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The diameter of the set of boundary slopes
of a knot

BEN KLAFF

PETER B SHALEN

Let K be a tame knot with irreducible exterior M.K/ in a closed, connected, ori-
entable 3–manifold † such that �1.†/ is cyclic. If 1 is not a strict boundary
slope, then the diameter of the set of strict boundary slopes of K , denoted dK , is a
numerical invariant of K . We show that either (i) dK � 2 or (ii) K is a generalized
iterated torus knot. The proof combines results from Culler and Shalen [3] with a
result about the effect of cabling on boundary slopes.

57M15, 57M25; 57M50

Introduction

Let K be a (tame) knot in a connected, closed, orientable 3–manifold †, such that
the exterior M.K/ of K is irreducible and M.K/ contains no strict essential surface
with meridian boundary slope. The diameter dK of the set of all boundary slopes of
strict essential surfaces in M.K/ is a natural invariant of K . (The definition of d.K/

and of other specialized terms used here will be reviewed below.) Properties of dK

have topological and algebraic meaning for the knot K . For example, the main result
of Culler and Shalen [2], which implies Neuwirth’s conjecture [10] that classical knot
groups are nontrivial amalgamated free products, is equivalent to the assertion that
under suitable mild restrictions on K , we have dK ¤ 0. (For further discussion of this
connection, see Shalen [11].)

It was shown in Culler and Shalen [3] that if �1.†/ is trivial and the knot K is
nontrivial, then dK � 2. In this paper we extend this result to the case in which �1.†/

is cyclic. Theorem B below asserts that in this situation we still have dK � 2, unless
the knot K belongs to a certain special class of knots that we call generalized iterated
torus knots.

When K belongs to the special class just mentioned, then a great deal is known about
K and also †: it is not hard to classify all generalized iterated torus knots, to show
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that a manifold containing such a knot must be a lens space, and to calculate dK when
K is such a knot. In many (but not all) cases, it turns out that dK < 2.

Theorem B is proved by combining one of the results of [3] with another new result,
Theorem A, which asserts that a q–strand cabling of a knot increases the invariant dK

by a factor of at least q2 .

By combining Theorem A and Theorem B we obtain Corollary C which gives a
stronger version of Theorem B for the case of a cable knot. For example, it follows
from Corollary C that if K is a cable of a hyperbolic knot in S3 then dK � 8.

Corollary C will be used in Klaff [9], where it is shown that if �1.†/ is a finite cyclic
group of odd order, and if the knot K �† is not a generalized iterated torus knot, then
dK is strictly greater than 2.

One of the ingredients in the proof of Theorem B is Proposition 1.3, which provides a
criterion for deciding whether a surface in a cabled knot exterior—or more generally,
in an irreducible, orientable 3–manifold that contains an essential torus—is strict and
essential. This result is of independent interest, and is applied by Culler and Shalen [4]
in a rather different context.

Before giving formal statements of Theorems A and B, we shall set up some general
conventions and define some of the terms we used above.

We shall work in the piecewise linear category throughout this paper.

0.1 If T is a 2–dimensional torus, we define a slope on T to be an isotopy class of
homotopically nontrivial simple closed curves in T . The set of all slopes on T will be
denoted by S.T /.
The isotopy classes of homotopically nontrivial oriented simple closed curves in T are
in natural bijective correspondence with elements of H1.T IZ/ which are primitive in
the sense of not being divisible by any integer greater than 1. Thus there is a natural
two-to-one map from the set of primitive elements of H1.T IZ/ onto S.T /. We shall
denote this map by ˛ 7! h˛i. We have h˛i D h˛0i if and only if ˛0 D˙˛ .

0.2 If C is a nonempty closed 1–manifold in a 2–torus T , and C has no homotopi-
cally trivial components, then all components of C have the same slope � 2 S.T /.
We call � the slope of C .

0.3 A 3–manifold M is irreducible if M is connected and every 2–sphere in M

bounds a ball.

An essential surface in an irreducible, orientable 3–manifold M is a two-sided properly
embedded surface in M which is nonempty and �1 –injective, and has no 2–sphere
components and no boundary-parallel components.
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0.4 Suppose that M is a compact, orientable irreducible 3–manifold whose boundary
components are tori. A connected essential surface in M is called a semifiber if
either F is a fiber in a fibration of M over S1 , or F is the common frontier of
two 3–dimensional submanifolds of M , each of which is a twisted Œ0; 1�–bundle
with associated f0; 1g–bundle F . An essential surface F �M is termed strict if no
component of F is a semifiber. A strict essential surface has no disk components, since
an irreducible knot manifold which has an essential disk must be a solid torus, and the
essential disk in a solid torus is a fiber.

0.5 Since a semifiber in a bounded 3–manifold M must meet every component of
@M , any essential surface that is disjoint from at least one component of @M must be
strict.

0.6 Let M be a compact orientable 3–manifold, and let T be a component of @M
which is a torus. If F is an essential surface in M that meets T , then @F \T is a
1–manifold in T having no homotopically trivial components. Thus by 0.2, @F \T

has a well-defined slope � 2 S.T /, which we call the boundary slope of F on T .

0.7 We define a knot manifold to be a connected, compact, orientable 3–manifold
M such that @M is a torus. If M is a knot manifold, we define a (strict) boundary
slope of M to be an element of S.@M / which arises as the boundary slope of some
bounded (strict) essential surface F in M . A theorem of Hatcher’s [5; 8] implies that
for any given knot manifold M , the boundary slopes of M form a finite subset of
S.@M /. In particular, the strict boundary slopes of M form a finite subset of S.@M /.

0.8 If K is a (PL) knot in a closed, orientable 3–manifold †, we shall denote by
V .K/ a regular neighborhood of K , and by M.K/ the exterior of K , defined by
M D†�V .K/. Note that M.K/ is a knot manifold. Since V .K/ and hence M.K/

are well-defined up to ambient isotopy in †, and in particular up to homeomorphism,
our main results are independent of the choice of V .K/. In general we shall implicitly
suppose an arbitrary choice of V .K/ to have been made, but at one point in Section 3
it will be necessary to be more explicit.

A meridian of K is a nontrivial simple closed curve in the torus @M.K/ which bounds
a disk in V .K/. Such a curve exists and is unique up to isotopy. Thus there is a
well-defined meridian slope in @M . A primitive element � of H1.@M.K/IZ/ is
called a meridian class for K if h�i is the meridian slope. Thus K has exactly two
meridian classes, and they differ by a sign.
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0.9 The knot K will be termed meridionally small if its meridian slope is not a
boundary slope for M.K/. (In the case where † is an irreducible nonHaken manifold,
meridionally small knots in † are sometimes called “smallish knots.”)

0.10 We define a framing for K to be an ordered basis .�; �/ for H1.@M.K/IZ/

such that � is a meridian class.

If .�; �/ an arbitrary framing for K , there is a bijection � D ��;� from S.@M.K//

to Q[f1g defined by setting �.h˛i/D !.˛; �/=!.˛; �/ where ˛ 2H1.@M.K/IZ/

is any primitive and ! denotes homological intersection number. Equivalently, if we
write ˛D a�Cb�, where a and b are relatively prime integers, then �.h˛i/D�a=b .

0.11 Note that if .�1; �1/ and .�2; �2/ are two framings for the knot K , then there
exist h 2 Z and � 2 f˙1g such that �2 D ��1 and �2 D �1C h�1 . It follows that if
� is any slope on @M.K/, and if we set si D ��i ;�i

.�/ for i D 1; 2, then we have

s2 D �s1C h:

0.12 Now suppose that M.K/ is irreducible. If F is a bounded essential surface
in M.K/, we define the numerical boundary slope of F , with respect to a given
framing .�; �/, to be the image of the boundary slope of F under the bijection
��;�W S.@M.K//! Q[ f1g. In analogy with 0.7, we define a (strict) numerical
boundary slope of K to be a slope on @M.K/ which arises as the boundary slope of
some bounded (strict) essential surface F in M . If we denote by B�;�.K/�Q[f1g

the set of all numerical boundary slopes of bounded strict essential surfaces in M.K/

with respect to the framing .�; �/, the theorem of Hatcher’s quoted in 0.7 implies that
B�;�.K/ is a finite set.

In particular, if K is meridionally small and has at least one strict boundary slope, then
B�;�.K/�Q is a finite, nonempty subset of Q; thus in this case B�;�.K/�Q has a
greatest element smax.K; �; �/ and a least element smin.K; �; �/.

The observation 0.11 shows that if .�1; �1/ and .�2; �2/ are framings of K , the sets
B�1;�1

.K/ and B�2;�2
.K/ differ only by an integer translation and a possible change

of sign. In particular, in the case where K is meridionally small and there is at least
one strict boundary slope, the diameter d D smax.K; �; �/� smin.K; �; �/ of B�;�.K/
is independent of the framing .�; �/ and is therefore an invariant of the knot K , which
we denote by dK 2Q. If there are no strict boundary slopes for K we set dK D�1:

Thus the invariant dK is defined for every meridionally small knot K in a closed,
orientable, irreducible 3–manifold †.
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0.13 A knot K � † is said to be round if some M.K/ admits a solid torus as a
connected summand. Thus when M.K/ is assumed to be irreducible, K is round
if and only if M.K/ is a solid torus. Note that this implies that † has a genus–1

Heegaard splitting; that is, † is homeomorphic either to S2 � S1 or to a (possibly
trivial) lens space.

0.14 A knot K0 � † is called a cabling of a knot K � † if there exists a regular
neighborhood U of K such that K0 is a simple closed curve on the boundary of U ,
and the geometric intersection number q of K0 with the boundary of a meridian disk
for the solid torus U is greater than or equal to 2. We shall refer to the integer q � 2

as the number of strands of the cable K0 .

Note that according our definition, a knot L which is isotopic in † to a (q–strand)
cabling of K need not itself be a cabling of K . However, such a knot L is clearly a
(q–strand) cabling of some knot isotopic to K .

We define a q–strand cable knot in † to be a knot K �† such that (a) K is not round
and (b) K is a q–strand cabling of some knot in †. (Note that (b) does not imply (a),
since a trivial knot in S3 is a q–strand cabling of another trivial knot for any q � 2.)
We call K a cable knot if it is a q–strand cable knot for some q � 2.

0.15 A knot K � † is called a generalized iterated torus knot if for some integer
n� 0 there exist knots K0;K1; : : : ;Kn in † such that (i) K DK0 , (ii) the knot Kn

is round and (iii) for each i with 0� i � n� 1, the knot Ki is a cabling of KiC1 . It
follows from the observation made in 0.13 that if † contains a generalized iterated
torus knot whose exterior is irreducible, then † is either a homeomorph of S2�S1 or
a (possibly trivial) lens space.

We are now in a position to give formal statements of our main results.

Theorem A Let † be a closed, connected, orientable 3–manifold, K � † be a
nonround knot, q � 2 be an integer and K0 be a q–strand cabling of K . Suppose that
K0 is meridionally small. Then K is meridionally small, and dK 0 � q2dK .

This will be proved in Section 3, using foundational material that will be presented in
Section 1.

Theorem B Let † be a closed, connected, orientable 3–manifold such that �1.†/ is
cyclic. Suppose that K �† is a meridionally small knot. Then either (i) dK � 2 or (ii)
K is a generalized iterated torus knot.
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This will be proved in Section 4 by combining Theorem A with results from [3].

Theorems A and B taken together immediately yield the following:

Corollary C Let † be a closed, connected, orientable 3–manifold such that �1.†/ is
cyclic. Suppose that q� 2 is an integer, and that K�† is a q–strand cable knot which
is meridionally small. Then either (i) dK � 2q2 or (ii) K is a generalized iterated torus
knot.

The first author was partially supported by the NSF VIGRE program and by the Chaire
de recherche du Canada en algèbre combinatoire et informatique mathématique at the
Université du Québec à Montréal. The second author was partially supported by NSF
grant DMS 0204142.

1 Strict essential surfaces in toroidal manifolds

The main result of this section, Proposition 1.3, will provide a criterion for deciding
whether a surface in the cabled knot exterior is strict and essential. This is needed for
the proof of Theorem B. The result will be proved in a more general setting: rather than
considering only cabled knot exteriors, we shall consider arbitrary compact, irreducible,
orientable 3–manifolds that contain essential tori. The result seems likely to be of
broader interest in 3–manifold theory.

The following result, which will be used in the proof of Proposition 1.3, is also of
more general interest. It says that an essential surface in an irreducible knot manifold
is boundary-incompressible in a strong, homotopy-theoretic sense.

1.1 Proposition Suppose that F is a bounded essential surface in an irreducible knot
manifold M , and suppose that ˛ is a path in F which has its endpoints in @F and is
fixed-endpoint homotopic in M to a path in @M . Then ˛ is fixed-endpoint homotopic
in F to a path in @F .

Proof Let CC and C� denote the upper and lower semicircles in S1 D @D2 . The
hypothesis implies that there is a map f W D2!M such that f jCC is a reparametriza-
tion of ˛ and f .C�/ � @M . We may choose f so that f �1.@M / D C� and CC

is a component of f �1.F /, and so that f j.D2�CC/ is transverse to F . Among all
maps with these properties, we suppose F to be chosen so as to minimize the number
of components of f �1.F /. Since F is �1 –injective, the minimality implies that
each component of f �1.F / is an arc. Hence some component AC of f �1.F / is
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“outermost” in the sense that AC is the frontier of a disk ��D2 with �\@D2� int C�

and �\f �1.F /DAC . A priori, AC may or may not coincide with CC .

If M 0 denotes the manifold obtained by splitting M along F , and qW M 0 ! M

denotes the quotient map, we may write f j� D q ıg for some map gW �!M 0 . We
set A� D .@�/� int AC . We may regard gjA� as a reparametrization of a path ˇ in
q�1.@M /. Since @M is a torus, the component B of q�1.@M / containing ˇ.I/ is
an annulus. We claim that ˇ has both its endpoints in the same component of @B .

Suppose to the contrary that the endpoints of ˇ are in different components of @B .
Then g is homotopic rel AC to a map g0W � ! M 0 such that g0jA� is injective
and l� D g0.A�/ is a properly embedded arc in B which meets some core curve of
B transversally in a single point. In particular g0j@� is a homotopically nontrivial
map of @� into @M 0 , and g0.@�/� l�[F 0 for some component F 0 of q�1.F /. It
now follows from Henderson’s version of the loop theorem [7, Theorem III.5] that
there is a disk E �M 0 such that @E is a nontrivial simple closed curve in @M 0 and
@E � l�[F 0 . We cannot have @E � F 0 , since F is �1 –injective in M . Hence @E
must have the form l�[ lC for some properly embedded arc lC in F 0 .

If N denotes a regular neighborhood of E in M 0 then R D N \ F 0 is a regular
neighborhood of lC in F 0 , and the closure of .frontierM 0 N /�R is a disjoint union of
disks G1 and G2 . The surface F1D .F �q.R// [ q.G1[G2/ is properly embedded
in M , and is �1 –injective since F is. But since l joins different components of @B ,
the component of @F1 contained in q.B/ is a homotopically trivial simple closed curve
in @M . Hence F1 is a disk, and by irreducibility it is the frontier of a ball K �M .
We must have either q.N /�K , in which case F is an annulus contained in the ball
K , or q.N /\ int K D∅, in which case F is a boundary-parallel annulus. In either
case we have a contradiction to the essentiality of F . Thus our claim is proved.

We may regard f jAC as a reparametrization of a path ˛0 in F . In the case where
AC D CC , we may take ˛0 D ˛ . Since the endpoints of ˇ lie in the same component
of @B , and since F is �1 –injective in M , the path ˛0 is fixed-endpoint homotopic in
q.B/ to a path ˇ1 in @B � @F . This implies the conclusion of the proposition in the
case where AC D CC . If AC ¤ CC , we may use the homotopy between ˛0 and ˇ1

to replace the map f by a map f1W �!M which agrees with f on � and maps
D2�� into F ; by perturbing f1 slightly we obtain a map f2 such that f �1

2
.F / has

fewer components than f �1.F /, in contradiction to the minimality property of f .
Thus the case AC ¤ CC does not occur, and the proof is complete.

1.2 The proof of the main result of this section, Proposition 1.3, also involves some
basic facts about incompressible surfaces in interval bundles over surfaces, which we
shall now summarize.
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Suppose that J is an orientable 3–manifold which is a Œ0; 1�–bundle over a surface.
We will define a surface in J to be vertical if it is a union of fibers, and to be horizontal
if it is everywhere transverse to the fibers. The vertical boundary of J is the inverse
image of the boundary of the base of the I –bundle J under the projection map.

Any essential vertical annulus in J is the inverse image under the fibration map of an
essential simple closed curve in the base.

Suppose that J is a trivial Œ0; 1�–bundle and that F is a properly embedded �1 –injective
surface in J such that all components of @F are contained in the same component
C of the f0; 1g–bundle associated to J . It follows from Waldhausen [12, Proposition
3.1] that F is isotopic to a horizontal surface by an ambient isotopy that preserves the
vertical boundary of J , and that each component of F is parallel to a subsurface of C .

As a consequence of this fact we observe that if J is a trivial Œ0; 1�–bundle, and F is a
properly embedded �1 –injective surface in J such that @F is contained in the vertical
boundary of J , then F is isotopic to a horizontal surface by an ambient isotopy that
preserves the vertical boundary of J .

Suppose that J is a Œ0; 1�–bundle and that A is a disjoint union of properly embedded
annuli in J none of which is parallel to an annulus contained in the f0; 1g–bundle
associated to J . It follows from [12, Lemma 3.4] in the case that J is a trivial Œ0; 1�–
bundle, and from [1, Lemma 2] in the twisted case that A is isotopic to a vertical
surface.

Suppose that F is a properly embedded �1 –injective surface in a Œ0; 1�–bundle J such
that @F is contained in the vertical boundary of M . Then F is isotopic to a horizontal
surface. This follows from [12, Proposition 3.1 and Proposition 4.1].

1.3 Proposition Let M be a compact orientable irreducible 3–manifold containing
an essential torus T , let M 0 be the manifold obtained by splitting M along T and
let qW M 0!M denote the quotient map. Let F be a connected properly embedded
surface in M which is not isotopic to T . Then F is a strict essential surface if and
only if it is isotopic to a surface S transverse to T such that

(1) each component of q�1.S/ is essential in the component of M 0 containing it;

(2) some component of q�1.S/ is a strict essential surface in the component of M 0

containing it.

Proof Given a surface S transverse to T we will set S 0D q�1.S/ and T 0D q�1.T /.
We let M1 denote the manifold obtained by splitting M along S and denote the
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quotient map by pW M1!M . We let M 0
1

denote the manifold obtained by splitting
M 0 along S 0 , and let q1W M

0
1
!M1 denote the quotient map. We set S 0

1
D q�1

1
.S 0/.

First suppose that F is a strict essential surface. We will assume that S has been
chosen among all surfaces isotopic to F to be transverse to T and to meet T in the
minimal number of simple closed curves. We will show that S satisfies conditions (1)
and (2).

If S \T D∅ then S is a strict essential surface in M 0 by 0.5, so conditions (1) and
(2) hold in this case. Thus we may assume that S \ T 6D ∅. In particular, since S

is connected, no component of S 0 is closed. No component of S 0 can be boundary-
parallel since otherwise S would be isotopic to a surface that meets T in fewer simple
closed curves. Since M is irreducible it follows in particular that no component of S 0

is a disk. This, together with the �1 –injectivity of S , implies that S 0 is �1 –injective
in M 0 . Hence condition (1) holds for S .

To prove that condition (2) holds, assume that every component of S 0 is a semifiber
in the component of M 0 containing it. We will show that M1 is a Œ0; 1�–bundle, and
hence that S is a semifiber, contradicting our supposition that S is strict. By 0.5 our
assumption implies that S 0\T 0 6D∅, and hence every component of M 0 contains a
component of S 0 . The manifold obtained by splitting a component X of M 0 along
a component of S 0 is a Œ0; 1�–bundle. According to 1.2, all of the other components
of S 0 in X are isotopic to horizontal surfaces in this Œ0; 1�–bundle. It then follows
that the manifold M 0

1
has the structure of a Œ0; 1�–bundle for which the associated

f0; 1g–bundle is the surface S 0
1

. The vertical boundary of the Œ0; 1�–bundle M 0
1

is
V D q�1

1
.@M 0/. Observe that M1 is a quotient of M 0

1
obtained by identifying pairs of

components of V . To obtain the required Œ0; 1�–bundle structure on M1 it suffices to
observe that the gluing maps are isotopic to fiber-preserving maps with respect to the
Œ0; 1�–bundle structures on the components of V . This is because any homeomorphism
between two trivial Œ0; 1�–bundles over S1 is isotopic to a fiber-preserving map.

As a preliminary to proving the converse we observe that, since T is �1 –injective and
M is irreducible, any properly embedded disk in M 0 having its boundary contained in
T 0 must be boundary-parallel in M 0 .

For the proof of the converse we assume that conditions (1) and (2) hold for the surface
S . No component of S 0 can be a 2–sphere. Hence if S had a 2–sphere component
then some component of S 0 would be a disk whose boundary is contained in T 0 . Since
any such disk is boundary-parallel, this would contradict condition (1). Thus S has no
2–sphere components.

Suppose that S fails to be �1 –injective. Then we may choose a compressing disk D

for S which is transverse to T and meets T in the minimal number of components.
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Since T is �1 –injective, the minimality implies that all components of D\T must
be arcs. Since S 0 is �1 –injective in M 0 according to (1), we have D\T ¤∅. An
outermost arc ˇ of D\T is the image under q of an arc in @M 0 which is fixed-endpoint
homotopic in M 0 to an arc ˛ in S 0 . It follows from an application of Proposition 1.1,
with M replaced by M 0 and F by S 0 , that ˛ is the frontier of a disk E1 in S 0 . The
subdisk of D cobounded by ˛ and ˇ is the image of a disk E2 in M 0 . The union
of E1 and E2 is a properly embedded disk in M 0 having its boundary contained in
T 0 , and must therefore be a boundary-parallel disk in M 0 . It now follows that D is
isotopic to a disk that has fewer components of intersection with T , contradicting our
choice of D . This shows that S is �1 –injective.

Suppose that S is boundary-parallel. We will show that some component of S 0 is
boundary-parallel, contradicting condition (1). There is a submanifold P of M whose
frontier is S such that the pair .P;S/ is homeomorphic to .S � I;S � f1g/. If
T \ P D ∅ then it is immediate that S 0 is boundary-parallel in M 0 . Since S is
�1 –injective, if some component of T \S is homotopically trivial in M then it must
bound a disk in S . A minimal disk in S bounded by a component of T \S is the
image under q of a properly embedded disk D �M 0 with @D � T 0 . Since D must
be boundary-parallel in M 0 , it is the required boundary-parallel component of S 0 . If
every component of T \S D @.T \P / is homotopically nontrivial in M then since
T is �1 –injective, T \P is �1 –injective. It therefore follows from 1.2 that every
component of T \P is parallel to a subsurface of S . This implies that some component
of S 0 is boundary-parallel in M 0 . This completes the proof that S is essential.

To show that S is strict assume, to the contrary, that the manifold M1 is a Œ0; 1�–
bundle and that the associated f0; 1g–bundle is S1 D p�1.S/. Then T1 D p�1.T /

is a disjoint union of annuli in M1 whose boundary components are contained in the
f0; 1g–bundle S1 . If any of these annuli were parallel into S1 it would imply that some
component of S 0 is a boundary-parallel annulus in M 0 , contradicting condition (1). It
therefore follows from 1.2 that each component of T1 is isotopic to a vertical annulus
in the Œ0; 1�–bundle M1 . Therefore the manifold M 0

1
, which we can think of as being

obtained by splitting M1 along T1 , is a Œ0; 1�–bundle whose associated f0; 1g–bundle
is S 0

1
. This contradicts condition (2). Thus S is a strict essential surface in M .

2 Cable spaces

We have said that Proposition 1.3 can be used to identify strict essential knots in cabled
knot exteriors. This is because the exterior of a cabling K0 of a knot K can be regarded
as being constructed from M.K/ by gluing a “cable space” to its boundary. We begin
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this section with a definition and some observations related to this construction, and
then prove Lemma 2.3, which provides a wealth of essential surfaces in a cable space.

2.1 We define a cable space to be a Seifert fibered manifold over an annulus with
one singular fiber. Note that a cable space has exactly three isotopy classes of essential
vertical annuli; one has a boundary curve on each boundary torus of the cable space
and the other two have both boundary curves on the same boundary torus.

2.2 Let K be a knot in a closed, orientable, connected 3–manifold and K0 be a
q–strand cabling of K for some q � 2. It follows from the definition of a cable in 0.14
that K has a regular neighborhood V such that K0 is contained in a torus T � int V

which is boundary-parallel in V , and K0 has geometric intersection number q with
the boundary of a meridian disk for the solid torus V . We shall call a neighborhood V

with these properties an enveloping solid torus for the cabling K0 of K .

If V is an enveloping solid torus for a q–strand cabling K0 of a knot K then V

admits a Seifert fibration over a disk in which K0 is a regular fiber, K is the only
singular fiber, and the order of this singular fiber is q . Hence if W � int V is a regular
neighborhood of K0 disjoint from K , then N D V �W admits a Seifert fibration over
an annulus which has exactly one singular fiber, and the order of the singular fiber is q .
In particular, N is a cable space.

2.3 Lemma Suppose that N is a cable space (see 2.1) with boundary tori T1 and
T2 . Let �j denote the inclusion map from Tj to N . Then there exists a bijection
� D �N;T1;T2

W S.T1/! S.T2/ having the following properties:

(i) if j̨ is a primitive element of H1.Tj IZ/ � H1.Tj IQ/ for j D 1; 2, and if
�.h˛1i/D h˛2i, then �2

]
.˛2/ is a rational multiple of �1

]
.˛1/ in H1.N IQ/;

(ii) for each slope � on T1 there exists a connected essential surface in N which has
nonempty intersection with both T1 and T2 and has � and �.�/ as boundary
slopes.

Proof We identify H1.@N IQ/ with H1.T1IQ/˚H1.T2IQ/. The cable space N

may be decomposed as the union of homeomorphic copies of D2 � S1 and S1 �

S1� I , meeting along an annulus. A Mayer–Vietoris computation shows that �j ] is
an isomorphism H1.Tj IQ/!H1.N IQ/ for j D 1; 2. If ˛1 is a primitive element
of H1.T1IZ/�H1.T1IQ/ then up to sign there is a unique primitive element ˛2 of
H1.T2IZ/�H1.T2IQ/ which is a rational multiple of .�2

]
/�1ı�1

]
.˛1/. We then define

the map � by setting �.h˛1i/D h˛2i; this is a well-defined bijection since every slope
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on Tj may be written in the form h˛i, where ˛ is determined up to sign by the slope.
Property (i) of � is immediate from the definition.

To prove Property (ii), let � be any slope on T1 . Write �Dh˛1i and �.�/Dh˛2i

where ˛1 2H1.T1IZ/ and ˛2 2H1.T2IZ/ are primitive elements such that the sum
m �1

]
.˛1/C n �2

]
.˛2/ D 0 for some relatively prime integers m and n. By the long

exact homology sequence of .N; @N / there is a class c in H2.N; @N IZ/ whose image
under the boundary map @W H2.N; @N IZ/! H1.@N IZ/ is m˛1˚ n˛2 . It follows
from the proof of [6, Lemma 6.6] that there is an oriented essential surface S which
represents the homology class c . Since @.c/m˛1˚ n˛2 , and since S is essential and
T1 and T2 are tori, every component of @S \T1 has slope � and every component of
@S \T2 has slope �.�/.

Since @.c/ 6D 0, some component S0 of S must represent a class c0 2H2.N; @N IZ/

such that @.c0/ 6D 0. Note that S0\T2 is nonempty since otherwise @.c0/ would be a
nonzero multiple of ˛1 , which is impossible since the image of ˛1 in H1.N IZ/ has
infinite order. Similarly S0 must have nonempty intersection with T1 . Furthermore,
since S0 is a component of S it is essential and has boundary slopes � and �.�/.

3 The effect of cabling on strict boundary slopes

The goal of this section is to prove Theorem A of the Introduction.

3.1 In the next two lemmas, 3.2 and 3.3, we shall consider a knot K in a closed,
connected, orientable 3–manifold † and a cabling K0 of K with q � 2 strands. We
shall denote by V an enveloping solid torus for the cabling K0 and by W a regular
neighborhood of K0 that is contained in V and disjoint from K . We shall make the
explicit choices V .K/D V and V .K0/DW for the regular neighborhoods of K and
K0 (see 0.8). We shall set N D V �W , so that N is a cable space by 2.2. We set
T1 D @V D @M.K/ and T2 D @W D @M.K0/. Thus T1 and T2 are the boundary
tori of the cable space N . We let � D �N;T1;T2

W S.T1/! S.T2/ denote the bijection
given by Lemma 2.3.

3.2 Lemma Suppose that K is a knot in a closed, connected, orientable 3–manifold
†, and that K0 is a cabling of K with q � 2 strands. Let V , W , N , T1 , T2 and � be
defined as in 3.1. Let �D ��;�W S.T1/!Q[f1g and �0D ��0;�0 W S.T2/!Q[f1g

be the bijections given by 0.10, Then there exist constants u 2Q and � 2 f˙1g such
that for every � 2 S.T1/ we have

�0.�.�//D �q2�.�/Cu:

Here the right-hand side is interpreted to be 1 if �.�/D1:
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Proof Since V is an enveloping solid torus for the q–strand cabling K0 of K , there
is a meridian disk D for the solid torus V which meets K transversally in one point,
and meets K0 transversally in q points. Furthermore, the intersections of D with K0

are all consistently oriented, in the sense that if ! is a transverse orientation to D in V ,
the orientations of K0 induced by ! at the different points of D\K0 all coincide. By
choosing D to be in standard position with respect to W we may arrange that D\W

consists of q meridian disks in W , each of which contains a unique point of D\K0 .
Now P DD\N is a planar surface whose boundary consists of one meridian curve
in T1 D @V and q meridian curves in T2 D @W .

We identify H1.@N IZ/ with H1.T1IZ/˚H1.T2IZ/. Since the intersections of D

with K0 are all consistently oriented, we may orient P in such a way that the class
ŒP � 2H2.N; @N IZ/ satisfies

(3.2.1) @ŒP �D �C �q�0

for some � 2 f˙1g.

For i D 1; 2 and for every ˛ 2H1.Ti IZ/, let us denote by x̨ the image of ˛ under
the natural homomorphism H1.@N IZ/!H1.N IQ/. It follows from (3.2.1) that

(3.2.2) x�D��qx�0:

We let � 2 f˙1g denote the homological intersection number of �0 with �0 in T2 .
Then by (3.2.1), the homological intersection number of x�0 with ŒP � in N equals ��q .

We saw in the proof of Lemma 2.3 that the inclusion homomorphism from H1.Ti IQ/

into H1.N IQ/ is an isomorphism for i D 1; 2. In particular, x� and x� form a basis
for H1.N IQ/. Let us write x�0 D t x�Chx� for some t; h 2Q. If � 2 f˙1g denotes the
homological intersection number of � with � in T1 , it follows again from (3.2.1) that
the homological intersection number of x�0 with ŒP � in N is �h. Hence �h D ��q ,
and therefore

(3.2.3) x�0 D t x�C ���qx�:

We shall show that the lemma holds if we set � D �� 2 f˙1g and uD �qt 2Q.

Consider any element � of S.T1/. We may write � D h˛i for some primitive element
˛ D a�C b� of H1.T1IZ/, where a and b are relatively prime integers. We have
�.�/D�a=b . Likewise, if we write �.�/D h˛0i for some primitive ˛0 D a0�0Cb0�0

in H1.T1IZ/, then �0.�.�//D�a0=b0 . Using (3.2.2) and (3.2.3), we find that

x̨
0
D a0x�0C b0x�0 D�

�a0x�

q
C b0.t x�C ���qx�/D

�b0qt � �a0

q

�
x�C ���b0qx�:
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According to 2.3 (i), x̨ is a rational multiple of x̨0 , say x̨ D r x̨0 . Hence

x̨ D

�b0qt � �a0

q

�
r x�C ���b0qrx�:

On the other hand, we have
x̨ D ax�C bx�;

and since x� and x� form a basis for H1.N IQ/, it follows that

aD
�b0qt � �a0

q

�
r and b D ���b0qr:

Hence �.�/D�
a

b
D�

.b0qt � �a0/=q

���b0q
D
��

q2

a0

b0
�
��� t

q
D
��

q2
�0.�.�//�

��� t

q
:

This gives the required equality

�0.�.�//D ��q2�.�/C �qt D �q2�.�/Cu:

3.3 Lemma Suppose that K is a knot in a closed, connected, orientable 3–manifold
†, and that K0 is a cabling of K with q � 2 strands. Let V , W , N , T1 , T2 and � be
defined as in 3.1. Suppose that � 2 S.T1/D S.@M.K// is a strict boundary slope for
K . Then �.�/ 2 S.T2/D S.@M.K0// is a strict boundary slope for K0 .

Proof Since � is a strict boundary slope for K , there is a connected strict essential
surface F �M.K/ having boundary slope � . On the other hand, by Lemma 2.3, there
is a connected essential surface E �N , having nonempty intersection with both T1

and T2 and having � and �.�/ as boundary slopes. Let m and n denote, respectively,
the numbers of components of @F and @E . Let E� � N be an essential surface
with m components, each isotopic to E in N , and let F� �M be a strict essential
surface with n components, each isotopic to F in M . Then @E� and @F� are both
1–manifolds in T1 with slope � , and each of them has mn components. Hence after
varying E within its isotopy class we may assume that @E D @F . This means that
F 0DE[F is a properly embedded surface in M.K0/DM.K/[N transverse to T1 .
Since EDF 0\N is an essential surface in N , and F DF 0\M.K/ is a strict essential
surface in M.K0/, it follows from Proposition 1.3 that F 0 is a strict essential surface in
M.K0/. As the boundary slope of F 0 is clearly equal to �.�/ 2 S.T2/D S.@M.K0//,
it follows that �.�/ is a boundary slope for K0 .

Proof of Theorem A We are given a nonround knot K in a closed, connected,
orientable 3–manifold † and a cabling K0 of K with q � 2 strands such that K0 is
meridionally small. We define V , W , N , T1 , T2 and � as in 3.1. We also choose
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framings .�; �/ and .�0; �0/ for K and K0 , and let � D ��;�W S.T1/!Q[f1g and
�0D ��0;�0 W S.T2/!Q[f1g be the bijections given by 0.10. We denote by � 2 f˙1g

and u 2Q the constants given by Lemma 3.2.

We must first show that K is meridionally small, ie, that M.K/ is irreducible and
that the meridian slope of K is not a strict boundary slope. If S � int M.K/ is a
2–sphere, then S bounds a ball B in the interior of M.K0/DM.K/[N . Since N

is connected and disjoint from S , we must have either N � int B or N \B D ∅.
But N � int B would imply @M.K0/� B , a contradiction. Hence N \B D∅ and
therefore B �M.K/. This shows that M.K/ is irreducible.

Next note that, according to Lemma 3.2, we have �0.�.h�i//D �q2�.h�i/Cu, where
�.h�i/ D 1. Hence �0.�.h�i// D 1, that is, �.h�i/ D �0 . If h�i were a strict
boundary slope for K , Lemma 3.3 would now imply that the meridian slope h�0i is a
strict boundary slope for K0 , a contradiction to the hypothesis that K0 is meridionally
small. Hence the meridian slope h�i is not a strict boundary slope for K . This
completes the proof that K is meridionally small.

It remains to show that dK 0 � q2dK . By definition of dK , there exist strict boundary
slopes � and � for K such that

�.�/� �.�/D dK :

According to Lemma 3.3, the slopes � 0 D �.�/ and � 0 D �.�/ are strict boundary
slopes for K0 . But from Lemma 3.2 we have

j�0.� 0/� �0.� 0/jj.�q2�.�/Cu/� .�q2�.�/Cu/j D q2dK :

This shows that dK 0 � q2dK .

4 A lower bound for dK

The goal of this section is to prove Theorem B of the Introduction.

4.1 Proposition Suppose that K is a knot in a closed, connected, orientable 3–
manifold †. Then for some integer n� 0 there exist knots K0;K1; : : : ;Kn in † such
that (i) K DK0 , (ii) Kn is not a cable knot and (iii) for each i with 0� i � n� 1, the
knot Ki is a cabling of KiC1 .

4.2 Remark According to our definition of a cable knot in 0.14, it may happen that
the knot Kn given by Proposition 4.1 is round. If Kn is round then it follows from the
definition that K is a generalized iterated torus knot.
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Proof of Proposition 4.1 Suppose that K is a knot in a closed, connected, orientable
3–manifold †. Set M D M.K/. Since M is a compact, irreducible, orientable
3–manifold, it follows from Haken’s finiteness theorem [6, Lemma 1.32] that there
is an integer ‚ > 0 with the following property: if F1; : : : ;F‚ are disjoint, closed,
connected, orientable surfaces of strictly positive genus in int M such that the homo-
morphism �1.Fi/! �1.M / is injective for i D 1; : : : ; ‚, then the closure of some
component of M � .F1 [ � � � [F‚/ is homeomorphic to F � Œ0; 1� for some closed
surface F .

Now assume that the conclusion of Proposition 4.1 does not hold. We shall recursively
construct knots K0; : : : ;K‚ in † and regular neighborhoods Vi of the Ki in such a
way that for i D 0; : : : ; ‚�1 these conditions hold: (i) Ki is a cabling of KiC1 , (ii)
ViC1 is an enveloping solid torus (in the sense of 2.2) for the cabling Ki of KiC1 and
(iii) Vi is contained in the interior of ViC1 and is disjoint from KiC1 .

We set K0DK and set V0D V .K/. Now suppose that for a given m 2 f0; : : : ; ‚�1g

we have defined K0; : : : ;Km and V0; : : : ;Vm so that conditions (i)–(iii) hold for every
i with 0� i <m. (This is of course vacuously true when mD 0.) We need to define
KmC1 and VmC1 so that (i)–(iii) hold for i Dm.

If Km were not a cable knot, then since condition (i) holds for 0� i <m, the conclusion
of Proposition 4.1 would hold with nDm. As we have assumed that this conclusion
does not hold, Km is a cable knot. In particular, Km is a cabling of some knot K� in
†. Let V � be an enveloping solid torus for the cabling Km of K� , and let W � be a
regular neighborhood of Km which is contained in the interior of V � and is disjoint
from KmC1 . Since W � and Vm are both regular neighborhoods of Km in †, there is
a homeomorphism hW †!†, isotopic to the identity by an isotopy fixing Km , such
that h.W �/D Vm . The knot KmC1D h.K�/ and the solid torus VmC1D h.V �/ then
have the required properties. This completes the recursive construction.

If K‚ were not a cable knot, then since condition (i) holds for 0� i <‚, the conclusion
of Proposition 4.1 would hold with nD‚. As we have assumed that this conclusion
does not hold, K‚ is a cable knot. In particular, K‚ is not round.

For i D 0; : : : ; ‚�1 set Ni D ViC1�Vi . According to 2.2, each Ni is a cable space.

For iD0; : : : ; ‚, set TiD@Vi . Note that the Ti are disjoint tori contained in int M.K/.
Set T D T1[ � � � [T‚ . Note that the closures of the components of M.K/� T are
N0; : : : ;N‚�1 and †�V‚ .

We distinguish two cases. First suppose that for some i 2 f0; : : : ; ‚g the inclusion
homomorphism �1.Ti/!�1.†�V0/ has a nontrivial kernel. Then by [6, Lemma 6.1],
there is a disk D �M.K/ such that D\T D @D , and such that @D does not bound a
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disk in T . Let Z denote the component of M.K/� T that contains int D , so that D

is an essential properly embedded disk in xZ . If xZD†�V‚ , then M.K‚/Š†�V‚
contains an essential disk and therefore has a solid torus as a connected summand; this
contradicts the fact that K‚ is not round. If xZ DNi for some i 2 f0; ‚�1g we again
obtain a contradiction, because the cable space Ni is a Seifert fibered space with two
boundary components, and the only Seifert fibered space that contains an essential disk
is the solid torus.

There remains the case that �1.Ti/! �1.†�V0/ is injective for each i 2 f0; : : : ; ‚g.
The defining property of ‚ then implies that the closure of some component Z of
M.K/ � T is homeomorphic to T 2 � Œ0; 1�. We cannot have xZ D †�V‚ , since
†�V‚ has connected boundary. Hence we must have xZDNi for some i 2 f0; ‚�1g.
But since the cable space Ni is a Seifert fibered space over an annulus with a singular
fiber, the fundamental group of either component of @Ni is mapped by the inclusion
homomorphism onto a proper subgroup of �1.Ni/; hence Ni cannot be homeomorphic
to T 2 � Œ0; 1�, and we have a contradiction in this case as well.

Proof of Theorem B Given a closed, connected, orientable 3–manifold † such that
�1.†/ is cyclic, and a meridionally small knot K �†, we must show that either (i)
dK � 2 or (ii) K is a generalized iterated torus knot.

Let n� 0 be the integer and K0;K1; : : : ;Kn the knots given by Proposition 4.1. For
each i , 0� i � n�1, the knot Ki is a qiC1 –strand cabling of KiC1 for some qi � 2.

If Km is round for some m�n, then it follows from Remark 4.2 that K is a generalized
iterated torus knot. Thus conclusion (ii) holds in this case.

Now suppose that none of the knots K0; : : : ;Kn is round. By n successive applications
of Theorem A we see that each of the Ki is meridionally small, and that for i D

0; : : : ; n� 1. Hence

dK D dK0
� q2

1 � � � q
2
ndKn

:

On the other hand, since �1.†/ is cyclic, and since Kn is meridionally small and is
not a round knot or a cable knot, it follows from Theorem 1.1 of [3] that dKn

� 2.
Hence

dK � 2q2
1 � � � q

2
n � 2;

and so (i) holds.
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