1
d
D gng�1

d
2 K.t1; : : : ; tm/. Then

k�kfn
�k�kfd

D k�kgn
�k�kgd

:
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In particular
k�kd WD k�kfn

�k�kfd

is well-defined.

Proof Recall that by the definition of the Ore localization fnf
�1

d
D gng�1

d
2

K.t1; : : : ; tm/ is equivalent to the existence of u; v 2 KŒt˙1
1
; : : : ; t˙1

m � n f0g such that
fnuDgnv and fduDgdv . The lemma now follows immediately from Lemma 2.4.

Lemma 2.6 Let d; e 2 K.t1; : : : ; tm/, then

k�kde D k�kd Ck�ke:

Proof Pick fn; fd ;gn;gd 2 KŒt˙1
1
; : : : ; t˙1

m � such that fnf
�1

d
D d and gng�1

d
D e .

By the Ore property there exist u; v 2 KŒt˙1
1
; : : : ; t˙1

m � n f0g such that gnuD fdv . It
follows that

fnf
�1

d gng�1
d D fnvu�1g�1

d D .fnv/.gdu/�1:

The lemma now follows immediately from Lemma 2.4.

We can now give the proof of Proposition 2.1.

Proof of Proposition 2.1 Let B be a matrix defining an element K1.K.t1; : : : ; tm//.
Assume that we have fn; fd ;gn;gd 2 KŒt˙1

1
; : : : ; t˙1

m � such that det.B/D fnf
�1

d
D

gng�1
d
2K.t1; : : : ; tm/

�
ab

. We can lift the equality fnf
�1

d
D gng�1

d
2K.t1; : : : ; tm/

�
ab

to an equality

(1) fnf
�1

d D

rY
iD1

Œai ; bi �gng�1
d 2 K.t1; : : : ; tm/

�

for some ai ; bi 2 K.t1; : : : ; tm/. It follows from Lemma 2.6 that k�kŒai ;bi � D 0. It
then follows from Lemma 2.6 that k�kfnf

�1
d
D k�kgng�1

d
.

2.5 Proof of Theorem 2.2

Let � 2 K1.K.t1; : : : ; tm// that can be represented by a matrix B defined over
KŒt˙1

1
; : : : ; t˙1

m �. We will show that k�k�Dk�kB defines a semi-norm on hom.Rm;R/.
Because of the continuity and the N–linearity of k�kB it is enough to show that for
any two non-trivial homomorphisms �; z�W Zm! Z we have

k�C z�kB � k�kBCkz�kB:
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Let �; z�W Zm! Z be non-trivial homomorphisms. Let d 2 Z such that Im.�/D dZ

and pick ˇ with �.ˇ/Dd . We write �D tˇ . As in Section 2.3 we can form KŒKer.�/�

and we also have an isomorphism 
� W KŒt˙1
1
; : : : ; t˙1

m �
Š
�! .KŒKer.�/�/Œs˙1�.

Consider 
�.B/, it is defined over the PID K.Ker.�//Œs˙1�. Therefore we can
use elementary row operations to turn 
�.B/ into a diagonal matrix with entries
in K.Ker.�//Œs˙1�. In particular we can find ai ; bi 2 KŒKer.�/� such that

det.
�.B//D
r2X

iDr1

siaib
�1
i :

Since KŒKer.�/� is an Ore domain we can in fact find a common denominator for
aib
�1
i ; i D r1; : : : ; r2 . More precisely, we can find cr1

; : : : ; cr2
2 KŒKer.�/� and

d 2 KŒKer.�/� such that aib
�1
i D cid

�1 for i D r1; : : : ; r2 . Now let c D
Pr2

iDr1
sici .

Then

det.
�.B//D cd�1
2 K.Ker.�//.s/�ab

where c 2KŒKer.�/�Œs˙1� and d 2KŒKer.�/�. Now let f D 
�1
�
.c/2KŒt˙1

1
; : : : ; t˙1

m �

and g D 
�1
�
.d/ 2KŒKer.�/�. Then det.B/D fg�1 and by Proposition 2.1 we have

k�kB D k�kf �k�kg:

We now observe that k�kgD 0 and k�C z�kgDkz�kg since g 2KŒKer.�/�. Therefore
it follows that

k�C z�kB D k�C z�kf �k�C z�kg

D k�C z�kf �kz�kg

� k�kf Ckz�kf �kz�kg

D .k�kf �k�kg/C .kz�kf �kz�kg/

D k�kBCkz�kB:

This concludes the proof of Theorem 2.2.

3 Applications to the Thurston norm

In this section we will show that the Reidemeister torsion corresponding to ‘compatible’
representations over a multivariable skew Laurent polynomial ring give rise to semi-
norms that give lower bounds on the Thurston norm.
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3.1 Reidemeister torsion

Let X be a finite connected CW–complex. Denote the universal cover of X by zX .
We view C�. zX / as a right ZŒ�1.X /�–module via deck transformations. Let R be
a ring and let 'W �1.X / ! GL.R; d/ be a representation. This equips Rd with
a left ZŒ�1.X /�–module structure. We can therefore consider the right R–module
chain complex C

'
� .X IR

d / WD C�. zX /˝ZŒ�1.X /� Rd . We denote its homology by
H
'
i .X IR

d /. If H
'
� .X IR

d /D 0, then we define the Reidemeister torsion �.X; '/ 2
K1.R/=˙ '.�1.X // otherwise we write �.X; '/ WD 0. If the homomorphism ' is
clear we may also write �.X;Rd /.

Let M be a manifold. Since Reidemeister torsion only depends on the homeomorphism
type of the space we can define �.M; '/ by picking any CW–structure for M . We
refer to the excellent book of Turaev [19] for the details.

3.2 Compatible homomorphisms and the higher order Alexander norm

In the following let M be a 3–manifold with empty or toroidal boundary. Let
 W H1.M /! Zm be an epimorphism. Let KŒt˙1

1
; : : : ; t˙1

m � be a multivariable skew
Laurent polynomial ring of rank m as in Section 2.1.

A representation 'W �1.M /! GL.KŒt˙1
1
; : : : ; t˙1

m �; d/ is called  –compatible if for
any g 2 �1.X / we have '.g/ D At .g/ for some A 2 GL.K; d/. This general-
izes definitions in Turaev [20] and Friedl [4]. We denote the induced representation
�1.M /! GL.K.t1; : : : ; tm/; d/ by ' as well and consider the corresponding Reide-
meister torsion �.M; '/ 2K1.K.t1; : : : ; tm//=˙'.�1.M //[f0g.

We say ' is a commutative representation if there exists a commutative subfield F of
K such that for all g we have '.g/ D At .g/ with A defined over F and if t˛; t z̨

commute for any ˛; z̨ 2 Zm . The following result is our main application of the purely
algebraic results of Section 2.

Theorem 3.1 Let M be a 3–manifold with an empty or toroidal boundary, let
 W H1.M /! Zm be an epimorphism and let 'W �1.M /! GL.KŒt˙1

1
; : : : ; t˙1

m �; d/

be a  –compatible representation such that �.M; '/ ¤ 0. If one of the following
holds:

(1) ' is commutative or

(2) there exists g 2 Kerf�1.M /! Zmg such that '.g/� id is invertible over K ,

then k�k�.M;'/ is a semi-norm on hom.Rm;R/ and for any �W Rm! R we have

k� ı kT � k�k�.M;'/:
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We point out that if g 2 Kerf�1.M /! Zmg, then '.g/� id is defined over K since
' is  –compatible. We refer to k�k�.M;'/ as the higher-order Alexander norm.

In the case that KŒt˙1
1
; : : : ; t˙1

m � equals QŒt˙1
1
; : : : ; t˙1

m �, the usual commutative Lau-
rent polynomial ring, we recover McMullen’s Alexander norm k�kA (cf McMullen
[11]). The general commutative case is the main result in Friedl–Kim [6]. The proof
we give here is different in its nature from the proofs in [11] and [6].

Proof In the case that mD 1 it is clear that k�k�.M;'/ is a semi-norm. The fact that
it gives a lower bound on the Thurston norm was shown in [1; 7; 20; 4]. We therefore
assume now that m> 1.

We first show that k� ı kT � k�k�.M;'/ for any �W Rm! R. Since both sides are
N–linear and continuous we only have to show that k� ı kT � k�k�.M;'/ for all
epimorphisms �W Zm! Z. So from now on, we will assume that �W Zm! Z is an
epimorphism.

Pick � 2 Zm with �.�/D 1 as in the definition of deg�.�.M; '//. We can then form
the rings KŒKer.�/�Œs˙1� and K.Ker.�//.s/. First note that by Theorem 2.3

k�k�.M;'/ D deg�.�.M; '//

since � is surjective. The representation

�1.M /! GL.KŒt˙1
1 ; : : : ; t˙1

m �; d/! GL.K.Ker.�//Œs˙1�; d/

is �–compatible since �1.M /! GL.KŒt˙1
1
; : : : ; t˙1

m �; d/ is  –compatible. It now
follows from Friedl [4, Theorem 1.2] that k� ı kT � deg.�.M;K.Ker.�//.s///D
deg�.�.M; '// (cf also Turaev [20]).

In the remainder of the proof we will show that if m > 1 then the Reidemeister
torsion �.M; '/ 2 K1.K.t1; : : : ; tm//=˙ '.�1.M // can be represented by a matrix
defined over KŒt˙1

1
; : : : ; t˙1

m �. It then follows from Theorem 2.2 that k�k�.M;'/ is a
semi-norm.

Consider the case that ' is a commutative representation and let F be the commutative
subfield F in the definition of a commutative representation. Denote by FŒt˙1

1
; : : : ; t˙1

m �

the ordinary Laurent polynomial ring. Then we have  –compatible representations
�1.M /! GL.FŒt˙1

1
; : : : ; t˙1

m �; d/ ,! GL.KŒt˙1
1
; : : : ; t˙1

m �; d/. By [19, Proposition
3.6] we have

�.M; F.t1; : : : ; tm//D �.M;K.t1; : : : ; tm// 2K1.K.t1; : : : ; tm//=˙'.�1.M //:

Since m > 1 it follows from [19, Theorem 4.7] combined with [6, Lemmas 6.2 and
6.5] that det.�.M; F.t1; : : : ; tm/// 2 F.t1; : : : ; tm/ equals the twisted multivariable
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Alexander polynomial, in particular it is defined over FŒt˙1
1
; : : : ; t˙1

m �. This concludes
the proof in the commutative case.

It therefore remains to consider the case when there exists g2Kerf�1.M /!Zmg such
that '.g/� id is invertible. We first consider the case that M is a closed 3–manifold.
The proof will use the special CW–structure from the next claim.

Claim There exists a CW–structure for M with one 0–cell and one 3–cell and such
the closure of a 1–cell and the cocore of a 2–cell represent g .1

In order to prove the claim pick a Heegaard decomposition M D G0 [H0 . We can
add a handle g0 (respectively h0 ) to G0 (respectively H0 ) in H0 (respectively G0 ) so
that the core of g0 (respectively h0 ) represents g . Adding further handles h1; : : : ; hr

(respectively g1; : : : ;gr ) in M n G0 (respectively M n H0 ) we can assume that
complement H0 n

�Sr
iD0 gi

�
(respectively G0 n

�Ss
iD0 hi

�
) is again a handlebody. It

follows that G WD
�
G0[

Sr
iD0 gi

�
n
�Ss

iD0 hi

�
and H WD

�
H0[

Ss
iD0 hi

�
n
�Sr

iD0 gi

�
are handlebodies and hence M DG [H is a handlebody decomposition of M .

Now give M the CW structure as follows: take one 0–cell, attach 1–cells along a
choice of cores of G such that g is represented by the closure of a 1–cell. Attach
2–cells along cocores of H such that one cocore represents g . Finally attach one
3–cell. This CW–structure clearly has the required properties to complete the claim.

Denote the number of 1–cells by n. Consider the chain complex of the universal cover
zM :

0! C3. zM /1
@3
�! C2. zM /n

@2
�! C1. zM /n

@1
�! C0. zM /1! 0;

where the superscript indicates the rank over ZŒ�1.M /�. Picking appropriate lifts of
the cells of M to cells of zM and picking an appropriate order we get bases for the
ZŒ�1.M /�–modules Ci. zM /, such that if Ai denotes the matrix corresponding to @i ,
then A1 and A3 are of the form

A3 D .1�g; 1� b1; : : : ; 1� bn�1/
t ;

A1 D .1�g; 1� a1; : : : ; 1� an�1/;

for some ai ; bi 2 �1.M /; i D 1; : : : ; n�1. By assumption id�'.g/ is invertible over
K . Denote by B2 the result of deleting the first column and the first row of A2 . Let
� WD .id�'.g//�1'.B2/.id�'.g//�1 . Note that � is defined over KŒt˙1

1
; : : : ; t˙1

m �.
Since we assume that �.M; '/¤0 it follows that '.B2/ is invertible over K.t1; : : : ; tm/

and �.M; '/D � 2K1.K.t1; : : : ; tm//=˙'.�1.M // (we refer to [19, Theorem 2.2]

1By cocore, we mean the element in �1 given by taking a point on the 2–cell and connecting the two
push-offs through an arc in the 3–cell.
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for details). Therefore �.M; '/2K1.K.t1; : : : ; tm//=˙'.�1.M // can be represented
by a matrix defined over KŒt˙1

1
; : : : ; t˙1

m �. This concludes the proof in the case that
M is a closed 3–manifold.

In the case that M is a 3–manifold with non-empty toroidal boundary we can find a
(simple) homotopy equivalence to a 2–complex X with �.X /D 0. We can assume
that the CW–structure has one 0–cell, n 1–cells and n� 1 2–cells, furthermore we can
assume that the closure of a 1–cell represents an element g 2 Kerf W �1.X /! Zmg

such that id�'.g/ is invertible. We get a chain complex

0! C2. zX /
n�1 @2
�! C1. zX /

n @1
�! C0. zX /

1
! 0:

Picking appropriate lifts of the cells of X to cells of zX we get bases for the ZŒ�1.X /�–
modules Ci. zX /, such that if Ai denotes the matrix corresponding to @i , then A1 is of
the form

A1 D .1�g; 1� a1; : : : ; 1� an�1/;

for some ai 2 �1.M /. Now denote by B2 the result of deleting the first row of A2 .
Then � WD '.B2/.id� '.g//�1 is again defined over KŒt˙1

1
; : : : ; t˙1

m � and the proof
continues as in the case of a closed 3–manifold.

Remark It follows from [4] that if M is closed, or if M has toroidal boundary,
then �.M; '/ ¤ 0 is equivalent to H1.M IK.t1; : : : ; tm// D 0, or equivalently, that
H1.M IKŒt

˙1
1
; : : : ; t˙1

m �/ has rank zero over KŒt˙1
1
; : : : ; t˙1

m �.

Remark The computation of polynomials

fd 2 KŒt˙1
1 ; : : : ; t˙1

m � and fn 2 KŒt˙1
1 ; : : : ; t˙1

m �

such that det.�.M; '// D fnf
�1

d
is computationally equivalent to the computation

of deg�.�.M; '// for some �W H1.M / ! Z. Put differently we get the perhaps
surprising fact that computing the higher-order Alexander norm does not take longer
than computing a single higher-order, one-variable Alexander polynomial.

4 Examples of  –compatible homomorphisms

Following [1] and [7] we will use the rational derived series to give examples of  –
compatible homomorphisms. For a given a 3–manifold, we will show that these give
rise to a never decreasing, eventually constant sequence of semi-norms all of which
give lower bounds on the Thurston norm.
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4.1 Skew fields of group rings

A group G is called locally indicable if for every finitely generated non-trivial subgroup
U � G there exists a non-trivial homomorphism U ! Z. We recall the following
well-known theorem.

Theorem 4.1 Let G be a locally indicable and amenable group and let R be a subring
of C. Then RŒG� is an Ore domain, in particular it embeds in its classical right ring of
quotients K.G/.

Higman [9] showed that RŒG� has no zero divisors. The theorem now follows from
[17] or [3, Corollary 6.3].

We recall that a group G is called poly-torsion-free-abelian (PTFA) if there exists a
filtration

1DG0 �G1 � � � � �Gn�1 �Gn DG

such that Gi=Gi�1 is torsion free abelian. It is well-known that PTFA groups are
amenable and locally indicable (cf [15]). The group rings of PTFA groups played an
important role in Cochran–Orr–Teichner [2], Cochran [1] and Harvey [7].

4.2 Admissible pairs and multivariable skew Laurent polynomial rings

We slightly generalize a definition from Harvey [8].

Definition Let � be a group and let  W �!Zm be an epimorphism and let 'W �!G

be an epimorphism to a locally indicable and amenable group G such that there exists
a map G! Zm (which we also denote by  ) such that

�

   B
BB

BB
BB

B
' // G

 

��
Zm

commutes. Following [8, Definition 1.4] we call .';  / an admissible pair for � .

Clearly G WD KerfG ! Zmg is locally indicable and amenable. It follows now
from Passman [13, Lemma 3.5 (ii)] that .ZŒG�;ZŒG � n f0g/ satisfies the Ore property.
Now pick elements t˛ 2 G; ˛ 2 Zm such that  .t˛/ D ˛ and tn˛ D .t˛/n for any
˛ 2 Zm; n 2 Z.

Clearly ZŒG�.ZŒG � n f0g/
�1 D

P
˛2Zm K.G /t

˛ is a multivariable skew Laurent
polynomial ring of rank m over the field K.G / as defined in Section 2.1. We denote
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this ring by K.G /Œt
˙1
1
; : : : ; t˙1

m �. Note that ZŒ��! ZŒG�!K.G /Œt
˙1
1
; : : : ; t˙1

m � is
a  –compatible homomorphism and that K.G /.t1; : : : ; tm/ is canonically isomorphic
to K.G/.

A family of examples of admissible pairs is provided by the rational derived series of a
group � introduced by the second author (cf [7, Section 3]). Let �.0/r WD � and define
inductively

�.n/r WD
˚
g 2 �.n�1/

r jgd
2
�
�.n�1/

r ; �.n�1/
r

�
for some d 2 Z n f0g

	
:

Note that �.n�1/
r =�

.n/
r Š

�
�
.n�1/
r =

�
�
.n�1/
r ; �

.n�1/
r

��
=Z–torsion. By [7, Corollary

3.6] the quotients �=�.n/r are PTFA groups for any � and any n. If  W �! Zm is an
epimorphism, then .�! �=�

.n/
r ;  / is an admissible pair for � for any n> 0.

4.3 Admissible pairs and semi-norms

Let M be a 3–manifold with empty or toroidal boundary. Let

.'W �1.M /!G;  W �1.M /! Zm/

be an admissible pair for �1.M /. We denote the induced map

ZŒ�1.M /�! K.G /.t1; : : : ; tm/

by ' as well.

Let �W Zm!Z be a non-trivial homomorphism. We denote the induced homomorphism
G ! Zm! Z by � as well. We write G� WD KerfG ! Zg. Pick � 2 G such that
�.�/Z D Im.�/. We define ZŒG� �Œu

˙1� via uf D �f��1u. Note that we get an
isomorphism K.G�/.u/Š K.G/. If �.M; '/¤ 0, then we define

ıG.�/ WDmaxf0; deg.�.M;K.G�/.u///g;

otherwise we write ıG.�/D�1. We will adopt the convention that �1< a for any
a 2 Z. By [4] this agrees with the definition in [8, Definition 1.6] if ıG.�/¤�1 and
if 'W G! Zm is not an isomorphism or if m > 1. In the case that 'W G! Z is an
isomorphism and M ¤ S1 �D2;S1 �S2 , this definition differs from [8, Definition
1.6] by the term 1C b3.M /. In the case that 'W � ! �=�

.nC1/
r then we also write

ın.�/D ı�=�.nC1/
r

.�/.

The following theorem implies Theorem 1.1.

Theorem 4.2 Let M be a 3–manifold with an empty or toroidal boundary. Let
.'W �1.M / ! G ,  W �1.M / ! Zm/ be an admissible pair for �1.M / such that
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�.M; '/ ¤ 0. Then for any �W Zm ! Z we have k�k�.M;'/ D ıG.�/ and � 7!

maxf0; ıG.�/g defines a semi-norm which is a lower bound on the Thurston norm.

Proof Let �W Zm ! Z be a non-trivial homomorphism. As in Section 2.1 we can
form K.G�/Œs

˙1� and K.G /.Ker.�//Œs˙1�. Note that these rings are canonically
isomorphic Laurent polynomial rings. If  W G! Zm is an isomorphism, then ' is
commutative. Otherwise we can find a non-trivial g 2 Ker. /, so clearly 1� '.g/¤

0 2 K.G/. This shows that we can apply Theorem 3.1 which then concludes the
proof.

In the case that 'W �! �=�
.nC1/
r we denote the semi-norm � 7!maxf0; ın.�/g by

k�kn . Note that in the case nD 0 this was shown by the second author [7, Proposition
5.12] to be equal to McMullen’s Alexander norm [11].

4.4 Admissible triple

We now slightly extend a definition from [8].

Definition Let � be a group and  W � ! Zm an epimorphism. Furthermore let
'1W � ! G1 and '2W � ! G2 be epimorphisms to locally indicable and amenable
groups G1 and G2 . We call .'1; '2;  / an admissible triple for � if there exist
epimorphisms ˆW G1!G2 and  2W G2!Zm such that '2Dˆı'1 , and  D 2ı'2 .

Note that .'i ;  /; i D 1; 2 are admissible pairs for � . Combining Theorem 4.2 with
[4, Theorem 1.3] (cf also [8]) we get the following result.

Theorem 4.3 Let M be a 3–manifold with empty or toroidal boundary. If .'1; '2;  /

is an admissible triple for �1.M / such that �.M; '2/¤ 0, then we have the following
inequalities of semi-norms:

k�k�.M;'2/ � k�k�.M;'1/ � k�kT :

In particular we have
k�k0 � k�k1 � � � � � k�kT :

Let M be a 3–manifold with empty or toroidal boundary and let � 2 H 1.M IZ/.
Since ın.�/ 2 N for all n it follows immediately from Theorem 4.3 that there exists
N 2 N such that ın.�/D ıN .�/ for all n � N . But we can in fact prove a slightly
stronger statement, namely that there exists such an N independent of the choice of
� 2H 1.M IZ/.
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Proposition 4.4 Let M be a 3–manifold with empty or toroidal boundary. There
exists N 2 N such that ın.�/D ıN .�/ for all n�N and all � 2H 1.M IR/.

Proof Write � D �1.M /; �n D �=�
.nC1/
r and mD b1.M /. Let  W �! Zm be an

epimorphism. Write .�n/ DKerf W �n!Zmg. Now pick elements t˛ 2�n; ˛ 2Zm

such that  .t˛/ D ˛ and tk˛ D .t˛/k for any ˛ 2 Zm; k 2 Z. Consider the map
ZŒ��! ZŒ�n�! K..�n/ /.t1; : : : ; tm/. We write �n D �.M;K..�n/ /.t1; : : : ; tm//.
We can find fn;gn 2 K..�n/ / 2 Œt

˙1
1
; : : : ; t˙1

m � such that �n D fng�1
n .

Now let H be a real vector space and C � H a convex subset. Then C defines a
dual convex subset d.C / � H� D hom.H;R/. Under the canonical identification
.H�/� D H we have d.d.C // D C . We use  to identify H1.M IR/ with Rm .
Let f D

P
˛2Zm a˛t˛ 2 K..�n/ / 2 Œt

˙1
1
; : : : ; t˙1

m � and denote by N.f / its Newton
polytope, ie N.f / is the convex hull of f˛ja˛¤ 0g�H1.M IR/. Clearly d.N.f //�

.H1.M IR//
� DH 1.M IR/ equals the norm ball of k�kf . By the above discussion

we see that d.k�kf /DN.f /, in particular d.k�kf / has only integral vertices.

By the definition of ın D k�k�n
D k�kfgg�1

n
it follows that

d.ın/C d.gn/D d.�n/C d.gn/D d.fn/

where “C” denotes the Minkowski sum of convex sets. It is easy to see that this implies
that d.ın/ has only integral vertices.

Theorem 4.3 implies that there is a sequence of inclusions

d.ı0/� d.ı1/� � � � � d.k�kT /:

Since d.k�kT / is compact and since d.ın/ has integral vertices for all n it follows
immediately that there exists N 2 N such that d.ın/ D d.ıN / for all n � N . This
completes the proof of the proposition.

5 Examples

Before we discuss the Thurston norm of a family of links we first need to introduce
some notation for knots. Let K be a knot. We denote the knot complement by X.K/.
Let �W H1.X.K//! Z be an isomorphism. We write ın.K/ WD ın.�/. This agrees
with the original definition of Cochran [1] for n> 0 and if �K .t/D 1, and it is one
less than Cochran’s definition otherwise.

In the following let LDL1[ � � � [Lm be any ordered oriented m–component link.
Let i 2 f1; : : : ;mg. Let K be an oriented knot with �K .t/ ¤ 1 which is separated
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from L by a sphere S . We pick a path from a point on K to a point on Li and denote
by L#iK the link given by performing the connected sum of Li with K (cf Figure 1).
Note that this connected sum is well-defined, ie independent of the choice of the path.
We will study the Thurston norm of L#iK .

L

K

L

K

Figure 1: The link L#iK .

Now assume that L is a non–split link with at least two components and such that
k�k0 D k�kT . Many examples of such links are known (cf [11]). For the link
L#iK denote its meridians by �i ; i D 1; : : : ;m. Let  W H1.X.L#iK//! Zm be the
isomorphism given by  .�i/D ei , where ei is the i th vector of the standard basis of
Zm .

We write � WD�1.X.L#iK//. For all ˛ 2Zm we pick t˛ 2�=�
.nC1/
r with  .t˛/D˛

and such that t l˛ D .t˛/l for all ˛ 2 Zm and l 2 Z. Furthermore write ti WD tei .

Proposition 5.1 Consider the natural map

'W �! K.�=�.nC1/
r /D K.� =�

.nC1/
r /.t1; : : : ; tm/:

where � is as defined above. There exists

f .ti/ 2 K.� =�
.nC1/
r /Œt˙1

i �� K.� =�
.nC1/
r /Œt˙1

1 ; : : : ; t˙1
m �

such that deg.f .ti//D ın.K/C1, and there exists a d D d.t1; : : : ; tm/2K.t1; : : : ; tm/

with k�kd D k�k0 , such that
(2)
�.X.L#iK/; '/D d.t1; : : : ; tm/f .ti/ 2K1.K.� =�

.nC1/
r /.t1; : : : ; tm//=˙'.�/:

Furthermore, if ın.K/D 2genus.K/� 1, then

k�k�.X .L#i K /;'/ D k�kT :
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Proof Let S be the embedded sphere in S3 coming from the definition of the
connected sum operation (cf Figure 1). Let D be the annulus S \X.L#iK/ and we
denote by P the closure of the component of X.L#iK/ nD corresponding to K . We
denote the closure of the other component by P 0 (see Figure 2 below). Note that P

is homeomorphic to X.K/ and P 0 is homeomorphic to X.L/. Denote the induced

L

K

P 0

P

D

Figure 2: The link complement of L#iK cut along the annulus D .

maps to .K/ WD K.� =�
.nC1/
r /.t1; : : : ; tm/ by ' as well. We get an exact sequence

0! C
'
� .DI .K//! C

'
� .P I .K//˚C

'
� .P

0
I .K//! C

'
� .X.L#iK/I .K//! 0

of chain complexes. It follows from [19, Theorem 3.4] that

(3) �.P; '/�.P 0; '/D �.D; '/�.X.Li#K/; '/ 2
�
K1..K//=˙'.�/

�
[f0g:

First note that D is homotopy equivalent to a circle and that Imf W �1.D/! Zmg D

Zei . It is now easy to see that �.D; '/D .1�ati/
�1 for some a2K.� =�

.nC1/
r /nf0g.

Next note that Imf W �1.P /! Zmg D Zei . In particular �.P; '/ is defined over the
one-variable Laurent polynomial ring K.� =�

.nC1/
r /Œt˙1

i � which is a PID. Recall that
we can therefore assume that its Dieudonné determinant f.ti/ lies in K� =�

.nC1/
r /Œt˙1

i �

as well.

Claim
deg.�.P; 'W �1.P /! K.� =�

.nC1/
r /.ti//D ın.K/:

Proof First recall that there exists a homeomorphism P ŠX.K/. We also have an
inclusion X.L#iK/! X.Li#K/. Combining with the degree one map X.Li#K/!

X.K/ we get a factorization of an automorphism of �1.X.K// as follows:

�1.X.K//Š �1.P /! �1.X.L#iK//! �1.X.Li#K//! �1.X.K//:
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Since the rational derived series is functorial (cf [7]) we in fact get that

�1.X.K//=�1.X.K//
.nC1/
r Š �1.P /=�1.P /

.nC1/
r

! �1.X.Li#K//=�1.X.Li#K//
.nC1/
r

! �1.X.K//=�1.X.K//
.nC1/
r

is an isomorphism. In particular

�1.X.K//=�1.X.K//
.nC1/
r ! �1.X.L#iK//=�1.X.L#iK//

.nC1/
r

is injective, and the induced map on Ore localizations is injective as well. Finally

note that Kerf�1.X.K//! �1.P /
 
�! Zmg D Ker.�/ where �W �1.X.K//! Z is

the abelianization map. It now follows that

ın.K/ D deg.�.X.K/; �1.X.K//! K.�1.X.K//�=�1.X.K//
.nC1/
r /.ti//

D deg.�.X.K/; �1.X.K//! K.� =�
.nC1/
r /.ti//

D deg.�.P; �1.P /! K.� =�
.nC1/
r /.ti//:

Note that the second equality follows from the functoriality of torsion (cf [19, Proposi-
tion 3.6]) and the fact that going to a supfield does not change the degree of a rational
function. This concludes the proof of the claim.

Claim We have the following equality of norms on H 1.X.L/IZ/:

k�k�.P 0;'/ D k�kT :

Proof First recall that P 0 is homeomorphic to X.L/. The claim now follows imme-
diately from Theorem 4.3 applied to ' and to the abelianization map of �1.P

0/, and
from the assumption that k�k0 D k�kT on H 1.X.L/IZ/.

Putting these computations together and using Equation (3) we now get a proof of
Equation (2).

Now assume that ın.K/D2genus.K/�1. Let Si be a Seifert surface of K with minimal
genus. Let �W Zm!Z be an epimorphism and let lD�.�i/2Z. We first view � as an
element in hom.H1.X.L/IZ/. A standard argument shows that � is dual to a (possibly
disconnected) surface S which intersects the tubular neighborhood of Li in exactly l

disjoint curves. Then the connected sum S 0 of S with l copies of Si gives a surface
in X.L#iK/ which is dual to � viewed as an element in hom.H1.X.L#iK/IZ/. A
standard argument shows that S 0 is Thurston norm minimizing (cf eg [10, page 18]).

Clearly �.S 0/D �.S/C l.�.Si/� 1/. A straightforward argument shows that further-
more ��.S 0/ D ��.S/C l.��.Si/C 1/ since L is not a split link and since K is
non-trivial.
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We now compute
k�kT D ��.S

0/

D ��.S/� n.�.Si/� 1/

D k�kT C 2lgenus.K/
D k�kd C 2.ın.K/C 1/

D k�kd C 2 deg.f .ti//
D k�k�.X .L#i K /;'/:

By the R–linearity and the continuity of the norms it follows that

k�k�.X .L#i K /;'/ D k�kT

for all �W Zm! R.

We now combine Proposition 5.1 with results of [1] to give explicit examples of the
sequence of semi-norms k�kn .

Denote by ˙.n;m/ the convex polytope given by the vertices .˙1
n
; 0/ and .0;˙ 1

m
/.

Let .ni/i2N and .mi/i2N be never decreasing sequences of odd positive numbers which
are eventually constant, ie there exists an N such that ni D nN for all i � N and
mi DmN for all i � N . According to [1] we can find knots K1 and K2 such that
ıi.K1/D ni for any i , ıN .K1/D 2 genus.K1/� 1 and ıi.K2/Dmi for any i and
ıN .K2/D 2 genus.K2/� 1.

Let H.K1;K2/ be the link formed by adding the two knots K1 and K2 from above to
the Hopf link (cf Figure 3). Recall that the Thurston norm ball of the Hopf link is given
by ˙.1; 1/. Let � WD�1.X.L//. It follows immediately from applying Proposition 5.1

K1

K2

Figure 3: H.K1;K2/ is obtained by tying K1 and K2 into the Hopf link
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twice that the norm ball of k�ki equals ˙.ni C 1;mi C 1/ and that k�kN D k�kT .
The following result is now an immediate consequence of Proposition 5.1.

Corollary 5.2 We have the following sequence of inequalities of semi-norms

k�kA D k�k0 � k�k1 � k�k2 � � � � � k�kN D k�kT :

In [7] the second author gave examples of 3–manifolds M such that

k�kA D k�k0 � k�k1 � k�k2 � � � �

but in that case it was not known whether the sequence of norms k�ki eventually
agrees with k�kT .

It is an interesting question to determine which 3–manifolds satisfy k�kT D k�kn for
large enough n. We conclude this paper with the following conjecture.

Conjecture 5.3 If �1.M /
.!/
r WD

T
n2N �1.M /

.n/
r Df1g, then there exists n2N such

that k�kT D k�kn .
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