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Two-generator free Kleinian groups
and hyperbolic displacements

ILKER S YUCE

The log 3 theorem, proved by Culler and Shalen, states that every point in the hyper-
bolic 3—space H? is moved a distance at least log 3 by one of the noncommuting
isometries £ or n of H* provided that £ and 7 generate a torsion-free, discrete
group which is not cocompact and contains no parabolic. This theorem lies in the
foundations of many techniques that provide lower estimates for the volumes of
orientable, closed hyperbolic 3—manifolds whose fundamental groups have no 2—
generator subgroup of finite index and, as a consequence, gives insights into the
topological properties of these manifolds.

Under the hypotheses of the log3 theorem, the main result of this paper shows

that every point in H? is moved a distance at least log v/5 + 34/2 by one of the
isometries &, 1 or £7).

14E20, 54C40; 46E25, 20C20

1 Introduction

Let M be a closed orientable hyperbolic 3—manifold. Anderson, Canary, Culler and
Shalen proved in [3] that the volume of M is bounded below by 3.08 under the
assumptions that the first Betti number of M is at least 4 and 7r; (M) has no subgroup
isomorphic to the fundamental group of a genus-two surface. In [6], Culler and Shalen
showed that the volume of M is at least 0.92 provided that the first Betti number
of M is at least 3 and 71 (M) has no two-generator subgroup of finite index. Later
Culler, Hersonsky and Shalen improved the previous volume estimate to 0.94 in [5].
These deep results are among a number of theorems stated by Culler and Shalen
alone [6; 8] and together with their collaborators Agol [2], Anderson and Canary [3]
and Hersonsky [5] that relate the topology of hyperbolic 3—manifolds to their geometry.

The common denominator in all of the volume estimates listed above is that they are
consequences of one of the fundamental results in the study of Kleinian groups, the
so-called log 3 theorem proved by Culler and Shalen [6] and generalized by Anderson,
Canary, Culler and Shalen [3]. This seminal result can be stated as follows:
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Log 3 theorem Let £ and n be noncommuting isometries of H3 . Suppose that £ and
n generate a torsion-free, topologically tame, discrete group which is not cocompact
and contains no parabolic. Let 'y and oy denote the set of isometries {£,n} and the
real number 9, respectively. Then, for any z, € H?, we have

e(2 maXVGFl {diSt(Zan'ZO)}) Z 0[1 3

The log 3 theorem and its generalization imply that % log 5 and % log 3 are Margulis
numbers for hyperbolic 3—manifolds that satisfy the conditions in the cases where the
first Betti numbers are at least 4 or 3, respectively. The lower bounds for the volumes
of such manifolds computed in [3; 5; 6] follow. Although the bounds given in [3;
6] are superseded by the recent works of Gabai, Meyerhoff and Milley [9; 10] and
Milley [12] using a newer approach based on Mom technology, it is conceivable that an
improvement in the lower bound for the displacements under the isometries described
in the log 3 theorem will lead to improved Margulis numbers and lower bounds for the
volumes of the classes of hyperbolic 3—manifolds mentioned above through the ideas
introduced in [3; 5; 6]. Motivated by this, we prove the following in this paper:

Theorem 5.1 Let £ and 1 be noncommuting isometries of H3. Suppose that £ and 7
generate a torsion-free discrete group which is not cocompact and contains no parabolic.
Let I'y denote the set of isometries {£, 1,50} and oy be the real number 5 + 32.
Then, for any zy € H?3, we have

e(z maXVEFT {diSt(ZO,)/'Z())}) Z aT .

This is proved in Section 5.

An orientable hyperbolic 3—manifold may be regarded as the quotient of the hyperbolic
3—space H3 by a discrete group I" of orientation-preserving isometries of H3. If T" is
a torsion-free Kleinian group and M = H?3 /T, then I is called topologically tame
if M is homeomorphic to the interior of a compact 3—manifold. Agol [1] and Calegari
and Gabai [4] proved that every finitely generated Kleinian group is topologically tame.
Therefore, we may drop the tameness hypothesis from Theorem 5.1.

The proof of Theorem 5.1 requires the ingredients introduced in [6] to prove the
log 3 theorem. We review these ingredients briefly in the following subsections of the
introduction. In particular, we summarize the proof of the log 3 theorem in Section 1.1
with an emphasis on the calculations required to obtain the number log 3. In Section 1.2,
we propose an alternative technique to perform these calculations which makes it
possible to extend Culler and Shalen’s arguments in [6] to determine a lower bound
for the displacements under any given set of isometries in I' = (£, ) as long as the
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Two-generator free Kleinian groups and hyperbolic displacements 3143

hypotheses of the log 3 theorem are satisfied. We describe this extension and summarize
its application to the set I'y = {§,7.&n} C I" to achieve the lower bound stated in
Theorem 5.1 in Section 1.3.

In the rest of this manuscript the boundary of the canonical compactification H? of H3
will be denoted by S, which is homeomorphic to S2. The notation Ar., will
denote the limit set of I'—orbit of z € H? on Ss. By dist(z, y - z) we will mean the
hyperbolic displacement of z € H?3 under the action of the isometry y: H3 — H3.
Any isometry y of H? extends to a conformal automorphism y: H3 — H?3. The
conformal automorphism of S, obtained by restricting ¥ will be denoted by oo .

Acknowledgements The author would like to extend his sincerest thanks to the anony-
mous referee whose recommendations led to a much better exposition of the ideas in
this paper, shortened the proofs substantially and made this text much more readable as
a result. He is deeply grateful to Peter B Shalen for setting the course of this research
and for very helpful discussions. He is also grateful to Marc E Culler for his corrections
of an earlier version of this work.

1.1 A decomposition of I' = (&, ) and the proof of the log 3 theorem

Let £ and 7 be two noncommuting isometries of H?. Suppose that £ and 1 generate
a torsion-free discrete group which is not cocompact and contains no parabolic. Then
I' = (&, n) is a free group of rank 2; see [6, Proposition 9.2]. This fact allows one
to decompose I' as disjoint union of subsets of reduced words. In particular, the
decomposition

(1) r={ulJJy

Yew!

is used in the proof of the log 3 theorem, which is carried out by considering two cases:

(D When T is geometrically infinite; that is, Ap., = Seo for every z € H3.

(II) When I' is geometrically finite.

In (1) each Jy; is defined as the set of all nontrivial reduced words in I" that have the
initial letter ¥ € W1 = {¢&,n,n~ 1, €71},

In case (I), Culler and Shalen first prove that the Patterson density, a I'—invariant
conformal density (/t7),cps constructed by Patterson [14] and extensively studied by
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Sullivan [15; 16], is the area density (Az),eps3, Whose support is S ; see [6, Proposi-
tions 6.9 and 3.9]. Then, using the decomposition (1) together with its group-theoretical
properties

) Yy =T —Jy

for ¥ € W1, they construct a decomposition of the area density (A;),cp3» which in
turn gives a decomposition of the area measure A, based at zg € H?3 into a finite sum
n—1> Vg—1 so that each measure v,,—1 is transformed to the
complement of vy, for ¢ € Ul see [6, Proposition 4.2(ii) and Lemma 5.3(ii) and (iii)].
In other words, they obtain the following:

of four measures vg, vy, v

Theorem 1.1 Let I' = (&, n) be a free, geometrically infinite Kleinian group without
parabolics. For any zo € H3, let A zo be the area measure based at zo . There is a family
of Borel measures {vy }y g1 on Seo for Wl ={£ n,n~1 €71} such that:

(1) Az (Seo) = Z vy (Seo),  Where Az, is normalized so that A, (Seo) = 1.
Yyew!

2) / ()\1/,,20)2 dvy—1 = 1—/ dvy,  foreach y € vl
Soo Soo

Furthermore, if zq is on the common perpendicular £(&, 1) of the isometries & and 7,
then

3) /dVé—IZ/ dvg and /dvn—1=/ dvy .
Soo Soo Sco Soo

Theorem 1.1 is not explicitly stated in [6]. But, as summarized above, it follows
from [6, Lemma 5.3] using the conclusions of [6, Propositions 4.2, 6.9 and 3.9].
The function A, ;. in part (2) is the conformal expansion factor of /o, measured
in the round metric centered at zy (see [0, Section 2.4] for details). The common
perpendicular £(&, n) mentioned in Theorem 1.1 is the fixed locus of the involution
T € Isom™ (H?) that conjugates £ to £~! and 5 to n~! when £y and 75s, have no
common fixed point on S ; see [6, Proposition 1.8].

Next, Culler and Shalen relate the masses of the measures vg, vy, vy
to the hyperbolic displacements dist(zg, & - zg), dist(zg, n-zg), dist(zg, n~
dist(zg, €71 - zo). In particular, they prove the statement below:

—1 and Vg—1
. z) and

Lemma 1.2 [6, Lemma 5.5; 8, Lemma 2.1] Let a and b be numbers in [0, 1] which
are not both equal to 0 and are not both equal to 1. Let y be a loxodromic isometry
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of H? and let zo be a point in H3. Suppose that v is a measure on Ss, such that
V< Az, V(Seo) < a and fSoo(ky,Zo)zdv > b. Then we have a > 0, b < 1 and

: ] 1. b(l—a)
dist(zg, y - z9) = = log a(1=b)"

Then, using Theorem 1.1 and Lemma 1.2, they calculate the lower bound log3
when I is geometrically infinite as follows [6, Proposition 5.2]: By the geometric fact
max, ez—1 p—134dist(zo, ¥+20) } = max, cgz—1 p—13{dist(zy, y-z1) } forany zg € H3 and
the orthogonal projection z; of zg onto £(&, n), we may assume, without loss of gener-
ality, that zg € £(§, 1) . Parts (1) and (3) of Theorem 1.1 imply 1 =2vg(So0) +2v3(So0),
which in turn shows either vg(Seo) < % or vy(Seo) < %. If vg(Seo) < %, parts (2) and
(3) of Theorem 1.1 give that

/s (g1 z0) dvg = 1—vg = 3.

Since vg < Az, by Theorem 1.1(1), it is possible to apply Lemma 1.2 with the choices
a= %, b= %, v=1vg and y = £~ to conclude that dist(zg, €' - z9) > (log9)/2.
If v(Seo) = %, an analogous calculation with the choices a = %, b= %, V=V
and y = n~! shows that dist(zg,n™' - z9) > (log9)/2. Because dist(zg,& - zg) =
dist(zg, 71 - zg) and dist(zg, n-zo) = dist(zg, n~' - 2g), the log 3 theorem follows in

the case (I).

In the case (II), Culler and Shalen define the function
o (6. m) = max{dist(zo, & - z), dist(z0, 7 - 20) }

for a fixed zo € H?3 on the character variety ¥ = Isom™ (H?) x Isom™ (H?) of the free
group on two generators. It is easy to show that f7, is proper and continuous on the clo-
sure of the set &F consisting of (£, 1) such that (£, n) is free on the generators £ and 7,
geometrically finite and without any parabolic. They prove that leo has no minimum
in BF; see [6, Lemma 9.5]. Since BF is open in X (see Marden [11, Theorem 8.1]),
the function le0 achieves its minimum on the boundary BF — &F. Then they show
that the set of (£, n) such that (£, n) is free, geometrically infinite and without any
parabolic is dense in &F — &F [6, Proposition 8.2]. Therefore, that every (£,7) € X so
that (£, n) is free and contains no parabolic is in KS’ (see [6, Proposition 9.3]) reduces
the geometrically finite case to geometrically infinite case, proving the log 3 theorem.

1.2 An alternative technique to calculate the number log 3

When I' = (£, ) mentioned in the log3 theorem is geometrically infinite, the cal-
culation of the lower bound log3 in Section 1.1 follows from the application of
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Lemma 1.2 with the choices y =y~ !, v = Vy, a4 = % and b = % for y e I'y ={£&, n}.
These choices of @ and b are derived from the equalities vg(Soo) = vg-1(Seo) and
Vp(Soo) = vy-1(Seo) in Theorem 1.1(3) which requires the use of a point zo on the
common perpendicular £(&,7n) of £ and 7. Such a geodesic perpendicular to the axes
of a collection of more than two isometries in I' = (£, ) does not exist in general.

We calculate log 3 without referring to £(&, 1) as follows: If vg—1(Seo) = 0, we get
Vg(Soo) = 1 by Theorem 1.1(2). Then we obtain vy(Sec) =0 and v,—1(Sec) = 0 by
Theorem 1.1(1). Part (2) of Theorem 1.1 applied to ¥ = ! gives a contradiction.
Similar arguments for £=!, n, n~! show that 0 < vy (Seo) < 1 for ¥ € vl In
particular, we derive that

2 — —
0< | Mm@y =1 [ dvy <1

for every ¥ € W! by Theorem 1.1(2). Hence we can apply Lemma 1.2 with the choices

y=§ v=vg1, a=ve1(S). b= /soo (hg.z)* dvg-1,
y =1, v=v,-1, a=v,-1(8x), b= /SOO ()‘W,Zo)z dv, 1,
y=n"1, V= vy, a=vy(Seo), bz/Soo()\n_l,Zof dvy,
y=£6"' v=v a=14(Sx). b= /Soo(xsl,zo)z dvg.

Then Lemma 1.2 produces the inequality

(3) €2 dist(zo,y20) > (1 B fSoo de—l)(l B fSoo dvy)
B fsoo dvy—1 ‘fsoo dvy

for every y € W!. We consider the constants on the right-hand side of the inequalities
in (3) as the values of the functions

1 _l=x4 1=xy 1 _l—x3 1—x;

fl (xl’xz’x3’x4)_ x4 .Tv f2 (XI,XZ,X39X4)— x3 : xz )
1—x; 1—x l—x; 1—x
f31(x1,x2,X3,.X4)= 2’—3, f41(x1,x2,x3,x4)= 1 .—4

X2 X3 X1 X4

at (fSoo d”é’fsoo d”'?’fsoo dUn—l,fSOO dvé_l) e R* with Y yewt fSoo dvy = 1.

Although the total masses of the measures vy, for ¢ € W! may change for a different
zo € H?, Theorem 1.1(1) still applies for the same decomposition in (1). Therefore,
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the calculation of the number log 3 in the proof of the log3 theorem becomes a
consequence of the statement
inf {max (). /3 (0). £30). £ )} =9,
X
where A> = {(x1,x2,Xx3,x4) eR*:x1 +x0+x3+x4=1, x; >0, 1 <i <4} (see
Lemma 2.1). The functions /', f,}, £ and f,! will be referred to as displacement
functions for the decomposition of I" in (1).

When combined with the arguments developed by Culler and Shalen in [6] to prove the
log 3 theorem, this calculation technique extends to a process to find a lower bound for
the maximum of the displacements under the isometries determined by a decomposition
of I' = (&, n). This extension is summarized in the next section.

1.3 Decompositions of I' = (£, ) and hyperbolic displacements

For any nonelementary discrete subgroup I' of the isometries of the hyperbolic n—
space H", there exists a [—invariant conformal density ((,),emn» for H”, constructed
by Patterson [14], whose support is the limit set of I". In the case (I) of the proof of
the log 3 theorem, it is required to decompose the Patterson density for H?*, which is
the area density (A;),cp3 . Whose support is Soo (see [6, Propositions 3.9 and 6.9]),
corresponding to the decomposition of I' = (£, ) in (1). To this purpose, Culler and
Shalen prove a more general statement (see [6, Proposition 4.2]) which establishes the
existence of a family of D—conformal densities (Myp)yey, D €[0,n — 1], for H"
indexed by a countable collection V' of subsets of an infinite, uniformly discrete
subset W of H" with certain conditions, one of which is that My can be decomposed
as a sum of finitely many D—conformal densities My, = (uy; ;),cg3 provided that
W = U;’Ll Vi € V for disjoint sets V; € V for 1 <i < m; see [6, Proposition 4.2(ii)].
In particular, [6, Proposition 4.2(ii)] is applied to the disjoint union

W'={z0}U | J {y-z0: v € Jy} CH,
Yewl

which leads to the decomposition of the area density (A4;),cps and, consequently, the
decomposition of the area measure A, based at zg into a finite sum of Borel measures
as stated in Theorem 1.1(1).

The notion of D—conformal densities, D € [0,n — 1], for H" was introduced by
Sullivan [15; 16] as a generalization of I'-invariant conformal densities for H" [14].
Interested readers may refer to [6; 14; 15; 16] and Nicholls [13], for the basics of this
subject. In this paper, their use will be limited to the application of [6, Proposition 4.2]
to a carefully chosen infinite, uniformly discrete subset of H3 in Section 3 (see
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Lemma 3.3). Therefore, constructions and properties of conformal densities will be
assumed without explanation in the rest of this text. Unless stated otherwise, we shall
assume that I' = (&, n) satisfies the hypotheses given in the log 3 theorem.

The organization of the rest of this paper is as follows. Let z be a fixed point in H?.
In Section 2, we give the necessary calculations in detail to obtain the number log 3
for the log 3 theorem by using the approach outlined in Section 1.2. In particular, we
show that the infimum of the maximum of fll (x), le (x), ]"31 (x) and f, 41 (x) over
the simplex A is a; = 9. This follows from the facts

(a) xié1£3{maX(f11 (x), fo (X))} = xrreliAns{InaX(fl1 (x), f5 (X))},

(b) miilz{max(fl1 (x), le (x)} = fl1 (x*) for apoint x* € A3 C A

proved in Lemma 2.1 in Section 2, where A3 = {x € A3: fl1 (x)= le (x)}.

When A3 is considered as a submanifold of R3, the statement x* € A is deduced from
the observation that f11 and le are smooth functions in an open neighborhood of A3
with no local minima. The coordinates of x* are calculated using the conclusion that x *
is a solution of a certain Lagrange multipliers problem and satisfies fl1 (x)= le (x).
The lower bound log 3 is obtained by evaluating fll at the point x*.

Let W' = (g0, 2, 657" .67 e~ =2, 7"} and W) = {£, 77"}, In Section 3,
we introduce the decomposition

4) Tpr = {1uwfu| ) Jy
yewt

of I" which contains the isometries in I'y = {£,n,&n} C ARV \Ilj We apply [6, Propo-
sition 4.2] to the infinite, uniformly discrete subset

) W=z Uly -z y e Whu | {y 200 v € Ty}
Yyew'

of H3 to construct the decomposition of the area measure A, based at zo corre-
sponding the decomposition I'p+ in Theorem 3.4, an analog of Theorem 1.1 for ot
in Section 3. Using Theorem 3.4 and Lemma 1.2, we determine the displacement

functions for the displacements under the isometries in vy \IJI in Section 3. There
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are 18 displacement functions { f,—}iszl, {gj }?zl and {hk},‘i=1 for I'p+ with formulas

l—x4—x5—Xx¢ 1—x l—X4—x5—Xxg—Xx7—xg 1—Xx
fl(x): 4 5 6 . 1 fZ(x): 4 5 6 7 8 . 2

’ ’

X4+X5+X6 X1 X4+X5+X6+X7+Xxg X7
o= TR A= SRR
A= i PO R R e
=R R A= R R
g1(r) = 2L 1 gar) = 720 122,
gax) = 2R galr) = {2 1N
gs(x) = 1f3x3 % ge(x) = 1f2xz '%,

() = 150 12, o) = 12 125,
o) = 1558 120, hator) =152 12,

8

forx e A= {(xl,xz,...,xg)eRg: xi=1,x,>0,1=<i 58}.

i=1
In this paper we will not be concerned with the functions {/, }li=1 , because they provide
information about displacements under n~2, n~'£, £én~! and £2. Only the functions
{ f,-}f:1 and {g; }?:1 are related to the displacements under &, n and &n. Furthermore,
it is possible to show that just the first eight { f,-}?=1 are significant for finding a
lower bound for the maximum of the displacements dist(zg, & - zg), dist(zg, - z¢) and
dist(zo.£n - zo).
We consider A7 as a submanifold of R8. Let IT = {1,2,3,4,5,6,7,8}. Each func-
tion f; fori e[ T is smooth in an open neighborhood of A’. Then the calculation of
the infimum of the maximum of the functions { fj};c + follows from the statements

() Inf tmax(fi(x),..., fs(x))} = min{max(fi(x),..., /s(x))},

(d) xrreliig{maX(fl (x), f2(x),..., fs(x)} = fi(x™) forx* € A;C A,

proved in Proposition 4.8 in Section 4.2, where A7 ={x€A’: fj(x)= fx(x), j, k€ It}
Although the proof of the observation that x* € A also uses the fact that none of
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the functions { fj};c;+ has a local minimum in A’ it is more involved. It requires a
case-by-case study of the values of the functions { fj};c+ at the point x*.

In Section 4.1, we use the first-order partial derivatives of the functions { fj};cr+ to
show that there are certain direction vectors in the tangent space T+ A’ so that moving
along these vectors reduces the number of possible cases for the values of the functions
{/j}jer+ atthe point x* to only five main cases

(D) fi(x*) <oy for j €{4,5,6,7,8} and f;j(x*) = ay for j €{1,2,3},
() fi(x*) <ay for j €{1,2,3,4,5,6} and fj(x*) =y for j € {7,8},
(M) fj(x*) =ay for j €{1,2,3,4,5,6} and fj(x*) <oy for j €{7,8},
(IV) fi(x*) =ax for j €{1,2,3,7,8} and f;(x*) < ay for j € {4,5,6},
(V) fj(x*) =0y for j € I,

where a4 = min, ¢ p7{max(fi(x), f2(x),..., fs(x))}. In each of the cases (I), (II),
(IIT) and (IV), we prove in Section 4.2 that there exists a piece of curve in A’ passing
through the point x* such that moving along this curve produces a point in A’ at
which a smaller minimum for the maximum of the functions { fj};e+ is attained. This
leaves only the case x* € A7 which suggests a method to find the coordinates of the
point x*. Then we evaluate one of the displacement functions in { fj};cs+ at x* to
calculate oy . In other words, we prove the following statement:

Theorem 4.14 Let FT: A7 — R be the function defined by x > max{ fi(x):i € IT}.
Then we have inf7 Ft(x)=5+32.
X €A

This is given in Section 4.2, and provides the main estimate of Theorem 5.1 in the
geometrically infinite case.

In Section 5, we show that the proper and continuous function defined for a fixed point
zo € H? on the character variety X defined by the formula

£ (8. 1) = max{dist(zo. & - zo), dist(zo. 1 Zo). dist(zo, £ - z0)}

has no local minimum in &3F to reduce the geometrically finite case to the geometrically
infinite case, completing the proof of Theorem 5.1. Note that an analogous process
applies to a broader class of decompositions.

As summarized above, when ' = (£, ) is geometrically infinite, the infimum of the
maximum of the displacement functions fi,..., fg,g1,...,&¢, determined by the
decomposition T'p+ of ', over A7 provides a lower bound for the displacements under
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the isometries £, 1 and £n in Theorem 5.1. Notice that, similar to the displacement
functions fll, le, f31 and f41 given by the decomposition I'p1, the infimum of the
maximum of the displacement functions g1, f>, f3, g4, fs, f¢. f7 and fg over A7
provides a lower bound for the displacements under the isometries & and 7. Although
we have

xierl£3{maX(f11 (x), f5 (%), f3 (x), f4 (x))} = xiél£7{maX(g1 (x). f2(x) ... fs(x))}.

for I'p1 and I'p+ by Lemma2 1 (see Section 2) and the fact that g (x) = 4 , [2(x)=9,
f3(x) =9, g4(x) fs(x) =9, fe(x) =9, f7(x) =9 and fs(x) =9 for the

Lo L Lo L L L 11y A7 it may be possible to obtain a larger
lower bound than log 3 1ntr0duced in the log3 theorem by examining a carefully
chosen decomposition or a sequence of decompositions of I'. If a larger lower bound
for the displacements under the isometries £ and 1 can be achieved, all the results
involving the log 3 theorem in [2; 3; 8] and Culler and Shalen’s [7] can be improved
accordingly.

2 The log 3 theorem revisited

In this section, we calculate the number log3 using the view point proposed in
Section 1.2 in case (I) of the proof of the log 3 theorem.

Let F! be the set of functions { fll, le, f31, f41} introduced in Section 1.2. Let us
define a continuous function G!: A3 — R by G'(x) = max{ f(x): f € F'}.

We aim to find inf, c A3 G'(x). To this purpose we shall consider A* as a submanifold
of R*. The tangent space Tx A3 of A3 consists of the vectors in R* whose entries
sum to 0 at any x € A3 . Note that each displacement function fi1 fori =1,2,3,41s
smooth in an open neighborhood of A3. Therefore the directional derivative of f;.l in
the direction of any U € T A® is given by V f;!(x) -0 forany i =1,2,3,4.

We introduce the function o: (0, 1) — (0, co0) defined by o(x) = 1/x — 1, where
o’(x) = —1/x? < 0 for every x € (0, 1). We have the equality

inf G! (x)= 1nf {max(fl (x), fz (x))}

xeA3

because fl1 (x)=f, 41 (x) and le (x)= f31 (x) for every x € A*. In other words, it is
enough to prove the following:

Lemma 2.1 If fl1 (x) =0(xg)a(x1) and le (x) =0(x3)a(xy) are the displacement
functions defined in Section 1.2 for x € A3, then inf%{max(fll (x), le (x))}=09.
X €A
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Proof Let F': A’ >R be the function defined by x > max(f!(x), f,/(x)). Since f}!
and f,! are continuous on A*, F! is also continuous. The number inf, 3 F!(x)
exists and is greater than or equal to 1 because the inequalities fll (x) > 1 and
le (x) > 1 hold for every x € A*. We aim to show that inf, cx3 F!(x) = 9. First we
prove that inf, a3 F!(x) = min, a3 F!(x).

Let Ay ={(x1,x2,x3,x4) €A : 1/n<x; <1—1/Q2n) fori =1,2,3,4} for n > 2;
then F! has an absolute minimum «,, at a point x, in A, as A, is compact. The
sequence (an);2, is decreasing because A, C Ay 1. In other words, the sequence
(F l(xn))ff:l tends to an infimum of F!. Assume that x, approaches to a point
xo = (by,bs, b3, bs) € IA® as n approaches to infinity. Then we get b; = 0 for some
i =1,2,3,4. Suppose that b; = 0. By the definition of fll, we must have by = 1.
Otherwise (F'! (xn))y—; would approach to infinity instead of tending to an infimum.
Then we conclude that b3 = 0 and b, = 0. But, the function (F'! (xn))52, tends to
infinity by the definition of le in this case, a contradiction. Thus, we get by # 0.
Similar contradictions arise under the assumption b; = 0 for any i € {2, 3, 4} implying
that b; # 0 for every i € {2, 3, 4}. Therefore (x,);2, cannot have a limit point on the
boundary of A3.

We claim that there exists a positive integer 7 so that x, = x, 4 forevery n > ng. Let
us assume otherwise that we have a subsequence (xy, )}";1 of the sequence (x,)72 | so
that X € A,,].Jrl —Anj for every integer j > 0. Since we have U;.lozz A, = A3, there ex-
ists a subsequence of (x; )J?’il which has a limit point on dA3, a contradiction. In other
words the absolute minimum of F! is attained at a point x* = (xT.x3,x37.x}) € A3
so that F1(x*) =inf,cp3 F1(x).

Let A; = {x € A} : fll (x) = le (x)}. We claim that x* € A;. Assume other-
wise that f]'(x*) > f'(x*). Then there exists a neighborhood U of x* such that
fll(x) > le(x) for every x € U. In particular we get Fl(x) = fl1 (x) on U.
Since F!(x*) is the minimum value, the function fl1 must have a critical point
at x*. This is a contradiction. Because the derivative of fll in the direction of
v=(1,—1,0,0) € Ty A3 is calculated as

" 1—x
VAx) b=~ 5 4 <0,
X 1 X4
the function fl1 decreases at any x € A? in the direction of v. This argument also
applies, mutatis mutandis, to show that the assumption le (x*) > fl1 (x*) leads to a
contradiction since the directional derivative V le (x)-v>0 atany x € A>. Hence we

obtain that x* € Aj.

Let f1(x) =0(x4)o(x1) and f5(x) =0 (x3)0(x,) be the extensions of fl1 and le
to the open set C = (0,1) x (0,1) x (0,1) x (0,1). Let us consider the Lagrange
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multipliers problem of finding the minimum of f; subject to the constraints G (x) =0
and G,(x) = 0 for x = (x1,x2,x3,x4) € C, where G; and G, are the functions
defined by

Gi(x) = fi(x)— f2(x) and Ga(x)=x; +x3+x3+x4—1.

Since we have f(x*) =min,cx3 F!(x) and x* € A3, the point x* is a solution to
this problem. Therefore the gradient vector V fi(x*) is in the subspace of R* spanned
by the vectors VG1(x*) and VG, (x*). Equivalently the matrix

Vfi(x™®) o' (x})o(x}) 0 0 o(xf)o’(x})
VG (x*) | =| o'(x])a(xy) —o'(x7)o(x]) —o(x3)a’(x]) o(x])o’(x})
VGy(x*) 1 1 1 1

has rank less than 3. By applying the row reduction operations R, — (—1)R; + R,,
Ry = (=0(x})o’(x;))R3 + Ry and Ry = (0(x])o’(x}))/(0(x3)0’(x3))R2 + Ry
simultaneously, we see that the matrix above is row equivalent to:

(] —=x))U—x7—x}) (x5—x3)1—x3—x3)o(x])o’(x})

(7?2 (FxD 200 (<) 0 0
0 —o’(x3)o(x]) —o(x3)o’(x3) 0
1 1 1 1

The reduced matrix above has rank less than 3 if and only if x] = x} and x3 = x7.
Then it follows from the equation fj(x*) = f>(x*) that x] = xJ. As a result we
find that x) = % for every i € {1,2,3,4}. Finally a simple evaluation shows that
inf F1(x)=09. |
x€N3
It is worth emphasizing a few key points used in the proof of Lemma 2.1. The
functions fll and le have no local minimum on A®. This fact implies that x* € Aj3.
The proof of Lemma 2.1 shows that the main ingredients used to calculate the number
log 3 are:

(@ inf F'(x)= min F!(x).

xeA3 xeA3

(b) There exists a point x* € A3 C A3 such that min% Fl(x)= fl1 (x™).
X €A

Lemma 2.1 also establishes that the point x* € A3 is unique. If we assume the
uniqueness of the point x* a priori together with (a), it is possible to suggest an
alternative way of finding the coordinates of the point x*: let T}, T»: R* — R*
be the maps defined by (xy, x7, x3,x4) > (X2, X1, X4,x3) and (X1, X2, X3,X4) >
(x4, X3, X2, X1), respectively. We have T;(x) € A® and fil(Tl (x)) = fil(x) for every
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x €A’ Let Hy: A*— R be the function so that Hy(x) =max{(f;'oT1)(x):i =1,2}.
We see that F!(x) = H,(x) forevery x € A3. Since F! takes its minimum value at the

point x*, the function H; takes its minimum value at the point Tl_1 (x*). Therefore

*

we obtain Tl_1 (x*) = x* which implies that x] = xJ, and x7 = x}.

Let Hy: A* — R be the function defined by H,(x) = max{(f;! o T)(x):i =1,2}.
We repeat an analog of the argument above for /) to derive that x{ = x; and xJ = x7.
As aresult we find x7 = xj’." for every i, j = 1,2, 3, 4. In this calculation method, we
do not refer to the statement x* € A3 given in (b).

3 Decomposition of I' = (&, ) for the isometries &, n and &7

Let I" be a group which is free on a finite generating set 2. Let 2~ ={y 1 : ¢y € E}.
For m > 2, every element ¢ of I' can be written uniquely as a reduced word V1 -« - ¥,
where each v; is an element of £ U 27! and ;4 # W,-_l fori =1,....m—1.
If £k < m is a positive integer and y # 1, we shall call ¥y --- Y the initial word of
length k of y.

Let U* be a finite set of words in I'. For each word y € W*, let J,, denote the set
of nontrivial elements of I" that have initial word . Depending on the number of

elements in E and lengths of words in W* there may be a set of words which are not
contained in any of Jy,. Let us call this set the residue set of ¥* and denote it by W .

Definition 3.1 For a given pair D* = (W*, ¥¥) of finite, disjoint sets of words W*
and ¥} in ', if ' = {1} U W} U (J Jy, then I'p« will be called a decomposition
of . vew

Definition 3.2 A decomposition I'p+ with D* = (W*, W¥) is symmetric if ¥* and W}

m—1

are preserved by every bijection of 2 U E7 .

We know that T = (£, 1) described in the log 3 theorem is a free group on E = {&, n}
by [6, Proposition 9.2]. For D! = (U!, ¥! = &), the decomposition 'y corresponds
to the symmetric decomposition of I' in (1).

We introduce another decomposition of I" that contains the set I'y = {&,n,&n}. Let
U ={en, &2, 6n7 1 71, 7 =1 =2, 7 €}, Then it is straightforward to see that

(6) r={uvful ) Jy.
Yyewt
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where the residue set is \PI = {£,77!}. Note that I'pp+ for Df = (uf, \IJI) is not
symmetric. We shall use I+ in the proof of Theorem 5.1. In particular, we aim to
prove Theorem 3.4, an analog of Theorem 1.1, for W',

We first state a more general result Lemma 3.3, an analog of [6, Lemma 5.3], for w,
Although Lemma 3.3 follows directly from the same arguments used in the proof of [6,
Lemma 5.3], its proof is included for the sake of completeness. The main tool is [6,

Proposition 4.2]. In the following, Jy denotes the disjoint union | J Jy, for W C ot
Yev

Lemma 3.3 Let I' be a Kleinian group which is free on a generating set {£,n}. Let zg
be any point of H?3 . Then there exists a number D € [0, 2], a [—invariant D —conformal
density M = () for H? and a family {vy }yewr of Borel measures on Seo such that:

(1) /’LZ()(SOO) = 1
) Hzg = Dyewt Vy

3 @ [s. (Mez0)® dvg-r = 1= [g dvgy— [ dvez— [g_ dvey—
®) [s. (hg=1,2) P dvgy-1 = Jso dvp-1g-1 + [s dvy-1g + [s_ dvy-2
(c) fSoo ()\.E—I’ZO)D dvgr = fSoo dve, + fSoo dvez + fSoo dvgp—1
(d) fsoo O‘E*I,ZO)D dvgy = fSoo dvy

@ @ fg Oy )P dvy=1—[g dvyrg—[g_dvy—2— [ dvy1g-
0) [s_ Cnz)P dvy— = [g dvy—rg—1 + [g_dvyig+ [g_ dv,—
(©) 'fSoo (Ap.z)P dvy—1g = fSoo dve, + fSoo dvgz + fSoo dvg,—1
@) [ (nz)® dvyrg—1 = [ dvg

5) @) [g_Oyrg=1 ;)P dvgyg =1 [g_dvy1g—[g dvy—[g dvy1g-1
(b) fsoo ()‘n—lé—‘,ZO)D dvegp—1 = fsoo dvy—2
(c) fSoo()‘n_IE_l,Zo)D dvgz = fSoo dvn—lg
) fs. Oenz)? dvymrg—1 = 1= [g dvgy— [ dvez— [ dvgy—
(e) fSoo()‘SmZo)D dvy-1g = fsoo dvg>
® fsoo (Aen.z0) P dvy—2 = fsoo dvgy—1

©) @[5, (y1g,2)° dve—r =1— [g_ dv,1q
(0) fs,, (ey1,29)” dvg = 1= [ dvy-
(C) 'fSoo ()\'EZ,ZO)D dl)sfl = l_fSoo dvgz
(d) fSoo ()\n_z,ZO)D dVr) = fSoo dvn_z
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Proof Since I' acts freely on H? and it can be decomposed as in (6), the orbit
W =T -z is a disjoint union

@) wh={zbunou | .
yewt

where Vo ={y-zo:v € \III} and Vy ={y-zo:y € Jy}. Note that Vj is the finite
set Ve UV -1 ={§-z0} U {n~1.zp}. Let V denote the finite collection of all sets of
the form {Jy ey Vs VoUlUyew Vs {20 UUyew Vy or {20} UVoUUy ey Vy for
W c Wl We apply [6, Proposition 4.2] to W and V.

Let D be a number in [0, 2] and (My)pey be a family of conformal densities, for
which [6, Proposition 4.2(1)—(iv)] are satisfied. Let My = (uy,z),cgs. We set
M = My and vy = puy,, 5, foreach ¢ € w, By [6, Proposition 4.2(iii)], M is
I'-invariant. By [6, Proposition 4.2(i)] and the definition of a conformal density, we
have (tz,(Soo) = Uw,zy (Soo) # 0. Therefore, we may assume that 11, has total mass
1 after normalization, which gives Lemma 3.3(1).

By [6, Proposition 4.2(iv)], we have (-, = 0 and puy, -, = 0. Applying [6,
Proposition 4.2(ii)] to the disjoint union in (7), we obtain

Mzog = H{zp},29 + UVy,zo + Z “vy .z
e

Hence, we get conclusion (2) of Lemma 3.3. In order to complete parts (3)—(6), we
need to determine all of the group-theoretical relations between the sets of words Jy,
for ¥ € W', We know that £~ 1y € Jg—1. Therefore, we have 1 € n_léJg—l. Let w
be a word in Jg—1. Then we have w = £ 1w, for some w; € I'. We compute that
n~'éw = n~'w;. The first letter of w; cannot be £. But it can be either 7, n~!
or £71. Assume that it is  and w; # 1. Then we have w; = nw, for some word
w, € I'. The first letter of w, cannot be 1, but it can be either 1, £~! or . Since
we get 7 1Ew = wy, we derive that {1}U J, U Jen—1UJgnUJea UJg—1 C 7]_1%-.]{:—1 .
If the first letter of w is 7!, then we get w; = n~'w, for some w, € I'. We see that
n~1éw = n~2w,. This means that Jy—2 C 7]_1&.]%-—1. If the first letter of wy is £,
then we get w; = £ 'w, for some w, € I'" which implies that = 1w = n~ 1 w,.
Therefore, we find that J,—1g—1 C nlE Jg—1. In other words, nlE Jy contains every
word in I except the ones start with = 1&. Hence, n_léJs—l =1 —Jy-1g.

Similar computations show that n_léJE—l =T — Jgy-1, EZJ&-—I =TI — Jg2 and
N2y =T—J,—.

It follows from the discussion above and definitions of the sets Jy, for each € i
that, for each row y, s(y) and S(y) of Table 1, the decomposition I'p+ of I' = (£, n)
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14 s(y) S(y)

G@| ¢ g1 {En. &%, 67"}

| &1 | eyt {En.&% 6 n. 7Y

©| &7! g2 U IR I R I 3

@ ¢! En | {En.&2 e g T ie Tl
@@| n! n U B R 3

®| 7 N2 {En.&2.6n .71

©]| 7 n g RSN B S RN

@ n |ntet| En gt g yTe g2 g
5)@ |n 't | &y U I e 3

() [n7te7t ] g2 {En. &2 6n n.s e 2y

© | n7tet | et | En R g ion g ie e

@ | & |n'g! {€n. &% 6171}

@ | &n e | {Engnton g T e 2T

)| &n U {En &2 n. e on e 2o Ey
6) () | n7'& ! ')

(b) | &n! n {En "y

©| & g1 (€%}

| n? n {n=?}

Table 1: Group-theoretical properties of the decomposition '+

has the group-theoretical property

®)

Ysy =T = Js@)-

Let Viy denote the union | J, ey Vy where W is a subset of vy \IJI Using the
group-theoretical relations in (8), we derive the relations

©)

YVsir) =W = Vs

between the orbits V() and Vg(y,). Since W — V() = V() € V, [6, Proposition
4.2(iii)] gives My, = Yoo (M W—Vs(,,)- On the other hand, by [6, Proposition 4.2(ii)],
we get M = My _pg,, + Myg,,,. We combine the last two equalities to obtain
My, = Yoo (M — My ), which implies that

d/'LVY(V)ay'Z() =d (V:o (MZ() - Z Vl/f))-

YeS(y)

(62

(10)
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Since My, isa D—conformal density and djip,
sition 2.4]), we obtain the equality

/s (hy.z) Plav,y, = 1= Z dvy

ves(y)” S

AP du Ve (se€[6, Propo-

Y20 — My,zg

for every row of Table 1 by equating the total masses of both sides of (10), which
provides parts (3)—(6) of the lemma. a

The following is an analog of Theorem 1.1 for the set T c I = (&, 5). Notice that
Theorem 3.4 has no analog of part (3) of Theorem 1.1.

Theorem 3.4 Let I' = (£, n) be a free, geometrically infinite Kleinian group without
parabolics. For any zy € H3, let A zo be the area measure based at zy. There is a fam-

ily of Borel measures {vy }y eyt for W1 = {&n. &2 En~! n. 671 n7 167 n72 e}
on S, such that:

(1) Az = Z vy, where Az, is normalized so that Az,(Sec) = 1.
Yyewt

) / ()\y,ZO)zdvs(y) =1- Z dvy,  for each row of Table 1.
Soo Soo
YeS(y)

Proof By the conclusions of [6, Propositions 6.9 and 3.9] and tameness [1; 4], we
have that every I'-invariant D—conformal density M is a constant multiple of the
area density A, ie D = 2. By Lemma 3.3(1), we get M = A. Then (2) follows from
Lemma 3.3(3)—(6). m|

We shall use Theorem 3.4 together with Lemma 1.2 to produce the displacement
functions for the decomposition '+ . In the rest of this paper, we will use the bijection
p: Wt - I defined by

Eni>1, 202, &3, N7,

(D —1e—1 -2 -1 -1
nTE T T4, 5 T E6, £ 8,

to enumerate the displacement functions and their variables. We have:
Proposition 3.5 Let I' = (£, 1) be a free Kleinian group. For any z, € H? and for
each y € {&, 1,1, n~1, En, n~ €1}, the expression e2951(0,¥°20) js pounded below

by fi(x) or gj(x) for at least one of f; or g; fori € IT=1{1,2,3,4,5,6,7,8)} and
j €{1,2,3,4,5,6} in the list
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fl(x) — 1—X4—)C5—X6 . 1—x1 fz(x) — 1—X4—X5—X6—X7—X8 . l—xz

’

X4+X5+Xg xp X4+X5+Xe+X7+Xg X2
faloe) = TR () = AR s L,
fl = e Lo gy Lo Lo,
)= A - Lo L

(the functions above are produced from rows (3)(a)—(c), (4)(a)—(c), (5)(a) and (5)(d) of
Table 1) and

_ o ox7  1-x Xe 1—x3
_ X5 . 1—X3 X8 . I—X4
X3 . 1—X5 X2 . 1—X6

(these come from rows (3)(d), (4)(d), (5)(b), (5)(c), (5)(e) and (5)(f) of Table 1) for
some

8
x=(x1,...,x8)€A7={x eRi:Zx,-=1}.
i=1

Under the same hypothesis on I, for any zo € H* and for each y € {£%, 772, &En~ 1, nE},
the expression e245tz0:v°20) jg bounded below by h;(x) for at least one of h; from the
list

hi(x) = 1-Xe I_XS, ha(x) = ﬂﬂ

X6 Xg X2 X8
I—x5 1—x l—x3 I—x
h3(x)=x—5'x—77, h4(x)=x—33'77,

forsomei €{1,2,3,4} and x € A’ (the functions h; are produced from rows (6)(a)—(d)
of Table 1).

Proof By Lemma 3.3(1), we have 0 < vy (So) < 1 for every ¥ € wf. We aim
to show that 0 < vy (Seo) < 1 for any ¥ € W' First assume to the contrary that
Ve-1(Se0) =0. Applying Theorem 3.4(2) to row (6)(a) of Table 1 gives v,—1£(Soo) = 1.
By Theorem 3.4(1), we see that vy (Se) = 0 for every ¥ € ot — (=g}, Us-
ing that v;(Se) = 0 and applying Theorem 3.4(2) to row (6)(b) of Table 1 shows
that vg,—1(Se0) = 1, a contradiction. A similar argument can be repeated for vy (Soo)
by exchanging the roles of £~! and 1 above. Therefore, we have Ve-1(Seo) # 0 and

v (Seo) # 0.
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Assume that vy, (Seo) = 0 for a given ¥g € {&n, gn~1 €2 n7 g, n7 e 72}, Con-
sider the lists

e v =), E e Tl e TR ),
Ehe vt —geh) ot e e e,
(o 'e T =g ) (e T —{En T en 67067,
where each entry in a list is assigned for yg, Yo, S(¥o), ¥1, respectively. By applying
Theorem 3.4(2) to Table 1 with {9 = s(y9), we get Zl/feS(yo) vy = 1. We have
V1 & S(yo). Therefore, we obtain vy, (Seo) = 0 for some ¥y € {£=1,n}, a contradic-

tion. As a result, we conclude that 0 < vy, (Soo) < 1 for every ¥ € U Since we have
¥ = s(y) for some y in Table 1 and S(y) C ¥, we also conclude

0</ (Ay.zo)?dpy,,, =1—>_ | dvy <1
Soe veS(y) S

by Theorem 3.4(2). In other words, vy, and / Seo )\f,’ 20 A1y, satisfy the hypothesis
of Lemma 1.2 for every y in Table 1.

We apply Lemma 1.2 to every row of Table 1 with v = vy(,), a = vg)(Seo) and

b=/ Ses )LJZ,,ZO duy,,, - Using Theorem 3.4(2), we calculate the lower bounds as

J2disCzoyz0) = (1= yese) Mpe) - (1= Mpsiyy)
(ZweS(y) mp(t/f)) “Mp(s(y))

where [ Seo dvy, = mps(y)) for the bijection p in (11). Upon replacing each constant
Mp(s(y)) appearing in (12) with the variable x(s(,)) we obtain the functions listed in
the proposition. a

9

(12)

Note that we have 18 lower bounds given in the expression (12) for the displace-
ments under the isometries in W, U W' because there are 18 group-theoretical re-
lations listed in (8). Since we are interested in the displacements under the isome-
tries in I'y = {£,n,&n}, we will concentrate on the first 14 displacement functions
Ji, /2., fs,&1,82,..., 8¢ in Proposition 3.5 for the proofs of Lemmas 4.2, 4.3, 4.4,
4.5,4.6,4.7,49,4.11, 4.12, 4.13 and Theorems 4.14, 4.1 and 5.1.

4 Lower bound for max{dist(z, y-z):y €';} when Ar..=S2
Let 7T ={f1. f>..... f3.21.82. ... g¢}. The constants on the right-hand side of the

inequalities in (12) can be considered as the values of the functions in F T at the point
.8
my=(my,my,...,mg)€ AT = {(xlaXZ;x3’~x4a X5, X6, X7,Xg) ERi : Zi=1 X = 1}-
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When I' = (&, n) is geometrically infinite, the lower bound given in Theorem 5.1 for
the displacements under the isometries in '+ = {&, 1, £n} follows from the calculation
of the infimum of the maximum of the functions in F' over the simplex A’. Therefore,
in this section, we aim to prove the statement below:

Theorem 4.1 Let Gt: A7 — R be the function defined by x > max{ f(x): f € FT}.
Then inf7GT(x) =5432.
xeA

To this purpose, we shall show that it is enough to calculate the infimum of the
maximum of the first eight f1, f5...., fs of the displacement functions in FT. Let
It = {1,2,3,4,5,6,7,8}. Then we first state the following:

Lemmad.2 Let F': A7 - R be the function defined by x +— max{ f;(x):i € IT}.
Then oy = i€n£7FJf(x) is attained in A7 and satisfies 9 < oy < 5+ 34/2.

X
Proof It is clear that inf, c o7{max(f7(x), fg(x))} < inf, cp7 FT(x). We apply the
substitution X1 = x7, Xy = xg, X3 =x1 +x3 +x3, X4 = x4 + x5 + x¢6. Then we
see that f7(x) = 0(X3)o(X;) and f3(x) = 0(X3)0(X,), where ZLI X; =1 and
o(x)=1/x—1 for x € (0,1). By Lemma 2.1, we obtain that 9 < o.

Let Ay={xeA :1/n<x; <1—1/@2n) fori € I} of A7 for every n > 2. Note
that A,4+1 C Ay,. The function F T has an absolute minimum FT(x,) at some point
xn € A;,. The sequence (F t (xn))52, tends to an infimum because it is a decreasing
sequence which is bounded below by 9.

We claim that the sequence (x,);2 , cannot have a limit point on the boundary of AT,
Assume on the contrary that x,, — b € A’ as n — 0. If (b1, b,, ..., bg) denotes the
coordinates of the point b, then b; = 0 for some i € T. Let us assume that b;i=0
for some i € {1, 7}. Then using the function f;, we conclude that by + b5 + bg =1
because otherwise ( f;(x,))o>, would tend to infinity. But it is supposed to be tending
to an infimum of FT. Therefore, we must have bj =0 forevery j €{2,3,8}. Then, we
get that bs+bs+bs+br+bg=1,b1+by+b3+b7+bg=1and by +b,+b3=1,
because otherwise ( fj(x,));>, would tend to infinity when it is supposed to tend
to an infimum of F'. In any case, we obtain that by + bs + bg + b; > 1 for some
i €{1,2,3,7,8}. This is a contradiction. Therefore, by # 0 and b7 % 0. Similar
arguments with suitably chosen displacement functions show that b; # 0 for every
i €{2,3,4,5,6,8}. Hence, the sequence (x,)5=, cannot have a limit point on the
boundary of A”. Then there exists a positive integer ng so that x, = x,4 for every
n > ng. Otherwise we would have a subsequence (x; )°° , of the sequence (x,);2
so that x,,; € Ay; | — Ay, for every integer j > 0. Slnce we have Un 2 Ap = A7

Algebraic & Geometric Topology, Volume 14 (2014)



3162 Ilker S Yiice

there exists a subsequence of (x; )f.i1 which has a limit point on dA”, a contradiction.
As aresult, inf, ¢ z7 F'(x) is attained at some point in A7, ie oy = min, ¢ A7 Ff(x).

Let x; = (v/2—1)/2 fori = 1,4,7,8 and x; = (3—2+/2)/4 for i =2,3,5,6. Then
X = (xj);ey+ is apointin A7 such that f;(¥) =5+ 34/2 for every i € IT. Therefore,
we get FT(X) =5+3v2> as. a

In the rest of this section, we will consider A’ as a submanifold of R®. The tangent
space Tx A7 at any x € A7 consists of vectors whose coordinates sum to 0. Note that
each displacement function f; for i € I T is smooth in an open neighborhood of A”.
Therefore, the directional derivative of f; in the direction of any v € Ty A’ is given by
V fi(x)-0 forany i € I'.

We shall use the identity Zf-;:l x; = 1 to rewrite the formulas of the functions f; given
in Proposition 3.5 in various ways in the proofs of lemmas below to suit our purposes.
Although they do not take the same values on all of R®, we will abuse notation and
call the rewritten functions by f;, which agree with the originals on A”.

4.1 Relationships between the displacement functions fi, f2,..., f3

By Lemma 4.2, we know that «, is attained by a displacement function f; for some
i € I't. In fact, it is possible to see that more than one function in { f1, ..., fg} attain
the value ax. In other words, we have:

Lemma 4.3 Let oy = inf, c o7 max{ fi(x),..., fs(x)}, where f; fori € IT are as
in Proposition 3.5. At any x* € A7 such that FT(x*) = ax, there exist at least
two functions f;, f; such that fj(x*) = fj(x*) for i # j, where i,j € IT =
{1,2,3,4,5,6,7,8}.

Proof Observe that for each function f; fori € 1 T there is a variable x 7 such that
the first-order partial derivative of f; with respect to x; at x is 0 for every x € A7,
But the first-order partial derivatives of f; with respect to x; are strictly negative at
every x € A7. These facts imply that V f; is not a scalar multiple of the perpendicular
(1,1,...,1) to Tx A7 for any i € I'". Therefore, none of the functions fi, /5. ..., f3
has a local extremum on A’

If fi(x*)# fj(x*) for every i # j, then the set { f1(x¥), f2(x™),..., fs(x™)} has
a unique largest element. By renumbering the functions, we may assume that /7 (x*)
is the largest value, ie fj(x*) = as. By the continuity of T, there exists a neighbor-
hood U of x* contained in A7 so that FT(x) = f;(x) for every x € U. Since FT
has a minimum at x*, then f; must have a local minimum at x*, a contradiction. The
lemma follows. a
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Next, we will consider the cases in which f; and f; in Lemma 4.3 are in the sets

U f2, 133, {4y s, fe} and { f7, [}, respectively:

Lemma 4.4 Let oy =inf, co7 max{ fi(x)...., fs(x)}, where f; fori € IT are as in
Proposition 3.5. At any x* € A7 such that Ft(x*) = ., we have either

(1) fi(x*)=ax foralll € Iy ={1,2,3} or

(2) fi(z) <ay foralll € I; and fj(z) = fj(x*) forall j €7y ={4,5,6,7,8} for
some z € A7 such that FT(z) = FT(x*).

Proof Assume that part (1) of the lemma does not hold at x*. If f;(x™) < ax for
every i € I, the point z = x™* satisfies part (2). Then it is enough to consider the case
Ji(x™) < fi(x*) < fr(x*) = ay, and fj(x*) < a4 for [ € Zy, where i, j,k € I,
such that i # j, j #k, i # k. Let us define the vectors #?, i3 and ii3 as

(~1,1,0,0,0,0,0,0), (—1,0,1,0,0,0,0,0) and (0,—1,1,0,0,0,0,0)

in Ty« A7, respectively. Also let iiy = —ii1, iy = —ii; and i3 = —ii3.

Using the identity x5 =1 — Zn 1 nstk Xn, We calculate the dlrectlonal derivatives of
all of the functions f7, f>,..., fg in the direction of the vector u . Note that none of
the functions f4, fs...., fg contains the variables x;, x, or x3. For every x € A’
and for every / € Z; we see that

Vfi(x)-il >0, Vfix)-il <0, Vfi(x)-il =0, Vfi(x)-il =0,

which implies that the Values of f; and fj decrease along a line segment in the
direction of v = u + u . The values of f; are constant along this segment, and for a
short distance along v the values of f; is smaller than those of f; and fj. Therefore
there exists a point z on this line segment satisfying part (2) of the lemma. |

Analogous results hold for the displacement functions in { f4, f5, f¢} and { f7, fg}. In
particular, we have the following:

Lemma4.5 Let oy =inf, co7 max{ fi(x),..., fs(x)}, where f; fori € IT are as in
Proposition 3.5. At any x* € A7 such that FT(x*) = ay, we have either

(1) fi(x®)=ay foralll € I, ={4,5,6} or

(2) fi(z) <ayx foralll € I and fj(z) = fj(x*) forall j €T, ={1,2,3,7,8} for
some z € A7 such that FT(z) = FT(x*).
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Lemma 4.6 Let oy =inf, o7 max{ fi(x)...., fs(x)}, where f; fori € IT are as in
Proposition 3.5. At any x* € A7 such that FT(x*) = ax, we have either

(1) fi(x*) =y forall l € I3 ={7,8} or

(2) fi(z) <ay foralll € I3 and fj(z) = f;(x*) forall j € Z3 ={1,2,3,4,5,6}
for some z € A7 such that FT(z) = Ff(x*).

The proof of Lemma 4.4 applies, mutatis mutandis, to prove Lemmas 4.5 and 4.6. In
particular, using each identity xz =1 — Zz=1,n7ék x; for k € I, U I3, we perturb in
the directions of the vectors ﬁi =(0,0,0,—1,1,0,0,0), ﬁg =(0,0,0,—1,0,1,0,0)
and iig = (0,0,0,0,—1,1,0,0) for Lemma 4.5, and perturb in the direction of the
vectors @5 = (0,0,0,0,0,0,—1,1) and ii] = (0,0,0,0,0,0,1,—1) for Lemma 4.6.
Lemmas 4.4, 4.5 and 4.6 imply the following:

Lemma 4.7 Let oy = inf, co7 max{ f1(x),..., fs(x)}, where f; fori € IT are as in
Proposition 3.5. There exists a point x* € A’ which satisfies one of the cases (I), (II),
I1D), (IV) or (V), where

(D fi(x*)<ax for j €Ty =4{4,5,6,7,8} and f;(x*) =y for j € I} ={1,2,3},
(D) fj(x*) <ay for j €T3 ={1,2,3,4,5,6} and f;(x*) =y for j € [3 ={7,8},
() fj(x*)=ax for j €T3 =1{1,2,3,4,5,6} and f;j(x*) <ax for j € I3 ={7,8},
(IV) fj(x*)=oax for j €T, =1{1,2,3,7,8} and fj(x*) <ay for j € [, =1{4,5,6},
(V) fi(x*)=ay for j e IT=1{1,2,3,4,5,6,7,8}.

Proof Let x € A7 be a point such that F T(x) = 4. First, assume that fi(x) <ay for
some i € I;. By Lemma 4.4, there exists a point z; € A7 with f;(z1) < ax for all
i el and fj(z;) <ay forall j €Z; with FT(z)) = a.

If fj(z1) <ax forsome j € I,, there exists a point z; € A7 with fi(z1) = f;(z2) < o«
forall i € Iy, fj(z2) < ax forall j € I, fix(z1) = fk(z2) for all k € I3 and
F%(z5) = a4 by Lemma 4.5. We must have f}(z5) = ax forall k € I3 by Lemma 4.3.
Thus x* = z, satisfies case (II). Assume that fj(z1) = a4 for all j € I,. Let
T;: A7 — A7 be the transformation

X1 = X4, X2 X5, X3 Xg, X4 Xq,

13)
X5 X2, Xgbl> X3, X7H>Xg, Xgk>X7.

If f3(z1) = ay forall k € I3, then x* = T (z) satisfies case (IV). Otherwise, there
exists a point z, € A7 such that f;(zp) = fi(z1) fori € Iy, fj(z2) = fj(z;) for j €I,
and fj(z,) < ax for k € I3 by Lemma 4.6. Thus, x* = T (z,) satisfies case (I).
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Consider the case fi(x) = a4 forall i € I;. If also fj(x) = ax for all j € I,
then either x* = x satisfies case (V) or there exists a point x* = z; obtained by
Lemma 4.6 satisfying case (III). Therefore, assume fj(x) < s for some j € I5. By
Lemma 4.5, there exists a point z; € A7 with the property that f;(z;) = a4 for all
i€ly, fi(z1) <oy forall j €I, and fi(z1) = fr(x) forall k € I5. Then either
x* =z satisfies case (IV), or there exists a point x* =z, € A’ satisfying case (I) by
Lemma 4.6. a

4.2 Calculations of the infima

Let A7 ={y € A: fi(y) = fi(»),j.k € IT} ¢ A7. Note that ¥ € A7 (see
Lemma 4.2). We aim to prove the following proposition:

Proposition 4.8 The infimum o = min FT(x) € [9, 5 + 3+/2] is attained at some

. 7
point x* € A7. xel

To this purpose, we need to show that cases (I), (II), (II) and (IV) are not possible at a
point x € A7 so that F T(x) = a. We start with case (I).

Lemma 4.9 Let oy = inf, a7 max{ fi(x),..., fs(x)}, where f; fori € It areasin
Proposition 3.5. At any x* € A7 satisfying f;(x*) = f;(x*) forevery i, j € {1,2,3}
and f>(x*) > fes(x*), there exists v € Tx+A’ such that each of f,, f» and f3
decreases in the direction of V.

Proof Using the identity xg = 1 — Zr71=1 Xn, we rewrite f1, f> and f3 as

0(x2) o(x3)

Si(x) =0(Z2(x))o(x1), falx) = o(21(x) S3(x) = 0(Z2(x))

where ¥ (x) = x; 4+ x5 + x3 and ,(x) = x4 + x5 + x¢ for every x € A7. These
functions are each well-defined and smooth on an open neighborhood of A7 in R¥.
Because o(x) decreases in x and X, is constant in all variables but x4, x5 and xg,
it is clear that

0 Yo(x* 0 d
(1) ix*:_a(z—*(xz))<o, i‘x*zo, i|x*:0’
0x1 (x7) 0x7 dx3
/3 1 /3 3, «
2 o €« — 0’ o * — O’ o = 09
@ e e = ey <% b ")
/1 . /2 _ /3 _
3) axy X7 0. oxyp 'X° 0, axp 'XT 0.
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for every k € I5. These facts imply that at any x* € A’ such that the equation

(14) % =0

8X2 x*
does not hold, there exists some r € R such that each of f;, f> and f3 decreases
in the direction of the vector v, = (1,r,1,0,0,0, —r —2,0). Note that v, € Tyx+A’
since its coordinates sum to 0. Thus it only remains to consider the case in which the
equality in (14) holds.

A computation gives that

A | _ = E) (A —x) — %y (x"))
9xz lx (x3)*(Z1(x*))? ’

which vanishes if and only if 35 (x*) +x3 = 1. Since X (x*) = x| + x3 +x7, we
conclude that equation in (14) holds if and only if x3 = (I —x{ —x7)/2. By the
identity Zf-;:l x; =1, this is in turn equivalent to

* % * * * *
Xy =X, + X5+ Xg + X7+ Xg.

Therefore, we find that x;‘ < x’z“ . Then the lemma follows, because by the definitions
of f> and fg, we obtain f5(x*) = (G(x;"))2 <o(x3)o(xg)= fe(x™); acontradiction.
O

Before we proceed to cases (II), (III) and (IV), we shall first prove the following
statement:

Lemma4.10 Forl1 <k <n-—1,let f1, f>,..., fr be smooth functions on an open
neighborhood U of the (n — 1)—simplex A"~ in R". If at some x € A""! the
collection {V f1(x),V f>(x),...,V fr(x),{1,1,...,1)} of vectors in R" is linearly
independent, then there exists a vector i € Ty A"~! such that each f; fori =1,...,k
decreases in the direction of i at x .

Proof Let B ={Uy,..., U} be a collection of n linearly independent vectors in R”.
We claim that there exists a vector # € R” such that u - v < 0 for every v € B.
The assertion is clear for n = 1. For n > 1, assume that there exists a vector g €
Span{vy,...,U,—1} such that #iy-v < 0 for every v €S = {Vy,..., Uy_1} by induction.

There is a nonzero vector vg € R” orthogonal to each vector in S. If we have vy-U, =0,
then vy is in the space 1’53‘ of vectors perpendicular to vg. Since dim T)(J)- =n—1, the
set S spans T)(J)-. The set B is linearly independent therefore, we get Uy, - Vg # 0. Let
U =1y—cvg for ¢ = (tig-Vy + 1)/0g - Uy. Then we see that u-v < 0 for every v € B,
which proves the claim.

Algebraic & Geometric Topology, Volume 14 (2014)



Two-generator free Kleinian groups and hyperbolic displacements 3167

Letw=(1,1,...,1) € R". Complete the set {V f1(x),V f2(x),...,V fi(x), W} toa
basis B={V f1(x),V fo(x), ...,V fx(x),Ug41,...,Up—1,w} for R”. If we declare
Ui =projz. V fi(x) fori =1,...,k and ¥ =projg. uj for j =k+1,...,n—1, then
{U1,...,Up_1,w} is linearly independent. This is because B is linearly independent.
Let S={U;,...,Un_1}. Since W' has dimension n—1 and S is linearly independent,
we have SpanS = w'. By the fact above, there exists a vector i € SpanS so that
-0 <0 forevery v €S. In particular, we get u-v; =u-V fij(x) <0 fori=1,... k.
Since T A" ! consists of vectors whose entries sum to 0, we have wt =T AT
which completes the proof. |

Lemmas 4.11, 4.12 and 4.13 below show respectively that cases (II), (II) and (IV) are
not possible at a point at which FT takes it minimum value:

Lemma 4.11 Let oy = inf, o o7 max{ f; (x)...., fz(x)}, where f; fori € I are as
in Proposition 3.5. Atany x* € A7 such that f7(x*) = fg(x*) and f4(x*) < f3(x*),
there exists a vector v € T+ A7 so that f7 and fg decrease in the direction of V.

Proof We aim to apply Lemma 4.10. Therefore, we need to show that the set
{V f7(x*),V fg(x*), w} is linearly independent, where w = (1,1,1,1,1,1,1,1). It
is enough to show that the matrix

Afy dfy ofy Of

Vfr 82 32 agﬁﬁﬁﬁaf

(15) Vi |=| 5 e e 0 0 0 0 52
w 1 1 1 1 1 1 1 1

has full rank at any x* € A7 which satisfies the hypotheses of the lemma. We have

o Yy oGH ap_dhy M _0f
8x4 x* (Ez(x*))z’ GX4 x* 8X5 x® 8X5 x* 3x6 x*

o Yo L 06D W W My
8x1 x* (Zl(x*))z’ 8)(?1 x* 3)(72 x* 8x2 x* 8)(3 x*
3f7 0(Z2(x")) dfs 0(Z;(x™))

3) L =——2 40, 2| =),

) Oxy '* (x7)? 7 dxg ¥ (x3)? g

Let A= (f7)4(x*), B=(f7)7(x*), C = (fs)1(x*) and D = (f3)g(x™). We apply
two row operations: first Ry — —D - R3 + Ry, then R{+— (B/D)- Ry + R;. Then
we obtain the row equivalent matrix:

B«c-p) E(c-D) B(C-D) A—~B A-B A-B 0 0
c-p C-D C-D -D -D -D -DO
1 1 1 1 1 111
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The matrix above has full rank if and only if A — B # 0 or C — D # 0, where

_ (Z2(x*) = x))(1 = Zp(x™*) —x7

A—B ,
(Z2(x*))2(x7)?
(Z1(™) —xg)(1 = Xy (x™) — x¢g)
C-D=
(Z1(x*))?(xg)?

Equivalently, it has full rank at x* € A7 unless x5 = Z,(x*) and x} = I (x*).

Atany x* € A7 such that x¥ =x} +x¥+x%, x¥ =xF+xJ+xF and f7(x*) = fe(x*),
we derive (o(x;‘))2 = (a(x;‘))z, which implies that xJ = xg . Using prl xp=1,
we find that

1

1 1 1
Tix*) =7 S(x¥) =1, xF=71 and xj=1.

Since we have X, (x™*) = %, x5 >0 and xg > 0, we get x; < %, which implies
that f4(x*) =0 (Z1(x¥))o(x}) > fs(x*) =0 (Z1(x¥))o(xg), a contradiction. As a
result, the matrix in (15) has full rank. By Lemma 4.10, the conclusion of the lemma

follows. a

Lemma 4.12 Let oy = inf, 57 max{ fi(x),..., fg(x)}, where f; fori € IT are as
in Proposition 3.5. For any x* € A7 such that f;(x*) = f;(x*) forevery i, j € [;UI,,
there exists a vector v € Ty« A’ such that f; decreases in the direction of v for each
ielhUl,=1{1,2,3,4,56}.

Proof Using the identity xg = 1‘271:1 xp we rewrite the formulas of f1, f2,..., fs
as
B _ O'(Xz) _ O'(X3)
fiE) =0 (Ea@ot), fon) = oS 0=
fa(x) =0(Z1(x)o(xs), [f5(x) = % Js(x) = %

All of these functions are smooth on an open neighborhood of A’ in R® and do not
depend on x7 or xg. Since f2(x*) = fs(x*) and f3(x*) = f5(x*), we get xJ = x¢
and x5 = x%. Thenusing f1(x*) = f4(x™), we obtain x| = x . As a consequence, in
particular, we find X1 (x*) = X,(x™). Using this fact together with f5(x*) = f3(x*)
yields x5 = x;. Let X7 denote X (x¥).
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We aim to apply Lemma 4.10. To this purpose, we need to show that the matrix
- A1 oh N A

9x1 0 0 0x4 0xs5 0x¢ 00
B 7] afs 8fs Of

gfl GG g2 0 0 000
/2 o o M s s s

V£ 0x3 0x4 0x5 O0xe

_| o afs 8f af

(16) Vis |=| 2 2 2 2s o o 00
Vs 0 0 o0 MM

Vs v b o 9xa xs 2;6
1 1 1 1 1 I 11

has full rank at x* € A’. Using the equality fj(x*) = f>(x*), the coordinates of x*
and the definitions of f7, f>,..., fe, we calculate that

) AL _a(E’f) > _ x5(1—=x3)-Z7(1-%7) AL N _a(xT)
oxy Ix*7  (xPH2> oxy lx*— (1-31)2(x3)? > Ixg Ix*— (P2
s | —__ 1 3 _of Aa | _0fr
) Ox3 lx*™ o (ZP(x3)2° dx1 lx*7  0x4 lx*° 0xg lx*7 0xq1 lx*°
3) | 5 s | _ e | _3f s | _3fs
dxp lx*7 0xs lx*’ 0x3 lx*™ 0xe lx*’ 0xp Ix* 0x3 lx*’> 0x4 lx*" 0x¢ lx*°
@ Doy M\ e A A
ox3 Ix*7 0x; lx*> 0Oxe Ix*7 0x; Ix*° 0x; Ix*™ 0x; Ix*° 0xj Ix*~ 0x; Ix*’

forevery i € Iy and j € I. Let A =o0(x]), B=0(xJ), C =0(X]), A'=0'(x]),
B’ =0'(x3) and C’' = 0/(X]). Note that A’ # 0, B’ # 0 and C # 0.

We perform simultaneously the following elementary row operations Ry — R + R3,
Ry R4+ Ry, Rs— (—1)R3 + Rs, Rg—~ (—1)Ry + R¢, R3 — (ACC/)/B,
R6 + R3, R3 = (ACC/)/B/ : R5 + R3, R3 = (AC/)/(A/C) : R4 + R3, Rz =
(AC")/(A'C)- Ry + R; in the matrix in (16) to obtain the matrix:
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0 -5 0 o 0 Zoo
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If we mark each partition of the matrix above by (i, j) reading the first entry from
top to bottom and the second entry from left to right for i = 1,2,3 and j = 1,2, 3,
then the matrix in (16) has full rank if and only if the (2,2) partition has full rank. Its
determinant factors as

an (=T (@ (1+Fe)—240)
where o e
/ / _ .
%(1 B j’CC) - (1—Ef)éx;‘)2 (1 - ;};(1—;17)) 70,

which follows from the fact that the function ¢ > #(1 — ) is increasing on (0, %) and
the inequality 0 < x{ < X7 < %, an implication of the equality 2X7 + x7 + xg = 1.

Let us assume that the determinant in (17) vanishes. Then we must have the expression

X x*(1—x¥ 2(1—x*

(1=-27)(x3) 1 (1-%7) x7(X7)
Simplifying the left-hand summand, applying the identity fj(x*) = f>(x™) to the
right, and finding a common denominator yield

—SF =T —xF(1—xT) + 205 (1—x

G155 =0

We use the fact that X7 = x{ + 2xJ in the equality above. Then it simplifies to
(x;‘)2 +2x}x3 —x7(1 =x7) = 0. The solutions to this quadratic are

*

* %
Xy =—X; % X

Since x5 >0, we get

*

*x *
xz——xl—i— X

1

Using this formula we find that xJ < x if and only if x} > 7.

Since o(x) = 1/x — 1 decreases in x and X} < %, we get 0(X7) > 1. The identity
f1(x*) = f>(x*) implies that o (x3) = (6(=F))?0 (xT) > o(x¥), which in turn gives
that x3 < x. Then we derive that

* % * * * 3
YT =x]+2x5 =24/x]7 —x7 >,

a contradiction. Hence, the matrix in (16) has full rank. By Lemma 4.10, there is a
direction in which each f; decreases for i € 11 U I,. O
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Lemma 4.13 Let oy = inf, c 7 max{ fi(x),..., fg(x)}, where f; fori IT are as
in Proposition 3.5. At any x* € A7 satisfying FT(x*) = ax and f;(x*) = f;(x*) >
Jr(x™) forevery i, je Iy Ul; ={1,2,3,7,8} and k € I, = {4, 5, 6}, there exists a
vector v € T+ A’ such that f;i decreases in the direction of v foreachi € I, U I5.

Proof Define the function ¥ 3(x) = X (x)+ Z3(x) for x € A7. We use the identity
X4=1-— fo=1,n7&4 Xp to rewrite f; as follows:

_ o(xy1) . o(x7) _ .
fl(x)_—o(El,g(x))’ fz(x)——o(z:](x))’ S3(x) =0(Z13(x))-0(x3),
_ o(Xy) _
fa(x) = (s £ X6 1 21 3(x)" f3(x) =0(2,3(x))o(xs),
_ ol(xe) _ 0(xy) _
f6(x)_—a(21(x))’ fr(x) = (1A fa(x) =0 (Z1(x))o(xg),

which are smooth on an open neighborhood of A7 in R®. The functions f1, f>, f3. /7
and fg do not depend on x4, x5 or x¢. We will show that the matrix

S Of A B g g o 24 AT
_ f _ dx; 0dxz 0x3 dx7 Jxg
Vi fs s Af
v/ g2 g2 f2 o000 0 o0
v s A U o o
(18) f3 — Bxl 3)(2 3X3 aX7 an
Vi o s 1 o U1 0
Vfg 8x1 3.X2 3X3 3X7 3X8
> dfs dfs 0fs fs
EN gt B o000 0 B
1 1 1 111 1 I ]

has full rank at x* € A7. Using the coordinates of x*, the definitions of the func-

tions f1, f2, f3, f7, fs and the equalities fi(x™) = f7(x™), f1(x™) = f3(x™),
f3(x*) = f7(x*) and f>(x*) = f3(x™), we find the following:

1) A1 _ xf(=x])=21 3(x*)(1-21 3(x*)) A1 _ o(x})

axy lx*— (-Z1 3(x*)N2(x))2 T Ox et T (1-2 3(x )2
@) s _o(x}) s _ x5 (1=x3)-Z1(x*)(1-Z1(x*))

axi lx*7 (1= (x*))?>  0x2 lx* (1=21(x*)2(x3)? ’
@) Y| —_ o(x3) s | _ —x30=x)—%;3(x*)(I-2; 3(x*))

axp lx*™ (Z13(x*)2° Oxz lx* (Z1,3(x*))%(x3)? ’
@ M| oG M| _ Afs | _

dxg lx* (x;{)2 > dx; Ix* oxp lx*> dx; lx* 0x3 lx*’
5) M| | dh| _0p A 0| 0| _0k

dx7 Ix* dx3 lx*2 dxp Ix*™ 0x3 lx*> dxp Ix*™ 0x7 lx*> 9dxp Ix*™ 0x; lx*°
(6) i | _ 1 | _ s a7 | _9f7

dxp Ix*7 dxj Ix*° dxp lx*7 dxp Ix*° dxp lx*7 dx; Ix*>
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for every i = 2,3, j =3,7,8, k =2,7,8 and [ = 2,3,8. Let A = (f1)1(x™),
B=(f1)2(x%), C=(/2)1(x*), D=(f2)2(x¥), E=(f3)3(x*) and F = (f3)s(x™).
Note that B #0, B—A # 0 and D—C # 0. We also have E + B # 0, which follows
from the equality fi(x*) = f3(x*).

We simultaneously apply the row operations: Ry +— —A - Rg+ Ry, Ry — R5+ R;,
R3+—> R4+ R3, Ry — —B-R¢+ Ry, Rs—~> C-Rg+ R5, Ry — —R4 + Ry,
R] = (1/(B—A))R1, R2 = (C —D)Rl + Rz, Rz = (1/(C —D))Rz, R3 =
—(E+4+ B)Ry + R3, R3—~ —(1/(E+ B))R3, Rs—~> (C/B)R4 + R5s and Ry +—
B - R34+ R4 to the matrix in (18) to obtain the matrix:

011111 2 1
001111 2 FiC—D

9) 000111 e ) F+C-D
000000|B(E4+2)+4-B B(EESSR)
000000 ca F+C
111111 1 )

The matrix above has full rank if and only if the (2, 2) partition has nonzero determinant,
where
B( B—A 2) L A_B= 2XT(1—XT)—Xg‘(l—XZ‘)—Em(Ji*)(l—21,3(36*))’
E+B (1-31 3(x*))2(x3)?
Xg(1=xg) =21 (x*)(1-X(x™))
(Z1(x*)2(x5)? ’
_ Zi(x*)
(x3)2(1=% (x*)?
calculated by using the facts fi(x*) = f3(x*) and f2(x*) = fg(x™). Assume that
the determinant of the (2, 2) partition of the matrix in (19) vanishes. Then the equality
B-—4 F+C—D>
E+B C-D

F4+C=

c-D

(20) (B +A+ByF+C)=CA(

must hold at any point x* € A7 satisfying the hypotheses of the lemma. Let X%, =3
and X7 ; denote ¥ (x*), Xp(x*) and Xy 3(x™), respectively.

Since f1(x*) = f7(x*), we get x = x7. Using the inequalities f>(x*) > fs(x*),
f3(x*) > f5(x*) and f3(x*) > f4(x*), we derive that xJ < x{, x7 < xI and
Xg < x, which implies X;(x*) < % Because otherwise we find x§ + x¢ + x] > %

contradicting with the fact that x* € A7,
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Note that 2xg + x3 +x3 < x5 +x7 +x; + x5 <1 and x{ + xJ +x7 +xJ =
2x7 4+ x5 +x3 < 1. So we have x{, xg € (0, (1 — x5 —x3)/2). From the inequalities
X3 <xg, xy <x7and xg <X}, we obtain

* * * * * * * *
fl(x*):1—x4—x5—x6.1—x1 1—x8—x2—x3.1—x1
* %k * * * * * *
X, + X5+ X X Xg + X5 + X3 X

By the equality fi(x*) = f3(x™), we get that o (x5 + xJ 4+ xJ)o(x]) > o(x] +
x5 + x3)o(xg). Since the function o(x)/o(x + x5 + x7) is decreasing over the
interval (0, (1 —xJ — x3)/2), we find x] < xg. By the facts X;(x*) < % and
(G(El(x*)))za(x*) = o(x3), which follows from the rearranging of the equality

fr(x*) = fg(x*), we also find that x3 < xg .

By using the equality f>(x*) = fg(x™), we simplify the right-hand side of the equality
above to (x] — ETJ)(I —x] - 27’3)()@" —x3)(1—=xg —x7), which is nonzero because
xy <xg and 1 —x} — XY ; > 0 by the inequality f1(x*) > f4(x™).

Similarly, by using the equality fi(x*) = f3(x*), we reduce the left-hand side of (20)
to (xg =X (I —xg —ED((x] —x3) (1 —xf —x3) + (x] = Z] ;) (1 —x[ = X7 5)). We
first distribute the factor (xg — X7)(1 —xg — X7) and move the second summand in
the resulting expression to the right-hand side of the equation in (20). On the right-hand
side of (20) the term (x} — 2’13)(1 —xi - 2’13) is a common factor. We factor this
term and, after simplifications, we obtain

21) —(xg‘+ET)(I—x]"—E’fﬂ)(xT+x§)(1—x§—2’f) < 0.
On the left-hand side of (20), we have
(22) (xg =D —xg — I (x] —x3) (I —x7 —x3).

Since we assume that the expressions in (21) and (22) are equal, there are two cases to
consider:

* * * *
Y] <xg and Xxj <Xxj,
* * * *
X7 >xg and X >x3.
Assume we are in the first case Note that X7 > because x{ <x¥ and fl (x*) =

f3(x*). We claim that X7 < 7 < xg. If 1 < E* < xg holds, then Zn (xp>1,a
contradiction.

If £ < xg < %, we see that o(xg) > 3. We get 30(X]) < f3(x™) = ax, which
implies 3/(cax + 3) < =*. By Lemma 4.2, we know that 9 < a, <5+ 3[. As a
consequence, we derive (24 9v/2)/46 < 7 < xg . Since we have X3 > 2 , we find

that (71 — 18+/2)/46 < E*+E*+x8,whlch in turn gives x* < (— 25+18«/_)/46.
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For a lower bound for X7, we solve the inequality o'(X7)(49 + 364/2) < f7(x*) = ax.
Using this lower bound, we conclude that X} + X3 = (873 — 2214/2)/483 > 1, a
contradiction. The claim follows.

Upon setting fg(x™) = ax, substituting 1 — ZZ=1 x,; for xg and collecting powers
of X7 in the resulting formula, we see that X7 is a root of the quadratic

q(x) = (ax — Dx? + (1 —ax)(1 = 5 —xD)x + (5 + x3).

By the formula for the addition of the roots, we find that x3 is the other root. Since
X7 # xg , the discriminant of the quadratic above is strictly positive. By the inequality
¥ < L <x}, wefind ¢(§) <0, which implies that 3% + x% < (21 + 18+/2)/92.

By substituting 1 — Zzzl,n# x, for xJ in the equality f7(x*) = ax and collecting
powers of X7, we find that X7 is a root of the quadratic

0(x) = (ax — Dx*+ (1 —ax)(1 = ZF —xH)x + (T + x7).
By the formula for the addition of the roots, we derive that xJ is the other root. We

obtain Q(%) < 0 because we have x{ = xJ < % < X3. Then, we calculate that

S 4 xt < (1++/2)/6

which, in turn, implies that 22:1 X, < 1; a contradiction. Hence the matrix in (19)
has full rank in the case (1).

If we are in the second case, consider
Go(x) = (@—Dx* + (1 —a)(1 =5 —xH)x + (T} + xD),
Qu(x) = (@—D)x? + (1 —a)(1 - ZF —xH)x + (ZF+x3)

for o €[9, 5+ 3+4/2]. Note that gg, (x) = ¢(x) and Qg, (x) = Q(x). The solutions
of go(x) + Qq(x) =0 are
1 I /-9 1 1 [a—9
SR IR S e e

Using x;‘ > x:, x5 > x;‘, x;‘ > x;‘ and x} < x;;, we derive that xJ < X7 < X7.
Then we Obtaln Qa* (ET) + Qa*(ET) = QC(*(ET) < 07 and ‘Ia* (x;) + Qa* (X;) =
Qu. (xg) < 0, which implies that x_(ax) < xg < X7 < x4 (ax). We shall use the
previous inequality to produce lower and upper bounds for each of the factors in (21)
and (22).

Since x_(«) is decreasing over [9, 5 4+ 34/2], we have a; = (v/2—1)/2 < xg . By
the assumption xg < X7 and the fact 9 < oy, we find xg < by = %. Otherwise,
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we would compute that fg(x*) = ax < 9, a contradiction. Using the inequality
ox = fg(x*) >0 (X])o(by), we also get a, < X7 < by, where a; = 3/(8+3+/2) and
by = x4(54+3+/2) = (2—+/2)/2 as x4 («) is an increasing function on [9, 5+ 3+/2].
We find a lower and an upper bound for X7 as follows. From the assumption x > x7
and the equality fi(x*) = f3(x*), we have £ < b3 = % By the inequalities
fa(x™®) <ok, f5(x*) <ay and fe(x™) < oy, we obtain
1-X7 N =7 o =3
(s —DIF+1  au(1-SH4+3F 73 a*(l —-ZH+33
The expression on the right-hand side of the first inequality above is decreasing both

in o4 and E’l" < % So we find xI +x;‘ > % by using the bounds 5+ 34/2 and b, for
ax and X7, respectively. Then we have X7 > x¥ + %.

* *
Xy +x6 >

Since the expression on the right-hand side of the second inequality above is decreasing
in oy and increasing in ¥, by substituting the bounds 5 + 3+/2 and X3+ % and
rearranging, we get (4 + 3ﬁ)(x;‘)2 — (%)(4 + 3\/§)x;‘ + % < 0. Thus x% is greater
than the smaller root (3 — 2\/5) /4 of the left-hand side quadratic. Then it follows that

2—-2)/2< 23 . Next we will consider the two cases

2— f « [
— << —
<5 3 . 3= 25 2.
Assume we are in the second case. By rearranging the equalities f](x*) = .,
fr(x*) = oy and f3(x™) = ay, we derive
1-33 =7 =3

23) xf=— 2 xi= S :
BT w1 T waos sy YT wion

The right-hand side of the expression for xJ is increasing in X7 and decreasing in otx.
Therefore we find xJ < by = (9+/2 — 10)/62 by substituting the relevant bounds 9
and b for ax and X7, respectively. We also find x{ < bs = % by plugging in 9
and % = a3 < X3 because the expression on the right-hand side of the equality for x
above is decreasing in both X3 and a. Similarly, since the right-hand side of the
equality
1-X%7 N =3
(@ DI+ 1 an(l—-33) + 23

(24) X +x; =

is decreasing in both ax and X3, we get a4 = (2— V2)/3 < x| -+ x] by substituting

54342 and b3 = % for ax and X%, respectively. The right-hand side of the expression
1-%7 =3

(05*_1)2;4-1 05*(1_2;)4-2;

(25) xX{—x3 =
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is again decreasing in both ax and X7 . So we obtain x§ —x3 < bg = % by plugging
in 9 and a3 = % for ax and X%, respectively. As a result we have the bounds

a; > 0.20710, a; > 0.24504, a3 >0.33333, a4 > 0.19526, by = 0.25000,
by <0.29290, b3 =0.50000, b4 <0.04400, bs <0.18182, bg<0.12919.

Then we compute that (a; + az)as(az —bs)(1 —bg — by) > 0.00886, which implies
that the expression in (21) is less than —0.00886. Similarly, we also calculate that
(by —ay)bg(1 —ay —az)(1 —ay) < 0.00489, which shows that the expression in (22)
is greater than —0.00489. This is a contradiction. Hence, the determinant of the (2, 2)
partition of the matrix in (19) cannot be 0.

Assume that the inequality in the first case holds. In this case, we have £ < b3 = %
Using the equality in (24) we get (1027 —480+/2)/1519 = a4 < x +xJ . Since we
have X = x| + xJ + xJ > xJ + a4, by rearranging the equality for xJ in (23), we
derive the inequality

(4+3vV2)(x5)? = (1 —ag) (4 +3V2)x} + a4 < 0.

Thus x7 is greater than the smaller root of the left-hand quadratic in the previous
inequality. This implies that

24244 1698+/2— /9776852 + 64683452 N 1027—480+/2 _

1519(4+3+/2) 1519

as <ET.

Substituting the bounds 9 for a4 and a3 = (2—~/2)/2 for X3 in the expression for x7

in (23) we obtain x} < bs =1/ (9+/2 — 8). Similarly, using the previous bounds for o

and X3 in (25), we get x] —x; < bg = (369 — 814/2)/1519. As a result we have
ap > 0.20710, a, > 0.26716, a3 > 0.29289, a4 > 0.22921, by = 0.25000,
by <0.29290, b3 =0.33333, b4 <0.04400, bs<0.21151, bg<0.16752.

Using these estimates we calculate (a1 + a;)aq(as —bs)(1 —bgy —by) > 0.00586 and
(by —ay)bg(1 —ay —az)(1 —ay) < 0.00583, a contradiction. Hence, the determinant
of the (2,2) partition of the matrix in (19) cannot be 0 in this case as well. Finally by
Lemma 4.10, we obtain the conclusion of the lemma. O

Proof of Proposition 4.8 It follows from Lemmas 4.7, 4.9, 4.11,4.12 and 4.13. O

We use Proposition 4.8 to calculate the infimum of G over the simplex A7. In
particular, we prove Theorem 4.1. First, we establish the following:
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Theorem 4.14 Let FT: A7 - R be the function defined by x —max{ f;(x):i eI},
where f; are defined as in Proposition 3.5. Then inf, c o7 Fix)=5+3V2.

Proof By Proposition 4.8, we know that x* € A7, ie f;(x*) = ay forevery i € I'T.
Using the identities f3(x*) = f3(x™¥), f1(x*) = f7(x¥), fa(x™) = f6(x*) and
f3(x*) = f5(x*), we get x5 = xg, x{ = x7, x; =xJ and x; = x{. By the fact
fa(x*) = f1(x*), we obtain

(x7 —x) (x5 +x3)(1—x] —x5 —x3 —x;) =0,
or x = x; . The last equality, in turn, gives that X1 = X7.

By the equality f>(x*) = f3(x*), we see that xJ = xJ. Since Z 1 x,=1,we

obtain x7 = %—xl Using the equality f1(x*) = j2 (x ), we find

x5 = 3x3x] — (62X —4(x3)% +4(x3)°x] +4(x3)° — (x])* =0,

which simplifies to 1 —4x} —4(x})? = 0. The solutions are x} = (—1 % +/2)/2.
Since x} >0, we get xJ = (3 — 2+/2)/4. In particular, we conclude that x; = x] for
every i €{4,7,8} and xj’." = x5 for every for x; € {3, 5, 6}. Finally, we calculate that

inf Fi(x) =a(2=+v2)/2)0((vV2=1)/2) =5+ 32. O

Proof of Theorem 4.1 By the definitions of Gt and FT, we have GT(x) > FT(x)
for every x € A7. A direct computation shows that GT(x*) = FT(x*). Then the
conclusion of the theorem follows. a

4.3 On the uniqueness of x* in Theorem 4.14

It is worth emphasizing the similarities between the statements (a) and (b) listed in
Section 2 and the two statements

(¢c) inf FT(x) = min FJr(x)

xeN xeN

(d) there exists x* € A7 C A7 such that min7 FT(x) = fi(x™) fori e It
X €A

used in the proof of Theorem 4.14 to calculate the number (%) log(5+3+/2). Although
it is straightforward to observe (b), it takes considerable calculations to prove (d).
Analogous to Lemma 2.1, Theorem 4.14 shows that the point x* is unique. Assuming
the uniqueness of the point x* a priori together with (c) suggests an alternative way
of finding the coordinates of the point x* € A7.
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Let 7 be the transformation defined in (13). Since f;(7T1(x)) = fj(x) for every
x € A7 for every pair (i, j) € {(1,4), (4,1),(3,5),(5,3).(7,8),(8,7),(2,6), (6,2)},
we conclude that {fj :i € ITy ={fioTy :i € IT}. Let us define Hy: A7 — R, where
Hy(x) =max{(fjoTy)(x):i e I'}. We see that FT(x) = H,(x) for every x € A7
and min, cp7 F Tx) = min, cA7 Hy(x). Since F T takes its minimum value at the
point x* and { f;(x*) :i € I} = {(fi o T1)(x*) : i € I}, the function H; takes
its minimum value at the point 7 I(x*). Then we obtain T l_l(x*) = x* by the
uniqueness of x*. This means that x] = xj, xJ = x;‘, x;" = xg and xJ = xg‘.

Let A3 ={x e A7:x; =x4, Xo = X5, X3 =Xg, X7 =xg}. Note that f1(x) = f4(x),
fo(x) = f5(x), f3(x) = fe(x) and f7(x) = fz(x) for every x € A}. Define the
continuous function F;: A> — R such that x — max(g;(x), g2(x), g3(x), g7(x)),
where g; = fi|as fori =1,2,3,7. Then we have min, ¢ A7 Ff(x) =min, cp3 Fi(x).

Consider T»: A7 — A7 defined by x, — X3, X3 — x, and x; — x; for every
i € IT—{2,3}. The map T, preserves A7 and A3. Then we have g;(T>(x)) = Ji(x)
for every x € A* for every pair (i, j) € {(1,1),(2.3),(3,2).(7,7)}. An argument
similar to the one above for Hy: A7 - R, Hy(x) =max{(fioT)(x):i =1,2,3,7}

shows that T2_1 (x*) = x™*. This means that xJ = xJ.

Let A> = {x € A’ : x, = x3}. Note that g,(x) = g3(x) for every x € A%. Define
the functions /;: A2 — R such that /; = g;| a2 for i =1,2,7. Introduce the contin-
uous function F»: A> — R, where x > max(h;(x), h5(x), h7(x)). Then we have
min, ¢ a3 F1(x) = min, cp2 F2(x). Note that x* = (x], x3, x3, x], x5, X3, x3, x7)
with x} +2x3 4+ x7 = %

In the rest of the discussion, we will consider A2 as a submanifold of R8. Then the
tangent space Ty A? atany x € A? is a subspace of Ty A’ generated by the vectors ii; =
(1,0,0,1,0,0,—1,—1) and %, = (0,1,1,0,1,1,—2,—2). Note that iy(x), /hy(x)
and h7(x) are smooth in an open neighborhood of A?. Therefore, V/;(x)- is the
derivative of /; in the direction of v € Ty A? for each i € {1,2,7}.

Using the identity x7 = % — X1 — 2x,, we rewrite the formulas of /1(x), /,(x) and
h7(x) as follows: hy(x) = a(x; + 2x3)0(x1), ha(x) = 0(x3)/0(x1 4+ 2x;) and
hi(x)=0(x; + 2x2)0(% — X1 —2x3). Then we find the partial derivatives

ohy 2(x12+2x1x2—x1—xz+2x§) ohy 2(1—xq)

E N xlz(xl + 2x,)? ’ % B _Xl(x1 +2x,)%°

dhy 1-x; Ohy  4xixy +2x3 —x1 +x7
3x1 xa(1— x5 —2x7)2 axy x5 (1 —x1 —2x7)?
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It is clear that /; and /5 have no critical points in A%. On the other hand, every point
on the set L = {x € A>: —1 +4x; + 8x, = 0} is a critical point for the function /-
because we have

oh~ . —14+4x; 4+ 8x,
Ox1  (x1 4 2x2)2(=1 + 2x1 +4x5)2’
8h7 2(—1 +4X1 + 8X2)

BX2 - (Xl +2)C2)2(—1 + 2x4 +4X2)2‘
Let Ei = h;|g, fori =1,2,7. Then we get

3+ 8X2
1— 8X2 ’

1 1—x;
3 _X2 ’

Iy (x2) =3 ha(x2) = hi7(x2) =9,

for 0 <xp < 5. Let I =(0, 8) Then /; and /1, have no critical points in /. We see
l(xz) > h7(x2) for every x, € I, because we have
3+8X2_9+ 3+8x2_

and lim 3-
x,—01 1 —8x, x2—>§7 1 —8x,

Therefore, it is enough to calculate the infimum of the maximum of h 1 and 52 over [
to calculate the infimum of the maximum of %4, /i, and &7 over L.

Since 1 and Ez have no critical points in 7, the infimum of the maximum of h 1
and £ is attained at a point x7 such that

i (x3) =y (x3).

In other words, we need to solve 64()62)2 +36x5—1=0. We get xJ = (-9£+/97)/32.
Since x3 is positive,

inefl{max(ﬁl (x2), ha(x2))} = (17 +2+/97) /3.

Note that the point x;‘ at which the infimum of the maximum of / 1 and h , over L is
unique.

We claim that there exist 7, j € {1,2,7} with i # j such that s;(x*) = h;(x*).
Assume otherwise that s; (x*) # hj(x*) for every i, j € {1,2,7} for i # j. Then
we have either iy(x*) > h;(x*) for i = 2,7 or hy(x*) > h;j(x*) for i = 1,7 or
h7(x*) > hi(x*) for i = 1,2. Since h; and &, have no critical points in A%, we
cannot have /11 (x*) > h;(x*) for i =2,7 or hy(x*) > hj(x*) fori =1,7.

Assume /7 (x*) > h;j(x*) for i =1,2. Since /7 is continuous on A?, there exists a
neighborhood V of x* in A? so that s7(x) > h;(x) forevery x € V fori = 1,2.
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Hence, F,(x) = h7(x) for every x € V. Since h7(x*) = F,(x™*), the function /5
has a local minimum at x* € V. This means x* € L so that x] = (13 — V97)/16,
Xy =(-9+ V97)/32 and X7 = i. This is a contradiction, because we know by
Lemma 4.2 that FT(¥) = 54 3+/2 < hy(x*). Hence, there exist i, j € {1,2,7} with
i # j such that h;(x*) = h;(x*). We need to consider the cases

@ A (x*) =hy(x*) > hy(x™),
D h7(x*) = ha(x™) > hy(x7),
D) Ay (x*) = ha(x™) > he(x™),
AV) hy(x*) = hy(x™) = h7(x™).

Assume we are in case (I). Let vy = u; + (—%)i{' ». The first-order partial derivatives
of hy, hy and h7 show that Vi;(x)-v; <0, Vh7(x)-0; =0, Vhy(x)-v; > 0 for
every x € A?. Therefore, h; is decreasing, &, is increasing and /7 is constant along a
line segment in the direction of v;. This means that if we move along the line segment
starting at x* in the direction of the vector vy for a sufficiently small amount, we
obtain a point y € A% such that 4;(y) < oy for i = 1,2 and h7(y) = . Thisis a
contradiction. Therefore, we cannot have /1 (x*) = h7(x*) > hy(x™).

Assume we are in case (II). Let vy = —v. The first-order partial derivatives of /1, hy
and /7 show that VA;(x) -0 >0, Vh7(x)-v =0, Vhy(x)-v <0 for every x € A”.
An argument similar to the above applies, mutatis mutandis, in this case to show that
we cannot have sp(x*) = h7(x*) > hi(x*). We already know that (IIT) is not possible
at the point x*, because this case corresponds to case (IIl) in Lemma 4.12. As a result,
we have hy(x™*) = h7(x™) and h7(x™*) = hi(x™).

Using the equality /1 (x*) = hy(x™), we see that
o(xf) =03 —xF—2x3),
which implies x = %—x;‘. We use /15 (x*) =h7(x*) to obtain 16(x;‘)2—24x;+1 =0
or xj =3+ 2+/2)/4. Since x5 is positive, we find
X3 =0B-2v2)/4, xf=(2-1)/2 and x}=x].
Finally, we calculate that min, ¢ x> F>(x) = 5+ 3+/2.

In the discussion above, we don’t refer to the statement x* € A5 given in (d). The
assumption that the point x* is unique reduces the necessary calculations to obtain o
considerably. Notice the fact that I+ is not a symmetric decomposition of I'. The
investigation of the likely conditions such as the convexity properties of the displacement
functions for the decompositions I'p1 and I'p+ that might lead to a proof of the
uniqueness of the points x* will be left to future studies.
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5 Proof of the main theorem

In this final section, we present a detailed proof of the main result of this paper:

Theorem 5.1 Let £ and 1 be noncommuting isometries of H3. Suppose that £ and 7
generate a torsion-free discrete group which is not cocompact and contains no parabolic.
Let T'y and a4 denote the set of isometries {&,7,&n} and the real number 5 + 372,
respectively. Then for any zo € H? we have

e(2 max]/El—‘T {diSt(Z(),)/'Z())}) 2 aT .

Proof By [6, Proposition 9.2], the group (&, 1) is a free group on the generators &
and 1. Let zy be a pointin H3. If T" = (£, n) is geometrically infinite, then Theorem 3.4
and Lemma 1.2 imply that

max {dist(zg, y - z0)} = %log GT(m) > %log( inf GT(x))
yels xeN7

for m = (mpy))yewt € A7, where p and mp(y) are the bijection and the total
measures defined in (11) and Section 3, respectively. The function G is defined in
Theorem 4.1, which implies the conclusion of the theorem.

Assume that I' = (£, ) is geometrically finite. Then (&, ) is in &F, an open subset
of the character variety X = Isom™* (H?) x Isom™ (H?), consisting of (£,7) such
that (£, ) is free, geometrically finite and without any parabolic. Let fzt): X —R be
the function defined as

En- max{dist(zo, &-z¢),dist(zg, - zo), dist(zg, En - zo)}.

It is straightforward to see that f;g is a proper, continuous and nonnegative-valued
function on X. Therefore, it takes a minimum value at some point (£, 17¢) € &F. We
claim that (&g, ng) is in &F — BF.

Assume on the contrary that (£g, 1) is in &F. Since &g, no and £yno have infinite
orders in (£g, 7o), we have &y -z # z, o -z # z and &yng - z # z for every z € H3.
In particular, we get that & - zg # zg, no - zo 7# zo and &yng - zg # zo. Therefore,
there exists hyperbolic geodesic segments joining zg to &g - zg, zg to g - zo and zg to
&ono - zo. Note that we have the equalities

dist(zg, Eono - z0) = dist(&o_1 -20.1M0-20) and dist(zg, & - zg) = dist(zg, £~ - zg).

We consider the geodesic triangle A = Ap, p, p, , Where P; = éo_ L.z, Py =zo and
Py = ng-zo. The value f;; (&0, 7mo) is the longest side length of A. There are two
cases to consider: A is acute or A is not acute.

Algebraic & Geometric Topology, Volume 14 (2014)



3182 Ilker S Yiice

Assume the latter is the case. Let y be the unique longest edge of A. By the hyperbolic
law of sines, y is opposite to the nonacute angle. If P; lies in y, let P(i) be a
sequence of points in the interior of y so that P(’) — Pp. Let P(’) = Pj for j €{0,2}
and i € N. Otherwise, let P(’) be a sequence of points in the interior of y so that
P(’) — P, and define P(’) = Pj for j €{0,1} and i € N. Let A; be the geodesic
trlangle contained in A Wlth vertices P(’) P(’) and P(’) By the construction, the
unique longest side y; of A; is contalned in y for all but finitely manyi . Let {&;} be
a sequence of isometries such that & — & and & - ! = P (@) Similarly, let {1;} be a
sequence of isometries such that n; — n and 7; - zo P(’) Then (&i,mi) € BF for all
but finitely many i and fZO Ei,n)=1ly) < fZO (&0, r]o) a contradiction.

Pl Pl

A 2 = P2
Py P, A

Assume A is acute. Then the perpendicular arc y; from P; to the geodesic contain-
ing Py and P, meets it in the interior of the edge of A opposite to P;. Let P() be a
sequence of points in the interior of y; so that P( D P;. For each i, we see that
d (P(’) Py) <d(Py, Py) by applying the hyperbohc law of cosines to the right triangle
containing P( 2 , Py and a subarc of y;. Similarly, we have d (P('), Py) <d(Py, Py).

0 A

The triangle A; with vertices Py, Pl(i) and P, is itself acute because its angles at Py
and P, are less than those of A, and its angle at Pl(i) limits to the angle of A at Py.
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Thus, the perpendicular arc )/z(i) from P, to the geodesic containing Py and Pl(i)
meets this geodesic inside of A;. Let Pz(’) be the point on )/2(’) at distance 1/i from
P,. We find that

d(P{), Py) <d(Py, Py) and d(P{, PD) <d(Py, PP) <d(P,y, Py)

by the hyperbolic law of cosines. In other words, by the two-step process described
above, we obtain a triangle with vertices at Py, P(i ) and P(i ) so that all edge lengths
are less than those of A. Let {§;} and {ni} be the sequences such that &;” L P(’)
and n; -zg = P(’) Then we have fZO &ini) < ]’ZO (&0, no) for all but ﬁmtely many i,
a contradlctlon. Hence, we conclude that (&g, ng) € B5.

Finally, since the set of (£, ) such that (£, n) is free, geometrically infinite and without
any parabolic is dense in &F — BF (see [6, Proposition 8.2]) and every (£, 1) € ¥ with
(€, n) is free and without any parabolic is in &F (see [6, Proposition 9.3]), we reduce
the geometrically finite case to the geometrically infinite case proving the theorem. O
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