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On the map of Bökstedt–Madsen from the
cobordism category to A–theory

GEORGE RAPTIS

WOLFGANG STEIMLE

Bökstedt and Madsen defined an infinite loop map from the embedded d–dimensional
cobordism category of Galatius, Madsen, Tillmann and Weiss to the algebraic K–
theory of BO.d/ in the sense of Waldhausen. The purpose of this paper is to establish
two results in relation to this map. The first result is that it extends the universal
parametrized A–theory Euler characteristic of smooth bundles with compact d–
dimensional fibers, as defined by Dwyer, Weiss and Williams. The second result is
that it actually factors through the canonical unit map Q.BO.d/C/!A.BO.d// .

19D10, 55R12, 57R90

1 Introduction

The parametrized Euler characteristic was defined by Dwyer, Weiss and Williams in [8]
for fibrations whose fibers are homotopy equivalent to a finite CW complex. Broadly
speaking, the Euler characteristic of such a fibration pW E!B is a map that associates
to every b 2 B the Euler characteristic of the fiber p�1.b/. The precise definition,
which is given in terms of Waldhausen’s algebraic K–theory of spaces (A–theory) [19],
produces this way a section of an associated fibration

AB.p/W AB.E/! B

that is defined by applying the A–theory functor to p fiberwise.

In the case where the fibration is actually a smooth fiber bundle and the fibers are
compact smooth d–manifolds, possibly with boundary, the “smooth Riemann–Roch
theorem” of [8] asserts that this fiberwise Euler characteristic can be identified with
the composition of a stable transfer map, in the sense of Becker and Gottlieb [2],
followed by the unit transformation from stable homotopy to algebraic K–theory.
More concretely, if we consider the vertical tangent bundle of the smooth fiber bundle
pW E!B and pass to BO.d/, the parametrized A–theory Euler characteristic gives
a map

�DWW
W B!A.BO.d//;
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and according to the smooth Riemann–Roch theorem, the diagram

(1)

B
tr //

�DWW ((

Q.BO.d/C/

�

��
A.BO.d//

is commutative up to homotopy, where the map tr is given by the classical Becker–
Gottlieb transfer and � denotes the unit map at BO.d/.

Let Cd be the embedded d–dimensional cobordism category of Galatius, Tillmann,
Madsen and Weiss [10]. Roughly speaking, the objects are closed smooth .d � 1/–
manifolds and the morphisms are cobordisms between them, all embedded in some
high-dimensional Euclidean space. Every closed smooth d–manifold M, embedded
in some high-dimensional Euclidean space, may be regarded as a cobordism from the
empty manifold to itself and therefore it defines a loop in BCd . This rule defines a map

iM W BDiff.M /!�BCd

where BDiff.M / is the classifying space of smooth fiber bundles with fiber M. Re-
cently, Bökstedt and Madsen [4] defined an infinite loop map

� W �BCd !A.BO.d//

which, in nontechnical language, is given by viewing an n–simplex in the nerve of Cd

as a filtered space equipped with a map to BO.d/ defined by the tangent bundle. This
raises naturally the following two questions:

(i) Does the restriction of the map � to BDiff.M / agree up to homotopy with
the parametrized A–theory Euler characteristic of the universal bundle over
BDiff.M /?

(ii) Does the map � also factor up to homotopy through stable homotopy, via the
unit map �, as in the smooth Riemann–Roch theorem above?

Bökstedt and Madsen [4] expressed their belief that the answer to both questions is
affirmative.

The purpose of this paper is to show that both statements are indeed true. The question
of extending the universal parametrized A–theory Euler characteristic to the cobordism
category can be regarded as a question about the additivity property of the parametrized
A–theory Euler characteristic with respect to the fiber. Assuming that (i) is true,
then (ii) can also be regarded as a question about a structured additivity property of
the factorization of the universal parametrized A–theory Euler characteristic through
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the unit map as in diagram (1). The first main ingredient in the proofs is to consider
the cobordism category Cd;@ of compact smooth manifolds with boundary, studied by
Genauer [11], which contains Cd as a subcategory. The Bökstedt–Madsen map can be
extended to a map

z� W �BCd;@!A.BO.d//:

The space �BCd;@ receives a map from BDiff.M /, defined as before, for every M

compact smooth d–manifold, possibly with boundary. In Theorem 5.5, we show
that the restriction of z� to BDiff.M / agrees up to homotopy with the composition
of the universal parametrized A–theory Euler characteristic followed by the map
to A.BO.d// defined by the vertical tangent bundle. The proof uses the second main
ingredient, namely, that the universal bundle over BDiff.M / defines a bivariant A–
theory characteristic in the bivariant A–theory of the bundle (see Williams [21]),
and that the universal parametrized A–theory Euler characteristic is the image of
this characteristic under a coassembly map. Since a basic problem in comparing all
these maps is to find first the right identifications between the various models used to
represent the various homotopy types, bivariant A–theory becomes extremely useful
here, because it can offer a unifying perspective.

The homotopy type of �BCd;@ was identified by Genauer [11] to be equivalent to
Q.BO.d/C/. To answer question (ii), we show in Theorem 5.10 that, under this identifi-
cation, the map z� agrees with the unit map. This provides a geometric description of the
unit map at BO.d/ in terms of smooth d–dimensional cobordisms. As consequence of
this, the Bökstedt–Madsen map � factors up to homotopy as the following composition
of a parametrized Pontryagin–Thom collapse map with the unit map

�BCd

�

!�1MTO.d/!Q.BO.d/C/!A.BO.d//;

where the first map is the weak equivalence of [10] and the second map is defined by
the canonical inclusion of Thom spectra. In particular, the homotopy commutativity of
diagram (1) is also a consequence of these two theorems.

Organization of the paper In Section 2, we recall the definitions of the cobordism
categories Cd and Cd;@ and state the main results about their homotopy types from [10]
and [11] respectively. In Section 3 and the appendix, we discuss the bivariant A–
theory of a fibration and study some of its properties. Only very special instances of
bivariant A–theory will appear in the proofs of the main results, however we believe
that the more general results here will also be of independent interest. In Section 4,
we review the construction of the A–theory coassembly map and recall the definition
of the parametrized A–theory Euler characteristic from [8], [21]. In Section 5, we
prove the main results of the paper, answering questions (i) and (ii) above. Finally,
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in Section 6, we end with a couple of remarks. First, we explain how our results
generalize to cobordism categories with arbitrary tangential structures, and second, we
comment on the connection with the work of Tillmann [16] where a map analogous
to the Bökstedt–Madsen map was defined in the case of (a discrete version of) the
oriented 2–dimensional cobordism category.

Acknowledgements The first author would like to thank the Mathematical Institute
of the University of Bonn for its hospitality. The second author was supported by the
Hausdorff Center for Mathematics and by the Danish National Research Foundation
through the Centre for Symmetry and Deformation (DNRF92). He would also like to
thank Johannes Ebert for helpful conversations.

2 The cobordism categories Cd and Cd;@

In this section we recall the main results about the homotopy types of the embedded
d–dimensional cobordism categories Cd and Cd;@ from [10] and [11] respectively.

2.1 The cobordism category Cd

For every n 2N[f1g, there is a topological category Cd;n defined as follows. An ob-
ject of Cd;n is a pair .M; a/ where a2R and M is a closed smooth .d�1/–dimensional
submanifold of Rd�1Cn . (For nD1, define Rd�1C1 WD colimn!1Rd�1Cn with
the weak topology.) A nonidentity morphism from .M0; a0/ to .M1; a1/ is a triple
.W; a0; a1/, where a0 < a1 and W is a compact smooth d–dimensional submanifold
of Œa0; a1��Rd�1Cn such that for some � > 0, we have the following:

(i) W \ .Œa0; a0C �/�Rd�1Cn/D Œa0; a0C �/�M0

(ii) W \ ..a1� �; a1��Rd�1Cn/D .a1� �; a1��M1

(iii) @W DW \ .fa0; a1g �Rd�1Cn/

Composition is defined by taking the union of subsets of R�Rd�1Cn . The identities
are formally added and regarded as “thin” product cobordisms. We abbreviate

Cd WD Cd;1 D colim
n!1

Cd;n:

The topology is defined as follows. For technical reasons, we work here with the
slightly modified model discussed in [10, Remarks 2.1(ii) and 4.5]. Set

Bn.M /D Emb.M;Rd�1Cn/=Diff.M /:
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Let Rı denote the set of real numbers with the discrete topology. The space of objects
ob Cd;n is

ob Cd;n ŠRı �
a
M

Bn.M /;

where M varies over the diffeomorphism classes of closed .d � 1/–manifolds. By
Whitney’s embedding theorem, the space Emb.M;Rd�1C1/ is contractible, and so
there is a homotopy equivalence B1.M /' BDiff.M /.

The definition of the topology on the morphisms is similar, but requires in addi-
tion that the collars are preserved under the diffeomorphisms. In detail, given a
cobordism .W; h0; h1/ from M0 to M1 with collars h0W Œ0; 1/ �M0 ! W and
h1W .0; 1��M1!W , and 0< � < 1

2
, let

Emb�.W; Œ0; 1��Rd�1Cn/

be the subspace of smooth embeddings that restrict to product embeddings on the
�–neighborhood of the collared boundary; see [10] for a more precise definition.
This technical assumption is crucial in order to have a well-defined composition of
morphisms. Set

Emb.W; Œ0; 1��Rd�1Cn/ WD colim
�!0

Emb�.W; Œ0; 1��Rd�1Cn/:

Let Diff�.W / denote the group of diffeomorphisms of W that restrict to product
diffeomorphisms on the �–neighborhood of the collared boundary. Set

Diff.W /D Diff.W; h0; h1/ WD colim
�!0

Diff�.W /:

There is a principal Diff.W /–action on Emb.W; Œ0; 1��Rd�1Cn/. Set

Bn.W / WD Emb.W; Œ0; 1��Rd�1Cn/=Diff.W /:

Then the space of morphisms mor Cd;n is

mor Cd;n Š ob Cd;nq

a
W

..R2
C/
ı
�Bn.W //;

where W D .W; h0; h1/ varies over the diffeomorphism classes of d–dimensional
cobordisms and .R2

C/
ı denotes the open half plane f.a0; a1/ j a0 < a1g with the

discrete topology. We also have a homotopy equivalence B1.W /' BDiff.W /.

We will be mainly interested in the “stable” case n D 1. We recall the main re-
sult of [10] that identifies the homotopy type of the classifying space BCd . Let
Grd .R

dCk/ be the Grassmannian of d–dimensional linear subspaces in RdCk and
consider the two standard bundles over it: the tautological d–dimensional vector bundle
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d;k and its k –dimensional complement 
?
d;k

. The spectrum MTO.d/ is the Thom
spectrum associated to the inverse of the tautological vector bundle 
d WD 
d;1 over
Grd .R

dC1/, ie
MTO.d/dCk WD Th.
?d;k/

and the structure maps are induced, after passing to Thom spaces, from the pullback
diagrams,


?
d;k
˚ �1

��

// 
?
d;kC1

��

Grd .R
dCk/ // Grd .R

dCkC1/:

Theorem 2.1 (Galatius, Madsen, Tillmann and Weiss [10]) There is a weak equiva-
lence

˛W BCd

�

!�1�1 MTO.d/:

2.2 The cobordism category Cd;@

Following similar methods, Genauer generalized the results of [10] to cobordism
categories of manifolds with corners [11]. We will be mainly interested in the special
case of manifolds with boundary. For every n2N[f1g, there is a cobordism category
Cd;@;n of smooth d–dimensional cobordisms between manifolds with boundary, nicely
embedded in R�Rd�1Cn . The precise definition is analogous:

(i) 0 An object is a pair .M; a/, where a 2 Rı and M is a smooth neat .d � 1/–
dimensional submanifold of RC�Rd�2Cn . (This model of “discrete cuts” is not
considered in [11], however the same remarks as in [10, Remarks 2.1(ii) and 4.5]
apply in this case as well.)

(ii) 0 A nonidentity morphism from .M0; a0/ to .M1; a1/ is a triple .W; a0; a1/,
where a0 < a1 and W is a smooth neat d–dimensional submanifold (with
corners) of Œa0; a1��RC �Rd�2Cn satisfying (i)–(iii) as above; composition
of morphisms is by taking the union of subsets.

(iii) 0 The topology is defined similarly by the orbit spaces of the actions of diffeomor-
phisms on spaces of neat embeddings; see [11] for a precise definition.

We abbreviate Cd;@ WD Cd;@;1 D colimn!1 Cd;@;n .

Theorem 2.2 (Genauer [11]) There is a weak equivalence

z̨W BCd;@

�

!�1�1†1BO.d/C:
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Both weak equivalences are obtained as parametrized versions of the Pontryagin–Thom
collapse map. We recall first the description of this collapse map in the case of a
single compact, possibly with boundary, smooth d–manifold M neatly embedded
in .0; 1/ � RC � Rd�2Cn . This can be regarded as a(n) (endo)morphism of Cd;@ ,
essentially from the empty manifold to itself, and therefore it defines a loop in BCd;@ .
(To be precise, one should think of the empty manifold situated, say, inside f0g �R1

and f1g�R1 together with the canonical path in BCd;@ that connects these two points
through the empty cobordism in Œ0; 1��R1 .) Hence the image of this loop under the
map �.z̨/ is a loop in �1�1†1BO.d/C . This can be roughly described as follows:
consider the Pontryagin–Thom collapse map

.Sd�1Cn
^ .RC[f1g/;S

d�1Cn
� f0g/! .Th.�M /;Th.�@M //

and the classifying map of the normal bundle

.Th.�M /;Th.�@M //! .MTO.d/dCn;MTO.d � 1/d�1Cn/:

The cofiber of the inclusion of spectra †�1 MTO.d � 1/ ,!MTO.d/ is equivalent
to the spectrum †1.BO.d/C/ [10, Proposition 3.1]. So the composite map of pairs
induces a stable map on cofibers,

†1S0
!†1.BO.d/C/;

which essentially defines the image of z̨ at the embedded manifold M. On the other
hand, if @M D¿, then the composite map is a loop in �1�1 MTO.d/,

SdCn
!MTO.d/dCn;

which essentially defines the image of ˛ at the embedded closed manifold M. (This is
not a precise definition because it depends on various choices which are not canonical
in M � .0; 1/�RC�Rd�2Cn , however, they are essentially unique in a homotopical
sense.)

More generally, in the parametrized case, there is an inclusion map

iM W B1.M / ,! Cd;@..¿; 0/; .¿; 1//!�¿BCd;@

and the definition above of z̨ at a point of B1.M / extends similarly to B1.M /. For
every n 2N , consider the following M –bundle together with its natural fiberwise neat
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embedding:

Emb.M; .0; 1/�RC �Rd�2Cn/�Diff.M /M
� � //

�

��

Bn.M /� .0; 1/�RC �Rd�2Cn

ss
Bn.M /

Let ��
M

denote the fiberwise normal bundle of the embedding and �@�
@M

the corre-
sponding normal bundle associated to the @M–subbundle. The Pontryagin–Thom
construction produces a collapse map

.Sd�1Cn
^ .RC[f1g/;S

d�1Cn
� f0g/^Bn.M /C! .Th.��M /;Th.�@�@M //

and the classifying map of the normal bundle is a map

.Th.��M /;Th.�@�@M //! .MTO.d/dCn;MTO.d � 1/d�1Cn/:

The composite map of pairs induces a stable map on cofibers,

†1.Bn.M /C/!†1.BO.d/C/:

Letting n!1, we obtain a map

B1.M /!�1†1BO.d/C

which is up to homotopy the restriction of �.z̨/ along the map iM. Similarly, if
@M D¿, then we have the composite map

†dCn.Bn.M /C/! Th.��M /!MTO.d/dCn

and letting n!1, we obtain a map

B1.M /!�1MTO.d/

which is up to homotopy the restriction of �.˛/ along the map B1.M /!�BCd .

Note that there is an inclusion functor of cobordism categories Cd ,!Cd;@ . The induced
map on (the loop spaces of) the classifying spaces can be identified with the map of
spectra

MTO.d/!†1.BO.d/C/

defined by the canonical inclusions of Thom spaces Th.
?
d;k
/ ,! Th.
?

d;k
˚ 
d;k/Š

SdCk ^Grd .R
dCk/C . We refer the reader to [11, Section 6] for more details.
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3 Bivariant A–theory

Bivariant A–theory was defined by Bruce Williams [21]. A less general “untwisted”
version can be discovered in unpublished work of Waldhausen. A variation of the latter
was also considered by Bökstedt and Madsen [4].

The purpose of this section is to review and, for technical convenience, slightly modify
Williams’s definition of bivariant A–theory. This associates to a fibration pW E! B a
bivariant A–theory spectrum A.p/ which has the following properties:

(a) If B is the one point space, then A.p/DA.E/.

(b) For every fibration qW V !B and fiberwise map f W E! V over B , there is a
natural pushforward map f�W A.p/!A.q/. Moreover, pushforward maps are
homotopy invariant, ie if f is a homotopy equivalence, then so is f� .

(c) For every pullback square

E �B B0 //

p0

��

E

p

��
B0

g // B

there is a natural pullback map g�W A.p/!A.p0/. Moreover, pullback maps are
homotopy invariant, ie if gW B0! B is a homotopy equivalence, then so is g� .

(d) Pushforward maps commute with pullback maps, ie given maps q , f and g as
above, the following diagram commutes

A.p/
f� //

g�

��

A.q/

g�

��
A.p0/

f 0� // A.q0/

where q0 is the pullback of q along g and f 0W E�B B0! V �B B0 is the map
induced by f .

(e) For every composable pair of fibrations E
q
! V

q0

! B where p D q0 ı q , there
is a product map

A.q/^A.q0/!A.p/

which is natural up to canonical homotopy.
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3.1 Definition of bivariant A–theory

The space A.p/ is the K–theory of a Waldhausen category of retractive spaces over E

that are suitably related to the fibration p . As usual, we assume that all spaces are
compactly generated and Hausdorff. For technical reasons, we also make the following
assumption throughout this section.

Assumption The base space B of the fibration pW E!B has the homotopy type of
a CW complex. (But see also Remark 3.9.)

The category R.E/ of retractive spaces over E consists of all diagrams of spaces

E
i�X

r
!E;

where r ı i D idE and i is a cofibration. A morphism of retractive spaces is a
map over and under E . The category R.E/ becomes a Waldhausen category if we
define cofibrations (respectively weak equivalences) to be those morphisms whose
underlying map of spaces is a cofibration (respectively homotopy equivalence). Let
Rhf.E/�R.E/ be the full subcategory of all objects .X; i; r/ which are homotopy
finite, ie which are weakly equivalent, in R.E/, to an object .X 0; i 0; r 0/ such that
.X 0; i 0.E// is a finite relative CW complex. This is a Waldhausen subcategory of R.E/
whose K–theory, denoted by A.E/, is the algebraic K–theory of the space E [19].

For the definition of the bivariant A–theory of p , we consider those retractive spaces
over E that define families of homotopy finite retractive spaces over the fibers of p ,
parametrized by the points of B .

Definition 3.1 Let pW E ! B be a fibration. The category Rhf.p/ � R.E/ is the
full subcategory of all objects E

i�X
r
!E such that

(i) the composite p ı r is a fibration,

(ii) for each b 2 B , the space .p ı r/�1.b/ is homotopy finite as an object of
R.p�1.b// (with the obvious1 structure maps).

From our general assumption on B , it follows that for every object .X; i; r/ of Rhf.p/,
the pair .X; i.E// is homotopy equivalent to a relative CW complex. (This is a special
case of Lemma A.1 of the appendix.) We define a cofibration, respectively weak
equivalence, in Rhf.p/ to be a morphism which is a cofibration, respectively weak
equivalence, in R.E/.

1Less obvious is that the map p�1.b/! .p ı r/�1.b/ is actually a cofibration. This can be seen, for
example, as a consequence of the pullback theorem of Kieboom [12] applied to our category of spaces.
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Proposition 3.2 The category Rhf.p/ is a Waldhausen subcategory of R.E/. More-
over, it satisfies the “2-out-of-3” axiom (ie it is saturated in the terminology of [19])
and admits functorial factorizations of morphisms into a cofibration followed by a weak
equivalence.

Proof Since Rhf.p/�R.E/ is a full subcategory which contains the zero object, it
suffices to show that Rhf.p/ is closed under pushouts along a cofibration in R.E/.
Let

X0
//

��

��

X1
��

��
X2

// X

be a pushout diagram of retractive spaces over E , such that p ı ri W Xi ! B are
fibrations, for i D 0; 1; 2, whose fibers are homotopy finite relative to the fibers of p .
Then the induced map p ı r W X ! B is a fibration (see [12, page 383]), and there is a
pushout diagram

.p ı r0/
�1.b/ //
��

��

.p ı r1/
�1.b/
��

��
.p ı r2/

�1.b/ // .p ı r/�1.b/

which shows that .p ır/�1.b/ defines an object of Rhf.p�1.b//, since this category is
closed under taking such pushouts. The class of homotopy equivalences clearly satisfies
the “2-out-of-3” axiom, so Rhf.p/ is saturated. It remains to show the existence
of factorizations of morphisms. These will be obtained by the mapping cylinder
construction as usual. Let f W .X; iX ; rX /! .Y; iY ; rY / be a morphism in Rhf.p/.
Consider

.X � I; j0 ı iX ; rX ı�X /

as an object of Rhf.p/, where j0.x/D .x; 0/ and �X .x; t/D x . A cylinder object
CylE.X / for .X; iX ; rX / is defined by the pushout square in Rhf.p/

E � I
proj

'
//

��
iX�id
��

E
��

��
X � I

q

'
// CylE.X /:
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Then the mapping cylinder Mf of the map f W .X; iX ; rX /! .Y; iY ; rY / is defined
by the pushout in Rhf.p/

X
f //

��
qıj0'

��

Y
��

'

��
CylE.X /

u // Mf

and is denoted by .Mf ; i
0; r 0/. Note that the fiber of p ı r 0W Mf ! B at b 2 B fits in

the pushout diagram

.p ı rX /
�1.b/ //
��
qıj0

��

.p ı rY /
�1.b/
��

��
Cylp�1.b/..p ı rX /

�1.b// // .p ı r 0/�1.b/:

By the universal property of pushouts, there is a canonical map .Mf ; i
0; r 0/!.Y; iY ; rY /

which is also a homotopy equivalence. Then the standard factorization of the map
f W .X; iX ; rX /! .Y; iY ; rY / as

.X; iX ; rX / //
uıqıj1 // .Mf ; i

0; r 0/
' // .Y; iY ; rY /

defines functorial factorizations in Rhf.p/ with the required properties.

Remark 3.3 If pW X �B! B is the trivial fibration, then the Waldhausen category
Rhf.p/ is closely related to the bivariant category denoted by W .X;B/ in [4]. Later
on (Section 4.3), this notation will be used to denote the (classifying space of the) weak
equivalences of Rhf.p/. From now on, when we discuss the homotopy type of a small
category, we will often omit the classifying space functor “B”, or simply replace it
by “j � j”, in order to simplify the notation.

Definition 3.4 The bivariant A–theory of pW E! B is defined to be the space

A.p/ WDK.Rhf.p//D�jwS�Rhf.p/j:

Most of this section is devoted to the proof of the properties of bivariant A–theory
which were stated at the beginning. First, note that if B is a point, then the categories
Rhf.p/ and Rhf.E/ are the same, so we have A.p/DA.E/ in this case. This shows
property (a).
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3.2 Functoriality

We now proceed to define the pushforward and pullback maps. Let qW V ! B be
another fibration and f W E! V a fiberwise map, ie q ıf D p . The pushout along f
defines an exact functor of Waldhausen categories

f�W R.E/!R.V /; X 7!X [E V:

We claim that this actually restricts to an exact functor

f�W Rhf.p/!Rhf.q/

between the corresponding Waldhausen subcategories. Indeed we have already re-
marked that if X , E and V are fibered over B , then so is also the adjunction space
X [E V . Moreover, the fiber of X [E V over a point b 2 B is the adjunction space
Xb [Eb

Vb and it is homotopy finite relative Vb whenever Xb is homotopy finite
relative Eb . Hence we obtain a map in K–theory,

f�W A.p/!A.q/:

To define the pullback maps, consider a pullback square

(2)

E0

p0

��

// E

p

��
B0

g // B:

There is a functor
g�W Rhf.p/!Rhf.p0/

defined by sending a retractive space X over E to the pullback X 0 WDX �B B0 . This
defines a retractive space over E0 and a fibration over B0 . Also for each b0 2 B0 the
fiber X 0

b0
Š Xg.b/ is homotopy finite as a retractive space over E0

b0
Š Eg.b/ . This

shows that the functor is well-defined. Moreover, it preserves pushouts, cofibrations
(see [12, page 381]) and homotopy equivalences, so it defines an exact functor of
Waldhausen categories. Hence we obtain a map in K–theory,

g�W A.p/!A.p0/:

Remark 3.5 (Naturality) In order to obtain strict naturality of these maps (and also
to ensure that the size of the Waldhausen categories is small) we have to make certain
additional assumptions. Fix, once and for all, a set U of cardinality 2jRj . In the
definition of an object .X; i; r/ in Rhf.p/, where pW E! B , we additionally require
that X is a set-theoretical subset of Eq .B �U/, such that
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(i) the composite

E
i
!X ,!Eq .B �U/

is the inclusion of E into the disjoint union,

(ii) the following diagram is commutative:

X
� � //

pır ��

Eq .B �U/

pqproj
yy

B

For a map f W E! V over B , the adjunction space X [E V can be regarded as a
subset of V q .B �U/ satisfying conditions (i) and (ii). On the other hand, suppose
that we are given a pullback square (2), then the pullback X �B B0 can be regarded as a
subset of E0q.B0�U/. Using these conventions, both pushforward and pullback maps
are strictly functorial and commute with each other. This shows parts of properties (b)
and (c) and property (d).

3.3 Homotopy invariance

The following propositions show the homotopy invariance of bivariant A–theory.

Proposition 3.6 Let pW E ! B and qW V ! B be fibrations and f W E ! V a
fiberwise map over B . If f is a homotopy equivalence, then so are the induced
pushforward maps wSnf�W wSnRhf.p/!wSnRhf.q/ for all n� 0. In particular, the
pushforward map f�W A.p/!A.q/ is also a homotopy equivalence.

Proof We show this first in the case where f W E
'
,! V is a trivial cofibration by

applying Cisinski’s generalized approximation theorem [6]; cf [19, Theorem 1.6.7]. So
it suffices to check that the exact functor f�W Rhf.p/!Rhf.q/ has the approximation
properties (AP1) and (AP2) of [6, page 512]. Indeed the approximation theorem
of [6, Proposition 2.14] shows then that wSnf� is a homotopy equivalence for all n�0;
see [6, Proposition 2.3, Lemma 2.13].

Since f is a homotopy equivalence, then clearly gW X ! Y (over E ) is a homotopy
equivalence if and only if f�.g/W X [E V ! Y [E V is a homotopy equivalence,
so (AP1) holds. Let .X; iX ; rX / be an object of Rhf.p/, .Y; iY ; rY / an object of
Rhf.q/ and

uW f�.X; iX ; rX /D .X [E V; i 0X ; r
0
X /! .Y; iY ; rY /
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a map in Rhf.q/. We factorize the retraction map rY into a trivial cofibration and
a fibration

Y
j
� Y 0

q0

! V:

Clearly .Y 0; iY 0 D j ı iY ; q
0/ is an object of Rhf.q/ and its restriction .Y 0jE ; iY 0 ; q0/

over E is an object of Rhf.p/. There is an adjoint map

vW .X; iX ; rX /! .Y 0jE ; iY 0 ; q
0/

in Rhf.p/. Then we have a diagram in Rhf.q/

.X [E V; i 0
X
; r 0

X
/

f�.v/

��

u // .Y; iY ; rY /

j'

��
.Y 0jE [E V; iY 0 ; q

0/ //
' // .Y 0; iY 0 ; q

0/

and therefore (AP2) also holds. This concludes the proof in the case where f is a
trivial cofibration. The general case of an arbitrary homotopy equivalence f W E

'
! V

follows from this by factorizing f in the standard way as

E // ' //

p
))

.E � I/[E V

��

//
Voo

'
oo

q
uu

B

to reduce this general case to the case of trivial cofibrations.

Corollary 3.7 Let pW E ! B and qW V ! B be fibrations and f;gW E ! V

two fiberwise maps over B . If f 'B g are fiberwise homotopic over B , then
wSnf� 'wSng�W wSnRhf.p/!wSnRhf.q/ are homotopic for all n� 0. Moreover,
f� ' g�W A.p/!A.q/ are also homotopic.

Proof It suffices to prove the statement for the inclusions at the endpoints

j0; j1W E!E � I

regarded as fiberwise maps from p to the fibration qD p ıprojW E�I!B . Both are
split by the projection � W E � I !E over B . By Proposition 3.6, the pushforward
maps wSn.j0/� and wSn.j1/� are homotopy equivalences, and they have wSn�� as
a homotopy inverse. It follows that the two maps are homotopic. The last statement
can be shown similarly.
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Proposition 3.8 Let pW E ! B be a fibration and gW B0 ! B a map as in dia-
gram (2). If g is a homotopy equivalence, then so are the induced pullback maps
wSng�W wSnRhf.p/! wSnRhf.p0/ for all n � 0. In particular, the pullback map
g�W A.p/!A.p0/ is also a homotopy equivalence.

Proof It suffices to show that if i0; i1W B!B � I are the inclusions at the endpoints,
and xpW V !B�I is a fibration, then the induced pullback maps are homotopy equiva-
lences. By the fiberwise homotopy invariance of Proposition 3.6 and the commutativity
property (d), it is enough to consider the case where xpDp�idI and show that the maps

i�0 ; i
�
1 W wR

hf.p� idI /! wRhf.p/

are homotopic. By Corollary 3.7, it suffices to show that the maps

.j0/� ı i�0 ; .j1/� ı i�1 W wR
hf.p� idI /! wRhf.q/

are homotopic. We recall j0; j1W E!E � I denote the inclusions at the endpoints,
as fiberwise maps over B , and qW E � I !E

p
! B is the composite fibration. Let

� W wRhf.p� idI /! wRhf.q/

be the forgetful functor which views a fibration over B � I as one over B . Then there
are natural weak equivalences of functors

.j0/� ı i�0
'
�! �

'
 � .j1/� ı i�1

which give the desired homotopy after geometric realization. Applying the same
argument in each degree of the S�–construction finishes the proof.

The above statements conclude the proof of properties (b) and (c). As a consequence
of the homotopy invariance, we can define a thick model for A–theory as follows; see
also [4]. This model will be needed for the proofs of our main results. We abbreviate

Rhf.X;B/ WDRhf

0@X �B

#

B

1A :
The thick model for jwSqRhf.X /j is defined to be the geometric realization of the
simplicial space

wSqRhf.X; ��/ WD
�
Œn� 7! jwSqRhf.X; �n/j

�
where �n D j�n

�j denotes the standard topological n–simplex and the simplicial
operations are defined by the pullback maps. The thick model for A–theory is defined
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to be the space

A�.X / WD�j.Œq�; Œn�/ 7! wSqRhf.X; �n/j; where .Œq�; Œn�/ 7! wSqRhf.X; �n/

is viewed as a bisimplicial space. By Proposition 3.8, the inclusion of the 0–skeleton

wSqRhf.X /
'
�!

ˇ̌
wSqRhf.X; ��/

ˇ̌
is a homotopy equivalence. Thus the bisimplicial space defining the thick model for
A–theory is homotopically constant in the n–direction. Passing to the loop spaces of
the geometric realizations, we obtain a homotopy equivalence

A.X /
'
�!A�.X /:

The proof of property (e), which will not be needed for the main results of this paper,
will be discussed separately in the appendix. We note that, based on such properties,
Fulton and MacPherson [9] presented an axiomatic approach to bivariant theories and
studied their connection with Riemann–Roch theorems; see also [21].

Remark 3.9 The results of this section remain true without any special assumption
on B . Our assumption is related to the choice between homotopy equivalences and
weak homotopy equivalences. The homotopy finiteness condition of Definition 3.1 does
not imply in general that the objects of Rhf.p/ are homotopy equivalent to relative
CW complexes. Thus, for a general fibration pW E! B , it would be more reasonable
to define A.p/ to be the space A. zp/ where zpW zE ! zB is the pullback of p by a
functorial CW approximation gW zB �w

�!B . Alternatively, the choice of weak homotopy
equivalences as weak equivalences leads to a homotopy equivalent K–theory space.

3.4 A model for the unit transformation

We write A.X / and K .C/, where C is a Waldhausen category, to denote the �–
spectrum associated to A.X / and K.C/ respectively, which is obtained by iterating
Waldhausen’s S�–construction; see [19]. The unit transformation is a natural transfor-
mation of spectrum-valued functors

�X W †
1XC!A.X /:

For X D� , this is the map of spectra ��W †1S0!A.�/ which sends the nonbasepoint
of S0 to the point ŒS0� 2A.�/ corresponding to the based space S0 as an object of
Rhf.�/. For general X , �X is defined to be the composition

†1XC Š†
1S0

^XC
��^id
����!A.�/^XC!A.X /;
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where the last map is the assembly transformation for A–theory; see eg [8] for more
details. For a geometric definition, following Waldhausen’s manifold approach [18];
see also Badzioch, Dorabiała and Williams [1].

The purpose of this subsection is to construct a different model for the unit transforma-
tion. Let Rı.X / be the Waldhausen subcategory of Rhf.X / with objects .XqS�X /,
where S is a discrete space. Note that weak equivalences in Rı.X / are isomorphisms
and cofibrations are split. For technical reasons, we also consider a reduced version
xRı.X / of Rı.X /, which is the full subcategory of Rı.X / containing the zero object
and objects of the form

.X qf1; : : : ;mg�X /:

Note that the inclusion xRı.X /!Rı.X / is an equivalence of categories, so it induces a
homotopy equivalence in K–theory. The category xRı.X / does not detect the topology
of X , ie xRı.X / is isomorphic to xRı.X ı/, where X ı denotes the space X with the
discrete topology. Moreover, it is easy to see that

jw xRı.X /j D
a

m�0

E†m �†m
.X ı/m:

Since the cofibrations in xRı.X / split, it follows that the canonical map

jw xRı.X /j !K. xRı.X //

is a group completion; see [19, 1.8]. By well-known results in the theory of infinite
loop spaces (see eg Segal [15]), there is a natural stable equivalence

†1X ı
C

�

!K . xRı.X //

which is defined by sending an element x 2 X ı to the associated retractive space
X q f1g� X . Also, following the methods of Boardman and Vogt [3], May [13],
Segal [14], one can also describe this equivalence geometrically by a natural (zigzag
of) weak equivalence(s) of infinite loop spaces

K. xRı.X // �!Q.X ı
C/:

We can also define a bivariant version of Rı.X / as follows. Let Rı.X; �n/ be the
Waldhausen subcategory of Rhf.X; �n/ with objects

Y
r //

q ##

X ��n

i
oo

��
�n
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in Rhf.X; �n/ such that in addition, for every b 2 �n we have that the retractive
space ..q/�1.b/;X / is an object of Rı.X /. Weak equivalences in Rı.X; �n/ are
isomorphisms and cofibrations are split. Similarly, we consider a reduced version
xRı.X; �n/ of Rı.X; �n/ which is the full subcategory with objects the zero object
and the objects:

.X qf1; : : : ;mg/��n //

))

X ��noo

��
�n

The inclusion xRı.X; �n/!Rı.X; �n/ is an equivalence of categories, so it induces
a homotopy equivalence in K–theory. Let singn.X /D Hom.�n;X / denote the set of
singular n–simplices of X . Then observe that there is an isomorphism of categories

xRı.X; �n/Š xRı.singn.X //

and so we have

jw xRı.X; �n/j D
a

m�0

E†m �†m
.singn.X //

m:

We define the thick model for the stable homotopy of X to be the space

Q�.X / WD�j.Œq�; Œn�/ 7! wSqRı.X; �n/j

and its reduced version to be the space

xQ�.X / WD�j.Œq�; Œn�/ 7! wSq
xRı.X; �n/j:

Note that the inclusion xQ�.X /
�

!Q�.X / is a weak equivalence. We write Q�.X /
and xQ�.X / to denote the associated �–spectra. The terminology and the notation are
justified by the following proposition.

Proposition 3.10 There is a natural stable equivalence

�X W †
1XC '†

1
jsing�.X /jC

�

! xQ�.X /'Q�.X /:

Proof We have the following identifications

j.Œq�; Œn�/ 7! wSq
xRı.X; �n/j Š

ˇ̌
Œn� 7! jŒq� 7! wSq

xRı.X; �n/j
ˇ̌

Š

ˇ̌̌̌
Œn� 7! B

� a
m�0

E†m �†m
.singn.X //

m

�ˇ̌̌̌
Š B

� a
m�0

E†m �†m
jsing�.X /j

m

�
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where B.�/ is the classifying space of a topological monoid. Then there is a natural
stable equivalence, which is defined by the inclusion

jsing�.X /j ,!
a

m�0

E†m �†m
jsing�.X /j

m
!�B

� a
m�0

E†m �†m
jsing�.X /j

m

�

as required.

The exact inclusions xRı.X; �n/ ,!Rı.X; �n/ ,!Rhf.X; �n/ induce maps between
the K–theory spectra, and so also a natural map (of spectra) between the thick models:

��X W
xQ�.X /

�

!Q�.X /!A�.X /:

Proposition 3.11 The following diagram of spectra commutes up to homotopy:

†1XC
�X

''

†1jsing�.X /jC
�X //�oo xQ�.X /

��
X

��
A.X /

� // A�.X /

Proof Note that both compositions are natural transformations between spectrum-
valued functors from a functor that is excisive, ie it preserves homotopy pushouts.
It follows that both compositions are determined by their evaluation at X D �; see
also Weiss and Williams [20]. Hence it suffices to show that the following diagram
commutes up to homotopy:

†1S0

��

''

†1jsing�.�/jC
�� //Doo xQ�.�/

���
��

A.�/
� // A�.�/

Then the result follows because both compositions are defined by the map

S0
!A�.�/;

which sends the nonbasepoint to the element of A�.�/ defined by S0 as an object
of Rhf.�/.
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4 The parametrized A–theory Euler characteristic

The purpose of this section is to review a description of the parametrized A–theory
Euler characteristic of Dwyer, Weiss and Williams [8] using bivariant A–theory. Let
pW E!B be a fibration with homotopy finite fibers. Then the retractive space E�S0

over E is an object of Rhf.p/, so it defines a point

�.p/ 2A.p/

called the bivariant A–theory characteristic of p . Williams observed in [21] that the
parametrized A–theory characteristic of [8] is actually the image of �.p/ under a
coassembly map.

4.1 The coassembly map

In order to define this coassembly map, we recall first some facts about homotopy
limits of categories. Let cat denote the (2–)category of small categories. For every
small category I , the category catI of I–shaped diagrams in cat is enriched over cat
as follows: if F ;GW I! cat are two functors, then the natural transformations from F
to G are the objects of a small category Hom.F ;G/. The set of morphisms between
two natural transformations �; � W F ! G is given by

Hom.F ;G/.�; �/D fH W F � Œ1�! GIH0 D �;H1 D �g;

where Œ1� denotes the constant I–diagram at the category Œ1�.

Definition 4.1 Let I be a small category and GW I! cat an I–shaped diagram of
small categories. The homotopy limit of G is the category

holimG WD Hom.I=?;G/;

where I=?W I! cat is defined on objects by sending i 2 obI to the over category I= i .

Remark 4.2 The nerve of the homotopy limit of an I–shaped diagram of small
categories agrees with the homotopy limit of the associated I–shaped diagram of the
nerves as defined by Bousfield and Kan [5]. However, this definition should not be
confused with the notion of homotopy limit as the derived functor of limit defined on
the category of I–shaped categories.

Remark 4.3 If the functor G actually takes values in Waldhausen categories (and
exact functors), then, by the naturality of the construction, there is a simplicial category
Œn� 7! holimwSnG .
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The following lemma is a straightforward exercise in the definition of the homotopy
limit.

Lemma 4.4 A functor F W C! holimG determines and is determined by the following
data:

(i) For each i 2 I , a functor Fi W C! G.i/.

(ii) For each morphism uW i ! j in I , a natural transformation u! from G.u/ ıFi

to Fj , such that id!
i D id, and the following cocycle condition is satisfied: for

every vW j ! k in I , we have

.v ıu/! D v!
ıG.v/.u!/

as natural transformations between functors C! G.k/.

We can now define the coassembly map associated to a fibration pW E ! B . We
assume that B is the geometric realization of a simplicial set B� . Let simp.B/ denote
the category of simplices of B : an object is a simplicial map � W �n

� ! B� , and a
morphism from � to � W �k

� ! B� is a simplicial map �n
�!�k

� making the obvious
diagram commutative. We will normally avoid the distinction between the simplex �
and its geometric realization. Consider the functor

wRhf.Ej?/W simp.B/! cat; � 7! wRhf.Ej� /;

which is defined on the morphisms by the pushforward maps. For every � 2 simp.B/,
there is a restriction functor

F� W wRhf.p/! wRhf.��p/ ,! wRhf.Ej� /

which sends a retractive space X over E , which fibers over B , to its restriction over
the simplex � viewed as a retractive space over the corresponding restriction of E . If
uW �! � is a morphism in simp.B/, then there is a natural transformation induced by
the canonical inclusions,

u!
W u�F� ! F� :

An easy check shows that the cocycle condition is satisfied. The same construction
works when Rhf is replaced by SnRhf , the nth simplicial degree of the S�–construction.
Thus, by Lemma 4.4, we obtain (simplicial) functors

cW wRhf.p/! holim
simp.B/

wRhf.Ej?/; cW wS�Rhf.p/! holim
simp.B/

wS�Rhf.Ej?/:
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Remark 4.5 Again there is a technical point to consider. As it stands, the category
Rhf.��p/ is not a subcategory of Rhf.Ej� / since an object in the former category is a
subset of Ej�q .�

n�U/ while an object in the latter category is a subset of Ej�qU .
To obtain a functor Rhf.��p/!Rhf.Ej� /, choose

� a set-theoretic embedding of the standard simplex �n into U ,
� a bijection U �U ! U .

Then we have �n �U � U �U Š U and we obtain a well-defined functor (which is,
moreover, an embedding of categories) Rhf.��p/ ,!Rhf.Ej� /.

Observation 4.6 For every functor GW I! cat, the geometric realization defines a
map j � jW j holimGj ! holim jGj. This map is adjoint to the simplicial map

N� holimG
j � j
�! Hom.��;mapI.jI=?j; jGj//D sing�.holim jGj/;

using the standard model for holim jGj and where sing�.�/ denotes the simplicial set
of singular simplices. If G takes values in Waldhausen categories, then similarly there
is a map j � jW j holimwS�Gj ! holim jwS�Gj. Moreover, by taking loop spaces, we
obtain the map

�W �jholimwS�Gj ! holim�jwS�Gj D holim K ıG:

Definition 4.7 The A–theory coassembly map is defined to be the composite map

rpW A.p/
�jcj
���!�

ˇ̌
holim
simp.B/

wS�Rhf.Ej?/
ˇ̌ �
�! holim

simp.B/
A.Ej?/:

The target of the coassembly map is again natural with respect to the covariant and
contravariant operations induced respectively by the pushforward and pullback maps.
If f W E!V is a map between fibrations over B , then there is a natural transformation
Rhf.Ej?/!Rhf.V j?/ inducing

f�W holim
simp.B/

A.Ej?/! holim
simp.B/

A.V j?/:

On the other hand, consider a pullback diagram

E0

p0

��

// E

p

��
B0

g // B

and suppose that gW B0! B is the geometric realization of a simplicial map g� . So
there is a functor simp.g/W simp.B0/! simp.B/ and for every object � of simp.B0/,
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there is a canonical isomorphism E0j� ŠEjgı� , since both spaces are just the pullback
of E along g ı � . Hence we obtain a natural isomorphism of functors

simp.g/�A.Ej?/ŠA.E0j?/

defined on simp.B0/. Then we can define the pullback operation as

g�W holim
simp.B/

A.Ej?/! holim
simp.B0/

simp.g/�A.Ej?/
Š
�! holim

simp.B0/
A.E0j?/;

where the first map is induced by base change along the functor simp.g/. An easy check
shows that .g ı h/� D h� ı g� . The following proposition, which will be important
later on, is now obvious.

Proposition 4.8 The A–theory coassembly map is natural with respect to the covariant
and the contravariant operations.

4.2 The A–theory characteristic

We recall the definition of the parametrized A–theory Euler characteristic from [8], [21].

Definition 4.9 Let pW E! B D jB�j be a fibration with homotopy finite fibers.

(i) The bivariant A–theory characteristic �.p/ 2A.p/ is the point determined by
the retractive space E �S0 over E , considered as an object of Rhf.p/.

(ii) The parametrized A–theory Euler characteristic �DWW.p/ is the image of the
bivariant A–theory characteristic under the coassembly map

rpW A.p/! holim
simp.B/

A.Ej?/:

The element �DWW.p/ is commonly viewed as a “classifying map” from B in the
following way; see also [8, I.1.6]. There is a canonical weak equivalence from the
homotopy limit

holim
simp.B/

A.Ej?/Dmapsimp.B/.jsimp.B/=?j;A.Ej?//

to the space of maps over B

mapB.hocolim
simp.B/

jsimp.B/=?j; hocolim
simp.B/

A.Ej?//

which is defined by f 7! hocolim.f /. Since the canonical map

hocolim
simp.B/

jsimp.B/=?j ! j simp.B/j ! B
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is a weak equivalence, it is possible to identify the latter mapping space with a space
of sections, and then view the parametrized A–theory Euler characteristic as a section

�DWW.p/W B!AB.E/ WD hocolim
simp.B/

A.Ej?/

which is uniquely specified up to a contractible space of choices.

The smooth Riemann–Roch theorem of [8], which describes the element �DWW.p/

in the case where p is a smooth bundle, will be very relevant to our conclusions in
the next section. With the convention above in mind, we recall the statement (see [8,
Theorem 8.5]) and refer to its source for a complete discussion.

Theorem 4.10 (Dwyer, Weiss and Williams [8]) Let pW E!B be a smooth bundle
of compact manifolds (possibly with boundary). Then the parametrized A–theory Euler
characteristic �DWW.p/W B!AB.E/ is homotopic over B , by a preferred homotopy,
to the composition of the parametrized transfer map tr.p/W B! .QC/B.E/ with the
fiberwise unit map �pW .QC/B.E/!AB.E/.

In particular, if pW E! B is a smooth bundle of compact d–dimensional manifolds,
then we have a homotopy commutative diagram

(3)

.QC/B.E/

�p

��

// Q.EC/

�E

��

// Q.BO.d/C/

�BO.d/

��
B //

tr.p/
::

AB.E/ // A.E/ // A.BO.d//;

where the right-hand horizontal maps are induced by the classifying map of the vertical
tangent bundle over E and the other two horizontal maps are defined by the inclusions
of the fibers of p into E . The vertical maps come from the unit transformation
of functors from X 7! Q.XC/ to A–theory. We recall that this is defined as the
composition of

Q.XC/!A%.X / WD�1.A.�/^XC/;

given by the unit map †1S0!A.�/ of the ring spectrum A.�/, with the assembly
natural map A%.X /!A.X /. The composite B!Q.EC/ is the classical Becker–
Gottlieb transfer map; see [2].

4.3 A scanning map

We mention the following alternative description of the coassembly map in the special
case of a trivial fibration �BW X �B!B . This will be needed in the next section. To
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simplify the notation, let us abbreviate

W .X;B/ WD

ˇ̌̌̌
ˇwRhf

0@X �B

#

B

1Aˇ̌̌̌ˇ:
Assume that B is the geometric realization of a simplicial set B� . Pulling back along
an n–simplex of B� defines a map

W .X;B/�Hom.�n
�;B�/!W .X; �n/

which is natural in n. Thus, for every x 2W .X;B/, pulling back along the inclusion
of all simplices defines a simplicial map x�W B�!W .X; ��/. Define the scanning
map to be the map

scan.X;B/W W .X;B/!map.B; jW .X; ��/j/

which sends x to the geometric realization of the simplicial map x� . The same
construction at the level of A–theory yields a map

scan.X;B/W A

0@X �B

#

B

1A!map.B;A�.X //

and the following diagram is commutative, where the vertical maps are given by “group
completion”:2

W .X;B/
scan.X ;B/ //

��

map.B; jW .X; ��/j/

��
A

0@X �B

#

B

1A scan.X ;B/ // map.B;A�.X //

The comparison of the coassembly and scanning maps will need the following proposi-
tion.

Proposition 4.11 The A–theory coassembly map of pW E! B is a homotopy equiv-
alence if B is contractible.

2The term “group completion” here and elsewhere refers to the canonical map jwCj !K.C/ for every
Waldhausen category C ; see [19, 1.3, 1.8].
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Proof This is obvious if B is a point, since then the coassembly map is essentially
the identity map. Suppose that B is contractible. Let F be the fiber of pW E! B

over a 0–simplex of B . By naturality, we have a commutative diagram

A

0@E

#

B

1A //

'

��

holimsimp.B/A.Ej?/

��
A.F / A.F /

where the vertical maps are given by restriction to the 0–simplex and the horizontal
ones by the coassembly map. By the homotopy invariance of Proposition 3.8, the
left-hand vertical arrow is a homotopy equivalence. Since the functor A.Ej?/ sends all
morphisms to homotopy equivalences, its homotopy limit is homotopy equivalent to the
space of sections of a fibration over jsimp.B/j. Under this identification, the right-hand
vertical map corresponds to the evaluation of a section at the chosen basepoint. Since
jsimp.B/j ' �, this evaluation map is also a homotopy equivalence and therefore the
result follows.

The next lemma shows that, up to the identification of a homotopy limit with a mapping
space of sections, the coassembly and scanning maps of a trivial fibration agree.

Lemma 4.12 There is a commutative diagram in the homotopy category:

A

0@X �B

#

B

1A scan.X ;B/ //

r�B

%%

map.B;A�.X //

h

Š

yy
holim
simp.B/

A.X � ?/

Proof For convenience, we work here with the thick realization of simplicial spaces
which always preserves homotopy equivalences; see [15]. By Proposition 4.8 the
coassembly map is natural. It follows that the coassembly maps for the fibrations
X ��n!�n , for varying n, fit together to define a map

rW A�.X /!
ˇ̌̌
Œn� 7! holim

simp.�n/
A.X � ?/

ˇ̌̌
:
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On the other hand there is a natural pairing

holim
simp.B/

A.X � ?/�map.�n
�;B�/! holim

simp.�n/
A.X � ?/

given by pullback. It induces a scanning map

scanW holim
simp.B/

A.X � ?/!map
�
B;
ˇ̌̌
Œn� 7! holim

simp.�n/
A.X � ?/

ˇ̌̌�
:

It is a consequence of naturality of both the scanning and the coassembly maps that the
following diagram is commutative:

A

0@X �B

#

B

1A scan.X ;B/ //

r�B

��

map.B;A�.X //

r'

��
holimsimp.B/A.X � ?/

scan
'

// map.B; jŒn� 7! holimsimp.�n/A.X�?/j/

We claim that the labeled arrows are homotopy equivalences, from which the conclusion
follows with hD scan�1 ır .

In fact the right-hand vertical map is induced by a degreewise homotopy equivalence,
as shown in Proposition 4.11, and therefore it is a homotopy equivalence. For the lower
horizontal map, note that there is a chain of homotopy equivalences

holim
simp.B/

A.X � ?/
'
�! holim

simp.B/
A.X /

Š
�!map.jsimp.B/j;A.X //

'
 �map.B;A.X //:

Here the first map is induced by the projection X � ?! X , which is a homotopy
equivalence. The second map is the standard homeomorphism for the Bousfield–Kan
model for the homotopy limit

holim
C

F DmapC.jC=?j;F /:

The third map is the homotopy equivalence induced by restriction along the last vertex
map jsimp.B/j ! jBj followed by the projection jBj ! B .

This chain of homotopy equivalences is natural in B . So letting B vary over f�n jn�0g,
we obtain a chain of homotopy equivalencesˇ̌̌

Œn� 7! holim
simp.�n/

A.X � ?/
ˇ̌̌
'

ˇ̌̌
Œn� 7!map.�n;A.X //j D jsingtop A.X /

ˇ̌̌
;

the geometric realization of the topological singular construction on the space A.X /.
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By naturality, the scanning map of the lower line of the diagram extends to all the
spaces appearing in the chain. Hence that map is a homotopy equivalence if and only
the corresponding map

(4) map.B;A.X //!map.B; jsingtop A.X /j/;

which is also induced by scanning, is a homotopy equivalence. This map is certainly
split injective as the canonical “counit” map jsingtop A.X /j ! A.X / induces a left
inverse. But this canonical map also splits the inclusion of 0–simplices,

A.X /Dmap.�0;A.X //! jsingtop A.X /j;

which is a homotopy equivalence. Thus the counit map is also a homotopy equivalence,
hence the same is true for the map (4).

5 The Bökstedt–Madsen map to A–theory

Bökstedt and Madsen [4] defined an infinite loop map

� W �BCd !A.BO.d//:

Broadly speaking, the map sends an n–tuple of composable d–dimensional cobordisms
to the union of the cobordisms, regarded as a filtered space, together with the map to
BO.d/ that classifies the tangent bundle; cf [16]. To make this precise, they described
the map as a simplicial map from the singular set of N�Cd to the thick model for the
A–theory of BO.d/.

5.1 Definition of the map z�

Following [4], we define similarly a map

z� W �BCd;@!A.BO.d//

that extends � along the map induced by the inclusion functor Cd ,! Cd;@ . The map z�
is defined by first defining a bisimplicial map between bisimplicial categories

z�p;qW singp.NqCd;@;n/! wSqRhf.Grd .R
dCn/;�p/

and then letting n ! 1 and taking the loop spaces of the geometric realizations.
We recall that sing�.�/ denotes the simplicial set of singular simplices and the set
singp.NqCd;@;n/ is regarded as a category with only identity morphisms.

A (smooth) p–simplex of NqCd;@;n

� W �p
! Cd;@;n..M0; a0/; .M1; a1//� � � � � Cd;@;n..Mq�1; aq�1/; .Mq; aq//
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determines a (smoothly embedded) smooth fiber bundle over �p :

EŒa0; aq �
� � //

�

��

Œa0; aq ��RC �Rd�2Cn ��p

uu
�p

together with a filtration by a sequence of codimension-zero smooth subbundles
over �p ,

EŒa0; a1�� � � � �EŒa0; aq �;

where EŒa0; ai �DEŒa0; aq �\ .Œa0; ai ��Rd�1Cn ��p/.

The classifying map of the vertical tangent bundle of � restricts to maps

tanv.�/W EŒa0; ai �! Grd .R
dCn/

for every i D 1; : : : ; q . This produces a filtered sequence of retractive spaces over
Grd .R

dCn/��p whose terms are given by

Grd .R
dCn/��p�EŒa0; ai �[E.a0/ Grd .R

dCn/��p r
! Grd .R

dCn/��p;

where E.a0/ D EŒa0; aq � \ .fa0g � Rd�1Cn � �p/ also fibers over �p , and the
retraction map on EŒa0; ai � is defined as follows:

rEŒa0;ai � D .tanv.�/; �/

More generally, for 0� i � j � q , let

EŒai ; aj �DEŒa0; aq �\ .Œai ; aj ��Rd�1Cn
��p/;

E.aj /DEŒaj ; aj �DEŒa0; aq �\ .faj g �Rd�1Cn
��p/:

The collection of the retractive spaces above extends canonically to an object

fEij g0�i�j�q 2 ob.SqRhf.Grd .R
dCn/;�p//;

where EijDEŒai ; aj �[E.ai /Grd .R
dCn/��p are all objects of Rhf.Grd .R

dCn/;�p/.

The following lemma is immediate from the definitions.

Lemma 5.1 For every 1� n�1, the maps fz�p;qgp;q define a bisimplicial map

z��;�W sing�.N�Cd;@;n/! wS�Rhf.Grd .R
dCn/;��/:
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Setting n D 1 and taking the loop spaces of the geometric realizations of these
bisimplicial objects, we obtain a (weak3) map:

z� W �BCd;@

�

 �jsing�.N�Cd;@/j
z�
!A�.BO.d//

�

 A.BO.d//

Note that z� is a map of loop spaces by definition. We note that the map z� is defined
in exactly the same way as the map � W �BCd !A.BO.d// in [4]. In particular, the
following proposition is obvious.

Proposition 5.2 The following diagram of (weak) maps commutes in the homotopy
category of spaces:

�BCd

� %%

� � // �BCd;@

z�xx
A.BO.d//

In view of Theorem 2.2, it follows that the map � factors up to homotopy through
Q.BO.d/C/ WD�1†1BO.d/C . Our final goal is to show (Theorem 5.10) that the
map z� can be identified up to homotopy with �BO.d/W Q.BO.d/C/!A.BO.d//; the
canonical unit map.

Remark 5.3 Similarly we can define maps from other d–dimensional cobordism
categories with corners to A.BO.d// that in turn extend the map z� above. We refer the
reader to [11, Definition 4.1] for the precise definition of these cobordism categories,
and to [11, Proposition 6.1] for the general result determining their homotopy types in
the unoriented case.

5.2 Comparison with the A–theory characteristic

Let M be a compact smooth d–dimensional manifold, possibly with boundary, neatly
embedded in .0; 1/�RC �R1 . We recall from Section 2 that this can be viewed as
an endomorphism of the empty manifold in Cd;@ and that there is an inclusion map

iM W B1.M / ,! Cd;@..¿; 0/; .¿; 1//!�¿BCd;@:

Let �BM
M

denote the restriction of the map z� along iM , ie

�BM
M WD z� ı iM :

3A weak map of spaces is a zigzag of maps where the wrong way arrows are weak homotopy
equivalences. A weak map from X to Y defines a 0–simplex in the simplicial set of maps from X to Y

in the Dwyer–Kan hammock localization of the category of spaces and also a morphism in the classical
localization of the category of spaces at the class of weak homotopy equivalences.
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Our first goal is to compare the map �BM
M

with the universal parametrized A–theory
Euler characteristic for M –bundles. To do this, we begin with a description of the
map �BM

M
in terms of the scanning construction as defined in Section 4.3.

Write BM D jsing�.B1.M //j and let pM W EM !BM be the universal smooth M –
bundle pulled back from the tautological bundle over B1.M / by the canonical weak
equivalence BM

�

! B1.M /. The vertical tangent bundle defines a map over BM ,

Tanv.pM /W EM ! BO.d/�BM

which induces an exact functor of Waldhausen categories

Tanv.pM /�W Rhf

0@EM

#

BM

1A!Rhf

0@BO.d/�BM

#

BM

1A
and hence also a map between the corresponding bivariant A–theories.

Recall that the retractive space EM �S0 over EM determines an object in the domain
of the functor Tanv.pM /� and so also a point in its geometric realization. The image
of this point under “group completion” was defined in Section 4.2 to be the bivariant
A–theory characteristic �.pM /.

Lemma 5.4 The map �BM
M

agrees up to homotopy with the image of

Tanv.pM /�.�.pM //

under the scanning map

A

0@BO.d/�BM

#

BM

1A!map.BM ;A�.BO.d///;

once we have identified A�.BO.d// with A.BO.d// and B1.M / with BM .

Proof It will be convenient to work with the more precise definition of the map z� as
the realization of the bisimplicial map

z��;�W sing�.N�Cd;@/! wS�Rhf.BO.d/;��/:

Then �BM
M
D z� ı iM is a map

(5) BM D jsing�.B1.M //j !A�.BO.d//

which we claim to be precisely the map obtained from the scanning construction.
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This follows by close inspection of the definitions. Recall that the map z��;� maps
the nerve direction of the cobordism category to the direction of the S�–construction.
Now the map iM factors through the 1–nerve of the cobordism category. It follows
that �BM

M
factors through the 1–skeleton of the S�–construction, ie it is given by the

geometric realization of the map

(6) z��;1 ı sing�.iM /W sing�.B1.M //!wS1Rhf.BO.d/;��/DwRhf.BO.d/;��/

composed with “group completion”.

Now the point EM �S0 2Rhf.pM / “group completes” to �.pM / and scanning is
compatible with “group completion”. Hence it is enough to show that the image of the
point EM �S0 2Rhf.pM / under Tanv.pM /� and the scanning map agrees with the
geometric realization of (6).

By definition of z��;� , the map (6) sends a continuous map f W �n! B1.M / to the
retractive space

BO.d/��n�Eq .BO.d/��n/! BO.d/��n;

where E ! �n is the bundle classified by f and the map to BO.d/ classifies the
vertical tangent bundle. By definition, this retractive space is just the pullback of the
retractive space

BO.d/�BM �EM q .BO.d/�BM /
.Tanv.pM /;pM /qid
�������������! BO.d/�BM

of Rhf.BO.d/;BM / along f . It follows that (6) is precisely the scanning construction
applied to the latter retractive space. But this retractive space is exactly the image of
EM �S0 under Tanv.pM /� and the result follows.

On the other hand, we obtain a new map by passing to the parametrized A–theory Euler
characteristic of pM first, via the coassembly map, and then applying Tanv.pM /� to
that point. This is the image of the parametrized A–theory Euler characteristic of pM

under the composite map

holim
simp.BM /

A.EM j?/
Tanv.pM /�
�������! holim

simp.BM /
A.BO.d/� ?/

h
'map.BM ;A�.BO.d///

'map.B1.M /;A.BO.d///

or, in other words, the composite map

�DWW
M W B1.M /' BM

�DWW.pM /
�������!ABM

.EM /
Tanv.pM /�
�������! hocolim

simp.BM /
A.BO.d/� ?/

'A.BO.d//�BM
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regarded as a section of the trivial fibration.

Theorem 5.5 The maps �BM
M

and �DWW
M

agree up to homotopy, ie the following
diagram of (weak) maps commutes in the homotopy category of spaces:

�BCd;@

z�
��

B1.M /
�DWW

M //

iM

55

A.BO.d//

Proof Let z� denote the image of �.pM / under the pushforward of Tanv.pM /,

Tanv.pM /�W A

0@EM

#

BM

1A!A

0@BO.d/�BM

#

BM

1A :
By Proposition 4.8, the coassembly map commutes with the pushforward Tanv.pM /� .
Hence the image of the parametrized A–theory characteristic of pM , under the push-
forward map

holim Tanv.pM /�W holim
simp.BM /

A.Ej?/! holim
simp.BM /

A.BO.d/� ?/

agrees with the image of z�, under the coassembly map. By definition, this point defines
the homotopy class of �DWW

M
via the homotopy equivalence h. On the other hand, the

homotopy class of �BM
M

is the component of the image of z� under the scanning map.
Thus we have the following diagram,

�.pM /
� Tanv.pM /� //

_

r

��

z�
� scan //

_

r

��

Œ�BM
M
�

r.�.pM //
� holim Tanv.pM /� // r.z�/ oo

h // Œ�DWW
M

�;

and the agreement of the two homotopy classes of maps, regarded as elements of
�0 map.B1.M /;A.BO.d///, follows from the commutative diagram of Lemma 4.12.

Remark 5.6 Here is an informal interpretation of Theorem 5.5 that we will not attempt
to make rigorous. According to this, the last theorem says that the map �DWW

M
satisfies

additivity in M in some strong structured sense. Consider morphisms in Cd;@ : W1 from
M0 to M1 , W2 from M1 to M2 and let W DW1[M1

W2 be the composition. The
additivity property expresses up to homotopy the A–theory characteristic of a W–bundle
that admits a splitting into a W1 –bundle and a W2 –bundle attached along a M1 –bundle
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as the (loop) sum of the A–theory characteristics of the W1 – and W2 –bundles minus
the A–theory characteristic of the M1 –bundle. For the additivity of the parametrized
A–theory Euler characteristic in this sense, see Dorabiała [7]. In view of Theorem 5.5,
it suffices to give a choice of such a homotopy relating the maps iW2ıW1

, iW1
,iW2

and
iM1

mapping into the path space of the cobordism category. But, in fact, a canonical
such choice exists simply by the definition of the cobordism category: every pair
of composable cobordisms defines a 2–simplex in N�Cd;@ and therefore there is a
canonical homotopy from the path represented by the composition of the cobordisms
to the composition of the paths represented by the two cobordisms. This holds more
generally for arbitrary strings of composable cobordisms. Finally, it is worth noting
that the thick model for A–theory allows us to include all these coherent choices of
homotopies without changing the homotopy type.

5.3 Comparison with the unit map

The weak equivalence of Theorem 2.2 implies that �BCd;@ admits the structure of
an infinite loop space, ie it is weakly equivalent to the 0–th space of an �–spectrum.
Broadly speaking, this is the same structure as the one induced by the operation of
making two embedded cobordisms disjoint and taking their disjoint union. However,
some careful analysis is required to make this operation precise since there is no
canonical choice of making two embedded cobordisms disjoint, in a symmetric manner.
A possible approach is to construct a �–space consisting of n–tuples of cobordisms that
are disjoint. Another one would be to follow the methods of [4] to construct deloopings
of BCd;@ geometrically. For our purposes here, we will regard �BCd;@ as an infinite
loop space with the structure that is induced by Q.BO.d/C/.

We recall that the space of configurations of finite sets of points in Rn labeled by
elements of a space X a

m�0

Emb.f1; : : : ;mg;Rn/�†m
X m

can be adjusted up to weak equivalence into a topological monoid whose group com-
pletion is weakly equivalent to �n†n.XC/; see [14]. Such a model is the topological
monoid Cn.X / whose elements are triples .S; �; t/ where

� t 2 Œ0;1/ and S � .0; t/�Rn�1 is a finite subset,
� �W S !X is a map that defines the labels.

This is regarded as a subspace ofa
m�0

R�0 � .Emb.f1; : : : ;mg;Rn/�†m
X m/
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with the subspace topology. This space becomes an associative topological monoid
under the operation

.S; �; t/ � .S 0; � 0; t 0/ WD .S [Tt .S
0/; � [ � 0; t C t 0/;

where Tt W .0; t
0/ � Rn�1 ! .t; t C t 0/ � Rn�1 is the translation by t and the map

� [ � 0W S [Tt .S
0/!X is defined by � and � 0 in the obvious way. Letting n!1,

we define
C1.X / WD colim

n
Cn.X /:

By well known results in the theory of infinite loop spaces [3], [13], [15], an identifica-
tion of Emb.f1; : : : ; ng;R1/ as a model for E†n shows that the group completion
of the topological monoid C1.X / admits infinite deloopings and, moreover, that it is
weakly equivalent to Q.XC/. Thus we may regard �B.C1.X // as the 0–th term of
an �–spectrum.

For later purposes, we will need such an explicit identification between C1.X / and
the weakly equivalent topological monoid from Section 3.4:

jw xRı.X; ��/j D
a

m�0

E†m �†m
jsing�.X /j

m

Lemma 5.7 (i) There is a natural weak equivalence

ˇX W jsing�.C1.X //j
�

! jwRı.X; ��/j:

Moreover, the map ˇX extends naturally to a weak equivalence

ˇk
X W jsing�.NkC1.X //j

�

! jwSkRı.X; ��/j

for every k � 0.

(ii) The composite map

jsing�.X /j ! jsing�.C1.X //j
ˇX
��! jwRı.X; ��/j !Q�.X /

is up to homotopy the adjoint to the stable map �X from Proposition 3.10. (Here
the first map in the composition is induced by the inclusion X ! C1.X / which
sends x to the configuration of one particle with label x , sitting at 1

2
2 .0; 1/.)

Proof (i) The map ˇX is induced by a simplicial map, denoted also by

ˇX W sing�.Cn.X //! wRı.X; ��/;
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and then letting n!1. This map is essentially the Bökstedt–Madsen map in dimension
zero. A p–simplex of Cn.X / defines a bundle

E
� � //

�

��

.0;1/�Rn�1 �X ��p

vv
�p

whose fibers are discrete spaces. Forgetting about the ambient Euclidean space, we
obtain an object of Rı.X; �p/:

E t .X ��p/
//

�
��

X ��p

ww

oo

�p

This correspondence defines the simplicial map ˇX . We now show that ˇX is a weak
equivalence. Let wRım.X; �p/� wRı.X; �p/ denote the full subcategory spanned
by those objects whose underlying space is isomorphic to

.X qf1; : : : ;mg/��p:

Every m–tuple of singular p–simplices in X gives rise to an object in wRım.X; �p/

with total space equal to this latter space. We call these objects standard and denote
by ?=wRım.X; �p/ the category of objects under a standard object in wRım.X; �p/.
Then close inspection shows that ˇX is also induced by †m –equivariant simplicial
maps, for all m� 0,

sing�
�

Emb.f1; : : : ;mg; .0;1/�R1/
�
� sing�.X

m/!N�.?=wRım.X; ��//;

where N�.?=wRım.X; ��//
'
 E†m � sing�.X /

m . These maps are clearly weak
equivalences and therefore so is the map ˇX . (Here E†m denotes the nerve of the
transport category of †m , and not its classifying space.) The generalization to ˇk

X
is

straightforward.

(ii) This is immediate from the definition of �X in Proposition 3.10.

Let C0.X / be the 0–dimensional cobordism category with background space X viewed
as a tangential structure in the sense of [10, Section 5]. (Tangential structures are
also briefly discussed in Section 6.1.) We recall that we work with the model of
“discrete cuts” as explained in Section 2; see [10, Remark 2.1(ii)]. Note that the
topological monoid C1.X / is exactly the reduced version of the 0–dimensional
cobordism category, in the sense of [10, Remark 2(i)], with background space X (but

Algebraic & Geometric Topology, Volume 14 (2014)



336 George Raptis and Wolfgang Steimle

without “discrete cuts”). Translation of configurations along the auxiliary coordinate
defines a functor

C0.X /! C1.X /

which induces a weak equivalence between the classifying spaces; see [10, Remark 4.5],
and [4].

Following the discussion in [14, Section 3], the monoid Cn.X / (and similarly the
category C0.X /) can be further adjusted in order to obtain a nice description of the
group completion map to �n†n.XC/. This adjustment amounts to making choices of
tubular neighborhoods of the embedded finite sets of points S �Rn . Let zCn.X / be
the space whose elements are triples .S; �; t/ where

� t 2 Œ0;1/ and S � .0; t/�Rn�1 is a subspace of finitely many disjoint open
unit n–disks,

� �W S !X is a locally constant map that defines the labels.

This space is also an associative topological monoid under an operation defined similarly
as above. Restricting to the origins of the embedded n–disks defines an inclusion map

�W zCn.X / ,! Cn.X /

and it is easy to see that this subspace is a deformation retract of Cn.X /. Then there is
a collapse map

zCn.X /!�n†n.XC/

which induces a weak equivalence between the classifying spaces; see [14, Section 3].
Letting n!1, we define

zC1.X / WD colim
n
zCn.X /

and Segal [14] shows that the corresponding map

zC1.X /!Q.XC/

is a group completion, ie it induces a weak equivalence

(7) SW �B. zC1.X //!Q.XC/:

Corollary 5.8 The map �1.�X / from Proposition 3.10, as a map in the homotopy
category of spaces, is given by the following zigzag of weak equivalences:

Q.XC/
S
 ��Bjsing�. zC1.X //j

�B.�/
����!�Bjsing�.C1.X //j

�jˇ�
X
j

����!Q�.X /
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Proof By part (ii) of Lemma 5.7, the adjoint of �X factors through the inclusion
jsing�.X /j! jsing�.C1.X //j, which one may lift to jsing�. zC1.X //j. But the square

jsing�.X /j //

��

X

��
jsing�. zC1.X //j // Q.XC/

commutes up to homotopy. This shows that the composite of the inclusion X!Q.XC/

with the zigzag of the statement is adjoint to the stable map �X . This implies the claim
as all the maps in the zigzag are maps of infinite loop spaces.

Similarly to the definition of zC1.X /, we can define a variant zC0.X / of the cobor-
dism category C0.X / by allowing the configurations to have a unit disk as a tubular
neighborhood. There is an analogous inclusion of categories zC0.X / ,! C0.X / which
induces a weak equivalence on objects and on morphism spaces. Moreover, the obvious
diagram of functors commutes:

zC0.X / //

��

C0.X /

��
zC1.X / // C1.X /

Let Dd denote the d–dimensional closed disk and Dd
m a disjoint union of m copies

of Dd . There is a functor

 W zC0.Grd .R
1// �! Cd;@;

which, roughly speaking, sends a configuration of m points in R1 labeled by d–
dimensional linear subspaces to the associated configuration of m disjoint linearly
embedded d–disks in R1 . More precisely, it is defined on objects by .¿; a/ 7! .¿; a/.
A nonidentity morphism .S � .a; b/ �Rn�1; �W S ! Grd .R

n//, where S is finite
collection of disjoint open unit n–disks and � a locally constant map, defines a finite
collection of disjoint linearly embedded closed d–disks in .a; b/�Rn�1 by intersecting,
for every n–disk component Si � S ,

� the smaller closed n–disk S 0i � Si of radius 1
2

, with

� the d–plane through the origin of Si which is defined by the label at this point.

This defines a finite collection of closed d–disks of radius 1
2

embedded in .a; b/�Rn�1 .
By adding a new ambient coordinate, we can fix a canonical way of embedding
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each of these linearly embedded d–disks to a neatly smoothly embedded d–disk in
.a; b/�RC �Rn�1 . Then the new collection of embedded d–disks is a morphism
in Cd;@ which we define to be the image of  at .S; �/.

Lemma 5.9 The functor  induces a weak equivalence between the classifying spaces.

Proof The description of the weak equivalence z̨ in Section 2 is essentially a
generalization of the collapse map S to embedded manifolds of higher dimension.
There is a canonical path joining the image of an element .S; �; 1/ 2 zC1.Grd .R

1//

under the collapse map S , to the image of the element  .S; �/ under the map
B1.D

d
m/ ! �BCd;@ ! Q.BO.d/C/ as described in Section 2, where .S; �/ is

regarded as a morphism from .¿; 0/ to .¿; 1/ with j�0.S/j Dm and  .S; �/ comes
with a choice of a tubular neighborhood by definition. This can be used to define a
homotopy from the composition

�B. zC0.Grd .R
1//

�B. /
�����!�BCd;@

z̨
!Q.BO.d/C/

to the composition

�B. zC0.Grd .R
1//

�

!�B zC1.Grd .R
1//

S
!Q.BO.d/C/;

which proves the claim.

Denote by
�D �BO.d/W Q.BO.d/C/!A.BO.d//

the unit transformation of A–theory evaluated at BO.d/. We also let BO.d/ D
Grd .R

1/ in order to simplify the notation in the following proof.

Theorem 5.10 The map z� can be identified, by a preferred weak equivalence, with
the unit map, ie the following diagram of (weak) maps commutes in the homotopy
category of spaces:

�BCd;@
z̨

�
//

z� &&

Q.BO.d/C/

�ww
A.BO.d//

Proof First note that we may precompose with the weak equivalence �B. / of
Lemma 5.9. As we showed in the proof of that lemma, the composite map z̨ ı�B. /

agrees up to homotopy with the map S from (7).
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Then the following diagram of bisimplicial categories shows two maps from a bisim-
plicial set to a bisimplicial category,

sing�.N� zC0.BO.d///

(H

//

 

��

sing�.N� zC1.BO.d/// � // sing�.N�C1.BO.d///

ˇ�BO.d/
��

sing�.N�Cd;@/
z� // wS�Rhf.BO.d/;��/ wS�Rı.BO.d/;��/oo

which agree up to a natural transformation, which is given by including to a bundle
of d–disks the subbundle of points defined by restricting to the origins of the d–
disks fiberwise. This natural transformation shows that the two compositions induce
homotopic maps after passing to the geometric realizations.

This shows that the map z� ı�B. /, as a map in the homotopy category of spaces,
agrees with the lower composition in the following diagram of maps in the homotopy
category of spaces:

�B zC0.BO.d//Š�B zC1.BO.d// S
Š

//

�jˇ�BO.d/ı�jŠ

��

Q.BO.d/C/

�BO.d/

��
Q�.BO.d//

��BO.d/ // A�.BO.d// Š // A.BO.d//

Finally, it remains to show that the last diagram in the homotopy category commutes.
By Corollary 5.8, the composite map

Q.BO.d/C/!Q�.BO.d//;

going through the left-hand corner of the diagram, agrees with the map �1.�BO.d//.
Then the result follows from Proposition 3.11 where we used this last map to identify
the unit map with ��BO.d/ .

Using geometric methods to construct deloopings of BCd , it was shown in [4] that the
map � is an infinite loop map. The same result for the map z� is now a consequence of
Theorem 5.10.

Corollary 5.11 The map z� is a map of infinite loop spaces.

Remark 5.12 In view of Theorem 5.5 and Remark 5.6, Theorem 5.10 can be seen as
expressing a structured form of an additivity property for the factorization of �DWW

M

through the unit map. The combination of the two theorems implies the homotopy
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commutativity of the outer triangle in diagram (3) of Section 4.2

Q.BO.d/C/

�

��
BM

66

�DWW
M

// A.BO.d//

for every smooth d–manifold M (possibly with boundary).

6 Concluding remarks

6.1 Tangential structures

Similar ideas apply to the case of cobordism categories with tangential structures. Let
� W X !Grd .R

1/ be a fibration. The authors of [10] defined a cobordism category C�
d

of manifolds equipped with a tangential � –structure, ie a lift of the stable tangent
bundle to X . The main theorem of [10] identifies the homotopy type of BC�

d
with the

infinite loop space �1�1MT� of the Thom spectrum associated with the stable bundle
��.�
d /. Genauer [11] considered the cobordism category C�

d;@
of d–dimensional

manifolds with boundary and a tangential � –structure and showed that there is a weak
equivalence

z̨
�
W �BC�d;@

�

!Q.XC/:

(The main theorem of [11, Theorem 4.5] identifies the homotopy type of a cobordism
category with corners with the infinite loop space associated with a homotopy colimit of
Thom spectra. The actual identification of this spectrum with the suspension spectrum
of the space X is similar to [10, Proposition 3.1]; see also [10, Section 5].)

By replacing the vertical tangent bundle map to Grd .R
1/ with the � –structure to X ,

we can similarly define a (weak) map

z�� W �BC�d;@!A.X /:

Let M be a compact smooth d–dimensional manifold. Following the notation of [10,
Section 5], let

B�1.M /D Emb� .M; Œ0; 1��R1/=Diff.M /;

where Emb� .M; Œ0; 1��R1/ denotes the space of (neat) embeddings of M together
with compatible choices of a � –structure. The proof of the following � –version of
Theorem 5.5 is essentially the same.
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Theorem 6.1 The following diagram of (weak) maps commutes in the homotopy
category of spaces,

�BC�
d;@

z��
��

B�1.M /
�DWW

M //

i�
M

55

A.X /:

Furthermore, following similar arguments, we obtain the � –versions of Lemma 5.9
and Theorem 5.10.

Lemma 6.2 There is a functor  � W zC0.X / ! C�
d;@

, defined similarly to  from
Lemma 5.9, which induces a weak equivalence between the classifying spaces.

Theorem 6.3 The map z�� can be identified, by a preferred weak equivalence, with
the unit map, ie the following diagram of (weak) maps commutes in the homotopy
category of spaces:

�BC�
d;@

z̨�

�
//

z�� $$

Q.XC/

�X{{
A.X /

We also have the following immediate consequence; cf Corollary 5.11.

Corollary 6.4 The map z�� is a map of infinite loop spaces.

Finally, we mention two cases of special interest. First, consider the oriented cobordism
category CC

d;@
defined by taking � to be the orientation cover. In this case, there is a

homotopy commutative diagram as follows:

�BCC
d;@

� // Q.BSO.d/C/
� // A.BSO.d//

�BCC
d

?�

OO

�C

33

The weak equivalence in the diagram is shown in [11, Proposition 6.2].

Second, consider the cobordism category Cd;@.X /, where X denotes a background
space. This is the cobordism category associated to � W Grd .R

1/�X ! Grd .R
1/,

the trivial fibration. The correspondence

X 7! ��.�BCd;@.X //;
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viewed as a functor in X , is the (unreduced) homology of X with respect to the
suspension spectrum †1BO.d/C . In this case, we have a homotopy commutative
diagram as follows:

�BCd;@.X /

z�X

((

� // Q..BO.d/�X /C/

�uu
A.BO.d/�X /

We note that since z�X is a natural transformation of spectrum-valued functors from an
excisive functor, it is determined up to homotopy by its canonical factorization through
the excisive approximation to the functor X 7!A.BO.d/�X /, ie

X 7!�1.A.BO.d//^XC/:

(See [8, 8.1–8.3].) The latter factorization is a natural transformation of excisive
functors and thus it is determined by the map of spectra z� , which has been identified
with the unit map at BO.d/.

6.2 A splitting of the cobordism category

A version of the Bökstedt–Madsen map in the oriented 2–dimensional case was defined
in [16]. This map was used there to deduce the existence of a certain splitting of the
homotopy type of that cobordism category. The arguments apply similarly in higher
dimensions. Let M be a closed d–dimensional manifold embedded in R1 , so that it
may be regarded as a (endo)morphism in Cd . Thus it defines a point in �BCd and,
using the infinite loop space structure, we can extend the inclusion of this point to an
infinite loop map

jM W QS0
!�BCd :

By composing jM with the composite infinite loop map

�BCd

�
!A.BO.d//

e�
!A.�/

Tr
!QS0;

where eW BO.d/!� and Tr denotes Waldhausen’s trace map [17], we obtain a self
map of QS0 . By Theorem 5.5, it is easy to see that the homotopy class of this map
can be identified with the Euler characteristic of M, �.M / 2 ZŠ �s

0
: Thus, for every

such M, we obtain a geometric description of a splitting of a copy of the localized
sphere spectrum .QS0/Œ�.M /�1� from �BCd , as infinite loop spaces.

These splittings can also be realized at the level of the Thom spectrum MTO.d/ as
follows. The bordism class of M defines an element ŒM � 2 �0 MTO.d/ represented
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by a map QS0!�1MTO.d/. Up to the weak equivalence ˛ of Theorem 2.1, this
is the same map as jM . Composition with the map �1MTO.d/! Q.BO.d/C/,
given by the addition of the tautological bundle, and the map Q.BO.d/C/!QS0,
which collapses BO.d/ to a point, produces the same self-map of QS0, specified as
multiplication by �.M /. If M �RN , this is represented by the composite

SN
!Th.�M /!Th.
?d;N�d /!Th.
?d;N�d˚
d;N�d /ŠSN

^Grd .R
N /C!SN ;

where the first map is the Pontryagin–Thom collapse map, the second map is defined
by the classifying map for the normal bundle of M, the third map is the addition of the
tautological bundle and the fourth map is given by collapsing at the basepoint.

Appendix: Products in bivariant A–theory

We briefly discuss the construction of products in bivariant A–theory; see also [21].
For technical reasons, we need to consider a slightly modified model for the Wald-
hausen category Rhf.�/. For any fibration pW E!B , let Rhf

fib.p/ be the Waldhausen
subcategory of Rhf.p/ spanned by those retractive spaces .X; i; r/ over E such that
the retraction map r W X !E is a fibration. This full subcategory is closed in Rhf.p/

under pushouts along a cofibration, so it becomes a Waldhausen category with the
induced structure from Rhf.p/. It is easy to show that the exact inclusion functor
Rhf

fib.p/ ,! Rhf.p/ induces a weak equivalence in K–theory. The drawback of this
construction is that it is covariantly functorial only with respect to fibrations. The
readers who prefer to think about Rhf.p/ instead, could do so, as long as they replace
the retraction maps with fibrations throughout the steps of the construction below.

Our goal is to show that for any pair of fibrations f W E! V and gW V ! B , there is
a natural map

A.f /^A.g/!A.p/;

where p D g ıf . This can be obtained from a bi-exact functor

˝W Rhf
fib.f /�Rhf

fib.g/!Rhf
fib.p/

which is defined as follows. Given objects .X; iX ; rX / of Rhf
fib.f / and .Y; iY ; rY / of

Rhf
fib.g/, we first consider the pullback .X 0; iX 0 ; rX 0/ WD f �.Y; iY ; rY / as an object

of R.E/. Then we form the external smash product X ^E X 0 of the two retractive
spaces over E , ie the retractive space over E �E which is defined by the following
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pushout diagram:

X �E [E�E E �X 0 //
��

��

E �E
��

��
X �X 0 // X ^E X 0

Note that the induced retraction rX ^E rX 0 W X ^E X 0!E �E is again a fibration.
Finally, by taking the pullback along the diagonal �W E!E�E , we obtain a retractive
space over E which we denote by .X ˝Y; iX˝Y ; rX˝Y /. This construction is clearly
functorial and it preserves the appropriate pushouts, cofibrations and weak equivalences.
Thus, it remains to check that .X ˝Y; iX˝Y ; rX˝Y / is an object of Rhf

fib.p/.

The induced retraction rX˝Y is a fibration, so it suffices to show that the homotopy
finiteness condition is satisfied. Note that this is a condition for each point of the
base space B . By restricting attention to the fibers over a point of B , throughout the
construction, we can assume that B is the one point space. Under this assumption, it
suffices to show that the pair .X ˝Y;E/ is homotopy finite.

Lemma A.1 Consider a diagram as follows,

F 0

��

// // F

��
E0

p   

// // E

q��
B

where p and q are fibrations, F 0 and F denote the fibers at a point b 2 B , and the
horizontal maps are cofibrations. Suppose also that the fiber pair .F;F 0/ is homotopy
finite. If .B;B0/ is homotopy equivalent to relative (finite) CW complex, then so is the
pair .E;EjB0

[E0/.

Proof We may assume that .B;B0/ is a relative CW complex. If it is relative finite,
then it suffices, by induction, to consider only the case where B is obtained from B0

by attaching a single n–cell along some attaching map f W Sn�1 ! B0 . Then the
inclusion EjB0

[E0!E may be described as the map

EjB0
[E0j

Sn�1
E0jDn !EjB0

[Ej
Sn�1

EjDn
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induced by the inclusions on the individual components. As E0!E is a cofibration,
there is a commutative diagram of fiberwise maps over Dn

F 0 �Dn �

'
//

��

��

E0jDn

��

��
F �Dn �

'
// EjDn

where the horizontal maps are fiber homotopy equivalences. It induces a commutative
square:

EjB0
[F 0�Sn�1 F 0 �Dn ' //

��

��

EjB0
[E0j

Sn�1
E0jDn

��

��
EjB0

[F�Sn�1 F �Dn ' // EjB0
[Ej

Sn�1
EjDn

The horizontal maps are homotopy equivalences so it is enough to show that the left-
hand column is a homotopy finite pair. This follows from the assumption that the
pair .F;F 0/ is homotopy finite. In fact, assuming that .F;F 0/ is actually a finite
relative CW complex, then the left-hand inclusion in the diagram defines also a finite
relative CW complex which has one .nC k/–cell for each k–cell in the relative CW
structure of .F;F 0/.

In the general case, where .B;B0/ is not necessarily relative finite, then the pair
.E;EjB0

[E0/ is defined by a direct colimit of cofibrations which are homotopy
equivalent to relative CW complexes, so it is also homotopy equivalent to a relative CW
complex.

To finish the proof of the construction, we apply the lemma to the following diagram

f �1.rY .y//

��

// // .f rX /
�1.rY .y//

��
X 0 DE �E X 0

&&

// // X �E X 0

xx
Y

where the top row shows the fibers at y 2 Y . By assumption, the pair .Y;V / is
homotopy finite. It follows that the pair .X �E X 0;X [E X 0/ is also homotopy finite.
But note that the latter pair is relative homeomorphic to .X ˝Y;E/ and therefore the
required homotopy finiteness condition is satisfied.
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