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Contact surgery and supporting open books

RUSSELL AVDEK

Let .M; �/ be a contact 3–manifold. We present two new algorithms, the first of
which converts an open book .†;ˆ/ supporting .M; �/ with connected binding into
a contact surgery diagram. The second turns a contact surgery diagram for .M; �/ into
a supporting open book decomposition. These constructions lead to a refinement of a
result of Ding and Geiges [7], which states that every such .M; �/ may be obtained
by contact surgery from .S3; �std/ , as well as bounds on the support norm and genus
(Etnyre and Ozbagci [14]) of contact manifolds obtained by surgery in terms of
classical link data. We then introduce Kirby moves called ribbon moves, which
use mapping class relations to modify contact surgery diagrams. Any two surgery
diagrams of the same contact 3–manifold are related by a sequence of Legendrian
isotopies and ribbon moves. As most of our results are computational in nature, a
number of examples are analyzed.

57R17; 57M25

1 Introduction

1.1 Open books and contact structures

A contact structure on an oriented 3–manifold M is a hyperplane distribution � for
which there exists a globally defined one-form ˛ satisfying �D Ker.˛/ and ˛^d˛ > 0

with respect to the prescribed orientation on M . In this paper, we will consider two
contact manifolds .M; �/ and .N; �/ to be equivalent if they are diffeomorphic, ie, if
there is a diffeomorphism ‰W M !N for which T‰.�/D � .

An open book decomposition of a closed, oriented 3–manifold M is a pair .B; �/
consisting of an oriented link B �M (called the binding) and a fibration � W M nB!

S1 . The preimage of a point on the circle gives an oriented surface with boundary
called the page of the decomposition. Similarly, provided a compact oriented surface
with non-empty boundary † and a diffeomorphism ˆW †! † that restricts to the
identity on a neighborhood of @†, the abstract open book associated to the pair .†;ˆ/
is the 3–manifold

M.†;ˆ/ D .†� Œ0; 1�/=�; where

.x; 1/� .ˆ.x/; 0/ 8x 2† and .x; �/� .x; � 0/ 8x 2 @†; �; � 0 2 Œ0; 1�:
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Every abstract open book .†;ˆ/ admits the open book decomposition .B; �/ D

.@†; .x; �/ 7! �/ and every open book decomposition determines an abstract open
book (up to conjugation of the diffeomorphism ˆ). Accordingly, we will refer to either
structure simply as an open book unless an isotopy class for the binding is specified
and will use abstract open book notation unless otherwise specified.

Following Giroux [19], we say that an open book .†;ˆ/ supports or is compatible
with .M; �/ if

(1) M DM.†;ˆ/ , and

(2) there is a contact 1–form ˛ for � D Ker.˛/ that is a positive length element on
the binding and such that the Reeb vector field R˛ is transverse to the interiors
of all the pages.

In [35], Thurston and Winkelnkemper showed that every open book decomposition
.†;ˆ/ gives rise to a compatible contact manifold .M.†;ˆ/; �.†;ˆ//, which depends
only on † and the conjugacy class of ˆ. The following theorem asserts that all contact
3–manifolds arise in this way.

Theorem 1.1 [19] Let M be a closed, oriented 3–manifold. Then,

(1) .M; �/ is supported by some .†;ˆ/, and

(2) the mapping .†;ˆ/ 7! .M.†;ˆ/; �.†;ˆ// determines a one-to-one correspon-
dence between
(a) isotopy classes of positive contact structures on M and
(b) isotopy classes of open book decompositions of M up to positive stabiliza-

tion.

In light of Theorem 1.1, it is natural to ask how properties of surfaces and their
diffeomorphisms translate into contact-geometric qualities. Important progress has
been made with the sobering arc criterion of Goodman [21] and the right-veering
program of Honda, Kazez and Matić [23].

Theorem 1.2 Let .M; �/ be a contact 3–manifold. Then the following are equivalent:

(1) � is overtwisted.

(2) .M; �/ admits a compatible open book decomposition that is a negative stabi-
lization of some other open book decomposition for M .

(3) .M; �/ has a supporting open book decomposition whose page contains a sober-
ing arc.
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(4) .M; �/ is supported by an open book whose monodromy is not right-veering.

Moreover, while every topological 3–manifold admits an open book decomposition
with planar pages [2], not every contact 3–manifold is supported by a planar open book.

Theorem 1.3 (Etnyre [10]) Let .M; �/ be a contact 3–manifold.

(1) If .M; �/ is overtwisted, then it is supported by a planar open book decomposi-
tion.

(2) Suppose that .M; �/ is supported by a planar open book decomposition. Then
any symplectic filling X for .M; �/ has connected boundary and is such that
bC

2
.X /D b0

2
.X /D 0. If, in addition, M is an integral homology sphere, then

the intersection form for X is diagonalizable.

Corollary 1.4 [10] Suppose that K is a Legendrian knot in .S3; �std/ whose Thurs-
ton–Bennequin number tb.K/ > 0. Then,

(1) Legendrian surgery on K produces a contact manifold which cannot be supported
by a planar open book, and

(2) K cannot be contained in the page of a planar open book decomposition of
.S3; �std/.

Proof Suppose that tb.K/ > 0. Legendrian surgery on K gives rise to a symplectic
filling .X; !/ of the contact manifold .S3

K
; �K / D @.X; !/ obtained by surgery on

K . This follows from that fact that the surgery may be realized as the attachment
of a symplectic 2–handle to the filling of .S3; �std/ by a 4–dimensional disk in the
symplectic manifold .R4; dx1 ^ dy1C dx2 ^ dy2/. See Weinstein [37]. Legendrian
surgery along K is smoothly equivalent to a .tb.K/� 1/–surgery with respect to the
Seifert framing as can be seen by comparing the Seifert and contact framings of K

(cf Ozbagci and Stipsicz [31, Section 7.2]). Therefore, the union of a Seifert surface
for K in the filling together with the core disk of the 4–dimensional surgery 2–handle
represents a non-zero class in H2.X;Z/ with self-intersection tb.K/ � 1 � 0. It
follows that bC

2
.X /D 1 so that .S3

K
; �K / cannot be supported by a planar open book

decomposition by Theorem 1.3(2). This establishes our first assertion.

If K is contained in the page † of a supporting open book decomposition of .S3; �std/,
then Legendrian surgery on K may be performed by precomposing the monodromy of
this open book by a Dehn twist about K . See Theorem 2.7. This means that if † is
planar, then .S3

K
; �K / is supported by an open book with planar pages, contradicting

the observations stated in the previous paragraph. Therefore the second statement
follows from the first.
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The existence result for planar open books on topological manifolds has been improved
to show that for every topological link L in a 3–manifold M , there is a planar open
book decomposition of M which contains L in a single page. This theorem was
first proved by Calcut (see [4, Theorem 7; 24, Section 2]). Another proof was later
given by Onaran (see [5, Theorem 1.2]). This result, together with Theorem 1.3 and
Corollary 1.4, implies that genus minimization for pages of open book decompositions
is a purely contact-topological problem. These results have lead to the definition and
study of the support invariants [14; 5].

Definition 1.5 Define the support genus, binding number, and support norm of
.M; �/ by

sg.M; �/Dminfg.†/ W 9.†;ˆ/ supporting .M; �/g

bn.M; �/Dminf#.@†/ W 9.†;ˆ/ supporting .M; �/ with g.†/D sg.M; �/g

sn.M; �/Dminf��.†/ W 9.†;ˆ/ supporting .M; �/g:

Similarly, for a Legendrian link L in .M; �/ we may define sg.M; �;L/, bn.M; �;L/

and sn.M; �;L/ by restricting to those open books supporting .M; �/ for which L is
contained in a single page.

Remark 1.6 In addition to Theorem 1.3 there are obstructions to the existence of
supporting planar open books such as those coming from Heegaard Floer homology
(Ozsváth, Stipsicz and Szabó [32]), embedded contact homology (Wendl [38]), symplec-
tic fillability (Niederkrüger and Wendl [29]) and Dehn twist factorizations of mapping
classes (Wand [36]). However, at the time of the writing of this paper there is no known
example of a contact manifold whose support genus is greater than 1.

While “having a common positive stabilization” is a rather complex notion of equiva-
lence between supporting open books, much less is known about how contact surgery
diagrams relate to one another. Developments of this type appear in the works of Ding
and Geiges [6; 7; 8], who have shown that every contact manifold may be obtained by
contact surgery, and have listed a number of handle-slide and cancellation type moves
that can be used to modify contact surgery diagrams. Our goals in this paper are to
develop Kirby moves (Fenn and Rourke [15], and Kirby [25]) for contact manifolds by
employing the open book perspective, as well as to analyze the problem of minimizing
support invariants from the surgery perspective. All results obtained are consequences
of two algorithms described in Theorems 1.7 and 1.9.

Algebraic & Geometric Topology, Volume 13 (2013)
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1.2 From open books to surgery diagrams and the existence of surgery
presentations

Our first algorithm shows how to convert an open book presentation of a contact
manifold to a contact surgery diagram.

Theorem 1.7 Suppose that the contact 3–manifold .M; �/ is presented as an open
book (†;ˆ), with @† connected and for which the monodromy ˆ is given as a product
of positive and negative Dehn twists on the Lickorish generators. There is an algorithm
which, from this data, creates a Legendrian link LDLC[L� contained in .S3; �std/

for which contact C1–surgery on LC and contact �1–surgery on L� yields .M; �/.
Every connected component of L is either an unknot with tbD�1 or an unknot with
tbD �2. Moreover, any two-component sublink of L is an unlink, a Hopf link or a
.�4; 2/–torus link.

Section 3 describes this construction in detail.

As a corollary of Theorem 1.7 we obtain a new proof, and an improvement of Ding
and Geiges’ result in [7], which states that every contact 3–manifold may be obtained
by contact ˙1–surgeries in .S3; �std/. With the help of Theorem 1.1, we present a
proof that is, in spirit, exactly the same as Lickorish’s elementary proof [27] that every
closed, oriented topological 3–manifold admits a surgery presentation.

Corollary 1.8 Every contact 3–manifold .M; �/ may be obtained by a sequence of
contact ˙1–surgeries on Legendrian knots in .S3; �std/. Moreover, such a surgery
presentation LDLC[L� describing .M; �/ can be chosen to satisfy the conditions
listed in Theorem 1.7.

Proof By Theorem 1.1(1), .M; �/ is supported by an open book determined by some
.†;ˆ/. Possibly after a sequence of positive stabilizations, we may assume that
the binding of .†;ˆ/ is connected. We know from Lickorish [28] that ˆ admits a
factorization into a product of positive and negative Dehn twists on the curves depicted
in Figure 6. Now apply Theorem 1.7.

1.3 From surgery diagrams to open books and applications

Our second algorithm provides a way of embedding a Legendrian link in .S3; �std/

into the page of a supporting open book of .S3; �std/. Throughout the remainder of this
paper, unless otherwise stated, L will refer to a Legendrian link in .R3; �std/. We write
D.L/ for a front projection diagram of L. A diagram D.L/ will be called non-split
if for every circle c in R2 nD.L/, the disk D2 �R2 bounding c contains either all
or none of the components of D.L/.

Algebraic & Geometric Topology, Volume 13 (2013)
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Theorem 1.9 There is an algorithm (with choices) that assigns to each Legendrian
link diagram D.L/ in R3 an open book .†;ˆ/ supporting .S3; �std/, which contains
L in a single page. If D.L/ is non-split, the choices involved may be made in such a
way that

(1) ��.†/D #.Crossings of D.L//C 1
2

#.Cusps of D.L//� 1:

A Dehn twist factorization of the monodromy of the open book constructed is described
in Theorem 4.8.

a

b c

d

Figure 1: On the left is a right-handed Legendrian trefoil L � .S3; �std/ .
On the right is the page † of an open book supporting .S3; �std/ , which
contains L , constructed using the algorithm of Theorem 1.9. Note that
† has the topological type of a 3–punctured torus. The letters a , b , c

and d correspond to simple closed curves 
a , 
b , 
c and 
d contained in
the surface. The monodromy of the associated open book of .S3; �std/ is
ˆDDC
d

ıDC
c
ıDC
b

ıDC
a
. See Section 2.1 and Theorem 4.8 for details.

We establish the following convention, which will be used throughout this
paper: When an oriented surface † is drawn in the front projection of R3 , the
regions of † on which its orientation agrees (disagrees) with the blackboard
orientation will be lightly (heavily) shaded.

By applying Theorem 2.7, Theorem 1.9 can be used to convert a contact surgery
diagram in .S3; �std/ into a supporting open book.

Our algorithm is far from the first of this kind to appear in the literature (Akbulut and
Ozbagci [1], Arıkan [3], Plamenevskaya [33], and Stipsicz [34]), although our approach
will be rather different. All those conceived thus far have been modifications of a
technique that embeds a given bridge diagram into a template convex surface, which is
shown to be the page of an open book decomposition of the sphere compatible with its
standard contact structure .S3; �std/. The algorithm described in Theorem 1.9 directly
follows the proof of Theorem 1.1(1) by describing explicit contact cell decompositions
(Definition 2.2) of .S3; �std/. See Section 2.3 for a brief outline of the part of the proof
of Theorem 1.1(1) needed for our purposes.
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Theorem 1.9 often gives improved bounds on the support genus and norm of links in
.S3; �std/. In the case of the Legendrian trefoil knot L in Figure 1, we improve the
known upper bound sg.S3; �std;L/� 3 [3] to the computation sg.S3; �std;L/D 1. We
study the support invariants of general Legendrian .2nC1; 2/–torus knots for n� 0 in
Section 5.2. While preparing this paper, the computations of Section 5.2 were obtained
independently – and in many cases improved using Heegaard Floer homology – in Li
and Wang [26].

In Section 5.4 we use Theorem 1.9 to show that overtwistedness of a contact manifold
.M; �/ is equivalent to the existence of special type of contact surgery diagram for
.M; �/, which corresponds to a negative stabilization in some compatible open book.
This may be viewed as Theorem 1.2(2) for surgery diagrams, and complements the
surgery construction of the Lutz twist as described in Ding, Geiges and Stipsicz [9].
See Section 5 for these and other applications of Theorem 1.9 to the study of support
invariants.

1.4 Mapping class relations as Kirby moves

As a final application of Theorem 1.9 we show how relations between Dehn twists in
the mapping class group of a surface can be interpreted as Kirby moves (as in [25; 15])
relating contact surgery diagrams. Such a Kirby move, which we call a ribbon move, is
executed as follows:

(1) Let L be a contact surgery diagram in .S3; �std/ presenting the contact manifold
.M; �/, and suppose that ` is a surgery sub-link of L.

(2) Adjoin Legendrian arcs to ` to obtain a connected Legendrian graph x̀ with
ribbon Rx̀. The algorithm described in Theorem 1.9 can be used to draw Rx̀ in
the front projection.

(3) Each connected component of ` with its surgery coefficient corresponds to a
positive or negative Dehn twist on Rx̀. See Theorem 2.7. Therefore ` determines
an element D` of the mapping class group of Rx̀ with a preferred Dehn twist
factorization. Suppose that we can find another Dehn twist factorization

D` DD
ın

�n
ı � � � ıD

ı1

�1
; ıj 2 fC;�g

where the �j are Legendrian realizable curves (in the sense of Section 2.5) in Rx̀.

(4) There is a surgery link � contained in a neighborhood of Rx̀ corresponding to
the new Dehn twist factorization of D` . In other words, D� DD` . Now delete
` from L and insert � . The surgery diagram .L n `/[ � gives an alternative
surgery presentation of .M; �/.
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.1/ .2/

.3/

.4/

L x̀ Rx̀

a
b

c

d
6

b
a c

d
e

f

g

e -
f-
g -

DCa ıDC
b
ıDCc ıDC

d
DCg ıDC

f
ıDCe

Figure 2: An example of a ribbon move. Taking all contact surgery coeffi-
cients to be �1 , (1) presents a contact manifold by surgery on a link L of
unknots. In (2) the surgery link `D a[ b [ c is embedded in a connected
Legendrian graph x̀, shown together with its ribbon Rx̀. We may regard ` as a
collection of Dehn twists on Rx̀. The curve d also embeds into Rx̀ as shown
in (3). �1–surgery on each component of L corresponds to a diffeomorphism
DL of Rx̀ with Dehn twist factorization DCa ıDC

b
ıDCc ıDC

d
. On the right-

hand side of (3) is another Dehn twist factorization of DL . Finally in (4),
Legendrian surgery presentations of the two Dehn twist factorizations are
depicted. Again all surgery coefficients are �1 .
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The details of this construction are described in Section 6. Figure 2 provides an example
corresponding to a lantern relation among Dehn twists on a 3–punctured disk. The two
surgery presentations in the bottom row of the figure give distinct Stein fillings of a
contact structure on the Seifert fibered manifold M.�1

2
;�1

2
;�1

2
/.

With Theorem 1.9 in mind, a contact surgery diagram may be thought of as an open
book whose monodromy has a preferred Dehn twist factorization. Therefore different
surgery diagrams of the same contact manifold should be related by mapping class
relations and Theorem 1.1. More precisely, in Section 6.3 we prove the following:

Theorem 1.10 Let .M; �/ be a contact 3–manifold. Suppose that X D XC [X�

and Y D Y C[Y � are Legendrian links in .S3; �std/, both of which determine .M; �/

by contact surgery. Then X and Y are related by a sequence of ribbon moves and
Legendrian isotopies.

See the next section for an explanation of the notation in the above theorem. To the
author’s knowledge, the only known results regarding the modification of contact surgery
diagrams are Ding and Geiges’ cancellation and handle-slide moves. In Section 6.2 we
will reinterpret these operations as ribbon moves. There we also provide examples of
braid- and chain-relation type moves.

2 Notation and remarks on the methods

While we will assume that the reader is familiar with the basics of contact manifolds,
open book decompositions and contact surgery, we will quickly recall some facts
needed throughout the article. See Etnyre [12], and Ozbagci and Stipsicz [31] for
further details.

2.1 Conventions

.R3; �std/ will refer to the contact structure determined by the 1–form �stdD dz�y dx .

.S3; �std/ denotes the contact structure on the 3–sphere considered as the boundary
of the 4–disk D4 D fkxk � 1g �R4 with Liouville 1–form

P
.xj dyj �yj dxj /. As

the complement of a point in .S3; �std/ is contactomorphic to .R3; �std/ (Geiges [16,
Proposition 2.1.8]), we will describe knots and links in .S3; �std/ by their inclusion in
.R3; �std/, and will always draw knots in the front projection, ie, the projection to the
.x; z/–plane in .R3; �std/.

When † is an oriented surface and � is a simple, closed curve on †, a ˙–Dehn twist
along � will be denoted by D˙

�
. When expressing compositions of Dehn twists as a
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product, they will be ordered in the way that is standard for compositions of morphisms,

nY
1

D
ıj
�j
DD

ın

�n
ı � � � ıD

ı1

�1
; ıj 2 fC;�g:

When performing surgery on Legendrian knots, we always express coefficients with
respect to the framing given by the contact structure.

2.2 Contact surgery

One appropriate notion of Dehn surgery for contact 3–manifolds is contact surgery along
Legendrian knots. Originally described in [6], contact surgery generalizes Weinstein’s
Legendrian surgery [37] for 3–manifolds.

Let L� .M; �/ be a Legendrian knot in a contact 3–manifold. Then L admits a tubular
neighborhood N.L/ such that if we frame L with � then @N.L/ is a convex surface
in .M; �/ with exactly 2 dividing curves of slope1. Here we consider a contact vector
field pointing out of N.L/, equip @N.L/ with the boundary orientation, and compute
slopes by taking (“meridian”, ”longitude”) as an oriented basis of H1.@N.L/IZ/ with
the longitude determined by the contact framing on L. The dividing curves separate
@N.L/ into two annuli @N.L/C and @N.L/� , which can be identified with the closures
of the positive and negative regions of the convex surface @N.L/, respectively. To
perform contact 1

k
–surgery (k 2 Z n f0g) along L, remove N.L/ from M and then

glue it back in with the identity on @N.L/� and with �k (right-handed) Dehn twists
along @N.L/C . It follows from the gluing theory of convex surfaces that this operation
uniquely determines a contact structure on the surgered manifold. Contact 1

k
–surgery

on L is equivalent to contact sgn.k/–surgery on jkj copies of L pushed off along the
Reeb vector field of some contact 1–form for � . See [7].

We will be primarily interested in performing contact surgery along Legendrian knots
in .S3; �std/. It is easy to check that, in this case, contact 1

k
–surgery is topologically a

.tb.K/C 1
k
/–surgery with respect to the Seifert framing.

Definition 2.1 A contact surgery diagram consists of a front projection diagram of
a Legendrian link L � .S3; �std/, all of whose connected components are labeled
with rational numbers of the form 1

k
with k 2 Z. In the event that every connected

component of L is labeled ˙1 we write LDLC[L� where the components of L˙

all have coefficient ˙1.
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2.3 Supporting open books

There is a simple way to modify an open book .†;ˆ/, which preserves the associated
contact manifold, called positive stabilization. This operation consists of adding a
1–handle to the boundary of † and precomposing the monodromy with a single positive
Dehn twist about a simple closed curve that intersects the co-core of the new handle
exactly once. By carrying out this procedure as in Figure 3, we can negatively and
positively stabilize Legendrian knots that live in the page of such an open book.

L

SC.L/

S�.L/

Figure 3: A Legendrian knot L , with its positive and negative stabilizations
SC.L/ and S�.L/ . The gray surfaces represent parts of the page of an open
book. The open books on the right-hand side correspond to stabilizations
of the open book on the left. The new monodromy is obtained from the
old monodromy by precomposing with a positive Dehn twist about the new
boundary component.

The part of the proof of Theorem 1.1 that is useful for our purposes is the construction
of a supporting open book from a contact manifold. Following the exposition [12],
we briefly outline Giroux’s proof as it will guide the execution of the algorithm of
Theorem 1.9. The main idea is to consider cell decompositions of M that have special
contact geometric properties.

Definition 2.2 (Giroux) (1) A contact cell decomposition of the pair .M; �/ is
a presentation of M as a cell complex such that the 1–skeleton is Legendrian,
each 2–cell is convex and each 3–cell is tight.

(2) Let L � .M; �/ be Legendrian graph. A ribbon of L is a compact, oriented
surface †�M such that

(a) L is contained in †,
(b) there is a contact form ˛ for .M; �/ whose Reeb vector field is everywhere

positively transverse to †, and

Algebraic & Geometric Topology, Volume 13 (2013)
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(c) there is a vector field X on † which directs the characteristic foliation
of †, is positively transverse to @†, and whose time–t flow ˆt

X
satisfiesT

.0;1/ˆ
�t
X
.†/DL.

Remark 2.3 Note if † is the ribbon of a Legendrian graph L, then L is necessarily
contained in the characteristic foliation of † and the boundary @† – equipped with
the boundary orientation – is a positive transverse link in .M; �/. Provided such a
surface † and contact form ˛ as in Definition 2.2(2b), we can apply the flow of the
Reeb vector field for ˛ to find a neighborhood of † of the form Œ��; ���† on which
˛ D dzC˛jT† for some � > 0, where z is a coordinate on Œ��; ��. By rounding the
corners of Œ��; ���† we obtain a contact handlebody [18] whose convex boundary
has dividing set f0g�† and which naturally carries the structure of a “half open book”
with page † supporting � . For more information, see [12; 18] and Ozbagci [30].

Theorem 2.4 Suppose that .M; �/ has a contact cell decomposition for which every
2–cell D has tb.@D;D/D �1 and intersects the boundary of the ribbon † of the 1–
skeleton twice. Then † is the page of an open book decomposition supporting .M; �/.

The proof – which may be found in [12, Section 4] – indicates that for every Legendrian
link L�M we can build an open book that contains L in a single page by including it
in the 1–skeleton of a contact cell decomposition. Theorem 1.9 is simply a systematic
way of doing this for Legendrian links in .S3; �std/. In the case of the unknot with
tbD�1, Figure 4 depicts the verification of the hypothesis of Theorem 2.4 as well as
the “movie” of the monodromy map.

L D2 RL

t D 0 t D 1
3

t D 2
3

t D 1

Figure 4: On the upper left is a Legendrian unknot L , which is the 1–skeleton
of a contact cell decomposition of .S3; �std/ . This cell decomposition has a
single 2–cell, labeled D2 in the figure. On the upper right is a ribbon of L

labeled RL . The bottom row shows the “movie” of the monodromy of the
associated open book decomposition of .S3; �std/ . As the page is an annulus,
we only need to analyze the image of a single arc.
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2.4 Transverse push-offs

Ribbons provide a natural way to associate a transverse knot to a Legendrian knot.

Definition 2.5 Let L� .M; �/ be an oriented Legendrian knot with ribbon RL . The
positive transverse push-off of L is the component TC.L/ of @RL on which the
boundary orientation coincides with the orientation of L. The negative transverse
push-off of L, denoted T�.L/, is defined to be the positive transverse push-off of �L.

  

  

Figure 5: Drawing a positive transverse push-off of a Legendrian knot in the
front projection near cusps

Note that the positive (and negative) transverse push-offs of a Legendrian knot are
positive transverse knots in .M; �/, isotopic to L (and �L respectively) as topological
knots, and are uniquely determined up to transverse isotopy. See Figure 5.

2.5 Legendrian realization, surgery curves as Dehn twists and abuses of
language

It will be important to realize Legendrian knots on pages of open book decompositions
of .S3; �std/. Once this is achieved it is easy to construct supporting open books for
contact manifolds provided contact surgery presentations and vice versa. The essential
tool in carrying out such constructions is the Legendrian realization principle (Honda
[22]). We state a weak version especially suited for our purposes.

Theorem 2.6 Let C be a simple closed curve embedded into the interior of the ribbon
† of some Legendrian graph in the contact manifold .M; �/. Suppose that C does not
bound a subsurface of †. Then there is a boundary-relative isotopy of † through a
Œ0; 1�–parameter family of surfaces †t such that

(1) the †t are contained in an arbitrarily small neighborhood of †D†0 , and
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(2) the image C1 of C D C0 under the isotopy is Legendrian.

Sketch of the proof We may identify an arbitrarily small tubular neighborhood N.†/

of † with † � Œ��; ��. It is easy to construct a contact vector field transverse to
the closed surface @N.†/D .†� f��; �g/[ .@†� Œ��; ��/ for which the associated
dividing set is isotopic to @†� f0g. Then our hypothesis guarantees that the usual
Legendrian realization principle applies to C � @N.†/. See [22, Theorem 3.7] for
details.

We will often need to find Legendrian representatives of collections of curves that are
not simultaneously Legendrian realizable. This may be resolved by placing individual
curves on different surfaces in a 1–parameter family. For simplicity, this generalized
procedure will be referred to as Legendrian realization. For example, see Figure 2
in which we have Legendrian representatives of the four boundary components of a
3–punctured disk.

The preceding paragraph and above theorem indicate the necessity of another abuse of
notation. Throughout this paper, whenever we speak of the page of some open book
decomposition we will be referring to its (boundary relative) isotopy class. Thus when
we say a knot is contained in some surface embedded in .S3; �std/, it is meant that the
surface may be isotoped as in the statement of the above theorem so that it contains the
knot.

The other principal ingredient in all of our constructions is the following statement,
which equates Dehn twists and contact surgeries.

Theorem 2.7 If K �† is a Legendrian knot contained in the page of an open book
decomposition .†;ˆ/ supporting the contact manifold .M; �/, then the manifold
obtained by performing contact ˙1–surgery on K is supported by the open book
decomposition .†;ˆ ıD

�

K
/.

Proofs of Theorem 2.7 can be found in Etnyre [12, Theorem 5.7] and Geiges [17,
Proposition 3].

3 Surgery diagrams from open books

Suppose that .M; �/ is a contact 3–manifold supported by the open book .†;ˆ/,
where † is a genus g surface with a single boundary component and the monodromy
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: : :

-˛1 -˛2 -˛g

6

ˇ1

6

ˇ2

6

ˇg

6

c1

6

c2

6

cn�1

Figure 6: A compact oriented surface of genus g with a single boundary
component. Define 
j , for j D 1; : : : ;g� 1 , as follows: Let Nj be a tubular
neighborhood of ǰ [ cj [ ǰC1 . Take 
j to be the boundary component of
Nj that is not homotopic to either ǰ or ǰC1 . Then Dehn twists about the

j̨ ; ǰ and 
j represent Lickorish generators of the mapping class group of
the surface.

ˆ is expressed as a product of positive and negative Dehn twists on the Lickorish
generators described in Figure 6:

ˆD

nY
kD1

D
ık

�k
, whereık 2 fC;�g; �k 2 f j̨ ; ǰ ; 
j g:

3.1 Algorithm 1

The following algorithm describes how to obtain a contact surgery diagram of .M; �/

from this data as in Theorem 1.7. In the next section we will show that the surgery
diagram obtained presents .M; �/.

Step 1 (Embedding † in .S3; �std/) The curves j̨ ; ǰ and cj can be embedded into
.S3; �std/ as described in Figure 7 so that the ribbon of the graph .[ j̨ /[.[ ǰ /[.[cj /

is diffeomorphic to †. We shall henceforth consider † as being contained in .S3; �std/

(or .R3; �std/).

After rescaling the variable z on .R3; �std/ we may assume that the mapping

Œ�1; 1��†! .R3; �std/; .t;x/ 7! xC .0; 0; t/

is an embedding. For t 2 Œ�1; 1� and � �† we write �.t/D �C .0; 0; t/. The curves

j .1/ may be drawn in the front projection as in Figure 8.

Now we are ready to begin drawing a surgery diagram for .M; �/.

Step 2 (Monodromy correction) Draw the curves j̨ .0/ and ǰ .�1/ for j D

1; : : : ; n in the front projection. Label each curve with a surgery coefficient C1.
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: : :

: : :

c1 c2 cn�1

˛1 ˛2 ˛g

ˇ1 ˇ2 ˇg

Figure 7: On top is the image of the graph .[ j̨ /[ .[ ǰ /[ .[cj / . This
gives a contact cell decomposition of .S3; �std/ . A page of the associated
open book for .S3; �std/ is shown on the bottom. Here everything is drawn in
the .x; z/–projection.

 


j

ǰ ǰC1

j̨ j̨C1

Figure 8: The curve 
j pushed off of the graph .[ j̨ /[ .[ ǰ /[ .[cj /

Step j+2 for j D 1; : : : ; n (Adding Dehn twists) Draw the curve �j .j=n/ in the
diagram decorated with surgery coefficient �ıj .

The algorithm is now complete. For an example of a completed diagram, see Figure 9.

3.2 Justification of Algorithm 1

As in the previous section we consider the contact manifold .M; �/, presented as the
open book .†;ˆ/ whose binding is connected. Suppose that ˆ is presented as a
product of positive and negative Dehn twists on the Lickorish generators:

ˆD

nY
1

D
ıj
�j
;

for some ıj 2 fC;�g, �j 2 f˛i ; ˇi ; 
ig and n 2N .
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-
C1

-C1

�

C1�

C1

Figure 9: A surgery diagram obtained from Algorithm 1. The input is an
open book whose page is a genus 2 surface with connected binding and
whose monodromy is ˆDDC˛2

ıDC
ˇ1
ıDC
1

ıDC˛1
. The curves with surgery

coefficient C1 come from Step 2 of Algorithm 1. All other curves have
surgery coefficient �1 .

Lemma 3.1 Let † be a compact surface of genus g with a single boundary component,
and let ˛i ; ǰ and 
j denote the collection of Lickorish generators as shown in Figure 6,
respectively. Then there is an embedding ‰ of † into .S3; �std/ such that

(1) ‰.†/ is the page of an open book decomposition supporting .S3; �std/,

(2) ‰ sends the ˛i and ǰ to Legendrian unknots with tb D �1, and the 
j to
Legendrian unknots with tbD�2, and

(3) the monodromy ˆ‰ of the associated open book decomposition

.‰.†/;ˆ.S3;�std/
/

admits the Dehn twist factorization

(2) ˆ‰ D

gY
1

Dˇi
ıD˛i

:

Proof Consider the Legendrian graph G and surface †0 of Figure 7. It follows from
the discussion in Section 4.2 that the surface † in Figure 7 is a ribbon of G , and that
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†0 is a page of an open book supporting .S3; �std/. From the diagram it is clear that
†0 is diffeomorphic to † and that the curves j̨ ; ǰ and cj are embedded as desired.
Call this diffeomorphism ‰ . The equation (2) follows from Theorem 4.8.

Proposition 3.2 In the notation of Step 1 of Algorithm 1, .M; �/ is equal to the
contact manifold obtained by contact Dehn surgery on the link LDLC[L� where

LC D

� [
ıjD�

‰.�j /.j=n/

�
[

� g[
1

‰.ˇi/.�1/

�
[

� g[
1

‰.˛i/.0/

�
(3)

L� D
[
ıjDC

‰.�j /.j=n/:and

Proof We begin by considering the open book decomposition .‰.†/;ˆ.S3;�std/
/ and

the monodromy factorization given by (2). Note that by our construction, all of the
Lickorish curves are now realized as Legendrian knots on distinct pages of this open
book decomposition. Applying contact C1–surgeries along the ˇi on ‰.†/�1 and
along the ˛i on ‰.†/0 , we obtain an open book decomposition whose page is † and
whose monodromy is the identity map as the collection of these surgeries cancels the
Dehn twists from (2). Applying the remaining surgeries in the fashion specified by the
statement of the theorem will recreate .†;ˆ/, which supports .M; �/ by Theorem 2.7.

Now the proof of Theorem 1.7 is complete. If .M; �/ admits a compatible open book
decomposition modeled on a torus with a single disk removed, we can do better:

Corollary 3.3 Let .M; �/ be a contact 3–manifold that admits a supporting open book
.†;ˆ/ for which † is a torus with a single disk removed. Then .M; �/ is obtained by
contact surgery on a link of Legendrian unknots, all of which have tbD�1 and such
that every two component sub-link is either a Hopf link or an unlink.

This is immediate from the proof of Theorem 1.7 and the fact that the 
 Lickorish
curves are non-existent in this case.

Remark 3.4 Due to Gompf’s formula relating Chern classes of contact structures
and rotation numbers of Legendrian knots [20, Proposition 2.3] (see also [31, Section
11.3]), Corollary 3.3 extends [14, Lemma 6.1], which states that the Chern class of
any contact structure supported by an open book whose page is a punctured torus must
be zero.

Algebraic & Geometric Topology, Volume 13 (2013)



Contact surgery and supporting open books 1631

4 Open books from surgery diagrams

In this section we show how to embed a Legendrian link into the page of an open book
decomposition supporting .S3; �std/ as in Theorem 1.9. Let L be a Legendrian link in
.S3; �std/ with front diagram D.L/. In Section 4.1 we present the part of the algorithm
which builds the page of an open book decomposition from D.L/. In Section 4.2
we prove that the surface obtained in Section 4.1 is indeed the page of an open book
supporting .S3; �std/. A Dehn twist factorization of the monodromy of this open book
is described in Section 4.3. In Section 4.4 we show how the Euler characteristic and
number of boundary components of the surface constructed can be controlled.

4.1 Algorithm 2

For simplicity, we assume that each cusp of D.L/ is tangent to a line of the form
R�fz0g in the .x; z/–plane. Any Legendrian front diagram may be slightly perturbed
so that this condition holds.

Step 1 (Crossing completion) For every crossing of D.L/ we adjoin to L a Legen-
drian arc of the form 
 .t/D .x0;y0C t; z0/ connecting the two points on L associated
to the crossing. The completed Legendrian graph, L0 can be pictorially represented by
completing every crossing to an “X” as depicted in Figure 10. We denote the completed
diagram by D.L0/.

 

Figure 10: Step 1 of the algorithm

Step 2 (Reduction to the connected case) If D.L0/ is connected, relabel L0 as
L00 and continue to Step 3. Otherwise, label the connected components of D.L/ as
D.L0/j , j D 1; : : : ; n. Choose n�1 Legendrian arcs in .R3; �std/, 
1; : : : ; 
n�1 such
that the front diagram D.

S
j 
j / has embedded interior (ie, has no crossings), and

such that

(1) the interior is disjoint from D.L0/, and

(2) @D.
j / consists of a cusp on D.L0/j and another on D.L0/j�1 .

We also require that near each point of @D.
S

j 
j /, the diagram is tangent to a line of
the form 
 .t/D .x0;y0C t; z0/.
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D.L0/ D.L00/

Figure 11: Adjoining Legendrian arcs to L0 , ensuring connectedness of L00

Let L00DL0[.
S

j 
j / with front diagram D.L00/. An example is depicted in Figure 11.

Step 3 (Partitioning unknots) Now every embedded disk D in R2 nD.L00/ with
boundary on D.L00/ lifts to a disk in .R3; �std/ bounding a piecewise smooth Leg-
endrian unknot in L00 . If, after smoothing, @D has Thurston–Bennequin invariant
less than �1, partition D into disks with tb D �1 by adjoining non- destabilizable
Legendrian arcs to L0 , both of whose boundary points live on the cusps of @D . Do
this in such a way that the union of the new arcs has embedded interior. Note that there
is in general no unique way to choose the cusps along which the arcs will be connected.
An example is depicted in Figure 12. Denote the Legendrian graph obtained by xL. We
will later see that xL is the 1–skeleton of a contact cell decomposition of .S3; �std/.

 a b

Figure 12: A typical execution of Step 3. Here only the disks labeled a and
b need to be cut into smaller pieces.

Step 4 (The ribbon near cusps) Now develop the ribbon of xL near its cusps in the
front projection. We show how this is done in Figure 13. In a neighborhood of a given
cusp, xL may be described by a Legendrian arc `, which we may parametrize so that
@z
@t
� 0. The boundary of the ribbon near ` will consist of one positive and one negative

transverse push-off of `.
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Figure 13: A picture of the ribbon of xL near the cusps. The orientation of the
surface inherited from � and the blackboard orientation agree on the lightly
shaded regions and disagree on the heavily shaded regions.

Step 5 (The ribbon near singularities) Now we draw the ribbon of xL in the front
projection in neighborhoods of the singularities of D.xL/. Let p2D.xL/ be a singularity
of D.xL/. In an arbitrarily small neighborhood of p 2R2 there may be an arbitrarily
large number of Legendrian arcs in D.xL/ emanating from p . Suppose that there are
m arcs ˛1; : : : ; ˛m in this neighborhood that lie to the left of p and n arcs ˇ1; : : : ; ˇn

that lie to the right of p . Suppose all of the j̨ and ǰ are oriented so that they point
out of p and are indexed so that j̨C1 lies above j̨ and ǰC1 lies above ǰ as shown
in Figure 14. Then the boundary of the ribbon of xL near p is

(1) TC. j̨C1[ .� j̨ // for j D 1; : : : ;m� 1,

(2) TC. ǰC1[ .� ǰ // for j D 1; : : : ; n� 1,

(3) TC.ˇ1[ .�ˇn// if mD 0, TC.ˇ1[ .�˛m// if m¤ 0, and

(4) TC.˛1[ .�˛n/ if nD 0, TC.˛1[ .�ˇn/ if n¤ 0.

 
˛3

˛2

˛1

ˇ2

ˇ1

Figure 14: A picture of the ribbon of xL near a typical singularity. The arcs
j̨ and ǰ are labeled as in Step 5.

Step 6 (The ribbon along the remaining non-destabilizable arcs) The next step
consists of completing the ribbon for xL by adjoining strips along those subarcs which
are free of cusps and crossings. There is a unique (up to isotopy) way to do this due
to the required transversality of the ribbon with the vector field @z . Suppose that `
is such an arc from p 2 R2 to q 2 R2 , oriented left to right. The previous steps in
the construction have forced the blackboard orientation of the ribbon to disagree with
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the @z –orientation at p and to agree with the @z orientation at q . Therefore we can
complete the ribbon along ` as in Figure 15.

 

Figure 15: A picture of the ribbon of xL along a non-destabilizable arc as
described in Step 6

We write † for the surface constructed after the completion of Step 6. In the next
section we will show that † is the page of an open book supporting .S3; �std/. For an
easy example, see Figure 1. In this example the second and third steps of the algorithm
are trivial.

Remark 4.1 The front projection of the surface † can sometimes be simplified by
Reidemeister-type moves. See Figure 16 for an example.

 

Figure 16: Applying a Reidemeister move to the surface †

4.2 Justification of Algorithm 2

The purpose of this section is to prove Theorem 1.9 using the algorithm described in
the previous section. Before beginning the proof we introduce some vocabulary that
will simplify the discussion.

Definition 4.2 Let D.xL/ be a front diagram for a Legendrian graph xL� .R3; �std/.
An embedded disk D �R is called small if Int(D/\D.xL/D∅ and @D �D.xL/.

Note that for every small disk in R2 , there is a unique (up to boundary relative isotopy)
lift to an embedded disk in .S3; �std/ with boundary in xL. Then there is no ambiguity
in calling such lifted disks in .S3; �std/ small. Small disks will be our candidates
for the 2–cells of a contact cell decomposition of the 3–sphere that contains L in its
1–skeleton.
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Although small disks will generally have piecewise smooth boundary they can be
approximated by smooth disks. Let † be a ribbon for the Legendrian graph xL. If D
is a small disk in .R3; �std/, then @D �† can be isotoped to a smooth simple, closed
curve in † by the Legendrian realization principle.

Proposition 4.3 Let D � .R3; �std/ be a small disk for D.xL/. Then after smoothing
D to a smooth disk D0 ,

tb.@D0/D #.Left and right cusps of D.@D//:

Proof Any cusps that are not standard left or right cusps will be eliminated after
smoothing as described in the paragraph preceding Proposition 4.3. Now apply the
usual formula (cf Etnyre [11, Section 2.6.2]) used to compute the Thurston–Bennequin
number of a smooth Legendrian knot:

(4) tb.K/D #.Positive crossings of D.K//� #.Negative crossings of D.K//

�
1
2

#.Cusps of D.K//:

Definition 4.4 For simplicity, if D is a small disk in .R3; �std/ the Thurston–Bennequin
number of D will refer to the usual Thurston–Bennequin number of the boundary of
a smooth disk with Legendrian boundary approximating D . A small disk D will be
called elementary if tb.D/D�1. The boundary of an elementary disk will be referred
to as an elementary cycle.

Proposition 4.5 In the notation of Section 4.1, the Legendrian graph xL is the 1–
skeleton of a contact cell decomposition of .S3; �std/ whose ribbon is †. It follows
that † is the page of an open book decomposition of .S3; �std/, which contains the
Legendrian link L.

Proof We will follow the algorithm step by step, in the end ensuring that the hypothesis
of Theorem 2.4 holds for xL and †.

As we will also only be considering Legendrian arc segments we adopt the following
conventions for local orientations. For arcs that contain no cusps or crossings we always
assume they are oriented “from left to right” so that dx

ds
> 0. Any arc which contains a

single cusp is assumed to be oriented in such a way that dz
ds
> 0.

Steps 1–3 Steps 1 through 3 consist of connecting arcs to L. Each arc is drawn in
the front projection, and we must make sure that the resultant diagram D.xL/ lifts to a
Legendrian graph in .R3; �std/ that is homeomorphic to the graph D.xL/. In the case
of Step 1 this is trivial as the added arcs are described by explicit parametrization.
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For Step 2 this is established by requiring that each cusp of L be tangent to a line of
the form fz D z0g �R2 for some z0 2R. If an arc added at Step 2 also satisfies this
tangency condition and is otherwise embedded in R2�D.L/, then it will have a lift
to a Legendrian arc whose interior is disjoint from L, and whose endpoints lie on L

at points of the form .x0; 0; z0/.

An endpoint of an arc ` added in Step 3 will end on a cusp or vertex of the graph
D.L00/. A cusp endpoint or an endpoint living on a vertex created in Step 2 may be
justified as in the above paragraph. When an endpoint lands on a vertex of D.L00/

created in Step 1, then again we require that D.`/ is tangent to a line of the form
fz D z0g � R2 near the endpoint. If 
 is the arc of the form t 7! .x0; t; z0/ then `
will touch 
 at the single point .x0; 0; z0/.

Step 4 The ribbon of xL near a cusp can be described in the front projection by
Figure 13. Note that, away from the singular points in the diagram, each piece of the
ribbon inherits two local orientations: one given by the Reeb vector field @z , and the
other given by “the blackboard” @y . We have indicated where these local orientations
agree and disagree by shading the ribbon: It is heavily shaded where these orientations
disagree and lightly shaded where these orientations agree.

Near a cusp, the boundary of the ribbon consists of one positive and one negative
transverse push-off. For a right pointing cusp, note that by our orientation conventions
dy
ds
< 0 and dz

ds
� 0 with equality only at the point for which y ı 
 D 0. Thus we can

arrange that the transverse push-offs and surface are as in the figure. The argument for
a left pointing cusp is exactly the same except that in this case we have dy

ds
> 0 and so

this piece of the ribbon comes with a lighter shading.

Step 5 Consider the .x;y/–projection of xL near a singularity. From this point of
view, it is clear that if @z is to be transverse to the ribbon of xL then the boundary of
the ribbon must consist of the push-offs described in Step 5 of the algorithm.

Step 6 Note that we can require the ribbon of xL to be everywhere transverse to @z .
Similarly, any surface that retracts onto xL and satisfied this transversality condition
on its interior and has transverse boundary is a ribbon of xL. The surface shown in
Figure 15 satisfies these conditions.

Applying Theorem 2.4 Now we prove that † is the page of some open book decom-
position for .S3; �std/ – having already established that it is a ribbon of xL. In order to
verify this fact it suffices to check that † satisfies the hypotheses of Theorem 2.4.

The Legendrian graph xL is the 1–skeleton of cell decomposition of the 3–sphere
whose 2–cells are the elementary disks. Each 2–cell is (possibly after a C1–small
perturbation) convex with Thurston–Bennequin number �1. The union of xL with all
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of the 2–cells is simply a piecewise smooth disk, whose complement is homeomorphic
to a 3–ball that is the only 3–cell in this cell decomposition. As .S3; �std/ is tight, the
restriction of the contact structure to the 3–cell is also tight.

Now we must ensure that all of the interiors of the elementary disks are disjoint and that
the interior of each disk intersects @† exactly twice. The fact that all of the interiors of
the elementary disks are disjoint follows from the fact that the union of their interiors
are disjointly embedded into the front projection diagram. To guarantee that each
elementary disk D intersects the boundary of the ribbon exactly twice, first note that
by our construction and the fact that tb.@D/D �1, † is positive (is lightly shaded)
near the left cusp and negative (is heavily shaded) near the right cusp. Moreover, by
our construction, the ribbon along each elementary cycle @D will be the same as in
the case of the Legendrian unknot with tbD�1 in .S3; �std/ with plumbings of some
extraneous bands away from the left and right pointing cusps of @D in such a way
that the bands are always transverse to the vector field @z . As the transversality and
geometric intersection numbers of D with the boundary of the ribbon are invariant
under plumbing bands in this way we see that the desired properties hold.

Finally, we have the ribbon of a contact cell decomposition of .S3; �std/, which in-
tersects every 2–cell exactly twice. Therefore, by Theorem 2.4 there is some diffeo-
morphism ˆ of † such that .†;ˆ/ is equivalent to .S3; �std/ via Theorem 1.1, and
contains L in a single page.

4.3 A Dehn twist presentation of the monodromy

In this section we find a Dehn twist factorization of the monodromy ˆ of the open
book .†;ˆ/ supporting .S3; �std/, where † is the surface constructed in Algorithm 2.

Definition 4.6 Let † be a compact oriented surface with @†¤∅. An arc basis of
† is a collection f
j gn1 of disjoint embedded arcs in † such that:

(1) @
j � @† for all j D 1; : : : ; n and

(2) † n
S

j is homeomorphic to a disk.

Note that if f
j g is an arc basis of †, then the isotopy class of the diffeomorphism
ˆ is determined by the isotopy classes of the images ˆ.
j /. To state the monodromy
factorization theorem we need one more vocabulary item.

Definition 4.7 In the notation of Algorithm 2, let D and D0 be distinct elementary
disks for the Legendrian graph xL with boundaries C and C 0 , respectively. If ∅ ¤
C \C 0 � xL we write D >D0 if @z points into D along C \C 0 .
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Note that in the above definition, it is impossible that both D > D0 and D0 > D as
otherwise C or C 0 would be destabilizable. This would violate the definition of an
elementary disk.

Theorem 4.8 The monodromy ˆ of the open book of .S3; �std/ with page † con-
structed in Algorithm 2 can be written as:

ˆDDC
C1
ı � � � ıDC

Cn

Here fDj g
n
1

is the collection of elementary disks with Cj D @Dj , indexed so that
Dj >Di implies j > i .

Proof Suppose that the elementary disks are indexed as in the statement of the theorem.
We will show that

(1) the Dj naturally determine an arc basis f
j g of † and the images ˆ.
j /,

(2) ˆ.
j /DDC
Cj
.
j /, and

(3) DC
C1
ı � � � ıDC

Cn
DDC

Cj
.
j /.

This suffices to prove the theorem.

Step 1 Let N.†/ be an arbitrarily small tubular neighborhood of †. The proof of
Theorem 2.4(1) (see [12]) indicates that

(1) N.†/0 WD S3 nN.†/ is contactomorphic to N.†/ and

(2) N.†/0 n .N.†/0\ .[Dj // is contactomorphic to a standard 3–ball .B3; �std/.

We can write .S3; �std/ as the open book .M.†;ˆ/; �.†;ˆ// where

and

N.†/D Œ0; 1=2��†=..t;x/� .t 0;x/8x 2 @†/;

N.†/0 D Œ1=2; 1��†=..t;x/� .t 0;x/8x 2 @†/

in the notation of the introduction.

The elementary disks determine an arc basis of † in the following way: Consider
D0j DDj \N.†/0 . The boundary @N.†/ of N.†/ is a convex surface with

.@N.†//C D f1=2g �†=� ; .@N.†//� D f0g �†=� and dividing set @†:

Then 
j WD .@D0j /\ .N.†//
C is an arc basis of .@N.†//C . As .@N.†//C is isotopic

in N.†/ to †, this gives an arc basis of †, which we again denote by f
j g. Similarly,
another arc basis of † is determined by .@D0j /\ .@N.†//

� , which gives ˆ.
j /.
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Step 2 We now explicitly describe the arcs 
j and ˆ.
j / in terms of the front
projection of † produced by Algorithm 2. Consider Figure 4, which shows these
curves in the case that xL is the boundary of a single elementary disk D1 . The curve

1 described in Step 1 of this proof appears on the lower left (t D 0). ˆ.
1/ appears
on the lower right (t D 1). Note that ˆ.
1/DDC.
1/.

xL

Dj

RxL RxL

j

?

ˆ.
j /
�

Figure 17: The arcs 
j and ˆ.
j / associated to an elementary disk Dj .
In the picture we show a close-up of the 1–skeleton xL of a contact cell
decomposition created using Algorithm 2 near an elementary disk. The
ribbon of xL is labeled RxL .

An arbitrary elementary disk is the same, except that now xL may have additional
Legendrian arcs emanating from Cj D @Dj . As these arcs do not intersect Dj we
again conclude that ˆ.
j /DDC

Cj
.
j /. See Figure 17.

Step 3 To finish the proof it suffices to show that if j > i then DC
Cj
.
i/ D 
i and

DC
Ci
ıDC

Cj
.
j /DDC

Cj
.
j /. This follows immediately from our choice of indexing. If

Dj >Di , then Cj \ 
i D∅ and Ci \ˆ.
j /D∅.

4.4 Controlling the Euler characteristic and number of boundary compo-
nents

In this section we show how the choices involved in carrying out Algorithm 2 can
be made so as to establish (1). We also show that the choices may be made so that
the surface † has connected boundary. Again L will denote a Legendrian link in
.S3; �std/ with front projection D.L/ to which we apply Algorithm 2.

Lemma 4.9 Assuming that D.L/ is non-split, the choices in Algorithm 2 can be made
so that the surface † constructed satisfies

��.†/D #.Crossings of D.L//C 1
2

#.Cusps of D.L//� 1:

Proof The Euler characteristic of the page † of our open book is given by one minus
the total number of elementary disks. This is a simple consequence of the fact that
† deformation retracts onto a wedge of these cycles. Again consider the graph L00
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from Step 2 of Algorithm 2 and let fCj g denote its collection of small cycles. Note
that each crossing in L contributes a �1

2
to each of exactly two small cycles, and that

each cusp of L contributes �1
2

to exactly one small cycle. ThereforeX
tb.Cj /D�#.Crossings of D.L//� 1

2
#.Cusps of D.L//:

In completing L00 (the graph constructed from L at the end of Step 2) to the 1–skeleton
of a contact cell decomposition in Step 3 we added arcs to the Cj so as to increase all
of their Thurston–Bennequin invariants to �1. For each j , it is obvious that this can
be done with �tb.Cj / many non-destabilizable arcs as Cj is embedded in the front
projection with no crossings. We conclude that the entire construction can be carried
out so that there is a total number of �

P
tb.Cj / elementary cycles.

Remark 4.10 The proof above indicated that for some front diagrams, Step 3 of
Algorithm 2 can be carried out in such a way that improves the Euler characteristic
bound of (1). See Section 5.3 for an example.

Lemma 4.11 By adding sufficiently many Legendrian arcs in Step 2 of the algorithm
in the appropriate manner, we may assume that the binding of the open book constructed
is connected.

xL

xL0

RxL

RxL0

Figure 18: The proof of Lemma 4.11

Proof Let † be a surface constructed from Algorithm 2 as the ribbon of a Legendrian
graph xL. Consider the arc basis f
j g of † from the proof of Theorem 4.8. As
† n .

S

j / is a disk, @† is connected if and only if for all j , the endpoints of the arc
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j lie on the same boundary component of †. Suppose that the number of boundary
components of † is at least 2. Then for some j the boundary points of the arc 
j live
on distinct boundary components of †. Extend xL to a Legendrian graph xL0 by adding
a non-destabilizable Legendrian arc to xL connecting the cusps on the boundary of the
elementary disk Dj as in Figure 18. Then the ribbon †0 of xL0 is again the page of an
open book supporting .S3; �std/ with #.@†0/D #.@†/� 1. Therefore the proposition
follows by inducting on #.@†/.

5 Applications to the study of support invariants and over-
twisted surgery diagrams

In this section we apply Theorem 1.9 to study support invariants of, as well as detect
overtwisted disks in, contact manifolds obtained by contact surgery on Legendrian
links in .S3; �std/. We begin by stating a priori bounds on the support genus and norm
of these manifolds in terms of classical link data from (1).

5.1 A priori bounds from surgery

For a Legendrian knot K , let C.K/ denote the minimal possible number of crossings
of all front projection diagrams of K .

Corollary 5.1 Let K be a Legendrian knot in .S3; �std/, and suppose that .M; �/ is a
contact manifold obtained by contact Dehn surgery with coefficient 1

k
on K for some

k 2 Z. Then

and

sn.S3; �std;K/; sn.M; �/� 2C.K/� tb.K/C 1

sg.S3; �std;K/; sg.M; �/� C.K/� 1
2

tb.K/C 1:

Proof Note that by Theorem 2.7 it suffices to prove the inequalities for sn.S3; �std;K/

and sg.S3; �std;K/. Let D.K/ be a front diagram for K . By Theorem 1.9 and (4)
there is an open book .†;ˆ/ supporting .S3; �std/ that contains K in a single page
satisfying

��.†/D 2#.Positive crossings of D.K//� tb.K/C 1

� 2#.Crossings of D.K//� tb.K/C 1:

Consideration of the above inequality over all possible front projection diagrams
establishes the bound on the support norm. As for the support genus, consider the fact
that † has at least one boundary component and apply the above inequality together
with

��.†/D 2g.†/� 2C #.@†/:
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5.2 Legendrian torus knots

Figure 19 displays front projections of Legendrian .2nC 1; 2/–torus knots (n � 1)
in .S3; �std/. According to the classification of Legendrian torus knots in Etnyre and
Honda [13], these are the only non-destabilizable Legendrian representatives (up to
Legendrian isotopy).

: : :: : :

.2nC 1/ positive crossings

Figure 19: On the left is a Legendrian .2nC 1; 2/–torus knot Kn . On the
right is a page of an open book supporting .S3; �std/ and containing Kn ,
constructed from Algorithm 2.

Theorem 5.2 Let K � .S3; �std/ be a Legendrian .2nC 1; 2/–torus knot with Thurs-
ton–Bennequin number tb.K/D 2n� 1�p for some p 2 Z. Then K is contained in
the page † of an open book .†;ˆ/ supporting .S3; �std/ where † has the topological
type of a .2nC 1Cp/–punctured torus. Therefore

sg.S3; �std;K/� 1 and sn.S3; �std;K/� 2nC 1Cp:

Proof Applying Algorithm 2 to the front projection of the Legendrian knot Kn of
Figure 19 will embed Kn in the page †0 of an open book .†0; ˆ0/ supporting .S3; �std/

that has the topological type of a .2nC 1/–punctured torus. By the classification of
torus knots [13], K may be obtained from Kn by p positive and negative stabilizations.
Then an open book containing K can be obtained from .†0; ˆ0/ by stabilizing the
page p times as in Figure 3. As the boundary of †0 is disconnected, it can be arranged
that each of these stabilizations preserve the genus.

5.3 Tight contact structures on L.4; 1/

Figure 20 displays two distinct contact cell decompositions of .S3; �std/, which contain
the Legendrian unknot with rotD 0 and tbD�3.

Theorem 5.3 Let �0 and �1 denote the two contactomorphism classes of tight contact
structures on the lens space L.4; 1/ with zero and non-zero Euler classes, respectively
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(see [22]). Then

sg.L.4; 1/; �0/D sg.L.4; 1/; �1/D 0; bn.L.4; 1/; �0/D bn.L.4; 1/; �1/D 4;

sn.L.4; 1/; �0/D 1 and sn.L.4; 1/; �1/D 2:

K

Y

X

RY

RX

a

b

c

d

e

Figure 20: K is a Legendrian unknot with tb.K/ D �3 and rot.K/ D 0 .
The middle column shows a two contact cell decomposition of .S3; �std/

containing K . The upper one has 1–skeleton X and 2–cells labeled a , b and
c . The lower one has 1–skeleton Y and 2–cells d and e . The right column
shows the ribbons RX and RY of X and Y , respectively. The ribbon RX

has the topological type of a 3–punctured disk and the associated open book
.RX ; ˆX / of .S3; �std/ has monodromy ˆX DDC

@c
ıDC

@b
ıDC

@a
. The ribbon

RY has the topological type of a punctured torus and the associated open
book .RY ; ˆY / of .S3; �std/ has monodromy ˆY DDC

@e
ıDC

@d
.

Proof We assume familiarity with the classification of tight contact structures on lens
spaces. See [22]. The two diffeomorphism classes of tight contact structures on L.4; 1/

can be obtained by Legendrian surgery on the unknots whose classical invariants are
tb D �3, rot D 0 and tb D �3, rot D ˙2 in .S3; �std/. As in the statement of the
theorem, we will call these structures �0 and �1 , respectively. Note that this differs
from the isotopy classification, in which case there is no ambiguity in the sign of
rotation number. By starting with the Legendrian unknot with Thurston–Bennequin
invariant �1 embedded in the page of an annulus open book for .S3; �std/ and applying
positive and negative stabilizations as necessary, it follows that every Legendrian unknot
can be realized in the page of a planar open book decomposition of .S3; �std/. Since
Legendrian surgery can then be realized as the precomposition of the monodromy of
such an open book with a positive Dehn twist about the curve, we see that every tight
contact structure on every lens space L.p; 1/ has support genus zero.
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The remainder of the proof is a recollection of results appearing in [14] together
with the existence of the open book described in Figure 20. There it is shown that
bn.L.4; 1/; �0/ D 4. This is a consequence of the fact that a planar open book for
.L.4; 1/; �0/ with four binding components exists, along with the following two ob-
servations: (1) Any contact structure on L.p; 1/ with p > 2 that is supported on an
annulus must be overtwisted. (2) If a tight contact manifold is given as an open book
decomposition whose page is a twice-punctured disk and whose first homology has
order four, then it must be either L.4; 3/ or L.2; 1/#L.2; 1/. Therefore, the tightness
of �1 and existence of a planar open book with four binding components (disks with
three punctures whose monodromy is a positive Dehn twist about every boundary
component as in the previous paragraph) implies that same the proof can be applied
verbatim to show that bn.L.4; 1/; �1/D 4.

It only remains to calculate the support norms. Any contact manifold .M; �/ for which
c.�/¤ 0 cannot be supported by an open book whose page is a punctured torus. See
Remark 3.4. This, together with the existence of an open book decomposition whose
page has Euler characteristic �2 and the above remark regarding annular open books
of lens spaces leads to the conclusion that sn.L.4; 1/; �1/D 2. Figure 20 shows that
sn.L.4; 1/; �0/D 1

5.4 Stabilization in surgery diagrams

In this section we equate overtwistedness of a contact manifold .M; �/ with the
existence of a certain type of surgery diagram determining .M; �/. This correspon-
dence, stated in Theorem 5.5, may be viewed as a surgery theoretic interpretation of
Theorem 1.2(2). Throughout, let LDLC[L� be a contact surgery diagram for the
contact 3–manifold .M; �/.

Definition 5.4 For a Legendrian knot K � L, a standard meridian of K is a Leg-
endrian unknot �K with Thurston–Bennequin invariant �1 that is topologically a
meridian for K and is not knotted with any other component of L.

Theorem 5.5 Let .M; �/ be a contact 3–manifold.

(1) If a surgery diagram L for .M; �/ is such that there exists a knot, K � L� ,
which has a standard meridian, �K �LC , then K[�K may be deleted from
the diagram.

(2) .M; �/ is overtwisted if and only if it admits a contact surgery diagram L such
that there is a knot K in LC and a standard meridian for K that is also in LC .
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�1 -

C1 -
C1�

C1�

Figure 21: The gray boxes represent an ambiguity as to what the remain-
der of the diagrams look like. On the left is a positive stabilization
as in Theorem 5.5(1), and on the right is a negative stabilization as in
Theorem 5.5(2). The contact manifold described by the surgery diagram
on the right figure is overtwisted.

Remark 5.6 Theorem 5.5(a) can also be recovered from Proposition 2 in [8] (a handle
slide) together with the authors’ well-known cancellation lemma. See also Section 6.2.
Their proof, which provides a more general result, relies on a convex surface argument.

First we consider the existence result in part (b). This is obtained by a simple application
of Theorem 1.2.

Lemma 5.7 Suppose that .M; �/ is overtwisted. Then it admits a surgery diagram
L� .S3; �std/ for which the underlying link is split. One of these split components is an
unknot whose Thurston–Bennequin number is �1 together with its standard meridian,
both of which have surgery coefficient C1.

Proof By Theorem 1.2 there is an open book .†;ˆ/ whose negative stabilization
is equivalent to .M; �/. Let .M; � 0/ be the contact structure on M determined by
.†;ˆ/, and let

.S3; �OT /D
�
S1
� Œ0; 1�;D�

S1�f 1
2
g

�
be the overtwisted contact structure on the sphere determined by the open book whose
page is an annulus and whose monodromy is a negative Dehn twist about a curve
parallel to one of its boundary components. From the open book perspective, .M; �/

is a Murasugi sum of

.†;ˆ/ and
�
S1
� Œ0; 1�;D�

S1�f 1
2
g

�
;

and hence from the 3–manifold perspective is the contact connected sum of .M; � 0/ with
.S3; �OT /. Apply Corollary 1.8 to .M; � 0/ to obtain an equivalent surgery diagram
L0 . .S3; �OT / may be presented by Legendrian C1–surgery on the split component
as described in the statement of the theorem. Then contact surgery on the disjoint union
of L0 and the split component will yield .M; � 0/ # .S3; �OT /D .M; �/.
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The proof of the preceding lemma along with Theorem 1.2 indicates that the existence
of the type of surgery diagram described is also equivalent to overtwistedness. This
type of diagram may be likened to negatively stabilizing an open book by boundary
connect summing its page with�

S1
� Œ0; 1�;D�

S1�f 1
2
g

�
:

Much wilder negative stabilizations are of course possible, by the fact that there is
freedom in the choice of arc that can be used to perform a Murasugi sum.

Lemma 5.8 Suppose that .M; �/ is given by contact surgery on L D LC [L� �

.S3; �std/. Assume that there is a knot K �LC for which a standard meridian of K is
also in LC . Then there is a compatible open book decomposition for .M; �/ that is a
negative stabilization of some other open book decomposition of M . Hence, .M; �/ is
overtwisted.

Proof Let �K be a standard meridian of K . After possibly applying a series of
Legendrian Reidemeister moves and isotopies, we may assume that the height function
z on Ln�K (considered as living in .R3; �std/) takes on its absolute minimum at some
point on K . We may also work under the assumption that �K is contained in a small
ball near this point as depicted in Figure 21.

Without loss of generality, the point on K for which z achieves its absolute minimum
has z–value equal to zero. Draw a straight, horizontal line connecting the two points on
K that take on the z–value � > 0. Note that for � sufficiently small, these two points
are uniquely determined, and that such an arc will not cross any other components of
L n� in the diagram. Isotope this arc, while fixing its endpoints so that its union with
.zjK /

�1Œ0; �� is a Legendrian unknot 
 with tbD �1 and it still does not cross any
other component of L n�. Call this arc 
 .

Follow the proof of Theorem 1.9 to complete .Ln�K /[
 to a contact cell decomposi-
tion of .S3; �std/. In taking the ribbon of the 1–skeleton of this cell decomposition, we
have the page † of an open book for .S3; �std/ that contains Ln�K . We are interested
especially in the 1–handle of this surface, which is the ribbon of .zjK /�1Œ0; ��. Denote
this 1–handle by H . By Theorem 4.8 the monodromy of this open book may be written

ˆDDC
 ı
Y

DC
�j

where each of the �j are curves which do not intersect the co-core of H . Note also by
our construction that K is the only component of L n�K that intersects the co-core
of H .
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Write †t and �t for the images of † and an arc � contained in it under the time–t

flow of @z . Note that for ı > 0 sufficiently small we may realize � as 
�ı . Then the
monodromy ˆL of the open book obtained by performing contact Dehn surgery on L

may be written
DC
 ı

Y
DC
�j
ı

Y
Ln.�[K /

D
ıj
�j ıD�K ıD�


as �K projects to 
 in †. The open book is then the same as is given by the mapping
class Y

DC
�j
ı

Y
Ln.�[K /

D
ıj
�j ıD�K

as the two are conjugate. Then by the properties established concerning the intersections
of the �j and �j with H , we have that this open book decomposition is a negative
stabilization of the open book whose page is † nH and whose monodromy isY

DC
�j
ı

Y
Ln.�[K /

D
ıj
�j :

This concludes the proof.

Proof of Theorem 5.5 It only remains to prove part (a). This can be seen by following
the proof of the previous lemma word-for-word with the exception that now K �L� .
Construct an open book decomposition for L as instructed. Eliminating the twists
about K and � provides a new open book decomposition whose monodromy is

DC
 ı
Y

DC
�j
ı

Y
Ln.�[K /

D
ıj
�j ;

which is conjugate to Y
DC
�j
ı

Y
Ln�[K

D
ıj
�j ıDC
 :

Then deleting DC
 from the monodromy and H from the page amounts to a positive
destabilization, which does not alter the contact manifold. By construction, this is
equivalent to removing K and � from the surgery diagram as we may build the same
open book for L n .K[�/ by taking the page to be the same minus the handle H .

6 Mapping class relations as Kirby moves

In this section we introduce a method of modifying contact surgery diagrams by
constructing Kirby moves associated to mapping class relations. We call these moves
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ribbon moves, which were briefly described in the introduction. After defining these
operations, we give examples of ribbon moves analogous to the conjugacy, braid, and
chain relations between Dehn twists on a surface. An example of a lantern relation
type ribbon move was given in Figure 2. In Section 6.3 we show that any two contact
surgery diagrams for the same contact manifold are related by a sequence of Legendrian
isotopies and ribbon moves. This may be thought of as Theorem 1.1(2) interpreted in
the language of contact surgery by Theorem 2.7.

The following conventions will be used throughout the remainder of the paper:

(1) RG will denote the ribbon of a Legendrian graph G � .S3; �std/.

(2) We assume that RG� Œ�1; 1� is embedded in .S3; �std/ in such a way that a coor-
dinate on Œ�1; 1� coincides with the function z on .R3; �std/ up to multiplication
by a positive number.

(3) If 
 �RG is a Legendrian realizable, simple, closed curve, then we write 
 .t/
for the Legendrian realization of 
 � ftg �RG � ftg for t 2 Œ�1; 1�.

(4) When L� .S3; �std/ is a Legendrian link and we write L�RG� Œ�1; 1�, it will
be assumed that each connected component Lj of L is contained in RG � ftj g

for some tj 2 Œ�1; 1�. We also assume that the Lj are indexed so that j > i

implies tj > ti .

(5) MCG.RG ; @RG/ will refer to the mapping class group of RG , ie, the group of
orientation preserving diffeomorphisms of RG that restrict to the identity on a
neighborhood of @RG , considered up to isotopy.

6.1 Ribbon equivalence and ribbon moves

In this section we give a more careful definition of the ribbon moves, which were
described in the introduction. We begin with some definitions which will help to
translate surgery data into mapping class data and vice versa.

Definition 6.1 Suppose that RG is the ribbon of a Legendrian graph G � .S3; �std/

and that

LD

n[
1

L
ıj
j �RG � Œ�1; 1�; ıj 2 fC1;�1g

is a surgery link. Then each Lj may be considered as a simple closed curve in RG by
projecting RG � Œ�1; 1� to RG . The mapping class determined by L is

DL WDD
�ın

Ln
ı � � � ıD

�ı1

L1
2MCG.RG ; @RG/:
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Definition 6.2 Suppose that RG is the ribbon of a Legendrian graph in .S3; �std/

and that L;L0 � RG � Œ�1; 1� are two surgery links. We say that L and L0 are
RG –equivalent if DL D DL0 in MCG.RG ; @RG/. Surgery links L and L0 in
.S3; �std/ are ribbon equivalent if there exists a Legendrian graph G � .S3; �std/

for which L and L0 are RG –equivalent.

Proposition 6.3 If L and L0 are ribbon equivalent, then they determine the same
contact 3–manifold.

Proof Suppose that L and L0 are RG –equivalent for some Legendrian graph G �

.S3; �std/. By adjoining Legendrian arcs to G , we can find a Legendrian graph xG
containing G whose ribbon R xG is the page of an open book .R xG ; ˆ xG/ supporting
.S3; �std/. Then RG embeds into R xG and the mapping classes associated to L and
L0 extend to mapping classes of R xG in the obvious way.

The contact manifolds determined by L and L0 are then supported by the open books

.R xG ; ˆ xG ıDL/ and .R xG ; ˆ xG ıDL0/;

respectively. Therefore L and L0 determine the same contact manifold.

Definition 6.4 Let L be a contact surgery link in .S3; �std/ with surgery sublink `.
A ribbon move performed on ` consists of finding a Legendrian graph G such that
` � RG � Œ�1; 1� and replacing ` with another surgery link `0 � RG � Œ�1; 1� for
which ` and `0 are RG –equivalent. When G is specified, we will call such a move an
RG move.

Note that by Proposition 6.3, performing a ribbon move does not change the contact
manifold determined by surgery.

The simplest types of ribbon moves are insertions and deletions of canceling pairs, first
observed in [6]. Insertion of a canceling pair consists of adding a Legendrian knot K

with surgery coefficient ˙1 to a surgery diagram, together with a Reeb push-off of K

decorated with surgery coefficient �1. A canceling pair determines the mapping class
D
�

K
ıD˙

K
D IdRK

of the ribbon RK . Therefore a canceling pair is ribbon equivalent
to the empty surgery link.

Ribbon moves performed along a ribbon RG may be alternatively characterized as
the insertion of a surgery link L � RG � Œ�1; 1� into a surgery diagram satisfying
DL D IdRG

, followed by deletions of canceling pairs.
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6.2 Examples of ribbon moves

In this section we give examples of ribbon moves. We begin by describing a method
which allows us to consider distinct Legendrian knots in .S3; �std/ as sharing a trans-
verse intersection on the ribbon of some Legendrian graph. This will be useful in
providing examples of ribbon moves, as mapping class relations often relate Dehn
twists along curves which intersect nontrivially.

6.2.1 Plumbing ribbons of Legendrian knots Consider two Legendrian knots A

and B in .S3; �std/ whose front projections are in one of the two configurations shown
in Figure 22.

A

B

-

Configuration 1

A

B

-

Configuration 2

Figure 22: The boxes show the front projection of the knots A and B

“zoomed in” at the gray disks.

By pinching A and B together along a chord of the vector field @z we obtain a
Legendrian graph A_B which is homeomorphic to a wedge of two circles. Then
the ribbon RA_B of A_B is a plumbing of RA of RB and is diffeomorphic to a
punctured torus. See Figure 23. We have A�RA_B� Œ�1; 1� and B�RA_B� Œ�1; 1�.

A_B

-

Front projection .x;y/ projection

A

B

Figure 23: The graph A_B and its ribbon in the front and .x;y/–projections.
The right-most figure shows the curves A and B projected to RA_B .

Suppose that A and B are decorated with surgery coefficients ıA and ıB . Then
in the first configuration of Figure 22, DAıA[BıB D D

�ıA
A
ıD
�ıB
B

. In the second
configuration of Figure 22, DAıA[BıB DD

�ıB
B
ıD
�ıA
A

.

The curves DC
B
.A/DD�

A
.B/ and D�

B
.A/DDC

A
.B/ can also be Legendrian realized

in RA_B � Œ�1; 1� as in Figure 24.
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DC
B
.A/DD�

A
.B/ Front projection

D�
B
.A/DDC

A
.B/ Front projection

�

�

Figure 24: The left-most column shows the curves DC
B
.A/DD�

A
.B/ and

D�
B
.A/ D DC

A
.B/ embedded into RA_B in the .x;y/–projection. The

remaining columns show the Legendrian realizations of these curves in the
front projection.

6.2.2 Handle slides as ribbon moves Using the local pictures above, we can inter-
pret the handle slides of [8] as ribbon moves. Suppose that ˛ and ˇ are two simple
closed curves on an oriented surface † that share a single transverse intersection. The
conjugacy relation tells us that

DC˛ ıD˙ˇ DD˙
D
C
˛ .ˇ/
ıDC˛ :

Using the curves shown in Figure 24 we can associate a ribbon move to the conjugacy
relation and its variants. Examples are given in Figure 25.

6.2.3 A braid relation for surgery links Again suppose that ˛ and ˇ are simple,
closed curves on an oriented surface † sharing a single transverse intersection. The
braid relation is the equation

D˙˛ ıD˙ˇ ıD˙˛ DD˙ˇ ıD˙˛ ıD˙ˇ :

For two Legendrian knots A and B that share a chord as in Figure 22, we can use
the surface RA_B to define a ribbon move associated to the braid relation. The braid
relation, stated in terms of contact surgery, says that the surgery links

and

A�1.�1/[B�1.0/[A�1.C1/�RA_B � Œ�1; 1�

B�1.�1/[A�1.0/[B�1.C1/�RA_B � Œ�1; 1�

are RA_B –equivalent. An example is given in Figure 26.

Algebraic & Geometric Topology, Volume 13 (2013)



1652 Russell Avdek

DC
A
ıD˙

B
D˙

D
C

A
.B/
ıDC

A

A�1 A�1�

B�1 B�1 .DC
A
.B//�1�

D�
A ıD˙B D˙

D�
A
.B/
ıD�A

AC1 AC1

� B�1 B�1 .D�
A
.B//�1

�

D˙B ıDCA DCA ıD˙
D
C

A
.B/

A�1 A�1�

B�1 B�1 .DC
A .B//

�1�

D˙B ıD�A D�A ıD˙
D�

A
.B/

AC1 AC1�

B�1 B�1 .D�
A .B//

�1�

Figure 25: Each row gives an example of handle slide type ribbon move. In
each example the surgery curve B is slid over the curve A . The two boxes in
each row show ribbon equivalent surgery curves inside of a Darboux ball as in
Figures 22 and 24. Below each box is the mapping class of RA_B associated
to the surgery link. The two surgery diagrams in each row show how the
surgery curve B is modified by the ribbon move.

6.2.4 A 3–chain relation For our final example, we present a ribbon move associated
to the 3–chain relation.

Consider the Legendrian graph A_B _C shown in Figure 27. The ribbon RA_B_C

of the graph has the topological type of a twice-punctured torus. Then A;B and C

may be considered as representing simple, closed curves in RA_B_C . Let X and Y

denote curves in RA_B_C that are isotopic to the boundary components of RA_B_C .
The 3–chain relation is the mapping class relation

.DC
C
ıDC

B
ıDC

A
/4 DDC

X
ıDC

Y
:
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D˙
ˇ
ıD˙˛ ıD˙

ˇ
D˙˛ ıD˙

ˇ
ıD˙˛

B�1.�1/ -
B�1.C1/ -

A�1.0/
�

Figure 26: The left-most box shows the surgery link B�1.�1/[A�1.0/[

B�1.C1/ � RA_B � Œ�1; 1� . The center-left box shows the surgery link
A�1.�1/ [ B�1.0/ [ A�1.C1/ � RA_B � Œ�1; 1� . Again, the mapping
classes of RA_B associated to the surgery links are shown below each box.
An explicit example of the corresponding surgery diagrams is shown on the
right. For the two surgery diagrams, all surgery coefficients are the same and
are either �1 or C1 .

A

B

C

A_B _C RA_B_C

Figure 27: On the left is a Legendrian graph A_B_C , whose cycles consist
of Legendrian unknots A;B and C , each of which has Thurston–Bennequin
number �1 . On the right is the ribbon RA_B_C of the graph. Note that
RA_B_C has the topological type of a twice-punctured torus.

We can associate surgery links to each side of the above equation using the curves A,
B , C and Legendrian representatives of X and Y . Consider the surgery link

LD

3[
jD0

�
C�1

�
1�

j

2

�
[B�1

�
1�

j

2
�

1

6

�
[A�1

�
1�

j

2
�

1

3

��
:

Then the mapping class of RA_B_C associated to L is DL D .D
C

C
ıDC

B
ıDC

A
/4 .

Consider also the surgery link

L0 DX�1.1/[Y �1.�1/ with DL0 DDC
X
ıDC

Y
:
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Figure 28: On the left is the surgery link L. On the right is the surgery link
L0 . In this picture all surgery coefficients are �1 .

Then by the 3–chain relation, L � RA_B_C and L0 � RA_B_C are RA_B_C –
equivalent. Front projection diagrams of the links L and L0 are shown in Figure 28.

6.3 The proof of Theorem 1.10

In this section we prove Theorem 1.10. Throughout .M; �/ will be a fixed contact
manifold. X DXC[X� and Y D Y C[Y � will denote surgery links in .S3; �std/,
each of which determines .M; �/.

Proof of Theorem 1.10 As stated in the introduction, we would like to use Theorem 2.7
to interpret this result as Theorem 1.1 for mapping classes with specified Dehn twist
factorizations. With this motivation, the proof of Theorem 1.10 will be broken up into
the following steps:

(1) Describe positive stabilization and monodromy conjugation operations for surgery
diagrams. Show that these operations can be recovered by Legendrian isotopies
and ribbon moves.

(2) Stabilize X and Y as in (1) to obtain surgery links zX and zY such that there is
an open book .z†;ˆz†/ supporting .S3; �std/, constructed via Algorithm 2 such
that
(a) zX and zY are contained in a neighborhood z†� Œ�1; 1� of a page of .z†;ˆz†/,

and
(b) ˆz† ıD zX is conjugate to ˆz† ıD zY by some diffeomorphism

‰ 2MCG.z†; @z†/:
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(3) Describe ‰ in terms of surgery as in (1). This will relate zX and zY by ribbon
moves and Legendrian isotopies, and so will complete the proof.

Step 1 The positive stabilization operation for surgery diagrams was described in the
proof of Theorem 5.5(1). It is easy to see that the insertion of a positive stabilization
can be performed by inserting a canceling pair, a Legendrian isotopy and a handle slide
as in Section 6.2.2. See Figure 29. Now we must describe an operation for surgery
diagrams analogous to conjugating the monodromy of an open book. Throughout, �
will be an arbitrarily small positive constant.

C1

�1 �1

C1

�1

C1

Figure 29: Deleting a positive stabilization, as described in Theorem 5.5, can
be performed by a sequence of ribbon moves and Legendrian isotopies. From
left to right we perform a handle slide (see Section 6.2.2), then a Legendrian
isotopy, and finally a deletion of a canceling pair. The boxes indicate that we
are working in a Darboux ball.

Definition 6.5 Suppose that † is the page of an open book .†;ˆ/ of .S3; �std/ and
L�†� Œ�1C �; 1� ���†� Œ�1; 1� is a surgery link. Let K �† be a Legendrian
realizable, simple, closed curve in †, and let ı 2 fC1;�1g. Define the surgery link
L.†;Kı/ by

L.†;Kı/ D .ˆ
�1.K//ı.1/[L[K�ı.�1/:

Lemma 6.6 In the notation of the above definition, if L� .S3; �std/ presents .M; �/,
then so does L.†;Kı/ .

Proof .M; �/ is supported by the open book .†;ˆ ıDL/. The contact manifold
determined by L.†;Kı/ is supported by the open book with page † and monodromy

ˆ ıD�ı
ˆ�1.K /

ıD.L/ ıDı
K Dˆ ıˆ

�1
ıD�ıK ıˆ ıDL ıDı

K

DD�ıK ıˆ ıDL ıDı
K :

As these two mapping classes are conjugate, they determine the same contact manifold.
Hence, surgery on L.†;Kı/ produces .M; �/.

Note that in the proof of the preceding lemma, it is essential that the surface † used in
Definition 6.5 is the page of an open book decomposition, and not just the ribbon of
some Legendrian graph.
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Lemma 6.7 The link L.†;Kı/ of Definition 6.5 can be obtained from L by the
insertion of a canceling pair and a Legendrian isotopy.

Proof Let .†;ˆ/ be the open book of .S3; �std/ used to define L.†;Kı/ . This
manifold can be described by

.†� Œ�1� �; 1C ��/=�

.x; 1C �/� .ˆ.x/;�1� �/ 8x 2†where

.x; t/� .x; t 0/ 8x 2 @†; t; t 0 2 Œ�1� �; 1C ��and

where L�†� Œ�1C�; 1���. Consider the canceling pair K�ı.�1/[Kı.�1��=2/.
Applying the flow of the negative Reeb vector field of a contact form compatible with
.†;ˆ/, we can isotope Kı.�1��=2/ to live in the page †�f1g in the complement of
L[K.�1/. The image of Kı.�1��=2/ under this isotopy will be .ˆ�1.K//ı.1/.

This completes Step 1.

Step 2 Possibly after a Legendrian isotopy, we may assume that X � fx < 0g �R3

and Y � fx > 0g �R3 and consider X and Y as being simultaneously embedded in
R3 . Apply Algorithm 2 to X [Y to obtain a Legendrian graph G whose ribbon †
contains X [Y , and is the page of an open book .†;ˆ†/ supporting .S3; �std/. Here
ˆ† is determined by Theorem 4.8. By Lemma 4.11 we may assume that the boundary
of † is connected. Then .M; �/ is supported by the open books

.†;ˆ† ıDX / and .†;ˆ† ıDY /:

By Theorem 1.1, these open books can be positively stabilized some number of times
so that their monodromies will be conjugate. We will assume that these stabilized
open books have connected binding. More precisely, there is a surface z† with a single
boundary component, two collections f j̨ g

2g
1

and f ǰ g
2g
1

of Legendrian realizable,
simple, closed curves on z† and a map ‰ 2MCG.z†; @z†/ such that

(5) ˆ† ıDX ı

� 2gY
1

DC
j̨

�
D‰ ıˆ† ıDY ı

� 2gY
1

DC
ǰ

�
ı‰�1:

Here ˆ† , DX and DY extend to elements of MCG.z†; @z†/ via the inclusion †! z†.

As both † and z† have connected boundary, we can write z† as a boundary connected
sum of † and another surface †0 that has the topological type of a once-punctured
genus g surface. We will embed z† into .S3; �std/ so that it is the page of a supporting
open book decomposition and extends the inclusion †� .S3; �std/.
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Let B be a Darboux ball in the complement of the 2–skeleton of the contact cell
decomposition of .S3; �std/ associated to the Legendrian graph G and open book
.†;ˆ†/. Embed †0 into B via Algorithm 1. Then †0 is the page of an open book
.†0; ˆ†0/ supporting .S3; �std/. Connect † to †0 with the ribbon of a Legendrian arc
as in Step 2 of Algorithm 2. This gives rise to an embedding of z† into .S3; �std/ as
the page of a supporting open book .z†;ˆ† ıˆ†0/.

Step 2 of Algorithm 1 provides a surgery link L�†0 � Œ�1; 0� for which DL Dˆ
�1
†0

.
As L is disjoint from X [Y when projected to z† we can Legendrian-isotope L in
†0� Œ�1; 1� so that L�†0� Œ1=2; 1� and the projection to †0 is unchanged. Note that
DL commutes with DX and DY . Performing a similar isotopy we can move the link
X [Y from †� f0g to †� f1g.

Now we can find surgery links A and B in z†�Œ�1; 0� in the complement of L[X[Y

for which

(1) DA D
Q2g

1
DC

j̨
and DB D

Q2g
1

DC
ǰ

,

(2) the components of the link A projected to z† give the j̨ , and

(3) the components of the link B projected to z† give the ǰ .

Indeed, we can define

and

AD ˛�1
2g .0/[˛

�1
2g�1

�
�1

2g

�
[ � � � [˛�1

1 .�1/;

B D ˇ�1
2g .0/[ˇ

�1
2g�1

�
�1

2g

�
[ � � � [ˇ�1

1 .�1/:

It is easy to check by induction on g that the embeddings of †0 can be chosen so that
the surgery links X [A[L and Y [B [L account for 2g positive stabilizations –
as described in Step 1 – of the surgery diagrams X and Y . Modifying the embedding
of †0 may conjugate the mapping ‰ of (5) but will leave X and Y unaffected. Define

zX WDX [A[L and zY WD Y [B [L:

Then zX and zY are obtained from X and Y , respectively from a sequence of ribbon
moves and Legendrian isotopies. Moreover, zX ; zY � z†� Œ�1; 1� and

D zX Dˆ
�1
†0 ıDX ı

� 2gY
1

DC
j̨

�
; and D zY Dˆ

�1
†0 ıDY ı

� 2gY
1

DC
ǰ

�
:

This concludes Step 2 of the proof.

Step 3 To finish the proof, we must show that zX and zY are related by a sequence of
ribbon moves and Legendrian isotopies. By Lemma 6.6, it suffices to show that we
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can modify zX by a sequence of “surgery conjugations” as in Definition 6.5 to obtain a
surgery link which is z† equivalent to zY . This is what we will show.

Consider a collection of curves f
j gk1 on z† that represent Lickorish generators of
the mapping class group of z†. Then each 
j is Legendrian realizable. Express the
mapping ‰ of (5) as a product of Dehn twists on the 
j :

‰ DD
s1

�1
ı � � � ıD

sl

�l

for some l 2N , sj 2 fC;�g and �j 2 f
j g. Now inductively define the surgery links

zX0 WD
zX ; zXj WD . zXj�1/.z†;�

�sj

j
/

using the notation of Definition 6.5. Then

D zXl
D‰�1

ıˆ† ıDX ı

� 2gY
1

DC
j̨

�
ı‰

implying that zXl is z†–equivalent to zY by (5).
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