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Milnor-Wood inequalities for products

MICHELLE BUCHER
TSACHIK GELANDER

We prove Milnor—Wood inequalities for local products of manifolds. As a conse-
quence, we establish the generalized Chern conjecture for products M x £¥ of any
manifold M and k copies of a surface X for k sufficiently large.

57R20

1 Introduction

Let M be an n—dimensional topological manifold. Consider the Euler class &,(£) in
H"(M,R) and Euler number x(£) = (¢,(£),[M]) of an oriented R”—vector bundle
& over M. We say that the manifold M satisfies a Milnor—Wood inequality with
constant ¢ if for every flat oriented R” —vector bundle & over M , the inequality

X&) < c-|x(M)]

holds. Recall that a bundle is flat if it is induced by a representation of the fundamental
group 1 (M). We denote by

MW (M) € RU {400}

the smallest such constant.
If X is a simply connected Riemannian manifold with closed quotients, we denote

W(X) ;= sup{MW(M) : M is a closed quotient of X}.
Milnor’s seminal inequality [7] amounts to showing that the Milnor—Wood constant of
the hyperbolic plane H is MW (H) =1/2, and in [3], we showed that MW (H")=1/2".
In this note we prove a product formula for the Milnor—Wood constants of general
closed manifolds:
Theorem 1.1 For any pair of compact manifolds M, M,

MW(MI X Mz) = MW(M]) MW(Mz)
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For the product formula for universal Milnor—Wood constant, we restrict to Hadamard
manifolds:

Theorem 1.2 Let X1, X, be Hadamard manifolds. Then
W(X] X Xz) = W(X]) W(Xz)

One important application of Milnor—Wood inequalities is to make progress on the
generalized Chern conjecture.

Conjecture 1.3 (Generalized Chern conjecture) Let M be a closed oriented aspheri-
cal manifold. If the tangent bundle TM of M admits a flat structure then y(M) = 0.

This conjecture has been suggested by Milnor [7]! and is a strong version of the famous
Chern conjecture which merely predicts the vanishing of the Euler characteristic for
affine manifolds, that is, for manifolds admitting a torsion-free flat connection.

As pointed out in [7], if MW (M) < 1 then the generalized Chern conjecture holds
for M . Indeed, if x(M) # 0 the inequality

IX(M)| = | x(TM)| = MW (M) - [x(M)| < |x(M)]
leads to a contradiction to the assumption that M has a flat structure.

One can use Theorem 1.1 to extend the family of manifolds satisfying the generalized
Chern conjecture. For instance, we prove a stable variant of the generalized Chern
conjecture:

Corollary 1.4 For any manifold M , there exists ko > 0 such that the product M x vk,
where ¥ is a surface of genus > 2, satisfies the generalized Chern conjecture for
any k > kqo. If x(M) = 0, then kg = 0. If x(M) # 0, then one can take any
ko > log, (MW(M)). In particular, in the latter case, the product M x ¥ does not
admit an affine structure.

Remark (1) One can replace ¥k in Corollary 1.4 by any H* —manifold.

(2) The corollary is somehow dual to a question of Yves Benoist [1, Section 3, page 19]
asking whether for every closed manifold M there exists m such that M x (S1)™
admits an affine structure. For example, if M is a hyperbolic manifold or a sphere,
the product M x S! admits an affine structure. On the other hand, if M admits a

In [7] Milnor suggested the generalized conjecture without the assumption that M is aspherical,
however Smillie [9] gave counterexamples, in any even dimension # 2, when this assumption is omitted.
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quaternionic hyperbolic structure then m = 1 will not suffice, since the holonomy
representation of 71 (M) is superrigid in Sp(2, 1) by Corlette’s Theorem and the latter
has no nontrivial 9-dimensional linear representations.

Note that since there are only finitely many isomorphism classes of oriented R” —bundles
which admit a flat structure, it is immediate that the set

{1x(&)| | € is a flat oriented R” —bundle over M }

is finite for every M . In particular, if x(M) # 0, there exists a finite Milnor—Wood
constant MW(M') < 4+o00. However, in general, the Milnor—Wood constant can be
infinite, since the implication

x(M)=0 = x(§)=0,

for a flat oriented R”-bundle &, does not hold in general as we will show in Section 6.
Our example is inspired by Smillie’s counterexample [9] of the generalized Chern
conjecture for nonaspherical manifolds, and likewise this manifold is nonaspherical.

The following questions are quite natural:

(1) Does there exist a finite constant c(n) depending on n only so that we have
MW (M) < c(n) for every closed aspherical n—manifold?

(2) Let X be a contractible Riemannian manifold such that there exists a closed
X —manifold M with MW(M) < co. Is MW(X) necessarily finite?

(3) Does x(M) =0 = x(&) = 0 for flat oriented R”-bundles & over aspherical
manifolds M ?
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Mittag-Leffler in Djursholm, Sweden. Michelle Bucher acknowledges support by
the Swiss National Science Foundation grant PPOOP2-128309/1. Tseachik Gelander
acknowledges support by the Israel Science Foundation and the European Research
Council.

2 Proportionality principles and vanishing of the Euler class
of tensor products

Lemma 2.1 Let X be a simply connected Riemannian manifold, G = Isom(M) and
p: G— GL;:' (R) arepresentation. Then x(§,)/vol(M'), where M =T"\X is a closed
X —manifold and &, is the flat vector bundle induced on M by p restricted to I', is a
constant independent of M .
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Proof There is a canonical isomorphism H}(G) = H*(Q*(X )@) between the con-
tinuous cohomology of G and the cohomology of the cocomplex of G —invariant
differential forms Q*(X)% on X equipped with its standard differential. (For a
semisimple Lie group G, every G—invariant form is closed, hence one further has
H*(Q*(X)%) = Q*(X)%.) In particular, in top dimension #n = dim(X), the coho-
mology groups are 1—dimensional, H'(G) = H"(Q*(X )¢)) = R, and contain the
cohomology class given by the volume form wy .

Since the bundle £, over M is induced by p, its Euler class &,(§,) is the image of
en € H*(GLT (R, n)) under
H(GLY (R, n)) 2> H"(G) — H"(T") = H"(M),
where the middle map is induced by the inclusion I < G. In particular,
p*(en) = A-[wx] € HI(G)
for some A € R independent of M . It follows that x(£,)/Vol(M) = A. a
Lemma 2.2 Let pg: GL1 (n,R) x GL™ (m,R) — GL™* (nm,R) denote the tensor
representation. If n,m > 2, then
P (Enm) =0 € H!™(GL(n,R) x GL(m, R)).
Proof The case n = m = 2 was proven in [3, Lemma 4.1], based on the simple
observation that interchanging the two GL™ (2, R) factors does not change the sign
of the top dimensional cohomology class in Hg‘ (GL(2,R) x GL(2,R)) = R, but it

changes the orientation on the tensor product, and hence the sign of the Euler class in
H}(GL*(4,R)).

Let us now suppose that at least one of n, m is strictly greater than 2, or equivalently,
that n + m < nm. The Euler class is in the image of the natural map

H"™(BGL(nm,R)) — H!™(GL(nm,R)).

By naturality, we have a commutative diagram

H™ (BGL™ (nm,R)) H"™(GL* (nm, R))

Lp?‘@ lp?‘@

H""(B(GL™ (n,R) x GL* (m,R))) —= H"™(GL™ (n, R) x GL™ (m, R))).

Since the image of the lower horizontal arrow is contained in degree < n+m, it follows
that pg, (enm) = 0. O
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3 Representations of products

Lemma 3.1 Let H{, H, be groups and p: H; x Hy — GL,(R) a representation of
the direct product and suppose that p(H;) is nonamenable for both i = 1,2. Then, up
to replacing the H; by finite index subgroups, either

e V = R" decomposes as an invariant direct sum V = V' & V", where the
restriction p|V' = p} ® pf, is a nontrivial tensor representation, or

e V=V®&YV,, where p(H;) is scalar on V;.
Proof This can be easily deduced from the proof of [3, Proposition 6.1]. |

Proposition 3.2 Let H = ]_[f-‘:1 H; be a direct product of groups and let p: H —
GL,f (R) be an orientable representation, where n = Zf;lm,-. Suppose that p(H;)
is nonamenable for every i . Then, up to replacing the H; by finite index subgroups
H' =TI, H], either

(1) there exists 1 <iy <k such that V =R" decomposes nontrivially to an invariant
direct sum V = V' @ V" and the restricted representation

. / / /
P |(Hi/oxni>i0 .y Hjg X l_[ H; — GL(V)
i>i0
is a nontrivial tensor, or

(2) the representation p’ factors through

k k +
o [1H — ( [ GLw (R)) — GL(R),

i=1 i=1

where the latter homomorphism is, up to conjugation, the canonical diagonal
embedding, and p'(H]) restricts to a scalar representation on each GLm} R),

fori # j.

Moreover, if all m; are even then either m; < m; for some i or one can replace GL
with GL™T everywhere.

The notation (]_[leGLm; (R))™ stands for the intersection of ]_[leGLm;, (R) with
the positive-determinant matrices.
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Proof We argue by induction on k. For k = 2 the alternative is immediate from
Lemma 3.1. Suppose k > 2. If (1) does not hold, it follows from Lemma 3.1 that,
up to replacing the H; by some finite index subgroups, V' decomposes invariantly to
V =V ® V] where p(H;) is scalar on V| and p(]];~ H;) is scalar on V;. We now
apply the induction hypothesis for [];. H; restricted to V.

Finally, in case (2), since ) m; = n, either m; < m; for some i or equality holds
everywhere. In the latter case, if all the m; are even, given g € H;, since the restriction
of p(g) toeach Vj; is scalar, it has positive determinant. We deduce that also p(g)|y;
has positive determinant. a

4 Multiplicativity of the Milnor—Wood constant for product
manifolds: A proof of Theorem 1.1

Let My, M, be two arbitrary manifolds. We prove that
MW(MI X Mz) = MW(M]) MW(Mz)

First note that the inequality MW (M x M) > MW (M) - MW (M>) is trivial. Indeed,
let £1, &, be flat oriented bundles over M; and M>, respectively, of the right dimension
such that |x(&)| = MW(M;)-|x(M;)| for i =1,2. Then & x &; is a flat bundle over
Ml X M2 with

Ix(1x &) = xCEDIx(E)| = MW(My) - MW (Mz) - | x (M1 x M3)|.
For the other inequality, let £ be a flat oriented R”-bundle over My x M,, where
n = dim(M;) + dim(M;). We need to show that
(X&) =MW (M) -MW(M>) - |x(M; x M>)]|.

Observe that if we replace M by a finite cover, and the bundle £ by its pullback to the
cover, then both sides of the previous inequality are multiplied by the degree of the
covering.

The flat bundle £ is induced by a representation
p: i (My x My) = 7ty (M) x 11 (M) —> GL;F (R).

If p(r1(M;)) is amenable for i = 1 or 2, then p*(e,) = 0 [3, Lemma 4.3] and hence
x (&) = 0 and there is nothing to prove. Thus, we can without loss of generality suppose
that, upon replacing 71 (M; x M>) by a finite index subgroup, the representation p
factors as in Proposition 3.2.
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In case (1) of the proposition, we obtain that p*(e,) = 0 by Lemma 2.2 and [3,
Lemma 4.2]. In case (2) we get that p factors through

p: 1 (My) x 711 (M2) —> (GLyy, (R) x GL,,; (R)) "~ GL; (R).

where the latter embedding 7 is up to conjugation the canonical embedding. Further-
more, up to replacing p by a representation in the same connected component of

Rep(1 (M1) X 711 (M3), (GLy; (R) X GLoy, (R)) )

which will have no influence on the pullback of the Euler class, we can without loss of
generality suppose that the scalar representations of 71 (M7) on GLy/, and 71 (M>)
on GLyy are trivial, so that p is a product representation. If m’l or m’z is odd,
then i*(e,) = 0 € H((GLp/ (R) x GLy, (R))*). If m; and m/, are both even then
Proposition 3.2 further tells us that either m} < m; for i =1 or 2, or the image of p
lies in GL;l (R) x GL; ,(R). In the first case, the Euler class vanishes [3, Lemma 4.2],
while in the second case, we immediately obtain the desired inequality. This finishes
the proof of Theorem 1.1. a

S Multiplicativity of the universal Milnor-Wood constant for
Hadamard manifolds: A proof of Theorem 1.2

Theorem 1.2 can be reformulated as follows:

Theorem 5.1 Let X be a Hadamard manifold with de Rham decomposition X =
[TX., X; . then MW (X) = [[F_, MW (X;).

Proof The inequality “>" is obvious. Let M =I"\ X be a compact X —manifold. We
must show that MW(M) < ]_[flem (X;). Note that I" is torsion-free. Let us also
assume that k > 2. If M is reducible one can argue by induction using Theorem 1.1.
Thus we may assume that M is irreducible. Observe that this implies that Isom(X) is
not discrete. If I" admits a nontrivial normal abelian subgroup then by the flat torus
theorem (see [2, Chapter 7]), X admits an Euclidean factor which implies the vanishing
of the Euler class. Assuming that this is not the case we apply Farb—Weinberger [4,
Theorem 1.3] to deduce that X is a symmetric space of noncompact type. Thus, up to
replacing M by a finite cover (equivalently, replace I" by a finite index subgroup), we
may assume that I" lies in

k k
G =Isom(X)° = 1_[ Isom(X;)° = 1_[ Gi,

i=1 i=1
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where the G; are adjoint simple Lie groups without compact factors and I' < G is
irreducible in the sense that its projection to each factor is dense. Denote by G; the
universal cover of G;, and by ' < ]—[f:1 G ; the pullback of T'.

Let p: ' — GL,‘,Ir (R) be a representation inducing a flat oriented vector bundle &
over M . Up to replacing I" by a finite index subgroup, we may suppose that p(I")
is Zariski connected. Let S < GL,;" (R) be the semisimple part of the Zariski closure
of p(I'), and let p’: T' — S be the quotient representation. By superrigidity, the map
Adop': T — Ad(S) extends to

k
¢: T <[] Gi — Ad(S)

i=1

(see [SL [6] and [8]). This map can be pulled back to a;: T — S. Recall also that

]_[f-‘:1 G; is a central discrete extension of ]_[fleG,- and, likewise, T is a central
extension of I". If

k
nj=dimX; and n= Zn,-
i=1
we deduce from Proposition 3.2 and Lemma 2.2 that either the Euler class vanishes or the
image of ¢ lies (up to decomposing the vector space R” properly) in (]_[f-c=1 GL,; )t

Suppose that MW (X;) is finite forall i =1, ...,k and let M; be closed X;—manifolds.
Let & be the flat vector bundle on ]_[f;l M; coming from p reduced to ]_[5;1 M;, and
let £/ be the vector bundle on M; induced by p;, i =1,...,k. By Lemma 2.1, we
have

x() x(€) SOXE) 7
= = MW (X)),
D = vor(Ty )~ AL vy = LTV
which finishes the proof. O

6 Example: a flat bundle with nonzero Euler number over a
manifold with zero Euler characteristic

Recall that given two closed manifolds of even dimension, the Euler characteristic of
connected sums behaves as
XMy Ma) = x(My) + x(M3) —2.

The idea is to find M = M7 ft M, such that M; admits a flat bundle with nontrivial
Euler number which in turn induces such a bundle on the connected sum, and to choose
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then M> in such a way that the Euler characteristic of the connected sum vanishes.
Take thus

M =3,x%,, M,=(S'xS4(S'xS83% and M = M, 1t M.
These manifolds have the following Euler characteristics:
x(M) =4, x(My)=2-x(S'xS§)—2=-2.  x(M)=0.

Let 1 be a flat bundle over X, with Euler number x(n) = 1. (Note that we know that
such a bundle exists by [7].) Let f: M — M, be a degree 1 map obtained by sending
M, to a point, and consider

E= f*(nxn).

Obviously, since 7 is flat, so is the product 1 x 1 and its pullback by f. Moreover, the
Euler number of £ is

X&) = x(nxmn =1
Indeed, the Euler number of 7 x 1 is the index of a generic section of the bundle, which

we can choose to be nonzero on f(M>), so that we can pull it back to a generic section
of & which will clearly have the same index as the initial section on 7 x 7.
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