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Cacti and filtered distributive laws

VLADIMIR DOTSENKO

JAMES GRIFFIN

Motivated by the second author’s construction of a classifying space for the group of
pure symmetric automorphisms of a free product, we introduce and study a family of
topological operads, the operads of based cacti, defined for every pointed simplicial
set .Y;p/ . These operads also admit linear versions, which are defined for every
augmented graded cocommutative coalgebra C . We show that the homology of the
topological operad of based Y–cacti is the linear operad of based H�.Y /–cacti. In
addition, we show that for every coalgebra C the operad of based C–cacti is Koszul.
To prove the latter result, we use the criterion of Koszulness for operads due to the
first author, utilising the notion of a filtered distributive law between two quadratic
operads. We also present a new proof of that criterion, which works over a ground
field of arbitrary characteristic.

18D50; 20L05, 16S15

1 Introduction

One of the most famous algebraic operads of topological origin is the operad of
Gerstenhaber algebras, which is the homology operad of the topological operad of little
2–disks (Cohen, Lada and May [9], and Getzler and Jones [16]). The k th component
of the operad of little 2–discs is homotopy equivalent to the configuration space
of k ordered points in R2 whose fundamental group is the pure braid group on k

strands. One natural way to generalise braid groups is to consider configurations of
subsets that have more interesting topology than points. The simplest example of
these “higher-dimensional” versions of braid groups is given by “groups of loops”, the
nth one being the group of motions of n unknotted unlinked circles in R3 bringing
each circle to its original position. Alternatively, these groups can be viewed as
groups of pure symmetric automorphisms of the free group with n generators, that
is, automorphisms sending each generator to an element of its conjugacy class. The
integral cohomology of these groups was computed by Jensen, McCammond and Meier
in [19]; that paper also contains references and historical information on this group. The
description of the cohomology algebras in [19] looks very similar to that for pure braid
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groups (Arnol’d [2]). Moreover, as a symmetric collection, the collection of cohomology
algebras is isomorphic to Com ıPreLie1 , which bears striking resemblance with the
isomorphism e2 ' Com ıLie1 for the operad of Gerstenhaber algebras. However,
there is no natural operad structure on the collection of homology groups of the groups
of loops. One way to repair that is to generalise the operad of little disks more directly,
and consider configurations of unknotted and unlinked filled in little tori S1 �D2

inside a torus. Some of our results may be viewed as a first approximation towards
understanding the topology of that operad.

In [18], the second author computed the cohomology of the groups of pure symmetric
automorphisms in a different way, as a particular case of a much more general result:
for an arbitrary n–tuple of groups .G1; : : : ;Gn/, he computed the cohomology of the
Fouxe-Rabinovitch group FR.G/ of partial conjugation automorphisms of the free
product G DG1 � � � � �Gn . For that, he used a construction of a classifying space of
that group via a moduli space of “cactus products” of the classifying spaces Yi DBGi .
In the case when G1 DG2 D � � � DGn , these spaces form a symmetric collection, but
alas do not form a topological operad either. However, it turns out that they admit a
slight modification that carries a structure of a topological operad; the required change
is that one of the spaces Yi is chosen as the base and is required to sit at the root of
each cactus. We call the modified space the space of based Y–cacti. The goal of this
paper is to understand the algebra and topology of this operad.

For homology with coefficients in a field, we show that the homology operad of the
operad of based Y–cacti is obtained from the homology coalgebra of Y by a formal
algebraic procedure that only uses the augmentation and the coproduct; thus, it is
defined for every graded cocommutative coalgebra C , not necessarily the homology
coalgebra of a topological space. Remarkably, for every coalgebra C this defined
operad is Koszul. To prove that, we use filtered distributive laws between operads, as
defined by the second author in [10]. One immediate consequence of our results is that,
for Y D S1 , the homology operad of based Y–cacti is isomorphic, as an S–module, to
Perm ıPreLie1 , which, given that the operad of associative permutative algebras Perm
encodes commutative algebras with additional structure, may be naturally thought of
as an “operad-compatible improvement” of the result of [19] mentioned above.

Our constructions are defined over a field of arbitrary characteristic, and our results
on operads of based cacti hold in that generality. However, even the distributive law
criterion for Koszulness, let alone its filtered generalisation, has only been available in
zero characteristic, since the known proofs (Dotsenko [10] and Vallette [35]) rely on
the Künneth formula for symmetric collections. Using the shuffle operads technique
(Dotsenko and Khoroshkin [12; 13]), we were able to obtain a characteristic-independent
proof of this criterion.

Algebraic & Geometric Topology, Volume 14 (2014)



Cacti and filtered distributive laws 3187

The paper is organised as follows. In Section 2, we recall necessary background
information that we use throughout the paper. In Section 3, we define the topological
operads of based cacti and discuss its connections both with automorphism groups of
free products and with other known topological operads. The homology operad for
the operad of based cacti is computed in Section 4. In Section 5, we discuss filtered
distributive laws between quadratic operads. Section 6 shows how to use filtered
distributive laws to prove the Koszul property for the linear operads of based cacti,
and also discusses its applications to the operad of post-Lie algebras and the operad of
commutative tridendriform algebras.
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we want to thank Natalia Iyudu and Stanislav Shkarin for an invitation to attend that
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2 Trees, coalgebras, operads

All “linear” objects in this paper (algebras, coalgebras, operads) are objects of a
certain concrete (equipped with a faithful functor to sets) closed symmetric monoidal
category .C;˝; �; I/, usually the category Vect of vector spaces or the category gVect
of graded vector spaces (over some field k; unless otherwise specified, we do not make
any assumptions on its characteristic). Whenever appropriate, we assume vector spaces
to be finite-dimensional, or possessing an additional N –grading with finite-dimensional
homogeneous components; this allows to approach tensor constructions and duals with
ease, freely passing between an algebra and its dual coalgebra, etc.

2.1 Y–labelled trees

A tree is an acyclic connected graph and a rooted tree is a tree with a chosen vertex,
the root. A rooted tree may be directed: every edge fv;wg may be oriented to �!vw in
such a way that the minimal path from w to the chosen vertex contains fv;wg. By the
acyclicity of the tree this must hold for exactly one of the choices �!vw and �!wv . The
edges may be seen to be directed “away from the roots”. We denote by E.T / the set
of edges of a tree T .

Suppose that T is a tree with vertex set V . Let Y D .Yi/i2V be a V–tuple of sets.
Then a Y–tree is a rooted tree with an edge labelling where the edge

�!
ij is labelled
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by an element of Yi . As shorthand we define a Y–tree for a set Y to be a Y–tree
where the V–tuple Y is constantly Y . Then the edge labelling is a map from the edge
set E to the set Y . Meanwhile a Y–forest is a Y–tree where Y is the V–tuple with
Y0 Š fpg, where 0 is the root vertex and Yv Š Y for any other vertex. The naming
makes sense because by removing the root 0 and all adjacent edges we are left with a
disjoint union of Y–trees; the root of each tree is the unique vertex adjacent to 0 and
the edge labelling is inherited.

To a rooted tree T we define the level l.T / to be the number of non-trivial directed
paths in T . So for a corolla with root 1 and k�1 other vertices the level is k�1, and
for a tree with root 1 and edges

�����!
i.i C 1/ for i D 1; : : : ; k � 1 the level is k.k � 1/=2.

The level allows one to filter the set of Y–trees.

2.2 Coalgebras

A coalgebra is an object C of C equipped with a comultiplication �W C ! C ˝C

and a counit �W C ! I satisfying the conventional coassociativity and counit axioms.
For the comultiplication, we often use Sweedler’s notation �.c/D

P
c.1/˝ c.2/ . An

augmented coalgebra is a coalgebra C equipped with a coalgebra homomorphism

 W I! C such that �
 D 1. A cocommutative coalgebra is a coalgebra satisfying
��D�. Our main focus will be on graded augmented cocommutative coalgebras, that
is, augmented cocommutative coalgebras in gVect. The main source of such coalgebras
relevant for our purposes is topology: the homology coalgebra of a pointed simplicial
set .Y;p/ is a graded augmented cocommutative coalgebra. An augmented coalgebra
in Vect or gVect naturally splits into a direct sum of vector spaces C D k 1˚C , where
1D 
 .1/, C D ker.�/.

2.3 Operads

We refer the reader to Loday and Vallette [28] for further information on operads, and to
[12] for further details on Gröbner bases. In this section we only recall the key notions
used throughout the paper. By an operad in a symmetric monoidal category .C;˝; �; I/
we mean a monoid in one of the two monoidal categories: the category of symmetric
C–collections equipped with the composition product or the category of nonsymmetric
C–collections equipped with the shuffle composition product. The former kind of
monoids is referred to as symmetric operads; the latter, as shuffle operads. In particular,
we assume that our collections are reduced, that is, are functors from the category
of nonempty finite sets (respectively, nonempty finite ordered sets) to C (note that
the shuffle composition product is only defined for reduced collections). A good
rule of thumb is that all operads defined in this paper are symmetric operads, but
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for computational purposes it is useful to treat them as shuffle operads, applying
the forgetful functor from the category of symmetric collections to the category of
nonsymmetric collections. (We denote the result of applying the forgetful functor to a
collection O by Of ). This does not lose any information except for the symmetric
group actions, since the forgetful functor is monoidal and one-to-one on isomorphism
classes of objects, and therefore for tasks that can be formulated without the symmetric
group actions, eg computing bases and dimensions of components, proving the Koszul
property etc, we can choose arbitrarily whether to work with a symmetric operad or
with its shuffle version. In the “geometric” setting, C will usually be the category
of sets, or simplicial sets or pointed simplicial sets, and in the “linear” setting it will
usually be the category of vector spaces (in which case symmetric collections are
usually called S–modules), or the category of graded vector spaces or chain complexes
(in which case symmetric collections are called differential graded S–modules). A
linear symmetric operad can also be thought as of collection of spaces of operations of
some type, and therefore can be defined via its category of algebras, ie vector spaces
where these operations act, via identities between operations acting on a vector space.

In the linear setting, a very useful technical tool for dealing with (shuffle) operads is
given by Gröbner bases. More precisely, similarly to associative algebras, operads
can be presented via generators and relations, that is, as quotients of free operads
F .V /, where V is the space of generators. The free shuffle operad generated by
a given nonsymmetric collection admits a basis of “tree monomials”, which can be
defined combinatorially; a shuffle composition of tree monomials is again a tree
monomial. In addition to the “arity” of elements of a free operad, there is the notion
of weight, a generalisation of the word-length grading in free associative algebras:
we define the weight of a tree monomial as the number of generators used in this
tree monomial. Weight is well behaved under composition: when composing several
tree monomials, the weight of the result is equal to the sum of their weights. For an
arbitrary operad O DF .V /=.R/ whose relations R are weight-homogeneous, the
weight descends from the free operad F .V / on O ; the subcollection of O consisting
of all elements of weight k is denoted by O.k/ .

There exist several ways to introduce a total ordering of tree monomials in such a way
that the operadic compositions are compatible with that total ordering. There is also a
combinatorial definition of divisibility of tree monomials that agrees with the naive
operadic definition: one tree monomial occurs as a subtree in another one if and only
if the latter can be obtained from the former by operadic compositions. A Gröbner
basis of an ideal I of the free operad is a system S of generators of I for which
the leading monomial of every element of the ideal is divisible by one of the leading
terms of elements of S . Such a system of generators allows one to perform “long
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division” modulo I , computing for every element its canonical representative. There
exists an algorithmic way to compute a Gröbner basis starting from any given system
of generators (“Buchberger’s algorithm for shuffle operads”).

A part of operad theory, which provides one of the most useful known tools to study
homological and homotopical algebra for algebras over a given operad, is the Koszul
duality for operads (Ginzburg and Kapranov [17]). Proving that a given operad is
Koszul instantly provides a minimal resolution for this operad and gives a description
of the homology theory and, in particular, the deformation theory for algebras over that
operad, etc. There are a few general methods to prove that an operad is Koszul; one
of the simplest and widely applicable methods [12; 13] is to show that a given operad
has a quadratic Gröbner basis (as a shuffle operad); this provides a sufficient (but not
necessary) condition for Koszulness of an operad. If an operad is Koszul, it necessarily
is quadratic, that is, can be presented using only weight-homogeneous relations of
weight 2.

The operads that serve as “building blocks” for operads considered throughout this paper
are mostly well known: Com (commutative associative algebras), Lie (Lie algebras),
As (associative algebras), Leib (Leibniz algebras; Loday [25]), Zinb (Zinbiel algebras;
Loday [26]), Perm ((associative) permutative algebras; Chapoton [7]), NAP (nonas-
sociative permutative algebras (Livernet [24]), closely related to “right-commutative
magma” (Dzhumadil’daev and Löfwall [15])). All these operads are Koszul and have a
quadratic Gröbner basis.

2.4 Polynomial functors

As we said before, some of our constructions exist both in a “geometric” and a “linear”
setting, and are related to each other via the homology functor (which assigns to a topo-
logical space Y the graded cocommutative coalgebra H�.Y /). To make additional
structures transfer easily, we use basic concepts from the theory of polynomial functors.
A polynomial functor is a notion that categorifies the notion of a polynomial, and more
generally of a formal power series. Polynomial functors provide a useful uniform lan-
guage to deal with categorical constructions that have “a polynomial flavour”, eg when
computing sums and products in appropriate categories over specified sets indexing
summands/factors in a way that keeps track of the intrinsic structure of the indexing sets.

In precise words, a map of sets

(2.4.1) pW E! B

gives rise to a functor FpW Set! Set defined by the formula

(2.4.2) Fp.X /D
X
b2B

X f �1.b/:
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Here one can replace Set by another category where all the appropriate notions
make sense. These functors were referred to as polynomial functors in Moerdijk
and Palmgren [33], and are called polynomial functors in one variable in more recent
literature. For a systematic introduction to polynomial functors, we refer the reader to
the paper [23] and the notes [22] by Kock, Joyal, Batanin and Mascari that reflect the
state of the art.

3 The operad of cacti

3.1 The operad NAPY

Let Y be a set and let NAPY .n/ be the set of Y–trees with vertex set f1; : : : ; ng.
When Y is a singleton set this is just the set of rooted trees, which we denote RT.n/.
The symmetric group Sn acts on NAPY .n/ via its action on the vertex set. For a given
rooted tree the set of Y–labellings is equal to Hom.E;Y /D Y E . Since the number of
edges of a tree on fng is always n� 1, the set of Y–labellings is in turn isomorphic to
Y n�1 . Hence

(3.1.1) NAPY .n/Š
a

T2RT.n/

Y n�1:

Now let T1 2NAPY .n/ and T2 2NAPY .m/ and i 2 Œn�. We may define a composition
T1 ıi T2 2 NAPY .nCm� 1/ by first identifying the root of T2 with the vertex i in
T1 . This is a tree and may be rooted by taking the root of T1 . The edge set is equal to
the union E.T1/qE.T2/ of the edge sets of T1 and T2 and so one inherits an edge
labelling by elements of Y . It has the vertex set

(3.1.2) f1; : : : ; i � 1gq f1; : : : ;mgq fi C 1; : : : ; ng:

We then relabel the vertices by elements of ŒnCm�1� using the isomorphism that fixes
f1; : : : ; i�1g, shifts the set f1; : : : ;mg to fi; : : : ;mCi�1g and shifts fiC1; : : : ; ng to
fmCi; : : : ;mCn�1g. This gives a rooted Y–tree on the vertex set f1; : : : ; nCm�1g,
and so an element T1 ıi T2 2 NAPY .nCm� 1/.

Proposition 3.1 Let Y be a set. Then, the maps

(3.1.3) ıi W NAPY .n/�NAPY .m/! NAPY .nCm� 1/

for i D 1; : : : ; n give the collection NAPY an operad structure. The operad is generated
by its binary operations

(3.1.4)
2

1y

OO
and

1

2z

OO
for y; z 2 Y ,
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and these satisfy the quadratic relation

(3.1.5)
2

1y

OO
ı1

2

1z

OO
D

 
2

1z

OO
ı1

2

1y

OO
!
: .23/;

where .23/ is the transposition swapping the labels 2 and 3.

Proof Let T1 , T2 and T3 be Y–trees in NAPY .n1/, NAPY .n2/ and NAPY .n3/,
respectively. Let i < j 2 Œn1� and k 2 Œn2�; we must show that the two associativity
relations hold:

.T1 ıj T2/ ıi T3 D .T1 ıi T3/ ıjCn3�1 T2;(3.1.6)

T1 ıi .T2 ık T3/D .T1 ıi T2/ ıkCi�1 T3:(3.1.7)

In both cases we are gluing together trees by identifying vertices – in the first we
identify the roots of T2 and T3 with the vertices j and i of T1 , respectively – whilst
in the second the root of T2 is joined to vertex i of T1 and the root of T3 is identified
with vertex k of T2 . The only complication is that when two trees are composed their
vertices are renumbered: this change is taken into account in the right-hand side of each
equation. In both cases the edge set of the resulting tree is the union of the edge sets of
the three component trees, hence the Y–labellings on both sides of each equation are
equal. It remains to make the routine check that the vertex labels in each side of each
equation agree; this is no more complicated than the analogous check in the associative
operad.

Now we show that the operad is generated by operations of arity 2. Let T 2 NAPY .n/

be a Y–tree and let
�!
ij be a leaf of T ; let y be the label of

�!
ij . By applying a permutation

if necessary we may assume that i D n � 1 and j D n. Let T 0 be the Y–tree in
NAPY .n�1/ given by removing the edge

�����!
.n� 1/n and the vertex n. Then we have that:

(3.1.8) T D T 0 ın�1

2

1y

OO

Therefore any Y–tree may be written as compositions of trees with two vertices and a
permutation and so NAPY is generated in arity 2.

The relation (3.1.5) is to seen to hold by evaluating each side of the equation to find
the same Y–tree:

(3.1.9)
2 3

1y

@@
z

^^
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The above proposition gives quadratic relations in the binary generators; the Corollary
6.7 will show that these suffice to present the operad.

Remark 3.2 The operads NAPY are functorial in sets Y ; in fact NAP.�/.n/ is a
polynomial functor given by the map

(3.1.10)
a

T2RT.n/

E.T /! RT.n/:

Both the operad maps and the proof above work on the level of the polynomial itself,
hence for any appropriate category one may use the polynomial to give a family of
operads NAP.�/ . For instance this means that if Y is also equipped with a topology
then NAPY is a topological operad. In Section 4 we will consider the operads NAPD

where D is a graded vector space.

Remark 3.3 When Y is a single point fpg, the operad NAPY is the usual op-
erad NAP.

Let us finish this section with a few words on NAPY –algebras. One convenient way
to think of such an algebra A is via the “right regular module”, since the defining
relations say that all the operators

(3.1.11) a 7!
2

1
y
OO
.a; a0/

on A given by multiplying by a particular element a0 on the right (such a gadget is
defined for each y 2 Y and each a0 2A) commute with each other. Somewhat more
precisely, let A be an object in a closed symmetric monoidal category C , and let

(3.1.12) f W Y �C A! HomC.A;A/

be a morphism whose image is an abelian submonoid. Then A is a NAPY –algebra
in C with the structure maps given by

(3.1.13)
2

1
y
OO
.a; b/D f .y; b/.a/:

This way to approach NAPY –algebras gives a source of examples based on Perm–
algebras with a family of maps as follows.

Example 3.4 Let .A; � / be a Perm–algebra in a closed symmetric monoidal category
C , and let gW Y ! HomC.A;A/ be a family of maps (note that these maps may be
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arbitrary, not necessarily algebra homomorphisms). Then A is a NAPY –algebra in C
with the structure maps given by

(3.1.14)
2

1
y
OO
.a; b/D a �g.y/.b/:

One more observation we want to mention in this section is that the construction of the
free NAP–algebra mentioned in [24] admits an immediate generalisation to the case
of NAPY –algebras: the free NAPY –algebra in Set with the generating set V admits
a realisation as the set of Y–trees whose vertices carry labels from V , with the product
defined in the same way as we defined the composition in the operad, that is,

(3.1.15)
2

1
y
OO
.a; b/D

 
2

1
y
OO
ı1 a

!
ı2 b:

In this composition the root of b is joined to the root of a by an edge labelled by y ;
the new root is taken to be the root of a.

3.2 The operad of based cacti

Let V be a set and Y be a V–tuple of pointed sets. Let T be a Y–tree with root
r 2 V and suppose that

�!
ij is an edge of T where i ¤ r . Suppose further that

�!
ij is

labelled by the basepoint p 2 Yi . Then we say that
�!
ij is a reducible edge and that T is

reducible. Since i is not the root there is a unique incoming edge
�!
ki , which is labelled

by some y 2 Yk . We define Tij to be the Y–tree given by removing the edge
�!
ij and

adding the edge
�!
kj with the label y 2 Yk . We say that Tij is a reduction of T .

Definition 3.5 Let V be a finite set and Y be a V–tuple of pointed sets. Then the
set of based Y–cacti, BCACTY , is the set of equivalence classes of Y–trees under the
equivalence relation �, generated by T � Tij for any T with a reducible edge

�!
ij .

Now let V0 be the set V [f0g and let Y0 be the V0 –tuple given by adjoining Y0Dfpg

to the V–tuple Y. Then we define the set of Y–cacti, CACTY , to be the subset of
BCACTY0

consisting of the trees with root 0.

Remark 3.6 For each Y–cactus T 2 BCACTY , one may define the set

(3.2.1) Y.T /D v̀2V

Yv

yij � pj j
�!
ij 2E.T /

;
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where yij 2 Yi is the label of the edge
�!
ij and pj is the basepoint of Yj . Note that this

realisation is invariant across equivalences T � Tij . If each set Yi is the realisation
of a pointed, connected simplicial set then this space is homotopy equivalent to the
wedge product of the spaces Yi for i 2 V . These spaces are called cactus products
and were studied by the second author in [18]. There it was shown that the set CACTY
of such products has interesting homotopical properties: in particular if the spaces
Yi are classifying spaces for groups Gi then CACTY is a classifying space for the
Fouxe-Rabinovitch group FR.G/ of partial conjugation automorphisms of the free
product G D�i2V Gi . Here is an example of a cactus product:

(3.2.2)

Y1Y2

Y3

Y4

Y5

Note that if v is the root of the tree T then the space Yv must always be at the “base”
of the diagram. The appearance of the diagram explains the term “based Y–cactus”.
We also see the reason for adjoining a point space Y0 ; this removes the base space; the
space Y0 acts as a basepoint.

Remark 3.7 Recall that the level of a rooted tree is the number of non-trivial di-
rected paths. When

�!
ki and

�!
ij are edges of a rooted tree T , the rooted tree T 0 given

by removing
�!
ij and then adding

�!
kj has strictly lesser level. Indeed if P is the unique

path joining vertices v and w in T 0 , then there is a unique path joining v and w in T .
But the number of paths in T is strictly larger because there is a path joining i and j in
T but not in T 0 . So for any Y–tree T one may use the reductions T � Tij repeatedly
until there are no reducible edges remaining. Since the level reduces each time this
process must terminate. It is easy to check that it does not matter what order in which
the reductions T � Tij are applied because if

�!
ab and

�!
cd are two reducible edges then

.Tab/cd D .Tcd /ab . Hence for each Y–labelled tree there is a unique equivalent tree
that cannot be reduced any further. Therefore BCACTY is isomorphic to the set of
irreducible Y–trees.

Definition 3.8 Let .Y;p/ be a pointed set. For n� 1, we define the set BCACTY .n/

to be the set of based cacti on the n–tuple YD .Yi Š Y /iD1;:::;n . The action of Sn on
f1; : : : ; ng makes this into a symmetric collection.
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Theorem 3.9 Let .Y;p/ be a pointed set. The equivalence relation � generated by
reductions T �Tij is compatible with the operad maps of NAPY . Hence the collection
BCACTY has an operad structure inherited from NAPY . Furthermore the equivalence
relation � is generated as an operad ideal by the single relation below.

(3.2.3)

3

2p

OO

1y

OO D

2 3

1y
y

^^ @@

Proof Let T 2 NAPY .n/ be a Y–tree with reducible edge
�!
ij ; let T 0 2 NAPY .m/

be any other Y–tree. Then for any k 2 Œn� and l 2 Œm� the products

(3.2.4) T ık T 0 and T 0 ıl T

are both given by identifying vertices. The edge
�!
ij still exists in each product, although

it may have been relabelled, to
�!
i 0j 0 , say. The label in Y is still the point p . Furthermore

i 0 is not the root in either product so
�!
i 0j 0 is a reducible edge giving the reductions

(3.2.5) .T ık T 0/� .T ık T 0/i0j 0 and .T 0 ıl T /� .T 0 ıl T /i0j 0 :

The reductions are also closed under the symmetric actions: for � 2 Sn the edge
������!
.i�/.j�/ is reducible in T� . This shows the first part and in particular that BCACTY

is an operad.

We will now show that all reductions T �Tij are obtainable from the reduction (3.2.3).
We must show that any reducible Y–tree T , with reducible edge

�!
ij , say, is contained

in the ideal in NAPY generated by the left-hand side of (3.2.3). Let
�!
ki be the unique

edge incoming to i . By applying a permutation we may assume that k D 1, i D 2 and
j D 3. The essential idea of the proof is that since the left-hand side of (3.2.3) is a
subtree, the tree T may be written as a composition of it and other Y–trees. Removing
the edges

�!
12 and

�!
23 from T leaves three connected components; T1 contains 1, T2

contains 2 and T3 contains 3. In effect we have partitioned the edge set of T into
f
�!
12;
�!
23g, E.T1/, E.T2/ and E.T3/. Then we may express T as

(3.2.6) T D
���

T1 ı1

�
1

y // 2
p // 3

��
ı3 T3

�
ı2 T2

�
: �;

where � is a permutation relabelling the vertices.

Remark 3.10 The Corollary 6.7 to Theorem 6.6 states that NAPY is binary quadratic.
Along with the theorem above, this shows that BCACTY is also binary quadratic.
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In the spirit of how we approached NAPY –algebras, a BCACTY –algebra in a sym-
metric monoidal category C is a NAPY –algebra enriched in C where the operation

2

1p

OO

is associative and

(3.2.7) f

 
y;

2

1p

OO
.a; b/

!
D f .y; a/ ıf .y; b/:

3.3 The topological operad BCACTY

The construction BCACTY is functorial in the pointed set Y , that is, there is a functor
BCACT.�/ from the category of pointed sets to the category of operads. Now let Y�
be a pointed simplicial set: this may be defined as a simplicial set Y� with a map from
the terminal simplicial set, fpg� , consisting of a singleton set in each dimension, or
equivalently as a simplicial object in the category of pointed sets. By the functoriality of
BCACT.�/ , defining .BCACTY /i D BCACTYi

for i � 0, we have a simplicial operad
BCACTY� . Just as a simplicial associative monoid is, equivalently, an associative
monoid in the category of simplicial sets, the simplicial operad BCACTY� can be
thought of as an operad in the category of simplicial sets. Thus there is a geometric
realisation of BCACTY� as a topological operad. The same arguments apply to the
operad NAPY� for Y� a simplicial set.

Recall that the direct product X��Y� of two simplicial sets is defined by .X��Y�/i D

Xi�Yi and that the geometric realisation preserves finite direct products, so jX��Y�jŠ

jX�j � jY�j. Hence geometric realisation is compatible with polynomial functors and
so jNAPY� j Š NAPjY�j . The face and degeneracy maps preserve the set of relations
T � Tij , so for a pointed simplicial set Y� , there is a map of simplicial operads,
NAPY� ! BCACTY� . Note that geometric realisation also preserves colimits, since it
is left adjoint to the total singular complex functor. The simplicial set BCACTY� can
be written as a colimit of finite direct products of Y� , which means that as topological
operads, jBCACTY� j Š BCACTjY�j .

3.4 The fundamental groupoid of BCACTY

For a pointed connected simplicial set Y� , the inclusion of simplicial sets fpg�! Y�
gives inclusions NAPfpg� ! NAPY� and BCACTfpg� ! BCACTY� . In the first case
NAPfpg� is isomorphic to the discrete simplicial operad NAP. For each element T
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of NAP.n/ there is a subsimplicial set NAPT
Y�
Š Y n�1
� consisting of labellings of the

rooted tree T . Thus the discrete simplicial operad NAP picks out a single point in each
connected component of NAPY . Using these points we may compute the fundamental
groupoid �1.jNAPY�.n/jINAP.n// to be a disjoint union of groups .�1.jY�j;p//

n�1 ,
one for each tree T 2 NAP.

For the cacti, the operad BCACTfpg� is isomorphic to the discrete simplicial operad
Perm for permutative algebras. In arity n, Perm.n/ has n elements; as irreducible
rooted trees these are the corollas, with every non-root vertex adjacent to the root. The
simplicial set BCACTY�.n/ is the disjoint union of simplicial sets BCACTv

Y�
.n/ for

v D 1; : : : ; n, where BCACTv
Y�
.n/ consists of those rooted trees with root v ; note that

equivalences T � Tij preserve the root.

Proposition 3.11 Let Y� be a pointed connected simplicial set. Then the space
BCACT1

Y�
.n/ is connected, and its fundamental group is presented by generators ˛g

ij

for i D 1; : : : ; n, j D 2; : : : ; n, with i ¤ j and g 2 �1.jY�j;p/, along with relations

˛
g
ij˛

h
ij D ˛

gh
ij ;(3.4.1) �

˛
g
ij ; ˛

h
ik

�
D e;(3.4.2) �

˛
g
ij ; ˛

h
kl

�
D e;(3.4.3) �

˛
g
ij˛

g

ik
; ˛h

jk

�
D e;(3.4.4)

for distinct i , j , k , l .

Proof Since BCACT.�/ is a functor from pointed sets, it not only takes simplicial
sets to simplicial operads, but also takes homotopies to homotopies, so it preserves
homotopy equivalences. To compute the fundamental group, replace the simplicial
set Y� with a minimal Kan subcomplex K� of S.jY�j/, the total singular complex of
the geometric realisation of Y� . For details, see May [30]: the properties we require
are (a) that K0 is a singleton set, (b) that K1 Š G WD �1.jY�j/ and (c) that for any
pair g; h 2G there exists some �.g;h/ 2K2 with boundary edges .g;gh; h/, and that,
conversely, any 2–simplex has boundary edges of this form.

Changing Y� to K� does not change the homotopy groups because the geometric
realisations will be homotopic:

(3.4.5) jBCACTY� j Š BCACTjY�j ' BCACTjK�j Š jBCACTK� j:

The isomorphisms hold because geometric realisation preserves finite products and
colimits, and the middle homotopy comes from jY�j ' jK�j.
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Since K0 is a singleton set, we have .BCACTK�/0 Š BCACTfpg , which, as we
have seen, is isomorphic to the discrete operad Perm. Hence the simplicial set
BCACT1

K�
.n/� has only a single point corresponding to the corolla with root 1 and

adjacent elements 2; : : : ; n, and so it is connected.

The fundamental group of BCACT1
K�
.n/� has a group presentation with generators

the set of edges BCACT1
K�
.n/1 and relations given by the triangles BCACT1

K�
.n/2 .

The set of edges consists of equivalence classes of G –labelled trees. Each class may
be represented by a unique irreducible tree. The set of triangles consists of equivalence
classes of K2 –labelled trees, and again each class may be represented by a unique
irreducible tree. We will denote by ˛.ge/e2T

T
the generator given by the rooted tree T

with the given G –labelling, .ge/e2T .

Now consider a rooted tree T with labelling .�e/e2T . This corresponds to a triangle in
BCACT1

K�
.n/2 . Write .ge;gehe; he/ for the boundary edges of each �e . The relation

represented by this triangle is

(3.4.6) ˛
.gehe/e2T

T
D ˛

.ge/e2T

T
: ˛

.he/e2T

T
:

Note that we did not require any of the labelled trees to be irreducible. The rela-
tions (3.4.6) along with the equivalences given by � present the fundamental group
�1.jBCACT1

K�
.n/�j/. Since for any pair of group elements .g; h/2G�G , there exists

some � 2K2 with boundary edge set .g;gh; h/, the set of distinct relations (3.4.6) is
parametrised by G �G –labellings of T .

For distinct i; j with j ¤ 1, let
T ij

be the tree with an edge
�!
ij and remaining edges of the form

�!
1m. If i D 1 then T ij is

a corolla. For distinct i; j ; k and j ; k ¤ 1, let

Vijk

be the tree with edges
�!
ij ,
�!
ik and remaining edges of the form

�!
1m, and let Iijk be

the tree with edges
�!
ij ,
�!
j k and remaining edges of the form

�!
1m. Again if i D 1, then

Vijk is a corolla, but Iijk D T jk . Finally, for distinct i; j ; k; l and j ; l ¤ 1, let T ijkl

be the tree with edges
�!
ij and

�!
kl with remaining edges of the form

�!
1m. If i D k D 1

then T ijkl is a corolla, while if i D 1, k ¤ 1, we have T ijkl D T kl .

For every tree T with root 1, the set of relations (3.4.6) of the form ˛
.ge;he/
T

presents
the direct product of n� 1 copies of G : one copy for each edge of T . To identify the
presentation in the statement of the proposition with �1.jBCACT1

K�
.n/�j/, we identify

˛
g
ij with ˛.g

ij
e /

T ij , where .gij
e /e2T ij is the labelling that is the identity for all edges
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except
�!
ij , which is labelled by g . We use the notation .gij

e /e2T when we have a tree
labelling with only one non-trivially labelled edge

�!
ij .

The set of relations (3.4.6) coming from trees T ij includes the relations (3.4.1). The
set of relations (3.4.6) coming from Vijk ensure that the relations (3.4.2) are satisfied,
and the tree T ijkl corresponds to the relations (3.4.3). Finally we look at the trees
Iijk : the G �G –labellings ensure that commutation relations are satisfied, ie

(3.4.7)
�
˛

.g
ij
e /

Iij k ; ˛
.h

j k
e /

Iij k

�
:

If i D 1, then ˛.h
j k
e /

Iij k is equal to ˛h
jk

. If i ¤ 1, then it is reducible along the edge
�!
ij ;

the reduction removes this edge and replaces it with
�!
1j , labelled with the identity, so

one still gets ˛h
jk . Whether i is equal to 1 or not, the element

˛
.gij

e /

Iij k

is reducible along the edge
�!
j k . When reducing, the edge

�!
j k is removed and replaced

by
�!
ik , leaving the tree Vijk . However in this case the edge

�!
ik inherits the label g

from
�!
ij . But recall that Vijk corresponds to a direct product, allowing us to write this

reduced tree as the product of two trees, each with a single label of g :

(3.4.8) ˛
.g

ij
e /

Iij k D ˛
.g

ij
e /

Vij k : ˛
.gik

e /

Vij k :

But these last two elements have reducible edges,
�!
ik and

�!
ij , respectively; reducing

along these, we have

(3.4.9) ˛
.g

ij
e /

Iij k D ˛
g
ij : ˛

g

ik
;

meaning that (3.4.7) becomes the relation (3.4.4).

This accounts for all the generators and relations in the smaller presentation. We now
show that with the exception of the trees

T ij ; Vijk ; Iijk and T ijkl ;

the generators and relations (3.4.6) associated to a tree T may be written in terms
of the smaller presentation; they are not needed. In fact we show that for a tree T

with three of more edges not emanating from the root 1, the generators ˛.ge/
T

can be
rewritten as trees of strictly lower level, and the relations ˛.ge;he/

T
may be rewritten in

terms of relations of lower level. This will complete the proof.

So let T be such a tree, with edges
�!
ij ,
�!
kl and �!pq for which i; k;p ¤ 1. The

generators and relations associated to labellings of T present a direct product of n� 1
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copies of G . To start, we replace this presentation with the subset of generators with
labellings that are only non-trivial on one edge, ie the factors of the direct product. We
choose a subset of relations consisting of G �G–labellings of T that are non-trivial
on no more than two edges; this includes the relations in individual factors and the
commutation relations between pairs of factors. These generators and relations present
the same direct product. Now given any such generator or relation, one of the three
edges

�!
ij ,
�!
kl , �!pq must be trivially labelled; let us choose

�!
ij . Reducing along this

edge we get the reduced tree Tij , which has strictly lower level, so if we started with a
generator we have written the generator in terms of lower level trees, and if we start
with a relation, this relation still holds in the direct product associated to Tij .

Since BCACTY� is a simplicial operad with a suboperad BCACTfpg� of points, the
fundamental groupoid �1.jBCACTY� j;BCACTfpg�/ is an operad in groupoids. To
give the composition maps, we need only describe the compositions on the generating
morphisms. In fact since we have g ıi hD .g ıi e/ � .e ıi h/ we need only describe the
compositions of generators with identity maps.

Proposition 3.12 Let .Y�;p/ be a connected pointed simplicial set and let G be its
fundamental group. The operad structure on �1.jBCACTY� j;BCACTfpg�/ is given on
generating morphisms as follows: let ˛g

ij 2 BCACTG.n/r and e 2 BCACTG.m/s be
the identity morphism. For a 2 Œm�, define i 0 D i C a� 1 and j 0 D j C a� 1; then
we have

(3.4.10) e ıa ˛
g
ij D ˛

g
i0j 0 :

For b 2 Œn�, define i 00 to be i if i < b , to be i Cm� 1 if i > b and i C s� 1 if i D b ;
define j 00 similarly. For each l 2 Œm� define l 00 to be l C b� 1. Then we have

(3.4.11) ˛
g
ij ıb e D

8̂<̂
:

mQ
lD1

˛
g

i00l 00
if b D j ,

˛
g
i00j 00 otherwise.

Proof Let T
ij
r be the tree with root r , the edge

�!
ij and .n� 2/ edges

�!
rk (if i D r

then this is a corolla). Then ˛g
ij is represented by the tree

T ij
r

with
�!
ij labelled by g 2 G . Let Cs be the corolla with root s and m� 1 edges

�!
sk .

When all of the edges are labelled by the identity e 2G then this represents the identity
e of BCACTG.m/s .
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To compute e ıa ˛
g
ij we compose trees to get Cs ıa T

ij
r and then reduce as follows.

The unique labelled edge
�!
ij of T

ij
r is a leaf and hence it is also a leaf of

Cs ıa T ij
r ;

although now the edge is
��!
i 0j 0 . Since it is a leaf it reduces to ˛g

i0j 0 as required.

To compute ˛g ıb e is a little more complicated as it depends on the value of b . If
b ¤ j then the leaf

�!
ij

is still a leaf of T
ij
r ıb Cs and so the same argument applies to give the reduction to

˛
g
i00j 00 . However if b D j then the tree consists of the edge

��!
i 00j 00;

another n�2 edges emanating from the root and m�1 edges
��!
j 00l 00 . The only labelled

edge is
��!
i 00j 00

and the set Aij of vertices “above i ” consists of the vertex j 00 D s00 and the vertices
l 00 for each edge

�!
j l 2 Cs . Repeated reductions yield a tree T with edges

��!
i 00l 00

for l D 1; : : : ;m labelled by g and all other edges joined to the root. Now this element
may be rewritten as a product of n elements corresponding to labellings of T with a
single edge

��!
i 00l 00

labelled by g . Reducing each of these elements gives a generator ˛g

i00l 00
and hence the

required result.

Remark 3.13 The groups BCACTG.n/r act faithfully on the free product G�n . We
will write this free product as G1 � � � � �Gn where each group is isomorphic to G in
order to distinguish between different factors. The element ˛g

ij acts on the factors as
follows:

(3.4.12) ˛
g
ij .h/D

�
hg�1

i if h 2Gj and where gi D g in Gi ,
h if h 2Gk for k ¤ j .

In [18] the closely related spaces of unbased cacti CACTY were studied, and it was
shown that when Yi is a classifying space for Gi then CACTY is itself a classifying

Algebraic & Geometric Topology, Volume 14 (2014)



Cacti and filtered distributive laws 3203

space for a certain group of automorphisms. As a consequence of Theorems 4.6
and 6.12, we see that

(3.4.13) H�.BCACTY�/Š Perm ıNAPH �.Y /;

whereas in [18] it is shown that

(3.4.14) H�.CACTY�/Š Com ıNAPH �.Y /:

This last isomorphism could also be shown using the methods of reduction used in this
paper, although CACTY� is not an operad.

3.5 Relationships with other topological operads

The pure braid group on n strands, Pn , is known to be a subgroup of the group
P†n Š �1.CACTS1.n// of partial conjugations of the free group on n letters. This
inclusion may be realised by a construction involving cacti. In Kaufmann [20] various
(quasi-)operads of cacti are discussed; these are different from the operad BCACTS1

in that the cacti are planar and unbased. We will take PlCACT to be the spineless and
normalised varieties of cacti from [20]. This quasi-operad is quasi-isomorphic to the
little discs operad, and so in particular the fundamental group �1.PlCACT.n// is the
pure braid group Pn . There is an Sn –equivariant map

(3.5.1) PlCACT.n/! CACTS1.n/

defined by the map that forgets the planar structure of a planar cactus, leaving a cactus
product of circles as defined in (3.2.1); on fundamental groups this gives the inclusion
Pn ! P†n . The operad compositions of BCACTS1 and PlCACT are not closely
related; this may be seen by examining the homology operads that are BCACTH�.S1/ ,
as defined in the next section and the Gerstenhaber operad e2 .

However both families of cacti are related by a third operad, which “contains” both. Let
LR.n/ be the space of smooth, disjoint embeddings of n copies of the filled in torus,
or ring RD S1 �D2 into itself – this is naturally an operad. The little discs operad
consists of disjoint embeddings of copies of a disc D2 into itself and can be mapped
into the little rings operad LR by applying idS1 � .�/ to the embeddings. The image
of the little discs operad involves little rings which wind around the large ring once.
Meanwhile the operad BCACTS1 is related to the connected components of embeddings
in which one little ring, the root, winds around the large ring once; the remaining rings
do not wind around the large ring and all of the rings are unknotted and unlinked. The
fundamental groups of these connected components contain �1.BCACTS1/ŠBCACTZ

as a suboperad. There are additional elements not in the suboperad given by little rings
circling through the large ring along with smooth endomorphisms of R.
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4 The homology operads

So far we have described operads NAPY and BCACTY in the “geometric” setting.
Both families also have versions existing in the “linear” setting, so for any graded vector
space D there exists an operad NAPD , whereas in the case of the based cacti there
is a subtlety: we require a graded augmented cocommutative coalgebra C to define
BCACTC . The “geometric” and “linear” versions are closely related via the homology
functor, which sends a simplicial set to its homology groups with coefficients in the
base field k. In this section, we shall describe these operads via constructions with
decorated rooted trees, and later in Section 6, we shall describe them via generators and
relations, and show that in fact each of them has a quadratic Gröbner basis of relations.

4.1 The linear operad NAPD

Let D be a graded vector space (over some field k). Recall that in (3.1.1) we described
NAPY .n/ as disjoint union of direct products of copies of Y . Then in Remark 3.2 we
gave a map of sets (3.1.10) realising NAPY .n/ as a polynomial functor in Y . Let D

be a graded vector space and define NAPD via the same polynomial functor in the
category of graded vector spaces:

(4.1.1) NAPD.n/D
M

T2RT.n/

D˝.n�1/:

Equivalently, NAPD.n/ is the vector space spanned by rooted trees with vertex set Œn�
and edge labels in D , subject to linearity in each edge label.

The set based description of the NAPY operad works on the level of polynomial
functors and so suffices to show that NAPD is an operad. However great care must
be taken to keep track of the signs induced by the symmetry � from the symmetric
monoidal category .gVect;˝; �; k/ of graded vector spaces. In order to do this we must
assign for each term D˝n�1 in the sum (4.1.1) a reference ordering of the factors. This
requires assigning to each tree T 2 RT.n/ a total ordering on the set of edges E.T /.
Let T be such a tree and let i be its root. Since each vertex has a unique incoming
edge except for the root which has none, the set of edges E.T / is in bijection with
the set of non-root vertices Œn�� i . We take the ordering of E.T / from the natural
ordering of Œn�� i . So for instance the pair

(4.1.2)

0BB@
2 3

1

AA]]

4

OO ; x˝y˝ z

1CCA represents the Y–tree

2 3

1z

??
y

__

4
x
OO

:
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The order of x;y and z in the tensor product is determined by the order of the edges.

The first step in giving the operad structure is to describe the action of the symmetric
group Sn on NAPD.n/. For instance applying the permutation .24/ to the Y–tree
considered in (4.1.2), we get:

.24/ :

0BB@
2 3

1

AA]]

4

OO ;x˝y˝ z

1CCA D
0BB@

3 4

1

AA]]

2

OO ; .23/x˝y˝ z

1CCA(4.1.3)

D .�1/jyjjzj

3 4

1y

@@
z

^^

2
x
OO

The signs involved in the composition T ıi T 0 for T 2NAPD.n/ and T 0 2NAPD.m/

are more easily accounted for. This is because the edges within the right-hand tree T 0

are not reordered within T ıi T 0 and so the sign depends on the total degree jT 0j and
not on the individual edges. The edges of T 0 are “moved past” the edges

�!
j k 2E.T /

for which k > i . Hence if yjk is the labelling of
�!
j k , the sign change is given by

(4.1.4) .�1/
jT 0j
�P
�!
j k2E.T /jk>i

jyj k j

�
:

Proposition 4.1 The homology operad H�.NAPY�/ with coefficients in the base field
k is isomorphic to the linear operad NAPH�.Y / .

Proof With field coefficients, the homology functor H� from simplicial sets to graded
vector spaces sends direct products to tensor products and preserves coproducts, and so
is compatible with polynomial functors. The explicit expression of this is

(4.1.5) H�
�
NAPY .n/

�
ŠH�

� a
T2RT.n/

Y E.T /
�
Š

M
T2RT.n/

H�.Y /
˝E.T /:

4.2 The linear operads of based cacti

Let C be an augmented cocommutative coalgebra and write its splitting as k 1˚C .
The operad BCACTC will be a quotient of the operad NAPC ; this is a parallel of the
set-based versions. Let T 2 NAPC be a C–labelled rooted tree and suppose that it has
an edge

�!
ij with the label 1, and suppose further that i is not the root of T ; as before,

we will call the edge
�!
ij reducible. Let k be the unique vertex such that

�!
ki is an edge

and let c be the label of
�!
ki . We define T 0 to be the unlabelled rooted tree created by
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removing the edge
�!
ij and replacing it by

�!
kj , and denote by T 0.a; b/ the edge labelled

rooted tree based on T 0 where the edge labels are inherited from those of T except for
�!
ki , which is labelled by a, and

�!
kj , which is labelled by b . Finally we define Tij to

be the sum

(4.2.1)
X

.�1/jc.2/jg T 0.c.1/; c.2//;

where g is the sum of degrees

(4.2.2)
X

�!
xy j i<y<j

jaxy j

and axy is the label of the edge �!xy . The sign is given by the moving of the label c.2/

from being adjacent to c.1/ as in �.c/D
P

c.1/˝c.2/ to being in the relevant position
to label the edge

�!
kj . As before Tij is called the reduction of T at the reducible edge

�!
ij and just as before each C–tree reduces to a unique irreducible C–tree.

Definition 4.2 The graded vector space of linear based C–cacti, BCACTC , is defined
by factoring out from NAPC the relations

(4.2.3) T �Tij D 0

for trees T with an edge
�!
ij labelled by 1 where i is not the root.

The graded vector space of irreducible C–trees and hence BCACTC is given by

(4.2.4) BCACTC .n/Š
M

T2RT.n/

� O
����!
r.T /j2E.T /

C

�
˝

� O
�!
ij 2E.T /;
i¤r.T /

C

�
;

where r.T / is the root of T . Using the splitting C D k 1˚C , we may rewrite this as
a polynomial expression in C . There is a convenient way of indexing this polynomial;
rather than using irreducible C–trees, where an outgoing edge

�!
rj from the root r could

be labelled by 1, we cut the edges
�!
rj labelled by 1 to leave a labelled forest, each

component tree has a root, the corresponding j , and there is a chosen component tree,
the tree containing r . Let PF� be the set of planted forests with a chosen tree. Then
we may rewrite (4.2.4) as

(4.2.5) BCACTC .n/Š
M

F2PF�.n/

C˝E.F /:

Remark 4.3 Although this is a polynomial functor in C with a similar diagram to
(3.1.10), the operad maps are not maps of polynomials: indeed, the diagonal map of C
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is used. A similar polynomial description of BCACTY holds when Y is a set; however,
this involves “splitting” the chosen point of Y and so this only works for a pointed
simplicial set when the point is disconnected.

Proposition 4.4 The linear subspace of NAPC generated by relations of the form
T �Tij D 0 is an operadic ideal and so BCACTC is an operad as a quotient of NAPC .
Furthermore the ideal is generated in arity 3 by

(4.2.6)

3

21

OO

1c

OO �

X 2 3

1c.2/

c.1/

aa ==
D 0:

Proof This is the linear analogue of Theorem 3.9, and the same method applies.

Example 4.5 Let us give explicit presentations for the operads BCACTC for the two
simplest non-trivial choices of C . For the split two-dimensional coalgebra k˚ k, we
denote by �0 and �1 its elements corresponding to the two points of Y , and observe
that the following identities hold in every algebra over BCACTk˚k :

.a �0 b/ �0 c D a �0 .b �0 c/;(4.2.7)

.a �0 b/ �0 c D .�1/jbjjcj.a �0 c/ �0 b;(4.2.8)

.a �0 b/ �1 c D .�1/jbjjcj.a �1 c/ �0 b;(4.2.9)

.a �1 b/ �1 c D .�1/jbjjcj.a �1 c/ �1 b;(4.2.10)

a �1 .b �0 c/D .a �0 b/ �0 c:(4.2.11)

For the exterior coalgebra ƒkhxi of a one-dimensional space, we denote by � and � its
elements corresponding to 1 and to the primitive element x respectively, and observe
that the following identities hold in every algebra over BCACTƒkhxi :

.a � b/ � c D a � .b � c/;(4.2.12)

.a � b/ � c D .�1/jbjjcj.a � c/ � b;(4.2.13)

.a � b/ � c D .�1/jbjjcj.a � c/ � b;(4.2.14)

.a � b/ � c D .�1/1Cjbjjcj.a � c/ � b;(4.2.15)

a � .b � c/D .a � b/ � cC .a � b/ � c:(4.2.16)

Theorem 4.6 For Y� a pointed simplicial set, the homology operad of BCACTY� is
isomorphic to the linear operad BCACTH�.Y / .
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Proof The homology functor respects products and coproducts and hence polynomial
functors; this is how we see that H�.NAPY�/ Š NAPH�.Y / . However, the cactus
operad BCACTY� is not given by a polynomial functor. We have also seen that
the process of reduction can be applied to BCACTC for C a graded coaugmented
commutative coalgebra. One might hope to apply the chain complex functor C� to Y� ;
however, C� is not monoidal and so C�.Y / is not necessarily a coalgebra. Instead we
proceed via simplicial vector spaces.

The vector space with basis Y� is a simplicial object kY� in the category of vector spaces.
The functor from simplicial sets to simplicial vector spaces is monoidal, where the tensor
product of simplicial vector spaces A� and B� is given by .A�˝B�/i D Ai ˝Bi .
Hence kY� is a coaugmented cocommutative coalgebra and splits as k 1�˚kY� ,
where k 1� is a one-dimensional vector space in each degree. Thus we may form the
vector space of kY�–labelled rooted trees and say that such a tree T is reducible if an
edge

�!
ij , for i not the root, is labelled by an element of k 1� . By using the coproduct,

we may define the reduced tree Tij and by adding in the relation T � Tij we may
form the space BCACTkY� of kY�–labelled trees. This is isomorphic to kBCACTY� ;
all the relations are just the linearisation of the setwise reductions T � Tij . However
in the linear world there is the splitting k 1˚kY� and so kBCACTY�.n/ splits as

(4.2.17)
M

T2RT.n/

� O
����!
r.T /j2E.T /

kY�

�
˝

� O
�!
ij 2E.T /;i¤r.T /

kY�

�
:

Taking the homology we now have a splitting with terms

(4.2.18) H�

�� O
����!
r.T /j2E.T /

kY�

�
˝

� O
�!
ij 2E.T /;
i¤r.T /

kY�

��
:

Since we are working over a field k we may apply the Künneth formula to find

(4.2.19) H�.BCACTY�.n//

Š

M
T2RT.n/

� O
����!
r.T /j2E.T /

H�.Y�/
�
˝

� O
�!
ij 2E.T /;
i¤r.T /

H�.kY�/
�
:

This is isomorphic to BCACTH�.Y / as a vector space. That these are isomorphic as
operads is immediate because both cacti operads are defined as quotients of NAP
operads.

Remark 4.7 (1) In the linear setting, the formula (3.1.13) (and its particular case
(3.1.14)), as well as (3.1.15), work without any changes (except for signs that one
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should carefully trace), while the formula (3.2.7) should be adapted into

(4.2.20) f

 
c;

2

11

OO
.a; b/

!
D

X
f .c.1/; a/ ıf .c.2/; b/:

(2) Since, when C D H�.Y /, the operad BCACTC is the homology operad of a
topological operad, it should not be surprising at all that for every coalgebra C the
operad BCACTC is a Hopf operad (Getzler and Jones [16], and Moerdijk [32]), which
essentially means that algebras over it form a tensor category. Its diagonal map coincides
with the diagonal of the coalgebra C on the space of generators:

(4.2.21) �

 
2

1c

OO
!
D

X 2

1c.1/

OO
˝

2

1c.2/

OO

Let us conclude this section with an example of a “smallest nontrivial algebra” over a
linear operad of based cacti.

Example 4.8 Let Y be the (pointed) two-element set f0; 1g so that C DH�.Y / is
the split two-dimensional coalgebra k˚k. As we know from Example 4.5, the product
�0 defines a Perm–algebra, and the product �1 defines an NAP–algebra, and there are
compatibility relations between them. In every one-dimensional BCACTC –algebra, the
Perm–product is commutative, and the NAP–product is associative, so they are very
degenerate, and the first nontrivial example should be at least two-dimensional. One
can easily check that a two-dimensional noncommutative Perm–algebra is necessarily
isomorphic to the algebra AD fa; bg with multiplication table

a �0 aD a;(4.2.22)

a �0 b D b �0 b D 0;(4.2.23)

b �0 aD b:(4.2.24)

Furthermore, to define a BCACTC –algebra structure on A, one should choose a 2�2–
matrix p with p2 D p , and put

a �1 aD p11aCp12b;(4.2.25)

b �1 aD p21aCp22b;(4.2.26)

a �1 b D b �1 b D 0:(4.2.27)
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One particular example will be obtained if we put pD
�

0 0
0 1

�
, so that the NAP–product

in this algebra is given by

a �1 aD a �1 b D b �1 b D 0;(4.2.28)

b �1 aD b:(4.2.29)

This product is “nontrivial” enough: it has a noncommutative Perm–product, a nonas-
sociative NAP–product, and moreover it does not fit into the series of algebras defined
in Example 3.4 (since we have a �1 aD 0 but b �1 aD b ¤ 0).

5 Filtered distributive laws

5.1 Filtered distributive laws between quadratic operads

Assume that A DF .V /=.R/ and B DF .W /=.S / are two quadratic operads. For
two subcollections U1 and U2 of the same operad O , let us denote by U1 �U2 the
subcollection of O spanned by all elements � ıi  with � 2U1 ,  2U2 . We shall
now describe a way to define quotients of F .V ˚W / of a particular type. For any
S–module mappings

sW R!W �V ˚V �W ˚W �W ;(5.1.1)

d W W �V ! V �W ˚W �W ;(5.1.2)

one can define a quadratic operad E with generators U D V ˚W and relations
T DQ˚D ˚S , where

(5.1.3) Q D fx� s.x/ j x 2Rg; D D fx� d.x/ j x 2W �V g:

Informally, we join generators of A and B together, keep the relations of B , deform
relations of A , adding to them “lower terms” of degree at most 1 in generators of A ,
and impose a rewriting rule transforming W � V into a combination of terms from
V �W and “lower terms” of degree 0 in generators of A . Note that using the rewriting
rule x 7! d.x/, one can replace s by

(5.1.4) s0W R! V �W ˚W �W ;

and from now on we shall denote by s that modified mapping.

Assume that the natural projection of S–modules � W E � A splits (for example, it is
always true in characteristic zero, or in arbitrary characteristic whenever the relations
of A remain undeformed, including the case of usual distributive laws). Then the
composite of natural mappings

(5.1.5) F .V / ıF .W / ,!F .V ˚W /� F .V ˚W /=.T /
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gives rise to a surjection of S–modules

(5.1.6) �W A ıB � E :

Definition 5.1 We say that the mappings s and d above define a filtered distributive
law between the operads A and B if � W E � A splits, and the restriction of � to
weight-3 elements

(5.1.7) �3W .A ıB/.3/! E.3/

is an isomorphism.

The following result (generalising the distributive law criterion for operads that was
first stated in Markl [29]) was proved in Dotsenko [10] using the set operad filtration
method of Khoroshkin [21], and in Vallette [35] using a filtration on the Koszul complex;
however, both proofs rely on the Künneth formula for symmetric collections and thus
are not available in positive characteristic because in that case the group algebras kSn

are not semisimple.

Theorem 5.2 Assume that the operads A and B are Koszul, and that the mappings
s and d define a filtered distributive law between them. Then the operad E is Koszul,
and the S–modules A ıB and E are isomorphic.

Proof Let us first note that either of the characteristic zero proofs mentioned above
(set operad filtration, filtration on the Koszul complex) works in the category of shuffle
operads for arbitrary characteristic, since Künneth formula over a field is always
available. Also, a symmetric operad O is Koszul if and only if it is Koszul as a shuffle
operad, which proves the first statement of the theorem. To prove the second statement,
we observe that in the category of nonsymmetric collections we have an isomorphism
E f 'A f ısh Bf ' .A ıB/f , and in the symmetric category we have a surjection
A ıB � E . Since the forgetful functor from the category of symmetric collections
to the category of nonsymmetric collections is one-to-one on isomorphism classes of
objects, that surjection has to be an isomorphism.

Example 5.3 The following filtered distributive law was discussed by the first author
in [10], as related to Gelfand–Varchenko algebras of locally constant functions on the
complement to a hyperplane arrangement; unlike all other results of this paper, it is
only available in characteristic zero. It is well-known that the associative operad admits
an alternative description as an operad generated by a symmetric binary operation �? �
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and a skew-symmetric binary operation Œ � ; � � that satisfy the relations

Œa; Œb; c� �C Œb; Œc; a� �C Œc; Œa; b� �D 0;(5.1.8)

Œa? b; c�D a? Œb; c�C Œa; c� ? b;(5.1.9)

.a? b/ ? c � a? .b ? c/D Œb; Œa; c� �:(5.1.10)

If we put V D span. �? � /, W D span.Œ � ; � �/, and consider the operads A D Com and
B D Lie,

s..a? b/ ? c � a? .b ? c//D Œb; Œa; c� �;(5.1.11)

d.Œa? b; c�/D a? Œb; c�C Œa; c� ? b;(5.1.12)

then there are no additional relations in weight 3, and in characteristic zero the projection
As � Com splits, therefore the associative operad is built from Com and Lie via
a filtered distributive law. Thus we obtain a yet another proof of the Koszulness of
the associative operad, and also recover that, as an S–module, it is isomorphic to
Com ıLie.

5.2 Filtered distributive laws and Koszul duality

An easy linear algebra exercise shows that if E is obtained from A and B via the
mappings s and d as above, then the Koszul dual operad E ! is similarly obtained
from B! and A ! . The following result shows that the notion of a filtered distributive
law agrees very well with the Koszul duality theory for operads (which our previous
example – being Koszul self-dual – did not quite manifest).

Theorem 5.4 Assume that the operad E is obtained from the binary quadratic operads
A and B via a filtered distributive law. Then its Koszul dual E ! is obtained from B!

and A ! by a filtered distributive law as well whenever the projection E ! � B! splits.

Proof If both operads A and B are Koszul, then E is Koszul, and this gives us
enough information to complete the proof; see [10] for details. Let us give a proof in
the case of arbitrary A and B to show a yet another application of methods developed
in [13].

Let us define an ordering on tree monomials in the free shuffle operad generated
by V f ˚W f in the following way. For two tree monomials, we first compute the
number of generators from V f used in each of them; if for one of them that number is
greater than for the other, we say that monomial is greater than the other. Otherwise,
we compare tree monomials using the lexicographic ordering on paths (Dotsenko and
Khoroshkin [12], and Dotsenko and Vejdemo-Johansson [14]). This way we can be
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sure that the leading monomials of Rf , tree monomials spanning W f �V f and the
leading monomials of S f , are the leading monomials of the defining relations of E .

Since the S–module E is a quotient of A ıB , the distributive law condition ensures
that the set of weight-3 leading monomials of the reduced Gröbner basis of E f is the
union of the set of weight-3 leading monomials of the reduced Gröbner basis of A f

and the set of weight-3 leading monomials of the reduced Gröbner basis of Bf : the
presence of “mixed” leading monomials would make E.3/ smaller than its natural upper
bound .A ıB/.3/ . In other words, all S–polynomials [12] of weight 3 of E f are
either S–polynomials of A f or S–polynomials of Bf .

The above description of leading monomials of the reduced Gröbner basis means that we
have the full information on the part of the free resolution of E f consisting of elements
of weight at most 3, and a simple description of the homology classes of the bar
complex of E f up to weight 3. From [13], we know that generators of a free resolution
of E f can be constructed in terms of “overlaps” of leading monomials of the reduced
Gröbner basis of E f . Such generators of weight 2 are precisely the leading monomials
of the defining relations, whereas the generators of weight 3 are either overlaps of pairs
of leading monomials of defining relations or leading monomials of weight-3 elements
of the reduced Gröbner basis. The differential induced on the space of the generators of
that free resolution can be computed as follows. If an overlap of two leading monomials
of defining relations produces, according to Buchberger’s algorithm [12], a nontrivial
S–polynomial, the differential maps the generator corresponding to that overlap to the
generator corresponding to the leading term of the respective S–polynomial. Otherwise,
the differential maps the corresponding generator to zero. Together with the information
on S–polynomials of E f that we have, this means that up to weight 3 the homology of
the bar complex of E f is isomorphic to the shuffle composition of the corresponding
homology for Bf and A f . Since the Koszul dual operads are dual to the diagonal parts
of the bar homology, our statement follows in the shuffle category. In the symmetric
category, we observe that because of the splitting of E ! � B! , there is a surjection
B! ıA ! � E ! , and its bijectivity in weight 3 in the shuffle category implies bijectivity
in the symmetric category as well.

5.3 Operadic Künneth formula

We conclude this section with a general observation, which appears to be useful for
transferring statements of the characteristic zero operad theory in positive characteristic.
If one examines the proof of Theorem 5.2 carefully, it becomes obvious that it works
because of the following statement, a particular case of the operadic Künneth formula
[28], which is valid over any ground field k.
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Theorem 5.5 Let M and N be two reduced differential graded S–modules. Then

(5.3.1) H�.M ıN /'H�.M / ıH�.N /:

Proof Let us note that there is a natural map

(5.3.2) �W H�.M / ıH�.N /!H�.M ıN /:

Our strategy is to apply the forgetful functor, and prove that

(5.3.3) �f
W .H�.M / ıH�.N //f ! .H�.M ıN //f

is an isomorphism in the shuffle category. Since the forgetful functor is one-to-one on
objects, this would mean that � is an isomorphism. In the shuffle category, since the
forgetful functor is monoidal (that is the only part of the proof where it is crucial that
our collections are reduced), we have

.H�.M / ıH�.N //f ' .H�.M //f ısh .H�.N //f(5.3.4)

'H�.M
f / ısh H�.N

f /;

H�.M ıN /f 'H�..M ıN /f /'H�.M
f
ısh N f /:(5.3.5)

Finally, since the shuffle composition is polynomial in the components of Mf and
N f , we have
(5.3.6) H�.M

f
ısh N f /'H�.M

f / ısh H�.N
f /;

and the theorem follows.

6 Koszulness of cacti and other operads

In this section, we prove that the operads NAPD and BCACTC are Koszul, and also
show how one can use filtered distributive laws to recover known results, and obtain
new results on the structure of various known operads.

6.1 The operad PostLie

The operad PostLie was defined and studied in Chapoton and Vallette [8; 34], and
recently appeared in various contexts; see Bai, Bellier, Guo and Ni [4; 3], and Burde,
Dekimpe and Vercammen [6; 5]. It is generated by a skew-symmetric operation Œ � ; � �
and an operation � ı � without any symmetries that satisfy the relations

Œa; Œb; c� �C Œb; Œc; a� �C Œc; Œa; b� �D 0;(6.1.1)

.a ı b/ ı c � a ı .b ı c/� .a ı c/ ı bC a ı .c ı b/D a ı Œb; c�;(6.1.2)

Œa; b� ı c D Œa ı c; b�C Œa; b ı c�:(6.1.3)
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The Koszul dual operad PostLie!
D ComTrias of commutative trialgebras is generated

by a symmetric operation � � � and an operation �? � without any symmetries that satisfy
the relations

.a? b/ ? c D a? .b ? c/D a? .c ? b/;(6.1.4)

.a � b/ � c D a � .b � c/;(6.1.5)

a? .b ? c/D a? .b � c/;(6.1.6)

a � .b ? c/D .a � b/ ? c:(6.1.7)

The magmatic operad Mag is freely generated by one binary operation without any
symmetries.

Theorem 6.1 The operad PostLie is Koszul, and as an S–module is isomorphic to
Lie ıMag.

Proof By an immediate computation, we see that the operad PostLie is built from the
operads A D Lie and B DMag via a filtered distributive law. Indeed, we may put
V D span.Œ � ; � �/, W D span. � ı � /, and

s.Œa; Œb; c� �C Œb; Œc; a� �C Œc; Œa; b� �/D 0;(6.1.8)

d.Œa; b� ı c/D Œa ı c; b�C Œa; b ı c�;(6.1.9)

d.a ı Œb; c�/D .a ı b/ ı c � a ı .b ı c/� .a ı c/ ı bC a ı .c ı b/(6.1.10)

(the weight-3 condition can be easily checked by hand, and since s D 0, the projection
is split automatically). This proves both statements of our theorem.

The Koszulness of PostLie and PostLie!
D ComTrias was established in [8] using

partition posets. Note that our approach applies to ComTrias as well, since the splitting
of the projection ComTrias � Mag!

D Nil only requires the splitting on the level of
generators, which we already have. The S–module isomorphism PostLie' Lie ıMag
was first observed in [34].1 This isomorphism, together with the following corollary,
allows to complete the PostLie algebras description in Zinbiel [36].

Corollary 6.2 The suboperad of PostLie generated by � ı � is isomorphic to Mag.

Note that the dual version of this corollary is not true: even though on the level of
S–modules we have ComTrias' Nil ıCom, it is easy to check the suboperad of the
operad ComTrias generated by the operation �? � is isomorphic to Perm.

1The proof in the published version of that paper is incomplete (one has to check that the extension of
� ı � to the free algebra Lie.Mag.V // is consistent with the Jacobi identity).
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6.2 The operad of commutative tridendriform algebras

The operad of commutative tridendriform algebras was studied by Loday [27]. Let us
write down the relations of this operad, and of its Koszul dual. The operad CTD is
generated by a symmetric operation �? � and an operation � � � without any symmetries
that satisfy the relations

.a� b/� c D a� .b � cC c � bC b ? c/;(6.2.1)

.a? b/� c D a? .b � c/;(6.2.2)

.a? b/ ? c D a? .b ? c/:(6.2.3)

The operad CTD! is generated by a skew-symmetric operation Œ � ; � � and an operation
� � � without any symmetries that satisfy the relations

Œa; Œb; c� �C Œb; Œc; a� �C Œc; Œa; b� �D 0;(6.2.4)

a � Œb; c�D a � .b � c/;(6.2.5)

Œa; b� � c D Œa � c; b�C Œa; b � c�;(6.2.6)

.a � b/ � c D a � .b � c/C .a � c/ � b:(6.2.7)

Theorem 6.3 � The operad CTD is Koszul, and as an S–module is isomorphic
to Zinb ıCom.

� The operad CTD! is Koszul, and as an S–module is isomorphic to Lie ıLeib.

Proof By an immediate computation, we notice that the operad CTD is built from
the operad Zinb and Com via a filtered distributive law. Indeed, we may put V D
span. � � � /, W D span. �? � /, and

s..a� b/� c � a� .b � cC c � b//D a� .b ? c/;(6.2.8)

d.a? .b � c//D .a? b/� c:(6.2.9)

(the weight-3 condition can be easily checked by hand; the projection CTD � Zinb
splits because Zinb.n/ is a free Sn –module). Therefore Theorems 5.2 and 5.4 prove all
the statements of our theorem (for the latter, we observe that the projection C TD! �Lie
splits because for CTD! we have s D 0).

The S–module isomorphism in the first part was proved in [27] as a consequence of
the existence of a good triple of operads .As;CTD;Com/ and the isomorphism of S–
modules As'Zinb. Our results recover that isomorphism, prove a similar isomorphism
for CTD! , and also describe the sub-operads of CTD and CTD! generated by either
one of the operations. This provides the following bits of information that have been
missing in [36].
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Proposition 6.4 � The generating series of the operad of dual commutative tri-
dendriform algebras is equal to

(6.2.10) f CTD!

.t/D� log
�

1� 2t

1� t

�
:

� The suboperad of CTD! generated by the operation � � � is isomorphic to Leib.

Note that though the underlying S–module of the operad ZinbD Leib! is used in the
definition of the operad CTD, the dual statement to the second part of this proposition
is not true: in the operad CTD, the suboperad generated by � � � is not isomorphic
to Zinb because of the “lower term” a� .b ? c/ added to the Zinbiel relation.

6.3 The linear NAPD operad

Proposition 6.5 Let D be a graded vector space. The operad NAPD is generated by
binary operations D˝ kS2 ; these operations satisfy the relations

(6.3.1) d 0 ı1 d 00:.23/D .�1/jd
0jjd 00jd 00 ı1 d 0 .for homogeneous d 0; d 00 2D/:

Proof The “geometric” version of this proposition is proved as part of Proposition 3.1.
That the linear version is generated by binary operations may be proved by precisely
the same method. As before, the relations just express the symmetric group action
on trees:

(6.3.2) .23/:
3 2

1d 00
d 0

aa >>
D .�1/jd

0jjd 00j
2 3

1d 00
d 0

aa >>

Theorem 6.6 The operad NAPD is Koszul.

Proof Note that according to Proposition 6.5, the operad NAPD is a quotient of the
operad ND generated by binary operations D˝ kS2 subject only to relations (6.3.1).
Let us show that the operad ND is Koszul, and is isomorphic to NAPD .

First of all, one can easily check that the Koszul dual N !
D

of the operad ND has
generators D�˝ kS2 subject to relations

e0 ı1 e00 D .�1/je
0jje00je00 ı1 e0:.23/ .for homogeneous e0; e00 2D�/;(6.3.3)

e0 ı2 e00 D 0:(6.3.4)

This immediately implies that if we choose a basis e1; : : : ; en of D� , then for a basis
of NAP!

D.1/ we can take the set of all “left combs”

(6.3.5) .ei1
ı1 ei2

ı1 � � � ı1 ein�1
/:.1; k; k � 1; : : : ; 2/;
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because our relations mean that the tree monomials can only “grow” to the left, and
that we can reorder all elements except for the leftmost one arbitrarily. There are
.dim D/n�1 � n such monomials. At the same time, if we explicitly write the relations
of ND as a shuffle operad, we see that its relations are

d 0 ı1 d 00:.23/D .�1/jd
0jjd 00jd 00 ı1 d 0;(6.3.6)

d 0 ı1 zd 00:.23/D .�1/jd
0jjd 00j zd 00 ı2 zd 0;(6.3.7)

d 0 ı1 zd 00 D .�1/jd
0jjd 00j zd 00j ı2 d 0:(6.3.8)

Here we use the notation zd to abbreviate the “opposite operation” d ˝ � 2D˝ kS2 .

Let us pick a basis d1; : : : ; dn of D , and define an ordering of tree monomials in the
free shuffle operad with binary generators D˝ kS2 that is very similar to the path-
lexicographic ordering [12]. For two tree monomials, we first compare lexicographically
their sequences of leaves, read left-to-right, and then compare the path sequences of
those monomials, assuming

(6.3.9) d1 < � � �< dn < d1:.12/ < � � �< dn:.12/:

The leading monomials of the relations of ND are, respectively, di ı1 dj :.23/, di ı1
zdj :.23/ and di ı1

zdj . The trees built from these monomials as building blocks give
an upper bound on the dimensions of components of the Koszul dual operad, which
is sharp precisely when our operads have quadratic Gröbner bases [11]. It is easy to
see that there are exactly .dim D/n�1 � n tree monomials built from these, so both the
operads ND and N !

D
are Koszul. The power series inversion equation for Koszul

operads [17] implies that

(6.3.10) fN !
D
.�fND

.�t//D t:

Since it is clear that

(6.3.11) fN !
D
.t/D

X
n�1

.dim D/n�1

n!
tn;

after denoting

g.s/ WD
fND

.dim D � s/

dim D
;

we see that g.�s/ is the inverse of �s exp.�s/ under composition, and hence g.s/

is the generating function enumerating rooted trees. Recalling that NAPD as an S–
module is described as D–decorated rooted trees, we conclude that components of
ND and NAPD have same dimensions, and therefore these operads are isomorphic,
the former being a quotient of the latter.
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This proof concluded by showing that NAPD is presented by quadratic relations. By
considering the linearisation of the operad NAPF when F is a finite set, we see that
NAPF is also presented by quadratic relations. Now suppose that Y is infinite. Any
finite set of Y–trees involves a finite number of labels F and hence any relation in
NAPY is contained within NAPF , which is in turn presented by quadratic relations.
Therefore we have the following.

Corollary 6.7 Let Y be a set. Then the operad NAPY is generated by binary opera-
tions and is presented by its quadratic relations.

Remark 6.8 The proof of Theorem 6.6 used arguments involving the Koszul dual
and its Hilbert series to show that the quadratic relations suffices to present NAPY . A
more direct proof is possible using a certain “geometric” map from F .NAPY .2// to
NAPY . We will denote elements of NAPY .2/ by

(6.3.12)

1 2

d and

1 2

d 0

for d; d 0 2 Y . In each generator there is a thin line labelled with an element of Y , a
thick line running from root to the end of a leaf and a small portion of thick line at the
end of the other leaf. Then the NAPY –relation (3.1.5) states that

(6.3.13) d 0 ı1 d D

1 2 3

d

d 0
D

1 2 3

d

d 0
D d ı1 d 0:.23/:

The thin lines may be seen to “move freely” along the thick lines. A couple of facts
are apparent about any arity n tree monomial in these generators:

(1) The thick lines never branch and each thick line can be followed up the tree to a
unique leaf, in this way the thick lines are in bijection with the leaves.

(2) Every thin line joins two thick lines and is labelled by an element of Y .

So by contracting each thick line to a point and using these as vertices, we are left with
a tree with vertex set Œn�. The thin lines become the edges and are already labelled by
elements of Y . This tree is rooted by following the thick line starting at the bottom of
the tree monomial to its leaf. Hence we have an explicit map from F .NAPY .2// to
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NAPY . Below is an example.

(6.3.14)

1 23 4 5

a b

c

d
7!

4

1 2 5

c

OO

3

a

^^

d

OO

b

@@

The fact that the quadratic presentation forms a Gröbner basis means that the operad
it presents may be described by certain admissible tree monomials. By comparing
this basis with the Y–trees via the map just described, we may see that NAPY is
presented by the quadratic basis. A reader interested in combinatorics should compare
our construction with one of the well known “Catalan bijections”, which takes a planar
rooted binary tree with n leaves and contracts all left-going edges, thus obtaining a
planar rooted tree with n vertices.

Remark 6.9 An alternative proof of Theorem 6.6 follows from one of the results of
[31]. Namely, it turns out that the operad NAPD is isomorphic to the operad of rooted
trees enriched in the monoid S�. yD/, where yD is the symmetric collection whose
only non-zero component is in arity 1 and is equal to D , and S� denotes the free
commutative monoid in symmetric collections with respect to the tensor product (we
want to emphasise that we are using the tensor product, not the composition product!).
One of the main results of [31] states that the operad of rooted trees enriched in a
monoid M is Koszul if and only if M is Koszul. The free commutative monoid is
manifestly Koszul, and the theorem follows.

6.4 The linear operads of based cacti

Proposition 6.10 Let .C; �; �; 
 / be a graded augmented cocommutative coalgebra.
The operad BCACTC is generated by binary operations C ˝ kS2 ; these operations
satisfy the relations

c0 ı1 c00:.23/D .�1/jc
0jjc00jc00 ı1 c0 .for homogeneous c0; c00 2 C /;(6.4.1)

c ı2 1D
P

c.1/ ı1 c.2/ .for c 2 C /;(6.4.2)

which suffice to present the operad.

Proof According to Proposition 4.4, the operad BCACTC is isomorphic to the quotient
of NAPC by the operadic ideal generated by relations (6.4.2). Also, from the proof of
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Theorem 6.6, we know that the relations (6.4.1) are the defining relations of NAPC ,
which completes the proof.

Remark 6.11 For the sake of completeness, let us describe the relations of the Koszul
dual operad BCACT!

C . Its space of generators is C �˝ kS2 ; note that C � is a graded
commutative algebra that splits as k 1˚C � . The relations are

c ı2 c D 0 for homogeneous c 2 C �; c 2 C �;(6.4.3)

c0 ı1 c00� .c0c00/ ı2 1(6.4.4)

D .�1/jc
0jjc00j.c00 ı1 c0� .c00c0/ ı2 1/:.23/ for homogeneous c0; c00 2 C �:

Note that for c D c0 D 1 the relation (6.4.4) is precisely the pre-Lie relation. This is
not at all surprising, since by combining Theorem 5.4 with Theorem 6.12 below we
expect that the S–modules

(6.4.5) BCACT!
C and NAP!

C
ı .Perm/! ' NAP!

C
ıPreLie

are isomorphic, and that PreLie is a suboperad of BCACT!
C .

Theorem 6.12 For a graded augmented cocommutative coalgebra C , the operad
BCACTC is Koszul, and as S–modules,

(6.4.6) BCACTC ' Perm ıNAPC :

Proof Let us show that BCACTC is obtained from Perm and NAPC via a filtered
distributive law.

Using the splitting of C along the augmentation, we can refine the formulae (6.4.1)
and (6.4.2) as

1 ı1 1 :.23/D 1 ı1 1;(6.4.7)

c ı1 1D 1 ı1c:.23/ .for c 2 C /;(6.4.8)

c0 ı1 c00:.23/D .�1/jc
0jjc00jc00 ı1 c0 .for homogeneous c0; c00 2 C /;(6.4.9)

1 ı2 1D 1 ı1 1;(6.4.10)

c ı2 1D
P

c.1/ ı1 c.2/ .for c 2 C /:(6.4.11)

The formulae (6.4.7), (6.4.8) and (6.4.9) represent the formula (6.4.1) after splitting,
and the formulae (6.4.10) and (6.4.11) represent the formula (6.4.2) after splitting.
It is clear that the formulae (6.4.7) and (6.4.10) describe the operad Perm, while
the formula (6.4.9) describes precisely the operad NAPC . It remains to show that
the formulae (6.4.8) and (6.4.11) define a filtered distributive law between these two
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operads. To be precise, we first need to check that the formula (6.4.11) stands a chance
of defining a distributive law, since a priori its right-hand side is a mixture of all
possible tree monomials. However, we first note that the compatibility of the counit
with the coproduct ensures that if c 2 C then

(6.4.12) �.c/ 2 C ˝ k 1Ck 1˝C CC ˝C ;

so the tree monomial 1 ı1 1 is missing on the right-hand side of (6.4.11). Also, the tree
monomials of the form c0 ı1 1 (with c0 2 C ) appearing on the right-hand side should
be rewritten using the formula (6.4.8), but this minor detail will not affect any of our
computations.

To check that the formulae (6.4.8) and (6.4.11) define a filtered distributive law between
Perm and NAPC , one needs to perform carefully all ambiguous rewritings bringing
the generator 1 towards the root of a tree monomial, checking that they do not give
additional new relations. We shall omit the details, indicating briefly that the rewriting of

(6.4.13) c ı2 .1 ı1 1 :.23//D c ı2 .1 ı1 1/

does not result in a new relation because the coproduct of C is cocommutative, while
the rewriting of

(6.4.14) c ı2 .1 ı1 1/D c ı2 .1 ı2 1/

does not result in a new relation because the coproduct of C is coassociative, and
finally the rewritings of

c0 ı1 .c
00
ı2 1/D .�1/jc

0jjc00j.c00 ı2 1/ ı1 c0;(6.4.15)

.c ı1 1/ ı3 1D .c ı2 1/ ı1 1(6.4.16)

do not result in new relations because of the NAP–type relations (6.4.1). This, together
with the observation that the projection BCACTC � Perm always splits because the
relations of Perm remain undeformed (s D 0), completes the proof of our theorem.

Remark 6.13 Let Y be the (pointed) two-element set f0; 1g, so that C DH�.Y / is
the split two-dimensional coalgebra k˚k, as in the Example 4.8 below. Theorem 6.12
shows that we have an S–module isomorphism

(6.4.17) BCACTC ' Perm ıNAP' Perm ıPreLie' NAP!
ıPreLie' BCACT!

C ;

but the operads BCACTC and BCACT!
C are substantially different. Of course, there is

also a trivial operad structure on the S–module Perm ıPreLie for which the insertion of
any Perm–operation into any PreLie–operation is equal to zero; this operad is Koszul
and self-dual. It is an open question whether there exist nontrivial self-dual Koszul
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operad structures on Perm ıPreLie via a distributive law or a filtered distributive law
between Perm and PreLie; such operads would be natural candidates to encode “pre-
Poisson algebras” (much different from the ones in Aguiar [1]) and “pre-associative
algebras”.
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