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The FAn Conjecture for Coxeter groups

ANGELA KUBENA BARNHILL

We study global fixed points for actions of Coxeter groups on nonpositively curved
singular spaces. In particular, we consider property FAn , an analogue of Serre’s
property FA for actions on CAT.0/ complexes. Property FAn has implications for
irreducible representations and complex of groups decompositions. In this paper, we
give a specific condition on Coxeter presentations that implies FAn and show that
this condition is in fact equivalent to FAn for nD 1 and 2. As part of the proof, we
compute the Gersten–Stallings angles between special subgroups of Coxeter groups.

20F65; 20F55

1 Introduction

A Coxeter group is a group W that has a presentation of the form

W D ˝S j .sisj /
mij D 1

˛
where mij Dmji 2N[f1g and mij D 1 if and only if i D j . Recall that a CAT.0/
space is a complete geodesic space which is nonpositively curved in the metric sense,
ie, its geodesic triangles are no fatter than their Euclidean counterparts (see Section
3.1). We will consider isometric actions of Coxeter groups on CAT.0/ spaces.

A fundamental notion of Bass–Serre theory is Serre’s property FA. A group G has
property FA if every G –action on every simplicial tree is trivial, ie, has a global fixed
point. Such groups are “rigid” in the following sense: they do not split nontrivially
as amalgamated free products or HNN extensions and all their irreducible GL2.C/–
representations have algebraic integer traces. In addition to finite groups, Serre proved
in [28] that SL3.Z/ and Coxeter groups with every mij <1 have FA.

A generalization of Serre’s property is property FAn , as defined by Farb in [19]. A
group has FAn if every action of it by cellular isometries on every CAT.0/ n–complex
is trivial. By CAT.0/ n–complex, we mean a CAT.0/ cell complex of piecewise
constant curvature with only finitely many isometry types of cells (see Section 3.1). We
emphasize that the actions are not assumed to be cocompact, properly discontinuous
or faithful, and that the spaces are not assumed to be locally finite. Note that FA1 is
equivalent to FA.
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Properties FAn and FAm are distinct for n¤m. For example, Farb proved in [19] that
SLn.ZŒ1=p�/ has FAn�2 . However, SLn.ZŒ1=p�/ does not have FAn�1 since it acts
nontrivially on the affine building for SLn.Qp/.

As with property FA (see [28]), groups with FAn have certain strong properties.

(1) If � has property FAn then � does not split nontrivially as a nonpositively
curved n–complex of groups in the sense of Gersten–Stallings, Haefliger and
Corson (see [29; 21; 14]).

(2) Suppose � has property FAn . Let �W �! GLnC1.K/ be any representation of
degree nC 1 over a field K . Then, the eigenvalues of each of the matrices in
�.�/ are integral. In particular, they are algebraic integers if char.K/D 0 and
are roots of unity if char.K/ > 0. (As in the tree case, this follows from studying
induced actions on the Bruhat–Tits buildings for SLnC1.Qp/, which are CAT.0/
for all primes p .) In the language of Bass [2], � is thus of integral .nC 1/–
representation type. Consequently, there are only finitely many conjugacy classes
of irreducible representations of � into GLnC1 (K) for any algebraically closed
field K (see Farb [19]).

The following results are known about property FAn for a Coxeter group W :

(1) (Serre [28]) If every mij is finite, then W has property FA.

(2) (Farb [19]) If W is a discrete group generated by reflections in the sides of a
compact Euclidean or hyperbolic n–simplex, then W has property FAn�1 but
does not have property FAn .

In this paper, we generalize these results. We first consider natural conditions on
Coxeter groups that imply property FAn .

For T � S , let WT denote the subgroup of W generated by T . It is well-known
(see, for example, Bourbaki [4]) that .WT ;T / is a Coxeter system with a Coxeter
presentation that is induced from the presentation for W . The group WT is a special
subgroup with rank equal to the size of T .

Applying techniques from [19], we prove the following theorem by considering the
combinatorics of fixed sets of finite special subgroups.

Theorem 1.1 Let .W;S/ be a Coxeter system. If every special subgroup of W of
rank at most nC 1 is finite, then W has property FAn .
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Suppose a group acts nontrivially on an n–dimensional CAT.0/ space X . Then for
m � n it acts nontrivially on the m–dimensional CAT.0/ space X �Rm�n . So, for
m� n we have FAm) FAn . In other words, for every group G that acts nontrivially
on some finite-dimensional CAT.0/ complex, there an integer n such that G has FAm

if and only if m < n. This n is the smallest dimension of a CAT.0/ complex on
which G acts nontrivially. As formulated in the following conjecture, we suspect that
Theorem 1.1 gives this bound for Coxeter groups.

Conjecture 1.2 Let .W;S/ be a Coxeter system. The following are equivalent:

(i) The group W has property FAn .

(ii) Every special subgroup of W of rank at most nC 1 is finite.

(iii) For all 0 <m � n, the group W does not split nontrivially as a nonpositively
curved m–simplex of special subgroups.

As noted by Mihalik and Tschantz in [24], Conjecture 1.2 is known for n D 1. In
this paper, we reduce the proof of Conjecture 1.2 in general to proving that spaces
arising from certain simplex of groups decompositions of W are CAT.0/. The CAT.0/
Conjecture (Section 6.2) posits that these spaces are indeed CAT.0/. In Section 6.3,
we prove the CAT.0/ Conjecture in dimension 2 by computing the Gersten–Stallings
angles between special subgroups of Coxeter groups. This implies the following
theorem.

Theorem 1.3 Conjecture 1.2 holds for n� 2.

P Caprace observed that Conjecture 1.2 holds for all n if and only if it holds for n� 8

(see Remark 6.7). To prove Conjecture 1.2 in general, it therefore remains only to show
that it holds for 3� n� 8.

In Section 7, we study the maximal FAn subgroups of Coxeter groups. Special sub-
groups satisfying the condition of Theorem 1.1 are natural candidates, and we posit the
following:

Maximal FAn Conjecture A subgroup H � W is maximal FAn if and only if
H D wAw�1 for some maximal FAn special subgroup A of W and w 2W .

This has been shown for n D 1 by Mihalik and Tschantz in [24]. In Section 7, we
prove the following:

Theorem 1.4 CAT.0/ Conjecture) Maximal FAn Conjecture.
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In particular, since the CAT.0/ Conjecture holds in dimension 2, the Maximal FA2

Conjecture holds as well.

In Sections 2–4, we recall important results about Coxeter groups, CAT.0/ spaces,
and complexes of groups. We discuss in Section 5 background and techniques related
to property FAn . We present and prove our main results in Sections 6–8.

Recently, Luis Paris has independently discovered results similar to those in Section 6.
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2 Coxeter groups

We briefly recall key definitions and results on Coxeter groups that we will need. See
Bourbaki [4], Davis [16] or Humphreys [22] for further details.

2.1 Definitions

Let S be a finite set. A Coxeter matrix on S is a symmetric jS j � jS j matrix M with
entries in N[f1g such that each diagonal entry is 1 and each off-diagonal entry is
at least 2. Associated to M is a group W with presentation W D hS j .st/mst D 1i,
where the relation .st/mst D 1 is omitted if mst D1. The pair .W;S/ is a Coxeter
system, W is a Coxeter group, and the group presentation is a Coxeter presentation for
W . The W –conjugates of elements of S are called reflections.

Given a Coxeter system .W;S/, the Coxeter diagram � associated to .W;S/ is a
labeled graph with vertex set S and with an edge labeled mst connecting s to t if and
only if mst ¤ 1; 2. Note that the Coxeter diagram encodes the same information as the
Coxeter matrix. A Coxeter system .W;S/ is irreducible if its Coxeter diagram is a
connected graph.

Algebraic & Geometric Topology, Volume 6 (2006)



The FAn Conjecture for Coxeter groups 2121

2.2 Reduced words and the word problem

Given a Coxeter system .W;S/ and w 2 W , we denote by `.w/ the length of w ,
which is given by

`.w/Dminfk W w D s1s2 : : : sk for some s1; s2; : : : ; sk 2 Sg:
An expression for w which achieves its length `.w/ is called a reduced or geodesic
expression for w . Note that this notion depends on the choice of Coxeter generating
set S .

We denote by bsi the omission of si from an expression. Below is a standard character-
ization of Coxeter groups (see, for example, [11; 16; 22]).

Theorem 2.1 (Deletion and Exchange Conditions) Let W be a group generated by a
set S of involutions. The following are equivalent:

(i) .W;S/ is a Coxeter system.

(ii) (Deletion Condition) For all w 2W , if `.w/ < k and w D s1s2 : : : sk for some
generators s1; s2; : : : sk 2 S , then there exist indices 1 � j < l � k such that
w D s1s2 : : : bsj : : :bs l : : : sk .

(iii) (Strong Exchange Condition) Let w 2W and let w D s1s2 : : : sk (si 2 S ) be
an expression for w . If a reflection r in W satisfies `.rw/ < `.w/, then there
is an index i for which w D rs1 : : : bsi : : : sk . Moreover, if k D `.w/, then i is
unique.

An immediate consequence of the Deletion Condition is the following:

Corollary 2.2 Let .W;S/ be a Coxeter system and w 2W . Then every unreduced
expression for w can be reduced to a geodesic expression for w by omitting an even
number of generators.

We now define a standard set of operations for reducing words in Coxeter groups.

Definition 2.3 Let M be the Coxeter matrix associated to a Coxeter system .W;S/.
An elementary M –operation on a word w in the alphabet S is an operation of Type
(I) or Type (II), which are defined as:

Type (I) Delete a subword of the form ss for some s 2 S .

Type (II) Replace an alternating subword sts : : : of length mst for some s; t 2 S

with the alternating word tst : : : of length mst .
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Note that elementary M –operations do not change the image of the word in W .
An M –reduction of a word is a sequence of elementary M –operations. A word is
M –reduced if its length cannot be reduced via elementary M –operations.

The word problem is a fundamental problem in combinatorial and geometric group
theory. The Deletion Condition implies that Coxeter groups have solvable word problem.
In particular, Tits (see [30; 11]) proved the following theorem.

Theorem 2.4 Let .W;S/ be a Coxeter system with associated Coxeter matrix M .
Then an expression for w 2W is reduced if and only if it is M –reduced. Moreover,
given two reduced expressions for w , one can be transformed to the other via a sequence
of Type (II) elementary M –operations.

Since elementary M –operations do not increase word length, Theorem 2.4 solves the
word problem for Coxeter groups.

Remark 2.5 An important special case of Theorem 2.4 is for alternating products. In
particular, for a; b;2 S , an alternating product of a and b of length strictly less than
mab is the unique reduced representative of the corresponding element of W .

2.3 Parabolic subgroups

Given a Coxeter group W , we will be particularly interested in certain natural subgroups
of W .

Note that for elements or subsets A1;A2; : : : ;Ak of a group G we denote by
hA1;A2; : : : ;Aki the subgroup of G generated by the union of the Ai ’s.

Definition 2.6 A special subgroup of W is a subgroup WT of W given by WT DhT i
for some T � S . We say W∅ D 1 and we define the rank of WT to be jT j. The
W –conjugates of special subgroups of W are called parabolic subgroups of W .

Theorem 2.7 (See, for example, [22]) Let .W;S/ be a Coxeter system with Coxeter
matrix M , and let T � S .

(i) .WT ;T / is a Coxeter system with Coxeter matrix the submatrix of M corre-
sponding to T .

(ii) If w 2WT , and w D s1s2 : : : sk is a reduced expression for w with respect to
S , then si 2 T for all i . In particular, WT \S D T . Moreover, the length of w
with respect to S equals the length of w with respect to T .

(iii) S is a minimal generating set for W , and more generally, T is a minimal
generating set for WT .
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Given T � S , consider the Coxeter system .WT ;T /. Denote by �T the associated
Coxeter diagram. Note that by Theorem 2.7, this is the labeled subgraph of � spanned
by the vertices corresponding to the elements of T .

Remark 2.8 Given a special subgroup G �W , we denote by SG the generators of G

as a special subgroup. By Theorem 2.7, we have SG DG \S and G DWSG
. In this

notation, statement (ii) of Theorem 2.7 implies the well-known result that for special
subgroups A and B , we have A\B D hSA\SBi.

For T;U � S , we say that w is (T,U)–reduced if it is of minimal length in the double
coset WTwWU . The following is standard (see, for example, [4]).

Proposition 2.9 Let T and U be (possibly empty) subsets of S .

(i) Let w2W . There is a unique .T;U /–reduced element d 2WTwWU . Moreover,
every element w0 2 WTwWU can be written as w0 D xdy for some x 2 WT

and y 2WU so that `.w0/D `.x/C `.d/C `.y/.
(ii) An element w 2W is .T;U /–reduced if and only if `.tw/ > `.w/ 8 t 2 T and

`.wu/ > `.w/ 8 u 2 U

Given two parabolic subgroups of W , we will be interested in their intersection. In
fact, the intersection of two parabolic subgroups is again a parabolic subgroup. In
particular, we have the following result of Kilmoyer (see [24]).

Proposition 2.10 Suppose A and B are special subgroups of W , with corresponding
generating sets SA;SB � S . For w 2 W , let d be the unique .SA;SB/–reduced
element of AwB and let a 2A, b 2 B so that w D adb . Then

A\wBw�1 D ahSA\ dSBd�1ia�1:

Corollary 2.11 Suppose SA;SB �S and let w 2W . Let d be the unique .SA;SB/–
reduced element in AwB . If A� wBw�1 , then SA � dSBd�1 .

Proof of Corollary 2.11 We have ADA\wBw�1 , so for a2A and b 2B such that
w D adb , we find AD ahSA\ dSBd�1ia�1 by Proposition 2.10. Since a 2 A, we
know a�1AaDA and hence AD hSA\dSBd�1i. Now SA is a minimal generating
set of A by statement (iii) of Theorem 2.7, so A cannot be generated by a proper subset
of SA . We therefore find that SA D SA\dSBd�1 so in particular SA � dSBd�1 .
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2.4 Classification

Let W be a Coxeter group arising as a discrete group generated by reflections in the
sides of a compact Euclidean or hyperbolic simplex. Note that every proper special
subgroup of W is finite since every such subgroup stabilizes a point under the discrete
and proper action of W on Euclidean or hyperbolic space. In fact, this property
distinguishes these groups (see, for example, [11; 16; 22]).

Theorem 2.12 Let .W;S/ be a Coxeter system of rank nC 1. Then, every proper
special subgroup of W is finite if and only if one of the following holds:

(i) W is finite.

(ii) W is an irreducible Euclidean or hyperbolic reflection group with fundamental
domain a compact simplex.

In case (ii), W acts cocompactly on a Euclidean or hyperbolic space of dimension n,
and we can recover the dihedral angles of the fundamental domain from the Coxeter
presentation. Moreover, the hyperbolic case only occurs for n� 4.

Remark 2.13 This is part of the general classification of Coxeter groups. Irreducible
finite Coxeter groups and those described in case (ii) of Theorem 2.12 are listed in
standard books on Coxeter groups, such as [4] and [22]. In particular, determining
whether Coxeter groups (or their special subgroups) are finite reduces to verifying
whether their irreducible components appear on the list of irreducible finite Coxeter
groups.

3 CAT(0) spaces

We recall a few key facts about CAT.0/ spaces. See Bridson and Haefliger [10] for
full details.

3.1 Definitions, properties and constructions

Given � 2 R, let M n
� denote En (Euclidean n–space), Hn

� (hyperbolic n–space of
constant curvature � ) or Sn

� (the n–sphere of constant curvature � ) as � is 0, negative
or positive, respectively. Denote by d� the distance function on M 2

� .
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Definition 3.1 Assume that .X; d/ is a geodesic metric space. Let T � X be a
geodesic triangle. A �–comparison triangle for T is a triangle T 0 �M 2

� with the
same edge lengths as those in T . We say T satisfies the CAT(� ) inequality if for
all points x;y 2 T with corresponding points x0;y0 2 T 0 (see Figure 1), we have
d.x;y/ � d�.x

0;y0/. The space X is a CAT(� ) space if every triangle T � X (of
perimeter at most 2�p

�
if � > 0) satisfies the CAT.�/ inequality. Note that CAT.�/

implies CAT.�0/ for all �0 � � .

y 0
x0

b

b

T 0 �M 2
�

y

x b

b

T � X

Figure 1: Comparison triangle

Remark 3.2 We will be most interested in the case � D 0. CAT.0/ spaces are
a generalization of complete, simply connected, nonpositively curved Riemannian
manifolds. CAT.0/ spaces can be singular and even locally infinite, but the CAT.0/
condition implies many strong properties, including convexity of the distance function,
unique geodesics and contractibility.

We now briefly discuss a natural construction that yields many interesting examples of
CAT.0/ spaces.

An M� –polyhedral complex is a cell complex formed by taking the disjoint union of
convex polyhedral cells in M n

� which are then glued along isometric faces. An M� –
polyhedral complex is called piecewise-Euclidean, piecewise-hyperbolic or piecewise-
spherical if � is 0, -1 or 1, respectively. (See [10] for details.)

Bridson showed in [7] that if an M� –polyhedral complex is composed of only finitely
many isometry types of cells, then it is a complete geodesic space with respect to
the naturally defined metric. Note that this condition is often satisfied in cases that
arise naturally. For example, if a group acts cocompactly by isometries on a metric
polyhedral complex X , then X has only finitely many isometry types of cells.

Definition 3.3 An M� –polyhedral complex X satisfies the link condition if for every
vertex v 2X , the link of v (with its natural piecewise-spherical structure) is a CAT.1/
space.
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The importance of this condition is given by the following theorem, due to Gromov,
Ballman and Bridson (see [10]).

Theorem 3.4 Let X be an M� –polyhedral complex with only finitely many isometry
types of cells. If � � 0, then X is CAT.�/ if and only if X satisfies the link condition
and is simply connected. If � D 1, then X is CAT.1/ if and only if X satisfies the link
condition and contains no isometrically embedded circles of length less than 2� .

If � � 0, to prove that an M� –complex is CAT.0/, it thus suffices to show that it
is simply connected and has CAT.1/ links. Applying Theorem 3.4 to the links then
reduces the problem to one of ruling out short loops in successive links. In dimension
2, links of vertices are graphs, where checking for embedded loops is straightforward.

Proposition 3.5 [10, Lemma II.5.6] A 2–dimensional M� –complex satisfies the
link condition if and only if every injective loop in the link of every vertex of X has
length at least 2� .

3.2 Isometries and group actions

Definition 3.6 By an action of a group G on a space X , we mean a homomorphism
�W G! Isom.X /. (We therefore consider only isometric actions, but we will not, in
general, assume that actions are proper or faithful.) A group action on X is trivial
if a point of X is fixed by every element of the group. An isometry 
 2 Isom.X / is
semisimple if d.�; 
 .�// attains a minimum on X and an isometry is elliptic if it fixes a
point. For H � G , we say H is �–elliptic if the action of H on X given by � jH is
trivial.

The following lemma consists of standard facts about fixed sets.

Lemma 3.7 Suppose a group G acts by isometries on a geodesic metric space .X; d/
via �W G! Isom.X /.

(i) If d is convex (eg if X is CAT.0/), then for any �–elliptic subset H �G , the
set of global fixed points of H under � , denoted Fix�.H /, is contractible.

(ii) If H1;H2 �G , then Fix�.hH1[H2i/D Fix�.H1/\Fix�.H2/.

The next result [10, Corollary II.2.8] is crucial for our arguments.

Proposition 3.8 (Bruhat–Tits Fixed Point Theorem) Let X be a complete, connected
CAT.0/ space. Any action of a finite group on X is trivial. More generally, any action
on X with a bounded orbit is trivial.
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The proof of this result depends on the fact that the center of a bounded set is well-
defined in complete CAT.0/ spaces. Since every orbit is preserved, the center of a
bounded orbit, which is metrically defined, is preserved as well.

A standard consequence is the following:

Corollary 3.9 Suppose a group G acts by isometries on a complete, connected
CAT.0/ space X via �W G! Isom.X /. If H is a finite index subgroup of G and H

is �–elliptic, then G is �–elliptic.

Proof Since H is finite index in G , there is a normal subgroup N of finite index in
G such that N <H < G . Now N is �–elliptic since H is. Denote the (nonempty,
contractible) fixed set of N by X N . Then G=N acts on X N . This action has a fixed
point xG by Proposition 3.8. The point xG is fixed by the group G .

3.3 Actions of Coxeter groups

Coxeter groups act on CAT.0/ spaces. In this section, we consider some of these
actions. Fix a Coxeter system .W;S/ and suppose W is infinite.

� The Davis–Moussong complex †DM associated to .W;S/ (see, for example,
[17; 16]) has a simplicial structure similar to that of the classical Coxeter complex.
The dimension of †DM is given by the maximal rank of finite special subgroups
of W . In his thesis [25], Moussong proved that by assigning appropriate Eu-
clidean metrics to the cells of a particular cellular structure on †DM , the resulting
metric on †DM is CAT.0/. The group W acts on †DM properly by isometries.

� Given another Coxeter system .W 0;S/, there is a surjection of W to W 0 if
m0ij divides mij for all i; j . In particular, W acts nontrivially on the Davis–
Moussong complex of each such infinite quotient group.

� Niblo and Reeves construct in [26] a locally finite, finite-dimensional CAT.0/
cube complex on which W acts properly discontinuously. For right-angled
Coxeter groups, their complex is isometric to the Davis–Moussong complex.

� Since W is generated by torsion elements, it has no nontrivial homomorphisms
to Z. However, Cooper, Long and Reid in [13] and Gonciulea in [20] showed that
W has a finite index subgroup that surjects to Z. Such a finite index subgroup
then acts nontrivially by translation on the real line. However, W itself acts
nontrivially on a tree if and only if some mij is infinite (see Remark 5.1 below).
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4 Group decompositions

4.1 Amalgamated products and normal form length

Recall from Bass–Serre Theory (see [27] or [28]) that actions on trees correspond to
decompositions of groups as graphs of groups. We denote by A�C B the amalgamated
product of A and B along C . Thus A�C B is the pushout of the diagram of groups
A -C ,!B . That is, it is the fundamental group of the graph of groups with vertices
A and B and a single edge C .

Definition 4.1 Let G D A �C B , and let g 2 G . The normal form length of g is
defined to be the following:

minfk W g D a1b2a3 : : :„ ƒ‚ …
k

or b1a2b3 : : :„ ƒ‚ …
k

with ai 2A and bj 2 B 8 1� i; j � kg:

Note that this is equal to the length of the normal form representative of g in A�C B

(see [27] or [28] for details on normal forms in amalgamated products). We will be
particularly interested in the normal form length of words in amalgamated products of
Coxeter groups.

Let .W;S/ be a Coxeter system with Coxeter matrix M and special subgroups A and
B . Let MAB denote the submatrix of M corresponding to the generators SA[SB .
Define M 0 to be the matrix MAB with only the following change: for sa 2 SA�SB

and sb 2 SB �SA , the corresponding entry in M 0 is 1. Then .A�A\B B;SA[SB/

is a Coxeter system with Coxeter matrix M 0 .
Let w D s1s2 � � � sk be a word in the alphabet SA [ SB . We denote by alt.w/ the
minimum number k such that there are indices 1 D i1 < i2 < � � � < ik � r with
sij ; sijC1; : : : ; sij C1�1 2 SA for j odd and sij ; sijC1; : : : ; sij C1�1 2 SB for j even
(or vice versa). That is, alt.w/ is the number of “alternations” between elements of A

and elements in B in the word w . The normal form length of an element g 2 G is
thus minfalt.w/ W w is a word representing gg.
Note that the only Type (II) elementary M 0–operations in G are those in A and B

themselves. Together with Theorem 2.4, this implies the following:

Lemma 4.2 Let W be a Coxeter group with special subgroups A and B , and let
G DA�A\B B . Let M 0 denote the Coxeter matrix of .G;SA[SB/ as defined above.

(i) Let w be a word in the alphabet SA [ SB and let w0 be any subword of a
word obtained from w via a sequence of elementary M 0–operations. Then
alt.w0/� alt.w/.
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(ii) For g 2 G , every M 0–reduced word representing g realizes the normal form
length of g . That is, if the normal form length of g in G is k then alt.w/D k

for every M 0–reduced word w representing g .

(iii) For a2SA�SB and b 2SB�SA , the normal form length in G of an alternating
product of a and b is the length of the product as a word in the alphabet fa; bg.

4.2 Triangles of groups

The study of triangles of groups is a 2–dimensional analogue of Bass–Serre Theory due
originally to S Gersten and J Stallings (see [29]). In the next section, we will consider
a more general construction, but the case of triangles will be of particular interest.

Suppose a group G acts on a 2–dimensional simplicial complex with quotient a triangle.
By choosing a fundamental domain for the action, we can assign stabilizer groups to
the vertices, edges, and face of this triangle. This process yields a triangle of groups, a
2–dimensional analogue of the graph of groups corresponding to A�C B . Formally,
a triangle of groups is a commutative diagram of groups and monomorphisms, as in
Figure 2 below. The groups A, B and C are vertex groups, D , E and F are edge
groups, and K is the face group. The vertex, edge and face groups are all called local
groups.

A

C BD

FE
K

Figure 2: Triangle of Groups

The fundamental group G of the triangle of groups is the colimit of the diagram, ie, the
unique group (up to isomorphism) satisfying the following universal mapping property:

Given any group H and homomorphisms from the vertex groups to H ,
there is a unique homomorphism from G to H such that the resulting
diagram of groups commutes.

Definition 4.3 Let A and K be groups, E and F be subgroups of A, and K!E and
K!F be homomorphisms. Let � be the natural surjection �W E�K F!hE;Fi�A.
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The Gersten–Stallings angle between E and F over K , denoted †A.E;F IK/, is 2�
n

where

nDminfnormal form lengths of nontrivial elements in ker.�/g:
Equivalently, n is the length of the shortest loop in the graph whose vertices are the
cosets of E and F in A and whose edges are the cosets of K in A, with incidence
given by inclusion. Note that n is even since this coset graph is bipartite. In the
triangle of groups of Figure 2, we say that the Gersten–Stallings angle at the vertex A

is †A.E;F IK/.

Given a triangle of groups with fundamental group G such that all the vertex groups
inject into G , there is a natural 2–complex X , the universal cover of the triangle of
groups, on which G acts with quotient a triangle. The 2–simplices of X are given
by cosets of K in G , with incident edges given by the corresponding cosets of D , E

and F , and vertices the cosets of A, B and C . We may give X a metric by assigning
a metric on the fundamental domain that agrees with the Gersten–Stallings angles.
In particular, each triangle can be given the metric of a triangle in E2 , H2 or S2 ,
according to the sum of the Gersten–Stallings angles at each vertex of the triangle of
groups. The resulting metric on X is then piecewise-Euclidean, piecewise-hyperbolic
or piecewise-spherical.

The assigned metric ensures that X satisfies the link condition (see Definition 3.3).
This implies the following theorem of Gersten and Stallings (see [29]).

Theorem 4.4 If the sum of the Gersten–Stallings angles in a triangle of groups is less
than or equal to � , then its universal cover X is CAT.0/. If the sum is strictly less than
� , then X is CAT.�1/.

4.3 Simple complexes of groups

The theory of complexes of groups was studied by Haefliger in [21] and independently
(in dimension 2) by Corson in [14]. We will follow the development in [10] but will
only need the theory of simple complexes of groups.

Definition 4.5 A simple complex of groups over a poset Q, denoted G.Q/, consists
of:

(1) For each � 2Q, a group G� (the local group at � ).

(2) For each � < � , a monomorphism ��� W G�!G� so that ��� D ������ whenever
� < � < � .
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Denote by 1G.Q/ the colimit of the diagram of groups G.Q/. We will take Q to be
the poset associated to the cells of a cell complex. Note that if the geometric realization
of Q is simply connected, as is true in the cases we will consider, then 1G.Q/ is also
what is known as the fundamental group of the corresponding complex of groups.

Remark 4.6 Given presentations for the local groups of G.Q/, we have a presentation
for the colimit 1G.Q/ . The generators are given by the generators of the local groups,
and along with the relations coming from the local groups, elements of different local
groups are related via the monomorphisms ��� . Specifically, if the local groups have
presentations G� D hS� jR� i, then we have

1G.Q/ D
*[
�2Q

S�

ˇ̌̌̌ [
�2Q
fR� ; fg D ��� .g/ W g 2G� ; � < �gg

+
:

Suppose Q is the poset corresponding to the simplices of a 2–simplex, ordered by
inclusion. A simple complex of groups over Q is a triangle of groups. More generally,
if Q is the poset corresponding to the simplices of an n–simplex �n , ordered by
inclusion, we refer to a simple complex of groups over Q as an n–simplex of groups.

As was the case for triangles, if the local groups inject into 1G.Q/ , there is a simply
connected space, the universal cover of G.Q/, upon which 1G.Q/ acts with quotient
the underlying cell complex. In particular, the underlying cell complex is a strict
fundamental domain for the action. Assigning a metric to the underlying cell complex
of Q yields a metric on the universal cover and the resulting action is by isometries.
We will call a simplex of groups nonpositively curved if its universal cover is CAT.0/.

The following is an analogue of the graph of groups version given by Mihalik and
Tschantz in [24].

Proposition 4.7 Let Q be the poset of cells of a complex Q ordered by inclusion. Sup-
pose .W;S/ is a Coxeter system and G.Q/ is a simple complex of special subgroups
of W with monomorphisms ��� given by natural inclusions. Then, 1G.Q/ DW (with
all the resulting homomorphisms from the local groups to W the natural inclusions) if
both of the following hold:

(i) For s 2 S , the set f� W � 2Q; s 2 G�g corresponds to a nonempty connected
subcomplex of Q:

(ii) If s; t 2 S and mst <1, then fs; tg �G� for some � 2Q.

Algebraic & Geometric Topology, Volume 6 (2006)



2132 Angela Kubena Barnhill

Proof For each local group G� , let hS� jR� i be the induced Coxeter presentation of
G� as a special subgroup of W .

By Remark 4.6, we have

1G.Q/ D
*[
�2Q

S�

ˇ̌̌̌ [
�2Q
fR� ; fg D ��� .g/ W g 2G� ; � < �gg

+
:

Suppose that (i) and (ii) hold. Since the monomorphisms of G.Q/ are the natural
inclusions, by (i) we can write

1G.Q/ D
*
S

ˇ̌̌̌ [
� vertex ofQ

R�

+
:

So, it suffices to show that the relations appearing in the vertex groups are precisely
the relations of W . By our choice of presentations for the local groups (as special
subgroups of W ), every relation r� 2R� is a relation from our Coxeter presentation
for .W;S/. Moreover, by (i), every relation s2D 1 appears in some local group (hence
some vertex group). Finally, by (ii), every relation of the form .st/mst D 1 appears in
some local group (so in a vertex group).

5 Property FAn

5.1 Definition and examples

A group G has Serre’s property FA (see [28]) if for every tree T , every action (without
inversions) of G on T is trivial (has a global fixed point). In particular, if G has FA,
then G does not split nontrivially as a graph of groups. Since trees are CAT.0/, the
Bruhat–Tits Theorem (Proposition 3.8) applies, so finite groups have FA. Other groups
known to have FA include the following:

� Every finite index subgroup of SLn.Z/ for n� 3 (Margulis–Tits, see [28])

� Finitely generated torsion groups (Serre [28])

� Coxeter groups such that mij <1 for all i and j (Serre [28])

� Finitely generated groups with Kazhdan’s property (T) (Watatani [31])

� Out.Fn/ and Aut.Fn/ for n� 3 (Bogopolski [3], Culler–Vogtmann [15])

� Mapping class groups of higher genus surfaces (Culler–Vogtmann [15])
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Remark 5.1 Mihalik and Tschantz note in [24] that a Coxeter group has FA if and
only if every mij is finite. In particular, if .W;S/ is a Coxeter system and mij D1,
then W Š hS �fsigi �hS�fsi ;sj gi hS �fsj gi.

Definition 5.2 A CAT.0/ n–complex is an M� –polyhedral n–complex (see Section
3.1) that is complete, connected, CAT.0/, and has only finitely many isometry types of
cells. A group G has property FAn if for every CAT.0/ n–complex X , every action
of G on X by cellular isometries has a global fixed point. The group G has strong
FAn if for every complete, connected CAT.0/ space X of topological dimension n,
every action of G on X by semisimple isometries has a global fixed point.

Bridson showed in [8] that if X is a connected M� –polyhedral complex with only
finitely many isometry types of cells, then every cellular isometry of X is semisimple.
Therefore, any group with strong FAn also has FAn .

The following, as noted by Farb in [19], is an immediate consequence of Proposition
3.8.

Corollary 5.3 Let G be a finite group. Then G has strong FAn for all n.

Farb also showed in [19] that the following groups have property FAn :

� Finite index subgroups of SLm.Z/ and SLm.ZŒ1=p�/ for m� nC 2

� More generally, arithmetic or S -arithmetic subgroups of K–simple algebraic
K–groups of K–rank at least nC 1 for K a global field

� Discrete groups generated by reflections in the sides of Euclidean or hyperbolic
.nC 1/–simplices

Recently, Bridson [6] has also studied property FAn for automorphism groups of free
groups.

5.2 Homological techniques and implications

Note that throughout we consider homology with Z coefficients.

We will prove that certain actions are trivial by studying the combinatorics of fixed
sets. Consider a collection of sets fS˛g˛2I . Recall that the nerve of this collection,
denoted N .fS˛g˛2I /, is the simplicial complex whose vertices are indexed by the set
I and such that the set of vertices corresponding to J � I span a simplex if and only
if
T
˛2J S˛ ¤∅.
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Notation We will be particularly interested in the nerves of collections of fixed sets.
Let G be a group, and suppose �W G! Isom.X / is the homomorphism describing
an action of G on X . Let † be a finite collection of �–elliptic subsets of G (see
Definition 3.6). We denote by N .†; �/ the nerve of the collection of fixed sets of the
elements of †. That is N .†; �/DN �fFix�.S/gS2†

�
:

Remark 5.4 Suppose † is finite. Then N .†; �/ is a simplex if and only if there is a
global fixed point for the action the subgroup h†i of G generated by the union of the
elements of †. By Corollary 3.9, if h†i has finite index in G , then this holds if and
only if the action of G has a global fixed point.

Our main technique is based on the following two results.

Theorem 5.5 (Leray [12, Theorem VII.4.4]) Suppose X is a CW complex and is the
union of subcomplexes X˛ such that the intersection of any finite subcollection of the
X˛ is either empty or acyclic. Then H�.X /DH� .N .fX˛g//.
Theorem 5.6 (McCord [23, Theorem 2]) Let X be a space and U a locally finite open
cover of X such that the intersection of any finite subcollection of U is either empty
or homotopically trivial. Then, there is a weak homotopy equivalence N .U/! X so
H�.N .U//DH�.X /.

Definition 5.7 Let K be a simplicial complex. We say that K is n–allowable if
Hm.K/D 0 for all m� n.

The motivation for this definition can be found in the following, which is implicit in
[19]. We include a proof here for completeness.

Proposition 5.8 Let G be a group. Suppose G acts on a complete CAT.0/ space X

of dimension n via �WG! Isom.X /. Let † be a finite set of �–elliptic subsets of G .
Then N .T ; �/ is n–allowable for all T �†.

Proof Let Y be the union of the fixed sets Fix�.S/ for S 2 T . By Lemma 3.7,
nonempty intersections of the sets Fix�.S/ are also fixed sets so are contractible.
Taking regular neighborhoods of the sets Fix�.S/ that preserve the intersection data,
we apply Theorem 5.6 to the resulting open cover to find that H�.N .T ; �//DH�.Y /.
Let m� 1. Applying the long exact homology sequence for pairs, we have the exact se-
quence HmC1.X /!HmC1.X;Y /!Hm.Y /!Hm.X /: Since X is contractible (see
Remark 3.2), we find that HmC1.X;Y /ŠHm.Y /. Now HmC1.X;Y /D 0 for m� n

as X is n–dimensional. Thus for m� n we have Hm.Y /D 0 so Hm.N .T ; �//D 0

as well.
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Note that in the above proof we only used the CAT.0/ assumption for contractibility
of fixed sets, so the result holds more generally.

Remark 5.9 Let K be an n–allowable simplicial complex with 0–skeleton consisting
of the vertices v0; : : : ; vk for some k � n. Then Hk.K/ D 0 by the definition of
n–allowable. So, if the .k � 1/–skeleton of K is the boundary of a k –simplex, then
the k –skeleton (and hence the entire complex K ) is a k –simplex.

Using a topological form of Helly’s Theorem, Farb applies certain cases of the following
result in [19]. We include here a proof of the general result using the techniques from
above.

Corollary 5.10 Let G be a group and † a finite collection of subsets of G whose
union generates a finite index subgroup of G . Suppose G acts on a complete n–
dimensional CAT.0/ space X via �W G ! Isom.X /. If n < j†j and if every nC 1

elements of † generate a �–elliptic subgroup of G , then G is �–elliptic.

Proof By assumption, every nC 1 elements of † generate a �–elliptic subgroup.
So, by definition of N D N .†; �/, every nC 1 vertices in N span an n–simplex.
If j†j D nC 1, then G is �–elliptic by Remark 5.4. Otherwise, consider a subset
T �† of cardinality nC 2. Then, the n–skeleton of N .T ; �/ is the boundary of an
.nC 1/–simplex. By Proposition 5.8, we know that N .T ; �/ is n–allowable, so by
Remark 5.9, its .nC 1/–skeleton is actually an .nC 1/–simplex. Inductively, we see
that the .j†j� 1/–skeleton of N is an .j†j� 1/–simplex, so N is a simplex. Thus G

is �–elliptic by Remark 5.4.

As an immediate consequence we have the following:

Corollary 5.11 Let G be a group and let † be a finite collection of subsets of
G whose union generates a finite index subgroup of G . If for every subcollection
fS0;S1; : : : ;Sng �† there is an FAn (resp. strong FAn ) subgroup H �G such that
Si �H for 0� i � n, then G has FAn (resp. strong FAn ). In particular, if every nC1

elements of † generate a group with property FAn (resp. strong FAn ), then G has
property FAn (resp. strong FAn ).

Definition 5.12 (Notation as in Section 4.3.) We say that an n–simplex of groups is
minimal if for all k < n, every local group G� corresponding to a k –simplex � is
generated by the (images of the) local groups G� such that � ¨ � . We will call such a
G� a local group of codimension n� k .
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A version of the following was proved for FA1 by R Alperin in [1].

Corollary 5.13 Let n � 1. Suppose a group G has a decomposition as a minimal
.nC 1/–simplex of groups ƒ such that every local group of ƒ has FAn (resp. strong
FAn ). Then, G has FAn (resp. strong FAn ).

Remark 5.14 Note that the simplex of groups decomposition does not have to be
nonpositively curved. This result implies, for example, that the fundamental group of
any realizable minimal n–simplex of finite groups has strong FAn�1 . So, if a group
acts nontrivially by semisimple isometries on any complete, connected CAT.0/ space
of dimension n, then it does not decompose as a minimal m–simplex of finite groups
for any m> n.

Proof of Corollary 5.13 Let †D flocal groups of codimension 1g : By assumption,
H has FAn for all H 2† and by minimality, the union of the elements of † generates
G . Moreover, for all k � nC 1, every collection of k elements of † generates a local
group of codimension k , which in turn has FAn . Thus G has FAn by Corollary 5.11.
The case of strong FAn is analogous.

6 Strong FAn for Coxeter groups

6.1 n–spherical Coxeter groups

Definition 6.1 Let .W;S/ be a Coxeter system. The Coxeter group W is n–spherical
if every special subgroup of W of rank less than or equal to n is a finite group. (Note
that for n� jS j, the group W is n–spherical if and only if all of its special subgroups
of rank n are finite.) A special subgroup WT is n–spherical if it is n–spherical with
respect to the generating set T .

Finite groups have FAn by Corollary 5.3, so Theorem 1.1 follows from Corollary 5.11
by setting †D ffsg W s 2 Sg. In fact, Corollary 5.10 implies the following:

Corollary 6.2 Let W be a Coxeter group. If W is .nC 1/–spherical, then every
action of W on every complete connected CAT.0/ space of dimension n has a global
fixed point. In particular, W has strong FAn .

The converse is true in dimension 1 (see [24]), and we will prove it also holds in
dimension 2. For higher dimensions, we have the following reformulation of Conjecture
1.2.
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Conjecture 6.3 (Coxeter FAn Conjecture) Let .W;S/ be a Coxeter system. The
following are equivalent:

(i) W is .nC 1/–spherical.

(ii) Every action of W on every complete connected CAT.0/ space of dimension n

has a global fixed point.

(iii) W has strong FAn .

(iv) W has property FAn .

(v) W does not split nontrivially as a nonpositively curved m–simplex of special
subgroups, for all 0<m� n.

We have already seen that (i) ) (ii). That (ii) ) (iii) ) (iv) ) (v) is clear by
definition. It remains only to show that (v) ) (i). We describe an approach to this in
the next section.

Note that property FAn is, by definition, a property of a group rather than of a presen-
tation of the group. However, by the classification of Coxeter groups, the property of
being n–spherical is easily verified by looking at a Coxeter presentation (see Remark
2.13). Thus, if the Coxeter FAn Conjecture holds in general, then property FAn can
be detected by considering any Coxeter presentation.

6.2 The CAT.0/ Conjecture

We now describe an approach to completing the proof of the Coxeter FAn Conjecture
(Conjecture 6.3). In particular, the goal is to prove that if W is not .nC 1/–spherical,
then W splits nontrivially as a nonpositively curved simplex of special subgroups of
dimension at most n. Note that if W is finite, then W is .nC 1/–spherical for all n.
We thus only need consider infinite Coxeter groups in what follows.

Fix a Coxeter system .W;S/ with W infinite. Let

v D v.W /Dmaxfm WW is m–sphericalg:
Our goal is to construct a decomposition of W as a v–simplex of groups. To do this,
we first consider a “natural” decomposition of a subgroup of W .

Let S 0 � S be the generating set of an infinite special subgroup of W of rank vC 1.
Note that such a subset exists by the definition of v . Moreover, every proper subset
of S 0 generates a finite group. By Theorem 2.12, the Coxeter group W 0 is thus
an irreducible Euclidean or hyperbolic reflection group with fundamental domain a
compact simplex. Hence, W 0 has a natural decomposition as a Euclidean or hyperbolic
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v–simplex of groups ƒ0 in which the vertex groups are the special subgroups of W 0 of
rank v . We assign to the simplex ƒ0 the metric given by the Euclidean or hyperbolic
metric on a fundamental domain for the natural action of W 0 . Then, the universal cover
X 0 of ƒ0 is isometric to the original hyperbolic or Euclidean space, and the action of
W 0 on X 0 is the original action.

Following the motivation from dimension one (see Remark 5.1), we construct a new
simplex of groups ƒ by adding the missing generators. In particular, ƒ is given by the
same metric simplex as was ƒ0 , but for A  S 0 , the local group hAi is replaced by the
group hA[ .S �S 0/i. Note that the local group associated to the maximal simplex in
ƒ is thus hS �S 0i.
Example 6.4 Let S D fa; b; c;x;y; zg and let W be the Coxeter group given by the
Coxeter diagram in Figure 3.

a

b

c

x y

z

7
3

4

10

3

4

6
5

Figure 3: Coxeter diagram with v.W /D 2

Then W is 2–spherical since every mij is finite. Let S 0 D fa; b; cg. Then W 0 D hS 0i
is infinite, so v.W / D 2. Moreover, W 0 is a hyperbolic triangle group with angles
�
3
; �

4
and �

6
, and the action of W 0 on H2 gives the triangle of groups ƒ0 shown in

Figure 4. The resulting triangle of groups ƒ is shown in Figure 5. The metric on ƒ is
that of a hyperbolic .3; 4; 6/–triangle.

hb; ci

ha; bi ha; cihai

hcihbi
1

Figure 4: Natural
2–splitting ƒ0 of W 0

hb; c; x; y; zi

ha; b; x; y; zi ha; c; x; y; ziha; x; y; zi

hc; x; y; zihb; x; y; zi

hx; y; zi

Figure 5: 2–splitting ƒ
determined by S 0

As an immediate consequence of Proposition 4.7 we have the following:
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Corollary 6.5 Let ƒ be the simplex of groups associated to a rank v C 1 infinite
special subgroup of W as constructed above. Then ƒ is a splitting of W . That is
W D bƒ (notation as in Section 4.3).

We will refer to the decomposition ƒ of W as the v–splitting of W determined by
S 0 . The group W acts on the simply connected universal cover of ƒ with quotient a
v–simplex.

CAT(0) Conjecture In the above construction, the universal cover of the v–splitting
of W determined by S 0 is CAT.0/.

The preceding discussion actually proves the following:

Theorem 6.6 CAT.0/ Conjecture) Coxeter FAn Conjecture (Conjecture 6.3).

Remark 6.7 The following observation of P Caprace implies that the CAT.0/ Con-
jecture holds for v � 9. Let .W;S/ be a Coxeter system with v.W / � 9. Then
W 0 is an irreducible Euclidean simplex reflection group of rank at least 10, and
by inspection of the standard list of these groups, we find that W decomposes as
W DW 0 �WS�S 0 . Thus W acts on Ev via projection onto W 0 . In particular, this
action yields a decomposition of W as a nonpositively curved v–simplex of special
subgroups. This decomposition is the v–splitting ƒ constructed above.

In the next section, we will prove the CAT.0/ Conjecture for v D 2. For 3 � v � 8,
there are only finitely many different possibilities for ƒ0 since, by the classification
of irreducible Coxeter groups, there are only finitely many isomorphism types of
subgroups W 0 . These are the remaining open cases.

6.3 Proof of the CAT.0/ Conjecture in dimension 2

We will now prove the CAT.0/ Conjecture in the case v D 2, ie, when the v–splitting
of W is a triangle of groups decomposition of W . To do so, we will show that the
Gersten–Stallings angles in this triangle of groups are the same as those for the natural
decomposition of W 0 . In particular, we will prove the following result (notation as in
Section 4.2). Note that �=1 means 0.
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Proposition 6.8 Suppose .W;S/ is a Coxeter system with distinct special subgroups
A and B .

(1) Let mDminfmij W si 2 SA�SB; sj 2 SB �SAg. Then,

†W .A;BIA\B/D
(

0 if A� B or B �AI
�=m otherwise.

(2) If C is a special subgroup of W such that A\C D f1g D B \C , then

†hA;Bi.A;BIA\B/D†W .hA;C i; hB;C iI hA\B;C i/:
In particular, for a¤ b 2 S and T � S �fa; bg, we have

†W .ha;T i; hb;T iI hT i/D �

mab

:

Note that statement (2) of this proposition implies that the Gersten–Stallings angle at a
vertex in a triangle of special subgroups of a Coxeter group does not change when (the
same) additional Coxeter generators are added to every local group.

Theorem 6.9 The CAT(0) Conjecture is true for v D 2.

By Theorem 6.6 above, this will complete the proof of Theorem 1.3.

Proof of Theorem 6.9 As in Section 6.2, let ƒ be the triangle of groups decomposition
of W determined by S 0 � S , and let X be the universal cover of ƒ. By statement
(2) of Proposition 6.8, the Gersten–Stallings angles of ƒ are the same as those of ƒ0 .
Since W 0 is a hyperbolic or Euclidean triangle group, the sum of the angles of ƒ is
therefore at most � . Thus X is CAT.0/ by Theorem 4.4.

Corollary 6.10 The Coxeter FAn Conjecture (Conjecture 6.3) is true for nD 2. In
particular, a Coxeter group W acts nontrivially on a 2–dimensional complete connected
CAT.0/ space if and only if W has an infinite special subgroup of rank 3 with respect
to some (hence any) Coxeter generating set.

Note that this result gives a complete characterization of FAn for many Coxeter groups,
including all Coxeter groups of large, even and odd type.

If ƒ0 is hyperbolic (ie, if W 0 is a hyperbolic triangle group), then X is piecewise-
hyperbolic and hence CAT.�1/. Thus, we have also shown the following:
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Corollary 6.11 Suppose .W;S/ is a Coxeter system with mij <1 for all i and j .
Suppose further that W has a special subgroup of rank 3 that is a hyperbolic triangle
group. Then W acts nontrivially on a CAT.�1/ 2–complex.

Before proceeding to the proof of Proposition 6.8, we introduce the following:

Notation Let .W;S/ be a Coxeter system.

(i) For s; t 2 S with mst <1 we define ˛st to be the alternating word in s and t

of length mst . That is,

˛st D

8̂̂<̂
:̂

st : : : st„ ƒ‚ …
mst

if mst is evenI

st : : : ts„ ƒ‚ …
mst

if mst is odd:

(ii) We denote by bw the word w with one letter removed.

(iii) To denote equality of words in the alphabet S , we will use the notation D and
for equality of the corresponding group elements in a group H we will use DH .

The following lemmas will be used in the proof of Proposition 6.8. The first is an
immediate consequence of the Deletion Condition along with Remark 2.5.

Lemma 6.12 Let .W;S/ be a Coxeter system. Suppose s1s2 : : : sk is a word such
that for some r; t 2 S and j �mrt , we have

s1s2 : : : sk DW r t r : : :„ƒ‚…
j

:

Then, for some indices i1 < i2 < : : : < ij , we have sij D r for j odd and sij D t for j

even (or perhaps vice versa if j Dmrt ). That is, as a word in the alphabet S , we have
si1

si2
: : : sij D r t r : : :„ƒ‚…

j

(or possibly t r t : : :„ƒ‚…
j

if j Dmrt /.

The notation used below is as in Proposition 2.9.

Lemma 6.13 Let .W;S/ be a Coxeter system. Let r; t;2 S and let w.r; t/ be an
alternating word in r and t of length strictly less than mrt . Suppose w is the element
of W represented by the word w.r; t/. Let i.w/ (resp. j .w/) be the first (resp. last)
letter in the word w.r; t/. Then w is .I � i.w/;J � j .w//–reduced for all I;J � S .
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Proof of Lemma 6.13 By Proposition 2.9, it suffices to show that for all s 2 I � i.w/

and all s0 2 J � j .w/, we have `.sw/ > `.w/ and `.ws0/ > `.w/. Note that the
Deletion Condition implies that `.sw/ ¤ `.w/. Suppose that `.sw/ < `.w/ for
some s 2 I � i.w/. By the Strong Exchange Condition (Theorem 2.1), we have
w.r; t/DW s 1w.r; t/ . However, since w.r; t/ is the unique reduced word representing
the element w of W (see Remark 2.5), we have w.r; t/D s 1w.r; t/ as words in the
alphabet S . Thus s D r or s D t .

Without loss of generality, we may assume w.r; t/ begins with r . Now s ¤ r since
r D i.w/ and s 2 I � i.w/. So s D t and sw.r; t/ is an alternating product of r

and t beginning with t and of length `.w/C 1. Note that sw.r; t/ is reduced since
`.w/ <mrt , so `.sw/D `.w/C 1> `.w/. This is a contradiction.

The case of s0 2 J � j .w/ is analogous.

We will now prove Proposition 6.8.

Proof of Proposition 6.8 First note that statement (2) follows immediately from
statement (1) since Theorem 2.7 implies that hA;C i \ hB;C i D hA \ B;C i and
ShA;C i�ShB;C i D SA�SB . We proceed now to prove statement (1).

Let GDA�A\BB and let �W G� hA;Bi�W be the natural surjection. If A\BDA

or A\B DB , then †W .A;BIA\B/D 0 since the induced map G!hA;Bi is an
isomorphism. The same is true if mab D1 for all a 2 SA �SB and b 2 SB �SA .
Assume otherwise.

By definition, †W .A;BIA\B/D �
k

where 2k is the minimal normal form length
among nontrivial elements in ker.�/. Let a 2 SA �SB and b 2 SB �SA such that
mab is finite. Then, .ab/mab DW 1 but .ab/mab is nontrivial in G (see Section 4.1).
Therefore .ab/mab is a nontrivial element in ker.�/. Moreover, by Lemma 4.2 (iii), the
normal form length in G of .ab/mab is 2mab , so k �mab for all such choices of a

and b . To prove part (1), it thus suffices to show that there exist elements a 2 SA�SB

and b 2 SB �SA such that k �mab .

Let M be the Coxeter matrix of .W;S/ and, as described in Section 4.1, let M 0
be the Coxeter matrix of .G;SA[SB/. Then every elementary M 0–operation is an
elementary M –operation (see Definition 2.3). Moreover, the only elementary M –
operations for elements in hA;Bi which are not also elementary M 0–operations are
those which replace ˛ab by ˛ba (or vice versa) for some a2SA�SB and b 2SB�SA:

Let g 2 ker.�/. By Theorem 2.4, since g DW 1 there is an M –reduction of g to the
identity. Since g ¤G 1 we know that g does not M 0–reduce to the identity. So, the
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M –reduction of g to the identity in W involves at least one elementary M –operation
which is not also an elementary M 0–operation. In particular, for some a 2 SA�SB

and b 2 SB �SA with mab finite, some M 0–reduced expression of g must have a
subword of the form ˛ab or ˛ba .

Hence we may choose g nontrivial in ker.�/ along with a2SA�SB and b 2SB�SA

so that mab is minimal among all possible such choices also satisfying both of the
following:

(i) The normal form length of g in G is 2k .

(ii) Some M 0–reduced expression of g has ˛ab or ˛ba as a subword.

Without loss of generality, we may assume that the alternating expression of (ii) begins
with a, ie, that ˛ab is a subword of an M 0–reduced word representing g . For notational
convenience we will also use g to denote this particular choice of M 0–reduced word.

Let mDmab . To complete the proof of part (1), we will show k �m. We consider
separately the cases when m is even and odd.

Case 1 Suppose m is even.

Since g is M 0–reduced, by Lemma 4.2 (ii), we may assume

g D a1b2 : : : bj�1aj˛abbmCj�1amCj : : : a2k�1b2k

with aj a; ai 2A�f1g for i¤ j and similarly bbmCj�1; bi 2B�f1g for i¤mCj�1.

If mD 2 then we need only show k ¤ 1. If k D 1 then gD a1abb2 for some a1 2A

and b2 2 B . Then a1aDW b�1
2

b so a1a and bb2 are elements of A\B and thus
g 2A\B . In particular, the fact that gDW 1 implies that gDG 1 in G since � jA\B

is injective. This is a contradiction as g is a nontrivial element in ker.�/�G .

Assume now that m > 2. Conjugation in G yields another nontrivial element h of
ker.�/ represented by the word

hD ˛abbmCj�1amCj : : : a2k�1b2ka1b2 : : : bj�1aj :

Since hDW 1 and ˛ba DW ˛�1
ab

, we have

(1) ˛ba DW bmCj�1amCj : : : a2k�1b2ka1b2 : : : bj�1aj :

As a …SB , the generator a cannot appear in any M 0–reduced expression of bi for any
i by Theorem 2.7 (and similarly for b and ai ). Applying Lemma 6.12 we therefore
find that m� j C .2k � .mC j � 1/C 1/D 2k �mC 2 so k �m� 1. If k >m� 1

then we are done, so we assume k Dm� 1.
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Let zh denote the word on the right side of equation (1). Since k Dm� 1, the word zh
consists of an alternating sequence of exactly m elements of A and B , ie, alt.zh/Dm

in the notation of Section 4.1. Thus the normal form length of the group element zh in
G is at most m.

Since ˛ba is M –reduced, Theorem 2.4 implies that there is an M –reduction of zh
to ˛ba . Since h is nontrivial in G and h D ˛ab

zh, it follows that zh ¤G ˛ba as
˛ab˛ba DG 1. Thus, by the same argument as above, there is an M 0–reduced form
of zh containing a subword of the form ˛a0b0 or ˛b0a0 for some a0 2 SA � SB and
b0 2 SB � SA . By Lemma 4.2 (iii), the normal form length of zh in G is thus at
least ma0b0 . However ma0b0 �m by the minimality assumption on m, so we find that
mDma0b0 . Moreover, the normal form length of zh is exactly ma0b0 Dm and there
exist elements za 2 A and zb 2 B so that zh DG

zb˛b0a0za. It follows that equation (1)
can be rewritten as ˛ba DW

zb˛b0a0za: By Lemma 6.12, since m > 2 we have a0 D a

and b0 D b . Thus, we find zh DG
zb˛baza. Hence, equation (1) can be rewritten as

˛ba DW
zb˛baza. It follows that

(2) bzbb ab � � � ab„ ƒ‚ …
m�2

DW ab � � � ab„ ƒ‚ …
m�2

aza�1a:

Since bzbb is a subword of h, it is M 0–reduced so is also M –reduced. Then Lemma
6.13 implies that the left side of equation (2) is M –reduced. So, by Theorem 2.4,
there is a sequence of elementary M –operations taking the right side to the left side.
By the nontriviality of h, equation (2) does not hold in G , so at least one operation
must be used which is not an M 0–operation. Hence a finite number of M 0–operations
transforms the right side of equation (2) into a word w0 containing a subword of the
form ˛a0b0 or ˛b0a0 for some a0 2 SA�SB and b0 2 SB �SA . Note that ma0b0 �m

by the minimality assumption on m. Then, in the notation of Section 4.1, we find

alt.w0/� alt.˛a0b0/Dma0b0 �m> alt.ab � � � ab„ ƒ‚ …
m�2

aza�1a/:

This contradicts Lemma 4.2 (i) and thus completes the even case.

Case 2 Suppose m is odd.

By an argument analogous to the one in the even case, we find a nontrivial M 0–reduced
h 2 ker.�/ so that hDG ˛abza1˛abza2 for some za1; za2 2A. This implies that

(3) a za1a ba � � � ab„ ƒ‚ …
m�2

DW ba � � � ab„ ƒ‚ …
m�2

a za2
�1a:

As in Case 1, the left side of equation (3) is M –reduced by Lemma 6.13 since a za1a

is a subword of h. Again there is a sequence of M 0–operations that when applied to
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the right side of equation (3) results in a subword ˛a0b0 or ˛b0a0 with ma0b0 �m. This
again contradicts Lemma 4.2 (i).

7 Maximal FAn subgroups

Let W be a Coxeter group. We say that a subgroup H �W is maximal FAn if H

has property FAn and H is not properly contained in any other subgroup of W with
FAn . Recall that every .nC 1/–spherical special subgroup of W (with respect to
any Coxeter generating set of W ) has FAn by Corollary 6.2. We conjecture that all
maximal FAn subgroups of W arise in this way.

Maximal FAn Conjecture Let .W;S/ be a Coxeter system. A subgroup H �W is
maximal FAn if and only if H DwAw�1 for some maximal .nC1/–spherical special
subgroup A of W and w 2W .

Note that if the Coxeter FAn Conjecture is true, then the above statement is equivalent
to the formulation given in the Introduction.

The Maximal FA1 Conjecture was proven by Mihalik and Tschantz in [24]. In this
section, we use a modification of their arguments. We prove the following reformulation
of Theorem 1.4.

Theorem 7.1 Suppose the CAT.0/ Conjecture holds for all v � n. Then the Maximal
FAn Conjecture holds for every Coxeter group.

By Theorem 1.3, we will thus have the following:

Corollary 7.2 The Maximal FA2 Conjecture is true for every Coxeter group.

Because FAn is a property of the group rather than of a particular presentation, we
immediately conclude the following:

Corollary 7.3 For all Coxeter groups W , and for all n for which the Maximal FAn

Conjecture holds, the set of conjugates of maximal .nC1/–spherical special subgroups
of W is independent of the Coxeter presentation. In particular, this is true for nD 1

and nD 2.

The next proposition shows that the only candidates for maximal FAn subgroups are
indeed conjugates of .nC 1/–spherical special subgroups.
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Proposition 7.4 Let .W;S/ be a Coxeter system. Suppose a subgroup H of W has
property FAn . If the CAT.0/ Conjecture holds for all v � n, then there is a w 2W

such that H � wBw�1 for some .nC 1/–spherical special subgroup B of W .

Proof Let v D maxfm WW is m–sphericalg as in Section 6.2. If n < v , then W is
.nC 1/–spherical, and we are done. So, we may assume n � v . Note then that H

has FAv . By our construction in Section 6.2, there is a special v–splitting ƒ of W

with vertex groups special subgroups of W of rank jS j�1. Since H has FAv and the
CAT.0/ Conjecture is assumed true for v , we know that H fixes a point in the action of
W on the universal cover of ƒ. Therefore, H �w1B1w

�1
1

for some special subgroup
B1 �W of rank jS j � 1 and some w1 2W . If B1 is .nC 1/–spherical, then we are
done. Otherwise, let v1 Dmaxfm W B1 is m–sphericalg. Then v1 � n and there is a
special v1 –splitting of B1 . As before, H �w2B2w

�1
2

where B2 is a special subgroup
of rank jS j�2 and w2 2W . Once again, if B2 is .nC1/–spherical, then we are done.
Otherwise, we can continue splitting in this way. Since S is finite and the number of
generators of Bk is jS j � k , the process terminates. So, we find H � wkBkw

�1
k

for
some .nC 1/–spherical Bk .

Remark 7.5 Proposition 7.4 implies in particular that the only possible subgroups of
W which could be maximal FAn are conjugates of .nC1/–spherical special subgroups.
Moreover, if B �A are .nC 1/–spherical subgroups of W , then wBw�1 � wAw�1

for all w 2W , so if H is a maximal FAn subgroup of W , then H is a conjugate of a
maximal .nC1/–spherical subgroup. Since all .nC1/–spherical subgroups have FAn ,
it remains only to show that all conjugates of maximal .nC 1/–spherical subgroups
are maximal FAn subgroups.

The lemma below follows from Proposition 5.5 of Deodhar [18] together with Corollary
2.11.

Lemma 7.6 Let .W;S/ be a Coxeter system and suppose A is a maximal .nC 1/–
spherical special subgroup of W . If B is any .nC 1/–spherical special subgroup of
W such that A� wBw�1 for some w 2W , then SA D SB .

We now complete the proof of Theorem 7.1.

Proof of Theorem 7.1 As described in Remark 7.5, it remains only to prove that
all conjugates of maximal .nC 1/–spherical subgroups are maximal FAn subgroups.
Suppose now that A is a maximal .nC 1/–spherical subgroup and w 2W . To show
that A is maximal FAn , it suffices to show that A is not properly contained in a
conjugate of any .nC 1/–spherical subgroup.
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Suppose A � wBw�1 for some .nC 1/–spherical subgroup B . We will show that
AD wBw�1 . By Lemma 7.6, we have SA D SB , so AD B and A� wAw�1 . By
Corollary 2.11, this implies that SA D dSAd�1 where d is an .SA;SA/–reduced
element of AwA. Thus we find

wAw�1 D dAd�1 D dhSAid�1 D hdSAd�1i D hSAi DA:

Hence AD wAw�1 D wBw�1 so A is indeed a maximal FAn subgroup. It immedi-
ately follows that the conjugates of A are all maximal FAn as well.

Remark 7.7 Note that the above arguments also apply to maximal strong FAn sub-
groups. So, in particular, if the CAT.0/ Conjecture holds, the maximal strong FAn

subgroups of W are the same as its maximal FAn subgroups.

8 Proper actions

In this section, we briefly consider the case of proper actions of Coxeter groups. The
CAT.0/ dimension of a group G , denoted dimss.G/, is defined to be the minimal
dimension of a complete CAT.0/ space on which G acts properly by semisimple
isometries. CAT.0/ dimension has been studied by Bridson [9] and Brady and Crisp
[5], among others.

The following lemma is immediate from the definitions.

Lemma 8.1 Suppose G is a group and H is an infinite subgroup of G with strong
FAn . Then dimss.G/ > n.

Together with Corollary 6.2, this gives the following lower bound on the CAT.0/
dimension of Coxeter groups.

Corollary 8.2 Let .W;S/ be a Coxeter system. Then

dimss.W / >maxfn WW has an infinite .nC 1/–spherical special subgroupg:

In fact, we obtain a better lower bound by applying Proposition 5.8 to the set of finite
special subgroups of W . Let L.W;S/ denote the simplicial complex with vertices
corresponding to the elements of S and such that a subset U � S spans a simplex in
L.W;S/ if and only if WU is finite. The complex L.W;S/ is called the nerve of the
Coxeter system .W;S/.
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Corollary 8.3 Let .W;S/ be a Coxeter system. Then

dimss.W / >maxfk WHk.L.WT ;T //¤ 0 for some T � Sg:
Proof (Notation as in Section 5.2.) Let T � S . Suppose �W W ! Isom.X / gives
an action of W on a complete CAT.0/ space X via semisimple isometries. Then the
Bruhat–Tits Fixed Point Theorem (Proposition 3.8) implies that L.WT ;T /�N .T; �/.
On the other hand, Proposition 5.8 implies that Hk.N .T; �//D 0 for k � dim.X /.
So, if Hk.L.WT ;T //¤ 0 for some k � dim.X /, then L.WT ;T /¤N .T; �/. In
particular, some infinite subgroup of W must fix a point, so the action is not proper.

On the other hand, a Coxeter group W acts properly on its Davis–Moussong Complex
†DM (see Section 3.3). It follows that dim.†DM / is an upper bound for dimss.W /.
In particular,

(�) dimss.W /�maxfn WW has a finite special subgroup of rank ng:
A natural question then is how the bounds on dimss.W / given by the above inequalities
are related. The following example shows that the upper bound given by (�) is not
optimal.

b

c

a

d3

3

3

3

Figure 6:
Coxeter diagram of W

ha; b; di

ha; c; di hb; c; dihc; di

hb; diha; di
hdi

Figure 7: Triangle of
finite groups

Example 8.4 Consider the Coxeter group W with Coxeter diagram given by Figure 6.
Note that W is 2–spherical but not 3–spherical since Wfa;b;cg is infinite. So by
Corollary 6.10 we know that W has strong FA1 but not strong FA2 . In particular, the
triangle of groups decomposition of W in Figure 7 gives a CAT.0/ 2–complex on
which W acts nontrivially by semisimple isometries. Moreover, the point stabilizers
under this action are conjugates of the local groups in Figure 7. In particular, all point
stabilizers are finite, so the action is proper. Hence dimss.W / � 2. Moreover, by
Corollary 8.2, since Wfa;b;cg is infinite and 2–spherical, we have dimss.W /� 2. So,
the CAT.0/ dimension of W is 2. However, the Davis–Moussong complex †DM is
3–dimensional since, for example, Wfa;b;dg is finite.
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