Some Ramsey-type results on intrinsic linking of \boldsymbol{n}-complexes

Christopher Tuffley

Abstract

Define the complete n-complex on N vertices, K_{N}^{n}, to be the n-skeleton of an ($N-1$)-simplex. We show that embeddings of sufficiently large complete $n-$ complexes in $\mathbb{R}^{2 n+1}$ necessarily exhibit complicated linking behaviour, thereby extending known results on embeddings of large complete graphs in \mathbb{R}^{3} (the case $n=1)$ to higher dimensions. In particular, we prove the existence of links of the following types: r-component links, with the linking pattern of a chain, necklace or keyring; 2 -component links with linking number at least λ in absolute value; and 2 -component links with linking number a nonzero multiple of a given integer q. For fixed n the number of vertices required for each of our results grows at most polynomially with respect to the parameter r, λ or q.

57Q45; 57M15, 57Q35

1 Introduction

In the 1980s Sachs [15] and Conway and Gordon [1] proved that an embedding of the complete graph K_{6} in \mathbb{R}^{3} necessarily contains a pair of disjoint cycles that form a nonsplit link. This fact is expressed by saying that K_{6} is intrinsically linked. Conway and Gordon also showed that every embedding of K_{7} in \mathbb{R}^{3} contains a cycle that forms a nontrivial knot, and we say that K_{7} is intrinsically knotted.

Since these papers, the study of intrinsic knotting and linking has been pursued in several directions, and we refer the reader to Ramírez Alfonsín [14] for a survey of some known results. One such direction is to show that embeddings of larger complete graphs necessarily exhibit more complex knotting and linking behaviour. Restricting our attention to linking, Flapan, Pommersheim, Foisy and Naimi [4] and Fleming and Diesl [6] have shown that embeddings of sufficiently large complete graphs must contain nonsplit r-component links; Flapan [2] has shown that they must contain 2-component links with high linking number; and Fleming [5] has extended work by Fleming and Diesl [6] to show that, given an integer q, they must contain 2-component links with linking number a nonzero multiple of q.

We will refer to results such as those described above as Ramsey-type results on intrinsic linking. Perhaps the strongest results in this direction are those of Negami [12] and Flapan, Mellor and Naimi [3]. Restricting attention to embeddings with a projection that is a "good drawing", Negami shows that, given a link L, for n, m sufficiently large every such embedding of the complete bipartite graph $K_{n . m}$ contains a link that is ambient isotopic to L. The restriction to embeddings with a projection that is a good drawing excludes local knots in the edges, which is necessary but not sufficient (Negami [13]) for the result to hold. With no restriction on the embedding, Flapan, Mellor and Naimi show that intrinsic knotting and linking are arbitrarily complex in the following sense: Given positive integers r and α, embeddings of sufficiently large complete graphs contain r-component links in which the second coefficient of the Conway polynomial of each component, and the linking number of each pair of components, is at least α in absolute value.

Extending the result of Sachs [15] and Conway and Gordon [1] in another direction, we may consider embeddings of n-complexes in \mathbb{R}^{d}. By a general position argument every n-complex embeds in $\mathbb{R}^{2 n+1}$, and a pair of disjoint n-spheres in $\mathbb{R}^{2 n+1}$ have a well-defined linking number (the homology class of one component in the $n^{\text {th }}$ homology group of the complement of the second, which is isomorphic to \mathbb{Z}), so we take $d=2 n+1$. Define the complete n-complex on N vertices, K_{N}^{n}, to be the n-skeleton of an $(N-1)$-simplex. Then Lovász and Schrijver [9, Corollary 1.1], Taniyama [19], Melikhov [11, Example 4.7] and Melikhov [10, Example 4.9] show by various arguments that $K_{2 n+4}^{n}$ is intrinsically linked, in the sense that every embedding in $\mathbb{R}^{2 n+1}$ contains a pair of disjoint n-spheres that have nonzero linking number. Since $K_{N}^{1} \cong K_{N}$ this specialises to the K_{6} result in the case $n=1$. The $(n+1)-$ fold join $\left(K_{4}^{0}\right)^{*(n+1)}$ has also been shown to be intrinsically linked in this sense, by M Skopenkov [18].

We may also consider links in which the components are of different dimensions. For $l<k$ Segal and Spież [16] construct a k-complex Q containing subcomplexes $\Sigma^{k} \cong S^{k}$ and $\Sigma^{l} \cong S^{l}$, such that Q embeds in \mathbb{R}^{k+l+1}, and moreover in every such embedding the images of Σ^{k} and Σ^{l} are homologically linked. See also Freedman, Krushkal and Teichner [7] for an example and application of such a complex in the case $(k, l)=(2,1)$. We refer the reader to A Skopenkov [17] for a survey of these and other results on higher-dimensional intrinsic linking, and their implications for questions of embeddability of complexes in \mathbb{R}^{d}.

The purpose of this paper is to establish some Ramsey-type results for embeddings of complete n-complexes in $\mathbb{R}^{2 n+1}$. Our results are already known for embeddings of complete graphs in \mathbb{R}^{3}, and our arguments will typically mimic the proof of the corresponding 1-dimensional result. However, in the case of Theorem 1.4 we will
obtain a better bound for $n=1$ than that previously known; and in addition, some constructions used in the arguments require modifications in higher dimensions. These modifications are needed for two main reasons: Firstly, $\partial D^{n}=S^{n-1}$ is disconnected for $n=1$, but not for $n \geq 2$; and secondly, triangulations of D^{n} have simpler combinatorics for $n=1$ than they do for $n \geq 2$.
We note that for $n \geq 2$ an n-sphere does not knot in $\mathbb{R}^{2 n+1}$ for reasons of codimension. Thus, we will not seek to establish any results on intrinsic knotting of complete $n-$ complexes in $\mathbb{R}^{2 n+1}$. A question of interest is to determine for which n there is an n-complex which embeds in \mathbb{R}^{n+2}, and which is intrinsically knotted in the sense that every such embedding contains a nontrivially knotted n-sphere.

1.1 Statement of results

In what follows, a k-component link means k disjoint n-spheres embedded in $\mathbb{R}^{2 n+1}$. Given a 2 -component link $L_{1} \cup L_{2}$ we will write $\ell k\left(L_{1}, L_{2}\right)$ for their linking number, and $\ell k_{2}\left(L_{1}, L_{2}\right)$ for their linking number mod two. For $\{i, j\}=\{1,2\}$ the integral linking number is given by the homology class $\left[L_{i}\right]$ in $H_{n}\left(\mathbb{R}^{2 n+1}-L_{j} ; \mathbb{Z}\right) \cong \mathbb{Z}$.

Our first result is similar to Flapan et al [4, Theorems 1 and 2], and shows that embeddings of sufficiently large complete n-complexes necessarily contain nonsplit r-component links. Moreover, the number of vertices required grows at most linearly with respect to each of r and n.

Theorem 1.1 Let $r \in \mathbb{N}, r \geq 2$.
(a) For $N \geq(2 n+4)(r-1)$ every embedding of K_{N}^{n} in $\mathbb{R}^{2 n+1}$ contains an $r-$ component link $L_{1} \cup L_{2} \cup \cdots \cup L_{r}$ such that

$$
\begin{equation*}
\ell k_{2}\left(L_{i}, L_{i+1}\right) \neq 0 \tag{1}
\end{equation*}
$$

for $i=1, \ldots, r-1$.
(b) If $r \geq 3$ then for $N \geq(2 n+4) r$ every embedding of K_{N}^{n} in $\mathbb{R}^{2 n+1}$ contains an r-component link $L_{1} \cup L_{2} \cup \cdots \cup L_{r}$ satisfying Equation (1) for $i=1, \ldots, r$ (subscripts taken mod r).

The link of Theorem 1.1(a) resembles a chain, and the link of Theorem 1.1(b) resembles a necklace, except that there is no requirement that nonadjacent components do not also link. Our next result generalises Fleming and Diesl [6, Lemma 2.2], and yields links that resemble a bunch of keys on a keyring. However, there is again no requirement that the "keys" do not also link each other, and following Flapan et al [3] we call such a link a generalised keyring. Generalised keyrings will play a crucial role in establishing our results for 2-component links, in Theorems 1.3-1.5.

Theorem 1.2 For a natural number r define

$$
\kappa_{n}(r)=4 r^{2}(2 n+4)+n+\left\lceil\frac{4 r^{2}-2}{n}\right\rceil+1 .
$$

Then every embedding of $K_{\kappa_{n}(r)}^{n}$ in $\mathbb{R}^{2 n+1}$ contains an $(r+1)$-component link $R \cup L_{1} \cup L_{2} \cup \cdots \cup L_{r}$ such that

$$
\ell k_{2}\left(R, L_{i}\right)=1
$$

for $i=1, \ldots, r$.
Observe that $\kappa_{n}(r)$ grows quadratically in r and linearly in n. The existence of generalised keyrings in embeddings of K_{N}^{n} for N sufficiently large may be established by following Fleming and Diesl's argument, or that of Flapan et al [3, Lemma 1]; the Fleming-Diesl argument leads to a bound that grows exponentially with respect to r, and so we will follow the argument of Flapan et al, as this leads to the polynomial bound given above. For $n=1$ the term $n+\left\lceil\left(4 r^{2}-2\right) / n\right\rceil+1$ of κ_{n} is not needed, so it suffices to take $\kappa_{1}(r)=24 r^{2}$. This bound follows from Flapan et al [3, Lemma 1], although they do not state the bound explicitly.

Our last three results concern linking number in 2-component links. The first extends Flapan [2, Theorem 2] to higher dimensions (although our proof will be based on a technique from Flapan et al [3, Lemma 2], as this leads to a better bound in higher dimensions):

Theorem 1.3 Let $\lambda \in \mathbb{N}$ be given, and let

$$
N=\kappa_{n}(2 \lambda-1)+n+\left\lceil\frac{2 \lambda-1}{n}\right\rceil+1 .
$$

Then every embedding of K_{N}^{n} in $\mathbb{R}^{2 n+1}$ contains a two-component link $L \cup J$ such that, for some orientation of the components, $\ell k(L, J) \geq \lambda$.

Our last two results concern divisibility of the linking number. Fleming and Diesl [6] showed that for $q=3$ or q a power of two, embeddings of sufficiently large complete graphs in \mathbb{R}^{3} necessarily contain 2-component links with linking number a nonzero multiple of q, and Fleming [5] later extended this to all $q \in \mathbb{N}$. We now extend this further to embeddings of complete n-complexes in $\mathbb{R}^{2 n+1}$, and by slightly modifying Fleming's argument, reduce the number of vertices required from exponentially many to only polynomially many. We state and prove two results in this direction: the first is for q arbitrary, and the second is for q prime, where a simpler argument leads to a bound with much slower growth.

Theorem 1.4 Let q be a positive integer. Then for N sufficiently large every embedding of K_{N}^{n} in $\mathbb{R}^{2 n+1}$ contains a two-component link $R \cup S$ such that $\ell k(R, S)=k q$ for some $k \neq 0$. The minimum number of vertices required is no greater than $c(n+1)\binom{2 n+4}{n+1} q^{n+2}$ (c a constant $)$, which for fixed n grows polynomially in q.

When q is prime, a much simpler argument leads to a bound with growth $O\left(q^{2}\right)$ instead of $O\left(q^{n+2}\right)$:

Theorem 1.5 Suppose that the positive integer q is prime. Then the conclusion of Theorem 1.4 holds for

$$
N \geq \kappa_{n}(2 q-1)+n+\left\lceil\frac{2 q-3}{n}\right\rceil+1 .
$$

Since the proof of Theorem 1.5 is simpler than that of Theorem 1.4 we will prove it first, in Section 4.2, and then prove Theorem 1.4 later in Section 6.

For $n=1$, Theorem 1.4 may be proved using a total of

$$
4 q^{2}(6+15(q-1))=12 q^{2}(5 q-3)
$$

vertices, in contrast to the exponentially many required by Fleming [5, Theorem 3.1]. This reduction to polynomial growth comes about for two reasons. The first is that we use Flapan et al's rather than Fleming and Diesl's construction of a generalised keyring, as this requires only polynomially many rather than exponentially many vertices. The second savings comes from modifying the method by which the keys of the keyring are combined, so that each key requires roughly $3 q$ vertices rather than $O\left(q^{\log q}\right)$. In fact it should be possible to reduce the number of vertices required further, by a factor of about $\frac{2}{3}$, because for $n=1$ our method really only requires the keys to have about $2 q$ vertices.

Clearly, the number of vertices required by Theorem 1.4 grows at most exponentially with respect to n, because $\binom{m}{k} \leq 2^{m}$. More precisely, Stirling's formula may be used to show that asymptotically we have

$$
c(n+1)\binom{2 n+4}{n+1} q^{n+2} \sim C \sqrt{n} 4^{n} q^{n+2},
$$

for some constant C.

1.2 Discussion

We briefly discuss the existence of more complex links in embeddings of large complete complexes in $\mathbb{R}^{2 n+1}$.
1.2.1 More complex keyrings Each of Theorems $1.3-1.5$ is proved by converting a suitable generalised keyring $R \cup L_{1} \cup \cdots \cup L_{m}$ into a two component link $R \cup L^{\prime}$, where L^{\prime} is formed as a connected sum of some of the L_{i} (and perhaps an additional disjoint component S). Starting with a generalised keyring with $m r$ keys, and working with them m at a time, we may therefore construct a link $R \cup L_{1}^{\prime} \cup \cdots \cup L_{r}^{\prime}$ in which each linking number $\ell k\left(R, L_{i}^{\prime}\right)$ satisfies the conclusion of the theorem. It follows for example that for $q \in \mathbb{N}$ and N sufficiently large, every embedding of K_{N}^{n} in $\mathbb{R}^{2 n+1}$ contains a link $R \cup L_{1}^{\prime} \cup \cdots \cup L_{r}^{\prime}$ in which each linking number $\ell k\left(R, L_{i}^{\prime}\right)$ is a nonzero multiple of q.
1.2.2 More complex linking patterns Flapan et al [3, Theorem 1] show that intrinsic linking of graphs in \mathbb{R}^{3} is arbitrarily complex in the following sense: Given natural numbers r and λ, for N sufficiently large every embedding of K_{N} in \mathbb{R}^{3} contains an r-component link in which all pairwise linking numbers are at least λ in absolute value. We believe that, with minor adaptions to higher dimensions, their work shows that intrinsic linking of n-complexes in $\mathbb{R}^{2 n+1}$ is arbitrarily complex in this sense also. The main adaption needed is to use our Lemma 2.5 in place of the 1 -dimensional construction it replaces in higher-dimensional arguments. This adaption requires the addition of some extra vertices (to create the auxiliary sphere S_{0} of the lemma), and is illustrated in the proofs of Lemma 3.2 and Theorem 1.3. These are based respectively on [3, Lemma 1] and a technique from the proof of [3, Lemma 2].

A step in their argument is to show that, for N sufficiently large, every embedding of K_{N} in \mathbb{R}^{3} contains a link $X_{1} \cup \cdots \cup X_{m} \cup Z_{1} \cup \cdots \cup Z_{m}$ such that

$$
\ell k_{2}\left(X_{i}, Z_{j}\right)=1
$$

for $1 \leq i, j \leq m$ (Flapan et al [3, Proposition 1]). We observe that this step certainly extends to embeddings of complete n-complexes in $\mathbb{R}^{2 n+1}$, as their proof is a purely combinatorial argument that depends only on [3, Lemma 1] and the existence of generalised keyrings, which we extend here to higher dimensions as Lemma 3.2 and Theorem 1.2 respectively.

1.3 Organisation

The paper is organised as follows. We begin with some technical preliminaries in Section 2, and then prove Theorems 1.1 and 1.2 concerning many-component links in Section 3. In Section 4 we prove two of our results on linking numbers in 2-component links, Theorems 1.3 and 1.5 .

We then construct some triangulations of an M-simplex in Section 5, as further technical preliminaries needed for our proof of our divisibility result Theorem 1.4.

This result is proved in Section 6. As a further application of the triangulations of Section 5 we conclude the paper in Section 7 with an alternate proof of Theorem 1.3, without the polynomial bound on the number of vertices required. This introduces an additional technique that may be used to prove Ramsey-type results on intrinsic linking of n-complexes.

2 Technical preliminaries I: Spheres and discs in $\boldsymbol{K}_{N}^{\boldsymbol{n}}$

In this section we construct some subcomplexes of K_{N}^{n} that are needed for our proofs. As an aid to understanding, in Section 2.1 we first illustrate the role the corresponding subcomplexes of K_{N} play in studying intrinsic linking of graphs in \mathbb{R}^{3}.

2.1 Tactics

A common technique of [2], [3], [4], [5] and [6] in proving Ramsey-type results for graphs is the use of connected sums and the additivity of linking number. These may be used to convert a link with several components to one with fewer components, but more complicated linking behaviour. We illustrate this technique by sketching the proofs for $n=1$ of the four-to-three Lemmas 3.1 and 7.2. The $n=1$ case of Lemma 7.2 corresponds to Flapan [2, Lemma 2], and Lemma 3.1 is a mod two version of this result that is similar to Flapan et al [4, Lemma 1].

Figure 1: Illustrating the proof of Lemma 3.1 (the four-to-three lemma for mod two linking number) in the case $n=1$.

Suppose that the 4-component link $Y_{1} \cup X_{1} \cup X_{2} \cup Y_{2}$ in Figure 1(a) is part of an embedding of K_{N} in \mathbb{R}^{3}, and that we wish to replace the cycles X_{1} and X_{2} with a

Figure 2: Illustrating the proof of Flapan's [2, Lemma 2], the $n=1$ case of our Lemma 7.2 (the four-to-three lemma for integral linking number).
single cycle X linking both Y_{1} and Y_{2} mod two. We choose vertices v_{1}, v_{2} on X_{1} and w_{1}, w_{2} on X_{2}, and consider the edges (v_{i}, w_{i}) as in Figure 1(b). Together with X_{1} and X_{2} these give us a collection of cycles (Figure 1(c)) whose linking numbers with each of Y_{1} and Y_{2} sum to zero mod two; and taking the connected sum of a suitably chosen subset as in Figure 1(d) we get the desired cycle X.

Working now with integer coefficients, consider the link $Y_{1} \cup X_{1} \cup X_{2} \cup Y_{2}$ in Figure 2(a). Our goal here is to replace this with a three component link $L \cup Z \cup W$ such that $\ell k(L, Z)$ is nonzero, and $\ell k(L, W)$ is at least as large as $\ell k\left(X_{2}, Y_{2}\right)$ in absolute value. We again do this by constructing a series of cycles that sum to zero with X_{1} and X_{2}, but now in order to ensure we can find one linking Y_{2} with the correct sign it is necessary to have at least $q>\left|\ell k\left(X_{2}, Y_{2}\right)\right|$ such cycles. This is achieved by choosing vertices v_{1}, \ldots, v_{q} on X_{1} and w_{1}, \ldots, w_{q} on X_{2}, such v_{1}, \ldots, v_{q} are encountered in increasing order following the orientation of X_{1}, and w_{1}, \ldots, w_{q} are encountered in decreasing order following the orientation of X_{2}. The needed cycles are formed by connecting X_{1} and X_{2} using the edges $\left(v_{1}, w_{1}\right), \ldots,\left(v_{q}, w_{q}\right)$, as in Figure 2(b), and a suitable connected sum (Figure 2(c)) then gives us the desired 3-component link.

To prove analogous results in higher dimensions we will regard the intervals [v_{1}, v_{q}] and $\left[w_{1}, w_{q}\right.$] as identically triangulated discs $D_{1} \subseteq X_{1}$ and $D_{2} \subseteq X_{2}$, and the correspondence $v_{i} \mapsto w_{i}$ as an orientation reversing simplicial isomorphism $\phi: D_{1} \rightarrow D_{2}$ mapping one triangulation to the other. Given this data we then construct the collection of edges $\left(v_{i}, w_{i}\right)$, which we regard as a complex \mathcal{C} homeomorphic to $D_{1}^{(0)} \times I$ realising the restriction of ϕ to the zero skeleton of D_{1}. The pair of edges $\left(v_{i}, w_{i}\right)$ and $\left(v_{i+1}, w_{i+1}\right)$ may then be seen as a copy of $S^{0} \times I$, which we cap with the intervals [$\left.v_{i}, v_{i+1}\right],\left[w_{i}, w_{i+1}\right]$ to create a copy of S^{1}.

Triangulations of an interval have very simple combinatorics, and in Figure 2(b) it didn't matter that there was an additional vertex between w_{2} and w_{3}. Thus, Flapan's
argument only requires that each component has at least q vertices. In order to use similar techniques when $n \geq 2$ we will impose the more stringent requirement that our link components contain identically triangulated copies of D^{n}. Additional work will then be required to ensure that our links contain such discs.

2.2 Cylinders, spheres and discs in $K_{N}^{\boldsymbol{n}}$

We now construct the needed subcomplexes of K_{N}^{n}.
Lemma 2.1 Let $\left(S_{1}, D_{1}\right)$ and $\left(S_{2}, D_{2}\right)$ be disjoint subcomplexes of K_{N}^{n} each homeomorphic to (S^{n}, D^{n}). Suppose that there is a simplicial isomorphism

$$
\phi: D_{1} \longrightarrow D_{2} .
$$

Let $D_{i}^{(n-1)}$ be the $(n-1)$-skeleton of D_{i}. Then there is a subcomplex \mathcal{C} of K_{N}^{n} and a homeomorphism

$$
\Phi: D_{1}^{(n-1)} \times I \longrightarrow \mathcal{C}
$$

such that
(1) all vertices of \mathcal{C} lie on $D_{1} \cup D_{2}$;
(2) $\mathcal{C} \cap S_{i}=D_{i}^{(n-1)}$ for $i=1,2$;
(3) Φ restricts to the identity on $D_{1}^{(n-1)} \times\{0\}$; and
(4) $\Phi=\phi$ on $D_{1}^{(n-1)} \times\{1\}$.

We note that the subcomplex \mathcal{C} may be regarded as the mapping cylinder of the restriction of ϕ to the $(n-1)$-skeleton.

Proof To construct \mathcal{C} we use the subdivision of $\Delta^{m} \times I$ into ($m+1$)-simplices used in the proof of the homotopy invariance of singular homology (see for example Hatcher [8, page 112]). Label the vertices of D_{1} arbitrarily as $v_{0}, v_{1}, \ldots, v_{M}$, and label the vertices of D_{2} as $w_{0}, w_{1}, \ldots, w_{M}$ so that $w_{i}=\phi\left(v_{i}\right)$. Now, for each m-simplex $\delta=\left[v_{i_{0}}, \ldots, v_{i_{m}}\right]$ of $D_{1}^{(n-1)}$, with $i_{0}<i_{1}<\cdots<i_{m}$, we have

$$
\delta \times I \cong C(\delta)=\bigcup_{j=0}^{m}\left[v_{i_{0}}, \ldots, v_{i_{j}}, w_{i_{j}}, \ldots, w_{i_{m}}\right] .
$$

Since $m \leq n-1$ each $(m+1)$-simplex involved in this union is a simplex of K_{N}^{n}, and we obtain a subcomplex of K_{N}^{n} homeomorphic to $\delta \times I$, meeting D_{1} and D_{2} in $\delta \times\{0\}=\delta$ and $\delta \times\{1\}=\phi(\delta)$ respectively. In addition, all vertices of $C(\delta)$ belong to $D_{1} \cup D_{2}$.

Let δ_{l} denote the simplex $\left[v_{i_{0}}, \ldots, \widehat{v}_{i_{l}}, \ldots, v_{i_{m}}\right]$ belonging to $\partial \delta$, where the hat indicates that $v_{i_{l}}$ is omitted. An m-simplex belonging to $C(\delta)$ is of one of several possible types:
(1) The simplex $\left[v_{i_{0}}, \ldots, v_{i_{m}}\right]=\delta$ or $\left[w_{i_{0}}, \ldots, w_{i_{m}}\right]=\phi(\delta)$.
(2) One of the simplices

$$
\begin{aligned}
& {\left[v_{i_{0}}, \ldots, \widehat{v}_{i_{l}}, \ldots, v_{i_{j}}, w_{i_{j}}, \ldots, w_{i_{m}}\right],} \\
& {\left[v_{i_{0}}, \ldots, v_{i_{j}}, w_{i_{j}}, \ldots, \widehat{w}_{i_{l}}, \ldots, w_{i_{m}}\right],}
\end{aligned}
$$

with l fixed and $j \neq l$, which together make up $C\left(\delta_{l}\right)$.
(3) A simplex of the form $\left[v_{i_{0}}, \ldots, v_{i_{j}}, w_{i_{j+1}}, \ldots, w_{i_{m}}\right]$, which is interior to $\delta \times I$.

Inductively, this implies that if δ^{\prime} is a simplex of δ, then $C\left(\delta^{\prime}\right)$ is a subcomplex of $C(\delta)$, and the diagram

commutes. Moreover, our construction ensures that $C\left(\delta_{1}\right)$ and $C\left(\delta_{2}\right)$ are disjoint unless δ_{1} and δ_{2} intersect, in which case $C\left(\delta_{1}\right) \cap C\left(\delta_{2}\right)=C\left(\delta_{1} \cap \delta_{2}\right)$. Thus, taking the union of $C(\delta)$ over all $(n-1)$-simplices of $D_{1}^{(n-1)}$ we obtain a subcomplex \mathcal{C} of K_{N}^{n} homeomorphic to $D_{1}^{(n-1)} \times I$ meeting S_{i} in $D_{i}^{(n-1)}$ for each i, and the homeomorphism Φ may be constructed satisfying the given conditions.

Corollary 2.2 Let $\left(S_{1}, D_{1}\right)$ and $\left(S_{2}, D_{2}\right)$ be disjoint subcomplexes of K_{N}^{n} each homeomorphic to $\left(S^{n}, D^{n}\right)$. Suppose that there is an orientation reversing simplicial isomorphism

$$
\phi: D_{1} \longrightarrow D_{2}
$$

and let $\Delta_{1}, \ldots, \Delta_{k}$ be the n-simplices of D_{1}. Then there exist subcomplexes $P_{0}, P_{1}, \ldots, P_{k}$ of K_{N}^{n} such that
(1) the vertices of $P_{0}, P_{1}, \ldots, P_{k}$ all lie on $S_{1} \cup S_{2}$;
(2) $P_{i} \cong S^{n}$ for each i;
(3) $P_{0} \cap S_{j}=\overline{S_{j} \backslash D_{j}}$ for $i=1,2$;

$$
\begin{equation*}
P_{i} \cap S_{1}=\Delta_{i}, P_{i} \cap S_{2}=\phi\left(\Delta_{i}\right) \text { for } i \geq 1 \text {; and } \tag{4}
\end{equation*}
$$

(5) as an integral chain we have

$$
S_{1}+S_{2}+\sum_{i=0}^{k} P_{i}=0
$$

Remark 2.3 Condition (1) implies that if A is a subcomplex of K_{N}^{n} disjoint from $S_{1} \cup S_{2}$, then A is disjoint from P_{i} for all i.

Proof We obtain the required spheres P_{i} using the subcomplex \mathcal{C} and homeomorphism $\Phi: D_{1}^{(n-1)} \times I \rightarrow \mathcal{C}$ constructed in Lemma 2.1 above. For each $i=1, \ldots, k$ let

$$
P_{i}=\Delta_{i} \cup \phi\left(\Delta_{i}\right) \cup \Phi\left(\partial \Delta_{i} \times I\right),
$$

and let

$$
P_{0}=\overline{S_{1} \backslash D_{1}} \cup \overline{S_{2} \backslash D_{2}} \cup \Phi\left(\partial D_{1} \times I\right) .
$$

Then Lemma 2.1 ensures that each P_{i} is a subcomplex of K_{N}^{n} satisfying conditions (1)(4) above.

To obtain (5) we must orient each sphere P_{i}. For $i \geq 1$ we orient P_{i} so that Δ_{i} receives the opposite orientation from P_{i} as it does from S_{1}, and we orient P_{0} analogously using the disc $\overline{S_{1} \backslash D_{1}}$. This ensures that $\phi_{\sharp} \Delta_{i}$ receives opposite orientations from S_{2} and P_{i} also, since ϕ is orientation reversing on Δ_{i} with respect to both S_{2} and P_{i} (on $P_{i} \cong S^{n}$ it is induced by reflection in an equatorial S^{n-1}). Similar considerations apply to P_{0}, as ϕ extends to a (not necessarily simplicial) orientation reversing homeomorphism $\left(S_{1}, \overline{S_{1} \backslash D_{1}}\right) \rightarrow\left(S_{2}, \overline{S_{2} \backslash D_{2}}\right)$.

It remains to consider the subcomplexes $C(\delta)$, for δ an $(n-1)-$ simplex of D_{1}. Each such simplex belongs to two n-simplices of S_{1}, and receives opposite orientations from each (since $\partial S_{1}=0$); consequently, each subcomplex $C(\delta)$ belongs to two spheres P_{i} and P_{j}, and is also oppositely oriented by each. This completes the proof.

Remark 2.4 The n-spheres P_{i} of Corollary 2.2 may be expressed explicitly as chains as follows. We assume throughout that all simplices of D_{1} are written with the labels on their vertices in increasing order.
For each m-simplex $\delta=\left[v_{i_{0}}, \ldots, v_{i_{m}}\right]$ of $D_{1}^{(n-1)}$ define

$$
\mathcal{P}(\delta)=\sum_{j=0}^{m}(-1)^{j}\left[v_{i_{0}}, \ldots, v_{i_{j}}, w_{i_{j}}, \ldots, w_{i_{m}}\right] .
$$

Let $\varepsilon_{i} \in\{ \pm 1\}$ be the coefficient of Δ_{i} in the chain S_{1}, and set

$$
P_{i}=-\varepsilon_{i}\left(\Delta_{i}+\mathcal{P}\left(\partial \Delta_{i}\right)-\phi_{\sharp}\left(\Delta_{i}\right)\right)
$$

for $i \geq 1$, and

$$
P_{0}=\left(D_{1}-S_{1}\right)+\left(D_{2}-S_{2}\right)+\mathcal{P} \partial D_{1} .
$$

We verify below that $\partial P_{i}=0$, and that $S_{1}+S_{2}+\sum_{i} P_{i}=0$.
Suitably adapted, the calculation in Hatcher [8, page 112] shows that

$$
\partial \mathcal{P}=\phi_{\sharp}-\mathrm{id}_{\#}-\mathcal{P} \partial,
$$

so for $i \geq 1$ we have

$$
\begin{aligned}
-\varepsilon_{i} \partial P_{i} & =\partial \Delta_{i}+\partial \mathcal{P} \partial \Delta_{i}-\partial \phi_{\sharp} \Delta_{i} \\
& =\partial \Delta_{i}+\phi_{\sharp} \partial \Delta_{i}-\mathrm{id}_{\sharp} \partial \Delta_{i}-\mathcal{P} \partial^{2} \Delta_{i}-\phi_{\sharp} \partial \Delta_{i}=0 .
\end{aligned}
$$

Similarly

$$
\begin{array}{rlr}
\partial P_{0} & =\partial\left(D_{1}-S_{1}\right)+\partial\left(D_{2}-S_{2}\right)+\partial \mathcal{P} \partial D_{1} & \\
& =\partial D_{1}+\partial D_{2}+\phi_{\sharp} \partial D_{1}-\mathrm{id}_{\sharp} \partial D_{1}-\mathcal{P} \partial^{2} D_{1} & \\
& =\partial D_{1}+\partial D_{2}-\partial D_{2}-\partial D_{1} & \left(\phi_{\sharp} \partial D_{1}=\partial \phi_{\sharp} D_{1}=-\partial D_{2}\right) \\
& =0, &
\end{array}
$$

as required. Summing, we have $D_{1}=\sum_{i=1}^{k} \varepsilon_{i} \Delta_{i}$, so

$$
\begin{aligned}
\sum_{i=1}^{k} P_{k}=-\sum_{i=1}^{k} \varepsilon_{i} \Delta_{i}-\mathcal{P} \partial \sum_{i=1}^{k} \varepsilon_{i} \Delta_{i}+\phi_{\sharp} \sum_{i=1}^{k} \varepsilon_{i} \Delta_{i} & =-D_{1}-\mathcal{P} \partial D_{1}+\phi_{\sharp} D_{1} \\
& =-D_{1}-\mathcal{P} \partial D_{1}-D_{2} \\
& =-P_{0}-S_{1}-S_{2},
\end{aligned}
$$

and it follows that $S_{1}+S_{2}+\sum_{i=0}^{k} P_{i}=0$.

2.3 connected sums of several spheres

Our next technical lemma takes several spheres S_{1}, \ldots, S_{k} and an additional sphere S_{0}, and constructs a sphere \mathcal{S} meeting each of S_{1}, \ldots, S_{k} in a single n-simplex. The case $n=1, k=3$ is illustrated in Figure 3. This lemma is an adaption to higher dimensions of a construction used by Flapan et al [3] in the case $n=1$. In that case the additional sphere S_{0} is not needed, as it is only necessary to choose edges joining S_{i} to S_{i+1} and S_{k} to S_{1}. This depends on the fact that the cylinder $S^{0} \times I$ is disconnected, and our additional sphere S_{0} is necessary for $n \geq 2$, when $S^{n-1} \times I$ is connected.

Lemma 2.5 Let $S_{0}, S_{1}, \ldots, S_{k}$ be disjoint subcomplexes of K_{N}^{n} each homeomorphic to S^{n}, and suppose that S_{0} has at least $k n$-simplices. Then there is a subcomplex \mathcal{S} of K_{N}^{n} such that:
(1) The vertices of \mathcal{S} all lie on $S_{0} \cup \cdots \cup S_{k}$.
(2) \mathcal{S} is homeomorphic to S^{n}.
(3) For $i=1, \ldots, k$ there is an n-simplex δ_{i} of S_{i} such that $\mathcal{S} \cap S_{i}=\delta_{i}$.

Moreover, if each sphere S_{i} is oriented, then \mathcal{S} may be chosen and oriented such that δ_{i} receives opposite orientations from \mathcal{S} and from S_{i}.

Figure 3: Illustrating Lemma 2.5 in the case $n=1, k=3$. The sphere S_{0} is used to construct a sphere \mathcal{S} meeting S_{i} in a single n-simplex δ_{i} for $i=$ $1,2,3$.

Proof We will assume that the S_{i} are oriented. Choose an n-simplex δ_{i} belonging to S_{i} for each $i \geq 1$, distinct n-simplices δ_{i}^{\prime} belonging to S_{0} for $i=1, \ldots, k$, and orientation reversing simplicial isomorphisms $\phi_{i}: \delta_{i} \rightarrow \delta_{i}^{\prime}$. Applying Corollary 2.2 to the pairs $\left(S_{i}, \delta_{i}\right)$ and $\left(S_{0}, \delta_{i}^{\prime}\right)$ we obtain a sphere Q_{i} with all its vertices on $S_{i} \cup S_{0}$, and such that Q_{i} meets S_{i} in δ_{i} and S_{0} in δ_{i}^{\prime}. Note that this implies $Q_{i} \cap Q_{j}=\delta_{i}^{\prime} \cap \delta_{j}^{\prime}$. We set $T_{0}=S_{0}$, and for $i=1, \ldots, k$ we inductively define T_{i} to be the complex obtained from T_{i-1} and Q_{i} by omitting the interior of the disc δ_{i}^{\prime}. Then at each stage T_{i} is an n-sphere, because it is the result of gluing two discs along their common boundary $\partial \delta_{i}^{\prime}$, and setting $\mathcal{S}=T_{k}$ we obtain the desired subcomplex.

To conclude this section we establish a bound on the number of vertices required to construct an n-sphere with a specified number of n-simplices.

Lemma 2.6 Given $\ell \in \mathbb{N}$ there is a triangulation of S^{n} with $n+\ell+1$ vertices and $\ell n+2$-simplices.

Proof We construct the triangulation from a suitable triangulation of D^{n+1} with ℓ $(n+1)$-simplices. For $i=1, \ldots, \ell$ let Δ_{i} be an $(n+1)$-simplex, and choose distinct n-simplices δ_{i}, σ_{i} belonging to Δ_{i}. Choose a simplicial isomorphism $\phi_{i}: \delta_{i} \rightarrow \sigma_{i+1}$
for each $i=1, \ldots, \ell-1$, and let D be the ($n+1$)-disc that results from gluing the Δ_{i} according to the ϕ_{i}. We claim that $S=\partial D$ is the required triangulated n-sphere.

The union $\Delta_{1} \cup \cdots \cup \Delta_{\ell}$ has a total of $\ell(n+2) n$-simplices, of which $2(\ell-1)$ are identified in pairs to form D. The n-simplices involved in the identifications lie in the interior of D, and the rest on the boundary, so S has $\ell(n+2)-2(\ell-1)=\ell n+2$ n-simplices, as claimed. Similarly, each gluing identifies $2(n+1)$ vertices in pairs, leaving a total of $\ell(n+2)-(n+1)(\ell-1)=\ell+n+1$; alternately, we may carry the gluings out sequentially, and we see that we start with $n+2$ vertices, and each gluing adds just one, for a total of $(n+2)+(\ell-1)=n+\ell+1$.

To complete the proof we show that the vertices of D all lie on S. For $n=1$ a circle with $\ell+2$ edges necessarily has $\ell+2$ vertices, by Euler characteristic; while for $n \geq 2$ each vertex of Δ_{i} belongs to at least three n-simplices, and so to at least one n-simplex belonging to ∂D after the identifications.

Corollary 2.7 If $k \in \mathbb{N}$ and $N \geq n+\lceil k / n\rceil+1$ then K_{N}^{n} contains a subcomplex $S \cong S^{n}$ with at least $k+2 n$-simplices.

Proof Set $\ell=\lceil k / n\rceil$. Then $\ell \in \mathbb{N}$ and $\ell \geq k / n$, so the construction of Lemma 2.6 yields an n-sphere S in K_{N}^{n} with at least $k+2 n$-simplices.

3 Many-component links

We now prove Theorems 1.1 and 1.2, thereby showing that embeddings of sufficiently large complete complexes necessarily contain nonsplit links with many components.

3.1 Necklaces and chains

In this section we establish Theorem 1.1. The key step is the following lemma, which plays the role of Flapan et al [4, Lemma 1].

Lemma 3.1 (The four-to-three lemma for mod two linking number) Let $Y_{1} \cup X_{1} \cup$ $X_{2} \cup Y_{2}$ be a 4-component link contained in some embedding of K_{N}^{n} in $\mathbb{R}^{2 n+1}$, satisfying

$$
\ell k_{2}\left(X_{1}, Y_{1}\right)=\ell k_{2}\left(X_{2}, Y_{2}\right)=1 .
$$

Then there is an n-sphere X in K_{N}^{n}, all of whose vertices lie on $X_{1} \cup X_{2}$, such that

$$
\ell k_{2}\left(Y_{1}, X\right)=\ell k_{2}\left(X, Y_{2}\right)=1 .
$$

Proof If $\ell k_{2}\left(X_{1}, Y_{2}\right)=1$ then we may simply let $X=X_{1}$, and if $\ell k_{2}\left(X_{2}, Y_{1}\right)=1$ then we may simply let $X=X_{2}$. So suppose that

$$
\ell k_{2}\left(X_{1}, Y_{2}\right)=\ell k_{2}\left(X_{2}, Y_{1}\right)=0 .
$$

Choose n-simplices δ_{1}, δ_{2} belonging to X_{1}, X_{2} respectively, and apply Corollary 2.2 to the pairs $\left(X_{1}, \delta_{1}\right),\left(X_{2}, \delta_{2}\right)$ to obtain spheres P_{0}, P_{1} satisfying

$$
X_{1}+X_{2}+P_{0}+P_{1}=0 .
$$

In the homology groups $H_{n}\left(\mathbb{R}^{2 n+1}-Y_{i} ; \mathbb{Z} / 2 \mathbb{Z}\right)$ we have

$$
\left[X_{1}\right]+\left[X_{2}\right]+\left[P_{0}\right]+\left[P_{1}\right]=0,
$$

and since $\left[X_{1}\right]+\left[X_{2}\right]=1$ in each group we have also $\left[P_{0}\right]+\left[P_{1}\right]=1$ in each group. Hence, for each i, precisely one of $\left[P_{0}\right],\left[P_{1}\right]$ must equal 1 in $H_{n}\left(\mathbb{R}^{2 n+1}-Y_{i} ; \mathbb{Z} / 2 \mathbb{Z}\right)$.

If $\left[P_{1}\right]$ takes the same value in both groups then we are done by setting $X=P_{0}$ if $\left[P_{1}\right]=0$ in both groups, and $X=P_{1}$ if $\left[P_{1}\right]=1$. Otherwise, without loss of generality suppose that $\left[P_{1}\right]$ is zero in $H_{n}\left(\mathbb{R}^{2 n+1}-Y_{1} ; \mathbb{Z} / 2 \mathbb{Z}\right)$ and nonzero in $H_{n}\left(\mathbb{R}^{2 n+1}-Y_{2} ; \mathbb{Z} / 2 \mathbb{Z}\right)$, and let X be the n-sphere obtained from X_{1} and P_{1} by omitting the interior of the simplex δ_{1}. Then

$$
[X]=\left[X_{1}\right]+\left[P_{1}\right]= \begin{cases}{\left[X_{1}\right]=1} & \text { in } H_{n}\left(\mathbb{R}^{2 n+1}-Y_{1} ; \mathbb{Z} / 2 \mathbb{Z}\right), \\ {\left[P_{1}\right]=1} & \text { in } H_{n}\left(\mathbb{R}^{2 n+1}-Y_{2} ; \mathbb{Z} / 2 \mathbb{Z}\right),\end{cases}
$$

and the result follows.

We now prove Theorem 1.1, using the above lemma.

Proof of Theorem 1.1 The proof of part (a) is by induction on r, with the base case $r=2$ given by Taniyama [19], and the inductive step following from Lemma 3.1. Given an embedding of $K_{(2 n+4) r}^{n}$ in $\mathbb{R}^{2 n+1}$, choose disjoint copies of $K_{(2 n+4)(r-1)}^{n}$ and $K_{2 n+4}^{n}$ contained in the embedding. By the inductive hypothesis the $K_{(2 n+4)(r-1)}^{n}$ contains an r-component link $L_{1} \cup L_{2} \cup \cdots \cup L_{r}$ satisfying Equation (1) for $i=1, \ldots, r-1$, and the $K_{2 n+4}^{n}$ contains a two component link $J \cup K$ such that $\ell k_{2}(J, K)=1$. Applying Lemma 3.1 to the (ordered) link $L_{r-1} \cup L_{r} \cup J \cup K$ we obtain an n-sphere X with all its vertices on $L_{r} \cup J$ such that

$$
\ell k_{2}\left(L_{r-1}, X\right)=\ell k_{2}(X, K)=1 .
$$

The link $L_{1} \cup \cdots \cup L_{r-1} \cup X \cup K$ is then the desired r-component link.
To prove (b) we apply Lemma 3.1 to suitably chosen components of an $(r+1)-$ component link as given by part (a). Given an embedding of $K_{(2 n+4) r}^{n}$ in $\mathbb{R}^{2 n+1}$,
there is an $(r+1)$-component link $L_{1} \cup L_{2} \cup \cdots \cup L_{r} \cup L_{r+1}$ satisfying Equation (1) for $i=1, \ldots, r$. We apply Lemma 3.1 to the (ordered) link $L_{r} \cup L_{r+1} \cup L_{1} \cup L_{2}$ to obtain an n-sphere X, with all its vertices on $L_{r+1} \cup L_{1}$, and satisfying

$$
\ell k_{2}\left(L_{r}, X\right)=\ell k_{2}\left(X, L_{2}\right)=1
$$

The link $L_{2} \cup \cdots \cup L_{r} \cup X$ is then the desired r-component link.

3.2 Generalised keyrings

We prove Theorem 1.2 by extending Flapan et al [3, Lemma 1] to higher dimensions in the following form.

Lemma 3.2 Let K_{N}^{n} be embedded in $\mathbb{R}^{2 n+1}$ such that it contains a link

$$
L \cup J_{1} \cup \cdots \cup J_{m^{2}} \cup X_{1} \cup \cdots \cup X_{m^{2}}
$$

where L has at least $m^{2} n$-simplices, and $\ell k_{2}\left(J_{i}, X_{i}\right)=1$ for all i. Then there is an $n-$ sphere Z in K_{N}^{n} with all its vertices on $L \cup J_{1} \cup \cdots \cup J_{m^{2}}$, and an index set I with $|I| \geq m / 2$, such that $\ell k_{2}\left(Z, X_{j}\right)=1$ for all $j \in I$.

Proof The argument is that of Flapan et al [3], with the addition of the component L needed to create the analogue of their cycle C connecting the J_{i}.

Since L has at least m^{2} simplices we may apply Lemma 2.5 to the (ordered) link $L \cup J_{1} \cup \cdots \cup J_{m^{2}}$, obtaining an n-sphere \mathcal{S} with all its vertices on $L \cup J_{1} \cup \cdots \cup J_{m^{2}}$ and meeting each sphere J_{i} in an n-simplex δ_{i}. If at least $m / 2$ of the mod two linking numbers $\ell k_{2}\left(\mathcal{S}, X_{i}\right)$ are nonzero then we are done by setting $Z=\mathcal{S}$, so we assume in what follows that fewer than $m / 2$ of these mod two linking numbers are nonzero.

Following Flapan et al we define M to be the $m^{2} \times m^{2}$ matrix over $\mathbb{Z} / 2 \mathbb{Z}$ with $i j$-entry $M_{i j}=\ell k_{2}\left(J_{i}, X_{j}\right)$. Let r_{i} be the $i^{\text {th }}$ row of M. Then $M_{i i=1}$ for all i, and Flapan et al use this to show that there are indices i_{1}, \ldots, i_{k} such that

$$
V=r_{i_{1}}+\cdots+r_{i_{k}}
$$

has at least m entries that are equal to 1 . Let Z be the n-sphere obtained from \mathcal{S} and $J_{i_{1}}, \ldots, J_{i_{k}}$ by omitting the interiors of the simplices $\delta_{i_{1}}, \ldots, \delta_{i_{k}}$. We claim that Z is the required n-sphere.

Indeed, for $j=1, \ldots, m^{2}$ we have

$$
\begin{equation*}
\ell k_{2}\left(Z, X_{j}\right)=\ell k_{2}\left(\mathcal{S}, X_{j}\right)+\sum_{\ell=1}^{k} \ell k_{2}\left(J_{i_{\ell}}, X_{j}\right)=\ell k_{2}\left(\mathcal{S}, X_{j}\right)+V_{j} \tag{2}
\end{equation*}
$$

where $V_{j}=\sum_{\ell=1}^{k} \ell k_{2}\left(J_{i_{\ell}}, X_{j}\right)$ is the $j^{\text {th }}$ entry of V. By construction at least m of the V_{j} are nonzero, and by assumption fewer than $m / 2$ of the $\ell k_{2}\left(\mathcal{S}, X_{j}\right)$ are nonzero. Hence there are at least $m-m / 2=m / 2$ indices j for which $V_{j}=1$ while $\ell k_{2}\left(\mathcal{S}, X_{j}\right)=0$. Consequently, the set $I=\left\{1 \leq j \leq m^{2} \mid \ell k_{2}\left(\mathcal{S}, X_{j}\right) \neq V_{j}\right\}$ has at least $m / 2$ elements. But $\ell k_{2}\left(Z, X_{j}\right)=1$ if and only if $j \in I$, by (2), so we are done.

We now obtain Theorem 1.2 as a corollary to Lemma 3.2 and Corollary 2.7.

Proof of Theorem 1.2 Recall that

$$
\kappa_{n}(r)=4 r^{2}(2 n+4)+n+\left\lceil\frac{4 r^{2}-2}{n}\right\rceil+1
$$

and for ease of notation let $\ell=\left\lceil\left(4 r^{2}-2\right) / n\right\rceil$. Given an embedding of $K_{\kappa_{n}(r)}^{n}$ in $\mathbb{R}^{2 n+1}$, choose $4 r^{2}$ disjoint copies of $K_{2 n+4}^{n}$ contained in the embedding, together with a copy of $K_{n+\ell+1}^{n}$. By Taniyama [19] the $i^{\text {th }}$ copy of $K_{2 n+4}^{n}$ contains a $2-$ component link $J_{i} \cup X_{i}$ such that $\ell k_{2}\left(J_{i}, X_{i}\right)=1$, and by Corollary 2.7 the copy of $K_{n+\ell+1}^{n}$ contains an n-sphere L with at least $4 r^{2} n$-simplices. The result now follows by applying Lemma 3.2 with $m=2 r$ to the link

$$
L \cup J_{1} \cup \cdots \cup J_{4 r^{2}} \cup X_{1} \cup \cdots \cup X_{4 r^{2}}
$$

4 Linking number in 2-component links

We now prove Theorems 1.3 and 1.5 , concerning the linking number in a 2 -component link. To prove each result we start with a suitable generalised keyring, and combine some of the "keys" to obtain the second component of the desired link.

4.1 Bounding the absolute value of the linking number from below

Proof of Theorem 1.3 We use a technique of Flapan et al from the proof of their [3, Lemma 2]. For simplicity of notation let $\ell=\lceil(2 \lambda-1) / n\rceil$, and choose disjoint copies of $K_{\kappa_{n}(2 \lambda-1)}^{n}$ and $K_{n+\ell+1}^{n}$ contained in K_{N}^{n}. Given an embedding of K_{N}^{n} in $\mathbb{R}^{2 n+1}$, the copy of $K_{\kappa_{n}(2 \lambda-1)}^{n}$ contains a generalised keyring $R \cup L_{1} \cup \cdots \cup L_{2 \lambda-1}$ with $2 \lambda-1$ keys, by Theorem 1.2 , while by Corollary 2.7 the copy of $K_{n+\ell+1}^{n}$ contains an n-sphere S with at least $2 \lambda+1 n$-simplices.

Orient S arbitrarily, and orient the L_{i} such that $\ell k\left(R, L_{i}\right)>0$ for each i. Applying Lemma 2.5 to the oriented link $\mathcal{L}=S \cup L_{1} \cup \cdots \cup L_{2 \lambda-1}$ we obtain an n-sphere \mathcal{S} with all its vertices on \mathcal{L} and meeting each L_{i} in a single $n-\operatorname{simplex} \delta_{i}$, which receives
opposite orientations from \mathcal{S} and from L_{i}. Set $\mathcal{S}_{0}=\mathcal{S}$, and for $i=1, \ldots, 2 \lambda-1$ let \mathcal{S}_{i} be the complex obtained from \mathcal{S}_{i-1} and L_{i} by omitting the interior of the disc δ_{i}. Then \mathcal{S}_{i} is an n-sphere, because it is the result of gluing two discs along their common boundary $\partial \delta_{i}$, and as a chain we have

$$
\begin{equation*}
\mathcal{S}_{i}=\mathcal{S}_{0}+\sum_{j=1}^{i} L_{j} \tag{3}
\end{equation*}
$$

for $i \geq 1$.
We now consider the linking numbers of the \mathcal{S}_{i} with R, by considering Equation (3) in the group $H_{n}\left(\mathbb{R}^{2 n+1}-R ; \mathbb{Z}\right)$. This gives

$$
\ell k\left(R, \mathcal{S}_{i}\right)=\left[\mathcal{S}_{i}\right]=\left[\mathcal{S}_{0}\right]+\sum_{j=1}^{i}\left[L_{j}\right]=\ell k\left(R, \mathcal{S}_{0}\right)+\sum_{j=1}^{i} \ell k\left(R, L_{j}\right) .
$$

As in the proof of [3, Lemma 2] the sequence $\left(\ell k\left(R, \mathcal{S}_{i}\right)\right)_{i=0}^{2 \lambda-1}$ is strictly increasing, because the linking numbers $\ell k\left(R, L_{i}\right)$ are all positive. This sequence must therefore take 2λ distinct values, and the result now follows from the fact that there are only $2 \lambda-1$ integers k such that $|k|<\lambda$.

4.2 The linking number modulo a prime

To prove Theorem 1.5 we will use the following lemma on sums of subsequences of finite integer sequences, considered modulo a prime p. Given an integer sequence $\left(\ell_{1}, \ldots, \ell_{m}\right)$ we will say that $x \in \mathbb{Z}$ is a subsequence sum of $\left(\ell_{1}, \ldots, \ell_{m}\right)$ if there is a subset $A \subseteq\{1, \ldots, m\}$ such that

$$
\sum_{i \in A} \ell_{i}=x .
$$

We allow the possibility that A is empty, which implies that 0 is always a subsequence sum. Then:

Lemma 4.1 Let $p \in \mathbb{N}$ be prime, and let $\left(\ell_{1}, \ldots, \ell_{p-1}\right)$ be a sequence of integers such that no ℓ_{i} is divisible by p. For any $s \in \mathbb{Z}$ there is a subsequence sum x of $\left(\ell_{1}, \ldots, \ell_{p-1}\right)$ such that $x \equiv s \bmod p$.

We note that the sequence length $p-1$ is best possible, because a sequence of length $p-2$ that is constant $\bmod p$ realises exactly $p-1 \bmod p$ residue classes as subsequence sums.

Proof For $j=1, \ldots, p-1$ let Σ_{j} be the set of mod p residue classes that may be realised by a subsequence sum of $\left(\ell_{1}, \ldots, \ell_{j}\right)$. Then $\Sigma_{1}=\left\{\overline{0}, \bar{\ell}_{1}\right\}$, and our goal is to show that $\Sigma_{p-1}=\{\overline{0}, \overline{1}, \ldots, \overline{p-1}\}$. We will do this by showing that $\left|\Sigma_{j+1}\right| \geq\left|\Sigma_{j}\right|+1$ whenever $\Sigma_{j} \neq\{\overline{0}, \overline{1}, \ldots, \overline{p-1}\}$. Since $\Sigma_{j} \subseteq \Sigma_{j+1}$ it suffices to show that there is an element of Σ_{j+1} that is not an element of Σ_{j}.

Suppose then that $\Sigma_{j} \neq\{\overline{0}, \overline{1}, \ldots, \overline{p-1}\}$, and consider multiples of $\ell_{j+1} \bmod p$. Since $\ell_{j+1} \not \equiv 0 \bmod p$ we have

$$
\left\{\overline{k \ell}_{j+1} \mid 0 \leq k \leq p-1\right\}=\{\overline{0}, \overline{1}, \ldots, \overline{p-1}\} \supsetneq \Sigma_{j} \supseteq\{\overline{0}\},
$$

so there is some $1 \leq k \leq p-1$ such that $\overline{k \ell}_{j+1} \notin \Sigma_{j}$. Consider the least such k. Then there is a (possibly empty, if $k=1$) subset A of $\{1, \ldots, j\}$ such that

$$
\sum_{i \in A} \ell_{i} \equiv(k-1) \ell_{j+1} \bmod p,
$$

and setting $B=A \cup\{j+1\}$ we have

$$
\sum_{i \in B} \ell_{i} \equiv k \ell_{j+1} \bmod p
$$

Hence $\overline{k \ell}_{j+1}$ belongs to Σ_{j+1} but not Σ_{j}, and we are done.

Proof of Theorem 1.5 The technique is similar to that used in the previous section to prove Theorem 1.3. Suppose that q is prime, and that N satisfies the inequality

$$
N \geq \kappa_{n}(2 q-1)+n+\left\lceil\frac{2 q-3}{n}\right\rceil+1
$$

given in the statement of the theorem. By Theorem 1.2 and Corollary $2.7, N$ is so large that every embedding of K_{N}^{n} in $\mathbb{R}^{2 n+1}$ contains a generalised keyring

$$
R \cup L_{1} \cup \cdots \cup L_{2 q-1}
$$

with $2 q-1$ keys, and an additional disjoint sphere S with at least $2 q-1 n$-simplices. Orient the link $S \cup L_{1} \cup \cdots \cup L_{2 q-1}$ as in the proof of Theorem 1.3, and let \mathcal{S} be the n-sphere that results from applying Lemma 2.5 to this link.

Consider now the linking numbers $\ell k(R, \mathcal{S})$ and $\ell k\left(R, L_{i}\right) \bmod q$. If $\ell k\left(R, L_{i}\right) \equiv 0$ for some i then we are done, so we may assume that all such linking numbers are nonzero $\bmod q$. Then by Lemma 4.1 there is a subset $A \subseteq\{1, \ldots, q-1\}$ such that

$$
\sum_{i \in A}\left[L_{i}\right] \equiv-[\mathcal{S}] \bmod q,
$$

and a subset $B \subseteq\{q+1, \ldots, 2 q-1\}$ such that

$$
\sum_{i \in B}\left[L_{i}\right] \equiv-\left[L_{q}\right] \bmod q
$$

Set $C=B \cup\{q\}$, to obtain a nonempty subset of $\{q, \ldots, 2 q-1\}$ such that

$$
\sum_{i \in C}\left[L_{i}\right] \equiv 0 \bmod q .
$$

We now consider the chains

$$
S_{1}=\mathcal{S}+\sum_{i \in A} L_{i} \quad \text { and } \quad S_{2}=S_{1}+\sum_{i \in C} L_{i} .
$$

In the homology group $H_{n}\left(\mathbb{R}^{2 n+1}-R ; \mathbb{Z}\right)$ we have

$$
\left[S_{1}\right] \equiv\left[S_{2}\right] \equiv 0 \bmod q,
$$

and moreover $\left[S_{1}\right] \neq\left[S_{2}\right]$, because the linking numbers $\left[L_{i}\right]$ are all positive and C is nonempty. It follows that at least one of $\left[S_{1}\right]$ and $\left[S_{2}\right]$ is nonzero, and since both chains represent n-spheres we are done.

We note that the argument used above does require q to be prime. For q composite, if $\ell k(R, \mathcal{S})$ is coprime to q and all linking numbers $\ell k\left(R, L_{i}\right)$ are equal to the same nontrivial divisor d of q, then no sphere formed from \mathcal{S} and the L_{i} as above will link R with linking number divisible by q. We will therefore use a different strategy in Section 6 to prove the corresponding result when q may be composite.

5 Technical preliminaries II: Triangulations of an M-simplex

We now establish some additional technical preliminaries needed to prove Theorem 1.4. For this theorem we will need to work with links containing identically triangulated discs D^{n} with many n-simplices, and to this end we will construct a triangulation of an M-simplex into many M-simplices.

5.1 The triangulations

For $\ell \in \mathbb{N}$ let Δ_{ℓ}^{M} be the M-simplex

$$
\Delta=\left[\ell \boldsymbol{e}_{1}, \ell \boldsymbol{e}_{2}, \ldots, \ell \boldsymbol{e}_{M+1}\right] \subseteq \mathbb{R}^{M+1}
$$

where $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{M+1}$ are the standard basis vectors. Then:

Lemma 5.1 The family of planes

$$
\begin{equation*}
\left\{\sum_{k=i}^{j} x_{k} \in \mathbb{Z} \mid 1 \leq i \leq j \leq M\right\} \tag{4}
\end{equation*}
$$

subdivides Δ_{ℓ}^{M} into $\ell^{M} M$-simplices. The symmetry group of this triangulation is the dihedral group D_{M+1} of order $2(M+1)$, with the action given by permutations of the basis vectors \boldsymbol{e}_{i} that preserve or reverse the cyclic ordering $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{M+1}$.

We will call an M-simplex triangulated as in Lemma 5.1 a triangulated M-simplex of side length ℓ, and denote it by $\Delta^{M}(\ell)$.

Remark 5.2 The triangulation $\Delta^{2}(\ell)$ is simply the standard division of an equilateral triangle of side length ℓ into ℓ^{2} equilateral triangles of side length 1 . In this case all simplices of the triangulation are isometric. However, for $M \geq 3$ the simplices of the triangulation may no longer all be isometric. This may be seen in the case $\Delta^{3}(2)$, where four of the 3 -simplices are regular tetrahedra, and the remaining four are obtained by cutting an octahedron along two of the three planes of symmetry that pass through four vertices.

Remark 5.3 The $(M+1)$-cycle ($12 \ldots M+1$) in D_{M+1} reverses the orientation of Δ_{l}^{M} if and only if M is odd, and when M is even the order two elements of D_{M+1} reverse orientation if and only if $M \equiv 2 \bmod 4$. So $\Delta^{M}(\ell)$ has an orientation reversing symmetry if and only if $M \not \equiv 0 \bmod 4$.

Proof We proceed by subdividing the simplex

$$
\Sigma_{\ell}^{M}=\left\{x \in \mathbb{R}^{M} \mid 0 \leq x_{1} \leq x_{2} \leq \cdots \leq x_{M} \leq \ell\right\}
$$

into ℓ^{M} simplices, and then pull this subdivision back to Δ_{l}^{M}. The chief reason for working with Δ_{ℓ}^{M} rather than Σ_{ℓ}^{M} is that the symmetries of the triangulation are more readily seen.

We first observe that for each permutation $\sigma \in S_{M}$, the set

$$
\delta_{\sigma}=\left\{\boldsymbol{x} \in \mathbb{R}^{M} \mid 0 \leq x_{\sigma(1)} \leq x_{\sigma(2)} \leq \cdots \leq x_{\sigma(M)} \leq 1\right\}
$$

is an M-simplex, and that the collection of such simplices gives a subdivision of I^{M} into M !-simplices. These simplices are defined by the family of planes

$$
\left\{x_{i}=0\right\} \cup\left\{x_{i}=1\right\} \cup\left\{x_{j}-x_{i}=0\right\}
$$

and translating these according to $\mathbb{Z}^{M} \leq \mathbb{R}^{M}$ we see that the family

$$
\begin{equation*}
\left\{x_{i} \in \mathbb{Z} \mid 1 \leq i \leq M\right\} \cup\left\{x_{j}-x_{i} \in \mathbb{Z} \mid 1 \leq i<j \leq M\right\} \tag{5}
\end{equation*}
$$

gives a subdivision of all of \mathbb{R}^{M} into isometric simplices. The planes bounding Σ_{ℓ}^{M} belong to this family, and it follows that the subdivision of \mathbb{R}^{M} restricts to a subdivision of Σ_{ℓ}^{M}. This subdivision must have ℓ^{M} simplices, on purely volumetric grounds.
We now pull this triangulation back to Δ_{ℓ}^{M} via the linear map that sends the vertex \boldsymbol{e}_{i} of Δ_{ℓ}^{M} to the vertex $\boldsymbol{e}_{i}+\cdots+\boldsymbol{e}_{M}$ of Σ_{ℓ}^{M} for $i \leq M$, and the vertex \boldsymbol{e}_{M+1} to the vertex $\mathbf{0}$. Let $\left\{\phi_{i}\right\}$ be the dual basis to $\left\{\boldsymbol{e}_{i}\right\}$. Then ϕ_{i} pulls back to $\phi_{1}+\cdots+\phi_{i}$, and we see that the family (5) pulls back to the family (4). This linear map induces an affine homeomorphism between Σ_{ℓ}^{M} and Δ_{ℓ}^{M}, and so these planes give us the desired triangulation.

To see that the symmetry group is D_{M+1}, we observe that on the plane $\sum x_{i}=\ell$ containing Δ_{ℓ}^{M}, the conditions

$$
\sum_{k=i}^{j} x_{k} \in \mathbb{Z} \quad \text { and } \quad \sum_{k=1}^{i-1} x_{k}+\sum_{k=j+1}^{M+1} x_{k} \in \mathbb{Z}
$$

are equivalent. Thus, each family of planes defining the subdivision may be viewed as a division of a necklace of $M+1$ beads into two connected components, and conversely. Symmetries of the triangulation therefore correspond to precisely those permutations of the beads that preserve adjacency, giving us D_{M+1}.

Construction 5.4 For $M \geq n+1$ we define $K_{M}^{n}(\ell)$ to be the subcomplex of $\Delta^{M-1}(\ell)$ consisting of precisely those simplices lying entirely within the n-skeleton $\left(\Delta_{\ell}^{M-1}\right)^{(n)} \cong K_{M}^{n}$. Each n-simplex of $\left(\Delta_{\ell}^{M-1}\right)^{(n)}$ lies in an n-dimensional coordinate plane, and is isometric to Δ_{ℓ}^{n}; intersecting the family of planes (4) with this subspace subdivides this simplex into a $\Delta^{n}(\ell)$. Thus $K_{M}^{n}(\ell)$ is a space homeomorphic to K_{M}^{n}, with each $n-$ simplex of K_{M}^{n} mapping onto a copy of $\Delta^{n}(\ell)$. As such we will call it a triangulated complete n-complex on M vertices of side length ℓ.

5.2 Counting the vertices

The number of vertices in a $\Delta^{k}(\ell)$ is equal to the number of nonnegative integer solutions to the equation

$$
x_{1}+x_{2}+\cdots+x_{k+1}=\ell
$$

and the number of vertices in the interior of a $\Delta^{k}(\ell)$ is the number of positive integer solutions to this equation. These numbers are $\binom{k+\ell}{k}$ and $\binom{\ell-1}{k}=\binom{\ell-1}{\ell-k-1}$ respectively.

Counting the vertices of a $\Delta^{M}(\ell)$ according to the open simplex of Δ_{ℓ}^{M} that they belong to we find that it has

$$
\begin{equation*}
\sum_{k=0}^{M}\binom{M+1}{k+1}\binom{\ell-1}{\ell-k-1}=\binom{\ell+M}{M} \tag{6}
\end{equation*}
$$

vertices (the two sides are the coefficient of x^{ℓ} in $\left.(1+x)^{M+1}(1+x)^{\ell-1}=(1+x)^{\ell+M}\right)$. Of particular interest is the number of vertices belonging to $K_{2 n+4}^{n}(\ell)$, as this complex is homeomorphic to $K_{2 n+4}^{n}$, and may be used to construct links in which each component has many n-simplices. Setting $M=2 n+3$ in Equation (6), and truncating the sum at $k=n$, we therefore find that $K_{2 n+4}^{n}(\ell)$ has a total of

$$
\begin{equation*}
V(n, \ell)=\sum_{k=0}^{n}\binom{2 n+4}{k+1}\binom{\ell-1}{k} \tag{7}
\end{equation*}
$$

vertices.
For a more tractable bound, observe that the triangulated simplex $\Delta^{n}(\ell)$ has $\ell^{n} n-$ simplices, each with $n+1$ vertices, and so has at most $(n+1) \ell^{n}$ vertices. The complex $K_{2 n+4}^{n}(\ell)$ contains $\binom{2 n+4}{n+1}$ such triangulated simplices, and therefore

$$
V(n, \ell) \leq(n+1)\binom{2 n+4}{n+1} \ell^{n}
$$

(this also follows from the inequalities

$$
\binom{2 n+4}{k+1} \leq\binom{ 2 n+4}{n+1} \quad \text { and } \quad\binom{\ell-1}{k} \leq \ell^{n}
$$

for $k \leq n$). Stirling's formula $m!\sim \sqrt{2 \pi m}(m / e)^{m}$ leads to the asymptotic formula $\binom{2 m}{m} \sim 4^{m} / \sqrt{\pi m}$, and hence

$$
(n+1)\binom{2 n+4}{n+1}=\frac{(n+1)(n+2)}{n+3}\binom{2(n+2)}{n+2} \sim \sqrt{\frac{n}{\pi}} 4^{n+2}=C \sqrt{n} 4^{n}
$$

Consequently, asymptotically $V(n, \ell)$ grows no faster than $C \sqrt{n}(4 \ell)^{n}$.

6 Linking number $\bmod \boldsymbol{q}$

The goal of this section is to prove Theorem 1.4, which we recall states that given $q \in \mathbb{N}$, embeddings of sufficiently large complete n-complexes in $\mathbb{R}^{2 n+1}$ contain 2 -component links with linking number a nonzero multiple of q. Before proving this theorem we need one more technical lemma:

Lemma 6.1 Let R be a positive integer. For ℓ sufficiently large $\Delta^{n}(\ell)$ contains a triangulated disc D with $r \geq R n$-simplices $\Delta_{1}, \ldots, \Delta_{r}$, which may be labelled such that

$$
D_{i j}=\bigcup_{k=i}^{j} \Delta_{k}
$$

is a disc for any $1 \leq i \leq j \leq r$. The conclusion holds for $\ell \geq R$, so the side length required grows at most linearly with R.

Proof Write $\Sigma^{n}(\ell)$ for the n-simplex Σ_{ℓ}^{n} subdivided by the family of planes given by Equation (5). Then $\Sigma^{n}(\ell)$ and $\Delta^{n}(\ell)$ are simplicially isomorphic, so it suffices to construct a suitable disc D in $\Sigma^{n}(\ell)$. We will construct D as the union of the n-simplices of $\Sigma^{n}(\ell)$ that meet a suitably chosen line L in \mathbb{R}^{n}. The case $n=2, \ell=4$ is illustrated in Figure 4.

Figure 4: Illustrating the construction of the disc D of Lemma 6.1 in the case $n=2, \ell=4$. A line L with irrational slope $\alpha>1$ meets each line defining the triangulation exactly once, and except at $\mathbf{0}$ never passes through the intersection of two such lines. We take D to be the union of the 2 -simplices intersecting L (shaded grey). The disc D contains at least ℓn-simplices (here at least 4), since it must include at least one from each horizontal slice.

Since \mathbb{R} is infinite-dimensional as a vector space over \mathbb{Q}, we may choose

$$
0<\alpha_{1}<\cdots<\alpha_{n}=1
$$

such that $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ is linearly independent over \mathbb{Q}. Write $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, and let L be the line $L=\{t \boldsymbol{\alpha} \mid t \in \mathbb{R}\}$. Each plane in the family (5) may be written in the form $\boldsymbol{c}^{T} \boldsymbol{x}=u$, where $\boldsymbol{c} \in \mathbb{Z}^{n}$ and $u \in \mathbb{Z}$, and the linear independence of $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ over \mathbb{Q} may be used to show that
(1) L meets each plane in the family (5) transversely; and
(2) each point of L other than $\mathbf{0}$ lies on at most one plane in this family.

Together these facts imply that, with the exception of simplices containing $\mathbf{0}, L$ can meet only n - and ($n-1$)-simplices of $\Sigma^{n}(\ell)$, and that if it intersects an n-simplex at all it must intersect it in its interior.

Observe that the line segment $\{t \boldsymbol{\alpha} \mid 0 \leq t \leq \ell\}$ is contained in Σ_{ℓ}^{n}, and cuts each plane $x_{n}=k$ for $k=1, \ldots, \ell$. Consequently L must pass through at least one n-simplex of $\Sigma^{n}(\ell)$ lying in the slice $\left\{\boldsymbol{x} \mid k-1 \leq x_{n} \leq k\right\}$ for each $1 \leq k \leq \ell$, and so passes through at least ℓn-simplices of $\Sigma^{n}(\ell)$. Suppose that L passes through exactly r n-simplices of $\Sigma^{n}(\ell)$, and label them consecutively $\Delta_{1}, \ldots, \Delta_{r}$ in the order in which they are encountered when tracing L in the direction $\boldsymbol{\alpha}$. We claim that

$$
D_{i j}=\bigcup_{k=i}^{j} \Delta_{k}
$$

is a disc for any $1 \leq i \leq j \leq \ell$, from which the result follows.
Since the open ray $\{t \boldsymbol{\alpha} \mid t>0\}$ only meets n - and ($n-1$)-simplices of $\Sigma^{n}(\ell)$, consecutive n-simplices Δ_{k} and Δ_{k+1} must intersect in an ($n-1$)-simplex. In addition, for $d \geq 2$ the simplices Δ_{k} and Δ_{k+d} are separated by at least two planes from the family (5), and so meet in at most an ($n-2$)-simplex. Since $D_{i i}=\Delta_{i}$ is a disc, and $D_{i, k+1}$ is the result of gluing $D_{i k}$ and Δ_{k+1} along the ($n-1$)-simplex $\Delta_{k} \cap \Delta_{k+1}$, it follows by induction that $D_{i j}$ is a disc, as claimed.

We now prove Theorem 1.4. The argument again proceeds by converting a suitably large generalised keyring to a 2 -component link, but now we require additionally that the keys of the keyring are copies of $K_{n+2}^{n}(q)$. Our underlying approach is similar to that of Fleming [5, Theorem 3.1], but differs from his in the size of the keys and the method used to combine them to form the second component of the link.

Proof of Theorem 1.4 We show that the result holds for

$$
N=4 q^{2} V(n, q)+n+\left\lceil\frac{4 q^{2}-2}{n}\right\rceil+1,
$$

where $V(n, q)$ is given by (7) and equals the number of vertices belonging to $K_{2 n+4}^{n}(q)$. Since $V(n, q) \leq(n+1)\binom{2 n+4}{n+1} q^{n}$, we conclude that N is no greater than

$$
C(n+1)\binom{2 n+4}{n+1} q^{n+2}
$$

for some constant C.
Given an embedding of K_{N}^{n} in $\mathbb{R}^{2 n+1}$, we let $C_{1}, \ldots, C_{4 q^{2}}$ be disjoint copies of $K_{2 n+4}^{n}(q)$ contained in K_{N}^{n}, and use the remaining $n+\left\lceil\left(4 q^{2}-2\right) / n\right\rceil+1$ vertices and Corollary 2.7 to construct an n-sphere L with at least $4 q^{2} n$-simplices. The complex C_{i} is homeomorphic to $K_{2 n+4}^{n}$, and so by Taniyama [19] contains a two component link $J_{i} \cup X_{i}$ such that $\ell k\left(J_{i}, X_{i}\right) \neq 0$, and each component is a copy of $K_{n+2}^{n}(q)$. Applying Lemma 3.2 to the link $L \cup J_{1} \cup \cdots \cup J_{4 q^{2}} \cup X_{1} \cup \cdots \cup X_{4 q^{2}}$ we obtain a generalised keyring $R \cup L_{1} \cup \cdots \cup L_{q}$, where $\ell k\left(R, L_{i}\right) \neq 0$ for each i, and each L_{i} is a copy of $K_{n+2}^{n}(q)$. We will use R as one component of our link, and we will seek to construct the second as a connected sum of some of the L_{i}. In what follows we therefore consider homology classes in $H_{n}\left(\mathbb{R}^{2 n+1}-R ; \mathbb{Z}\right)$.

Orient the L_{i} such that $\ell k\left(R, L_{i}\right)=\left[L_{i}\right]$ is positive for each i, and for $1 \leq k \leq q$ consider the values of the sums $\sum_{i=1}^{k}\left[L_{i}\right] \bmod q$. Since there are q sums and q possible values modulo q, by the pigeonhole principle there must either be a sum that is zero $\bmod q$, or else two sums that are equal modulo q. In either case we obtain integers a, b satisfying $1 \leq a \leq b \leq q$ such that

$$
\sum_{i=a}^{b}\left[L_{i}\right] \equiv 0 \bmod q
$$

From now on we restrict our attention to the spheres L_{a}, \ldots, L_{b}.
Our construction now departs from that of Fleming. Each component L_{i} is a copy of $K_{n+2}^{n}(q)$, and as such has $n+2$ faces which are triangulated n-simplices of side length q. We claim that it is possible to choose distinct faces $\delta_{i}, \delta_{i}^{\prime}$ of L_{i}, each a copy of $\Delta^{n}(q)$, and orientation reversing simplicial isomorphisms $\psi_{i}: \delta_{i} \rightarrow \delta_{i+1}^{\prime}$. For $n \not \equiv 0 \bmod 4$ this may be done by choosing distinct faces $\delta_{i}, \delta_{i}^{\prime}$ of L_{i} arbitrarily, since in this case $\Delta^{n}(q)$ has both orientation preserving and reversing symmetries, by Remark 5.3. However, for $n \equiv 0 \bmod 4$ we must choose them inductively, beginning with δ_{a} and using the fact that $\Delta^{n}(q)$ has at least one face of each orientation to choose δ_{i+1}^{\prime} based on the choice of δ_{i}. The face δ_{i+1} of L_{i+1} may then be chosen arbitrarily from those left.

By Lemma 6.1 each face $\delta_{i} \cong \Delta^{n}(q)$ contains a triangulated disc D_{i} with $r \geq q$ n-simplices $\Delta_{i 1}, \ldots, \Delta_{i r}$, such that

$$
\left(D_{i}\right)_{c d}=\bigcup_{k=c}^{d} \Delta_{i k}
$$

is a disc for each $1 \leq c \leq d \leq r$. Let ϕ_{i} be the restriction of ψ_{i} to D_{i}, let $D_{i+1}^{\prime}=\phi_{i}\left(D_{i}\right)$, and for $1 \leq j \leq r$ let $P_{i j}$ be the oriented sphere satisfying

$$
P_{i j} \cap L_{i}=\Delta_{i j}, \quad P_{i j} \cap L_{i+1}=\phi_{i}\left(\Delta_{i j}\right)
$$

that results from applying Corollary 2.2 to the pairs $\left(L_{i}, D_{i}\right)$ and $\left(L_{i+1}, D_{i+1}^{\prime}\right)$.
For $1 \leq k \leq r$ we now consider the sums $\sum_{j=1}^{k}\left[P_{i j}\right]$ modulo q. Since there are q possible values $\bmod q$ and at least q sums we may again choose integers c_{i}, d_{i} satisfying $1 \leq c_{i} \leq d_{i} \leq r$ such that

$$
\sum_{j=c_{i}}^{d_{i}}\left[P_{i j}\right] \equiv 0 \bmod q
$$

Let $Q_{i}=\sum_{j=c_{i}}^{d_{i}} P_{i j}$. Then Q_{i} represents an $n-$ sphere with all its vertices on $L_{i} \cup L_{i+1}$ and satisfying

$$
Q_{i} \cap L_{i}=\left(D_{i}\right)_{c_{i} d_{i}}, \quad Q_{i} \cap L_{i+1}=\phi_{i}\left(\left(D_{i}\right)_{c_{i} d_{i}}\right), \quad \ell k\left(R, Q_{i}\right) \equiv 0 \bmod q
$$

If $\ell k\left(R, Q_{i}\right) \neq 0$ for some i then we are done by setting $S=Q_{i}$, so we may assume that in fact $\ell k\left(R, Q_{i}\right)=0$ for all i. In that case we let S be the complex obtained from L_{a}, \ldots, L_{b} and Q_{a}, \ldots, Q_{b-1} by omitting the interiors of the discs $Q_{a} \cap L_{a}, \ldots, Q_{b-1} \cap L_{b-1}$ and $Q_{a} \cap L_{a+1}, \ldots, Q_{b-1} \cap L_{b}$. Then S is a connected sum of n-spheres, hence an n-sphere, and as a chain we have

$$
S=\sum_{i=a}^{b} L_{i}+\sum_{i=a}^{b-1} Q_{i}
$$

It follows that

$$
[S]=\sum_{i=a}^{b}\left[L_{i}\right]+\sum_{i=a}^{b-1}\left[Q_{i}\right]=\sum_{i=a}^{b}\left[L_{i}\right]>0
$$

and since also $\sum_{i=a}^{b}\left[L_{i}\right] \equiv 0 \bmod q$ we are done.

Remark 6.2 For $n=1$ the auxiliary sphere \mathcal{S} of Lemma 2.5 is not needed to construct the keyring, reducing the number of vertices required in this case to

$$
4 q^{2} V(1, q)=4 q^{2}(6+15(q-1))=12 q^{2}(5 q-3)
$$

as given after the statement of the theorem.

7 An alternate proof of Theorem 1.3

To further illustrate the applications of the triangulations of Section 5 we give a second proof of Theorem 1.3, without the polynomial bound on the number of vertices required. Namely, we show that given $\ell \in \mathbb{N}$, for N sufficiently large every embedding of K_{N}^{n} in $\mathbb{R}^{2 n+1}$ contains a 2 -component link with linking number at least ℓ in absolute value.

The proof we give is modelled on Flapan's original proof [2] of the corresponding result for $n=1$. Her argument is based on combining $2-$ component links with "sufficiently many vertices", and for $n \geq 2$ we will replace this condition on the number of vertices with a requirement that the components contain triangulated n-simplices of sufficient side length. The side length available will typically shrink when two components are combined (unlike the number of vertices, which typically goes up), and consequently this change leads to a significant change in the growth of the number of vertices required.

7.1 Splicing links

In this section we establish higher-dimensional analogues of Flapan [2, Lemmas 2 and 1]. These are Lemmas 7.2 and 7.3 below, respectively. In preparation for this we need an additional technical lemma on triangulated n-simplices.

Lemma 7.1 Deleting an arbitrary M-simplex from a triangulated M-simplex of side length ℓ leaves a triangulated M-simplex of side length at least $\lfloor M \ell /(M+1)\rfloor$.

Proof Let δ be the deleted simplex, and let \boldsymbol{x} be a point in the interior of δ. In barycentric coordinates on Δ_{ℓ}^{M} we have

$$
\boldsymbol{x}=\ell \sum_{i=1}^{M+1} t_{i} \boldsymbol{e}_{i}
$$

and since $\sum t_{i}=1$ we must have $t_{i} \leq 1 /(M+1)$ for some i. Let Δ be the intersection of $\Delta^{M}(\ell)$ with the halfspace $x_{i} \geq\lceil\ell /(M+1)\rceil$. Then Δ is a triangulated M-simplex
contained in Δ_{ℓ}^{M}, and Δ does not contain δ because Δ does not contain \boldsymbol{x}. Moreover, Δ has side length

$$
\ell-\left\lceil\frac{\ell}{M+1}\right\rceil=\left\lfloor\ell-\frac{\ell}{M+1}\right\rfloor=\left\lfloor\frac{M \ell}{M+1}\right\rfloor,
$$

so we are done.
Lemma 7.2 Let $X_{1} \cup Y_{1} \cup X_{2} \cup Y_{2}$ be a 4-component link contained in some embedding of K_{N}^{n} in $\mathbb{R}^{2 n+1}$. Suppose that for some orientation of $X_{1} \cup Y_{1} \cup X_{2} \cup Y_{2}$ we have $\ell k\left(X_{1}, Y_{1}\right) \geq 1$ and $\ell k\left(X_{2}, Y_{2}\right)=p \geq 1$, and suppose also that each component contains a triangulated n-simplex of side length ℓ with $\ell^{n} \geq p$. Then K_{N}^{n} contains disjoint n-spheres L, Z and W such that
(1) $\ell k(L, Z)=p_{1} \geq 1$ and $\ell k(L, W)=p_{2} \geq p$ for some orientation of the link $L \cup Z \cup W$;
(2) L contains a triangulated n-simplex of side length at least $\lfloor n \ell /(n+1)\rfloor$;
(3) Z is equal to either X_{1} or Y_{1};
(4) W is equal to either X_{2} or Y_{2}.

Proof As in Flapan [2], if $\ell k\left(X_{2}, Y_{1}\right)$ is nonzero we may set $L=X_{2}, Z=Y_{1}$, and $W=Y_{2}$; and if $\ell k\left(Y_{2}, X_{1}\right)$ is nonzero we may set $L=Y_{2}, Z=X_{1}$, and $W=X_{2}$. So in what follows we may assume that $\ell k\left(X_{1}, Y_{2}\right)=\ell k\left(X_{2}, Y_{1}\right)=0$.

Let D_{i} be a $\Delta^{n}(\ell)$ contained in X_{i}, for each i, and let $\phi: D_{1} \rightarrow D_{2}$ be a simplicial isomorphism. After reversing orientation on both X_{1} and Y_{1} if necessary we may assume that ϕ reverses orientation, and so we may apply Corollary 2.2 to the pairs $\left(X_{1}, D_{1}\right)$ and (X_{2}, D_{2}). We label the resulting spheres $P_{0}, \ldots, P_{\ell^{n}}$ as in the statement of the corollary, and following Flapan the equation

$$
\left[X_{1}\right]+\left[X_{2}\right]+\sum_{j=0}^{\ell^{n}}\left[P_{j}\right]=0
$$

holds in the $n^{\text {th }}$ homology group $H_{n}\left(\mathbb{R}^{2 n+1}-Y_{2} ; \mathbb{Z}\right)$.
By our assumption that $\ell k\left(X_{1}, Y_{2}\right)=0$ we have $\left[X_{1}\right]=0$ in $H_{n}\left(\mathbb{R}^{2 n+1}-Y_{2} ; \mathbb{Z}\right)$, so

$$
0<p=\left[X_{2}\right]=-\sum_{j=0}^{\ell^{n}}\left[P_{j}\right] .
$$

The right hand side consists of $\ell^{n}+1>p$ terms, so for some index q we must have $\left[P_{q}\right] \geq 0$. We consider two cases, according to whether or not $\left[P_{q}\right]=0$ in $H_{n}\left(\mathbb{R}^{2 n+1}-Y_{1} ; \mathbb{Z}\right)$.

If $\left[P_{q}\right.$] is nonzero in $H_{n}\left(\mathbb{R}^{2 n+1}-Y_{1} ; \mathbb{Z}\right)$ then we construct L from P_{q} and X_{2} by deleting the interior of the disc $X_{2} \cap P_{q}$. L is the connected sum of the n-spheres P_{q} and X_{2}, and so is itself an n-sphere. As a chain we have $L=P_{q}+X_{2}$, and therefore

$$
\begin{array}{ll}
{[L]=\left[P_{q}\right]+\left[X_{2}\right] \geq p} & \text { in } H_{n}\left(\mathbb{R}^{2 n+1}-Y_{2} ; \mathbb{Z}\right) \\
{[L]=\left[P_{q}\right]+\left[X_{2}\right]=\left[P_{q}\right] \neq 0} & \text { in } H_{n}\left(\mathbb{R}^{2 n+1}-Y_{1} ; \mathbb{Z}\right)
\end{array}
$$

So we obtain the desired link by letting $Z=Y_{1}$ and $W=Y_{2}$, and reorienting Z if necessary so that $\ell k(L, Z)$ is positive.

If $\left[P_{q}\right]=0$ in $H_{n}\left(\mathbb{R}^{2 n+1}-Y_{1} ; \mathbb{Z}\right)$ then we construct L from X_{1}, X_{2} and P_{q} by deleting the interiors of the discs $X_{i} \cap P_{q}$. Clearly, L is again an n-sphere. As a chain we have $L=X_{1}+P_{q}+X_{2}$, and therefore

$$
\begin{array}{ll}
{[L]=\left[X_{1}\right]+\left[P_{q}\right]+\left[X_{2}\right]=\left[P_{q}\right]+\left[X_{2}\right] \geq p} & \text { in } H_{n}\left(\mathbb{R}^{2 n+1}-Y_{2} ; \mathbb{Z}\right) \\
{[L]=\left[X_{1}\right]+\left[P_{q}\right]+\left[X_{2}\right]=\left[X_{1}\right] \geq 1} & \text { in } H_{n}\left(\mathbb{R}^{2 n+1}-Y_{1} ; \mathbb{Z}\right)
\end{array}
$$

So we obtain the desired link by letting $Z=Y_{1}$ and $W=Y_{2}$.
In every case above Z was equal to either X_{1} or Y_{1}, and W was equal to either X_{2} or Y_{2}. To complete the proof we must show that L contains a triangulated n-simplex of side length at least $\lfloor n \ell /(n+1)\rfloor$. If $q=0$ then L contains D_{2} and we are done, and otherwise L contains $D_{2} \backslash\left(X_{2} \cap P_{q}\right)$ and we are done by Lemma 7.1.

Lemma 7.3 Let $L \cup Z \cup W$ be a 3-component link contained in some embedding of K_{N}^{n} in $\mathbb{R}^{2 n+1}$, and suppose that for some orientation of $L \cup Z \cup W$ we have $\ell k(L, Z)=p_{1}>0, \ell k(L, W)=p_{2}>0$. Suppose that Z and W contain triangulated simplices Δ_{Z} and Δ_{W} of side length ℓ, with $\ell^{n} \geq p_{1}+p_{2}$, and that there is an orientation reversing simplicial isomorphism $\phi: \Delta_{Z} \rightarrow \Delta_{W}$. Then K_{N}^{n} contains an n-sphere J disjoint from L such that
(1) $\quad \ell k(L, J) \geq p_{1}+p_{2}$ for some orientation of $L \cup J$;
(2) J contains a triangulated n-simplex of side length at least $\lfloor n \ell /(n+1)\rfloor$.

Proof As in the proof of Lemma 7.2 we apply Corollary 2.2 to the pairs $\left(Z, \Delta_{Z}\right)$ and $\left(W, \Delta_{W}\right)$, obtaining spheres $P_{0}, \ldots, P_{\ell^{n}}$. In the homology group $H_{n}\left(\mathbb{R}^{2 n+1}-L ; \mathbb{Z}\right)$ we have the equation

$$
[Z]+[W]+\sum_{j=0}^{\ell^{n}}\left[P_{j}\right]=0
$$

so that

$$
p_{1}+p_{2}=[Z]+[W]=-\sum_{j=0}^{\ell^{n}}\left[P_{j}\right] .
$$

As in the proof of Lemma 7.2 above, the right-hand side has $\ell^{n}+1>p_{1}+p_{2}$ terms, so there must be an index q such that $\left[P_{q}\right] \geq 0$. Let J be the n-sphere obtained from Z, P_{q} and W by deleting the interiors of the discs $P_{q} \cap Z$ and $P_{q} \cap W$. Then J is disjoint from L by Remark 2.3, and as a chain $J=Z+P_{q}+W$, so

$$
[J]=[Z]+\left[P_{q}\right]+[W] \geq p_{1}+p_{2}
$$

in $H_{n}\left(\mathbb{R}^{2 n+1}-L ; \mathbb{Z}\right)$. Condition (2) above holds by the same argument as in Lemma 7.2, and the result follows.

Combining Lemmas 7.2 and 7.3 we obtain the following:
Corollary 7.4 Let $X_{1} \cup Y_{1} \cup X_{2} \cup Y_{2}$ be a 4-component link contained in some embedding of K_{N}^{n} in $\mathbb{R}^{2 n+1}$. Suppose that
(1) for some orientation of $X_{1} \cup Y_{1} \cup X_{2} \cup Y_{2}$ we have $\ell k\left(X_{1}, Y_{1}\right) \geq 1$ and $\ell k\left(X_{2}, Y_{2}\right)=p \geq 1$;
(2) each component contains a triangulated n-simplex of side length ℓ with $\ell^{n} \geq 2 p$;
(3) either $n \not \equiv 0 \bmod 4$, or X_{1} and Y_{1} each contain two such triangulated n simplices, one of each possible orientation.

Then K_{N}^{n} contains disjoint n-spheres L and J, each containing a triangulated $n-$ simplex of side length at least $\lfloor n \ell /(n+1)\rfloor$, and such that $\ell k(L, J) \geq p+1$.

Proof The hypotheses of Lemma 7.2 are satisfied, so we obtain a three component link $L \cup Z \cup W$ satisfying the conditions given in that Lemma. These conditions imply the hypotheses of Lemma 7.3, except perhaps the condition that $\ell^{n} \geq p_{1}+p_{2}$ and the condition that ϕ may be chosen to reverse orientation.

If the hypothesis $\ell^{n} \geq p_{1}+p_{2}$ does not hold then we must have $p_{1}+p_{2}>2 p$, which implies $p_{i} \geq p+1$ for some i. So if this occurs we are done by simply letting J be either Z or W, as appropriate.

To see that the condition on ϕ is satisfied we use our third hypothesis above. If $n \not \equiv 0 \bmod 4$ then $\Delta^{n}(\ell)$ has an orientation reversing symmetry, and otherwise Z is equal to either X_{1} or Y_{1}, and so contains a $\Delta^{n}(\ell)$ of each orientation. We may therefore choose Δ_{Z} and Δ_{W} to have opposite orientations, and apply Lemma 7.3 to get the desired result.

7.2 Theorem 1.3, revisited

Using the results of the previous section we reprove Theorem 1.3 in the following weakened form.

Theorem 7.5 Given $\lambda \geq 2$, let $\mu=\lceil\sqrt[n]{2(\lambda-1)}\rceil$, and suppose that N is sufficiently large that K_{N}^{n} contains disjoint copies of $K_{2 n+4}^{n}\left(2^{i} \mu\right)$ for $i=0, \ldots, \lambda-2$, and an additional disjoint copy of $K_{2 n+4}^{n}\left(2^{\lambda-2} \mu\right)$. Then every embedding of K_{N}^{n} in $\mathbb{R}^{2 n+1}$ contains a two-component link $L \cup J$ such that, for some orientation of the components, $\ell k(L, J) \geq \lambda$.

Proof Given an embedding of K_{N}^{n} in $\mathbb{R}^{2 n+1}$, let $C_{1}, \ldots, C_{\lambda}$ be disjoint subcomplexes of K_{N}^{n} such that C_{1} is a $K_{2 n+4}^{n}\left(2^{\lambda-2} \mu\right)$, and C_{i} is a $K_{2 n+4}^{n}\left(2^{\lambda-i} \mu\right)$ for $i=2, \ldots, \lambda$. Each C_{i} is homeomorphic to $K_{2 n+4}^{n}$, and so by Taniyama [19] contains a two component link $S_{i} \cup T_{i}$ which we may orient such that $\ell k\left(S_{i}, T_{i}\right) \geq 1$. We will use these to inductively construct links $L_{i} \cup J_{i}$ such that
(1) $\quad \ell k\left(L_{i}, J_{i}\right) \geq i$;
(2) all vertices of $L_{i} \cup J_{i}$ lie in $C_{1} \cup \cdots \cup C_{i}$ (and so $L_{i} \cup J_{i}$ is disjoint from C_{j} for $j>i$);
(3) for $i<\lambda$ the spheres L_{i} and J_{i} each contain a triangulated n-complex of side length at least $2^{\lambda-i-1} \mu$.

The link $L_{\lambda} \cup J_{\lambda}$ is then the required link.
Each component S_{i}, T_{i} is isomorphic to the boundary of a triangulated $(n+1)-$ simplex of side length equal to that of C_{i}, and as such has $n+2$ faces which are each a triangulated n-simplex of this same side length. For the base case we may therefore simply let $L_{1} \cup J_{1}=S_{1} \cup T_{1}$.

Given $1 \leq i \leq \lambda-1$, suppose that we have constructed $L_{i} \cup J_{i}$ but not yet $L_{i+1} \cup J_{i+1}$. Let $\ell k\left(S_{i}, T_{i}\right)=p \geq i$. If $p \geq \lambda$ then we simply set $L_{j} \cup J_{j}=S_{i} \cup T_{i}$ for $j \geq i$ and the construction is complete, so suppose that $p<\lambda$. Then every component of the link $S_{i+1} \cup T_{i+1} \cup L_{i} \cup J_{i}$ contains a triangulated n-simplex of side length at least $\ell=2^{\lambda-i-1} \mu \geq \mu$, and ℓ satisfies $\ell^{n} \geq \mu^{n} \geq 2(\lambda-1) \geq 2 p$. Moreover, as the boundary of a $K_{n+1}^{n}(\ell)$, each component of $S_{i+1} \cup T_{i+1}$ must contain at least one $\Delta^{n}(\ell)$ face of each orientation. Working entirely within the K_{M}^{n} spanned by the vertices of $C_{1} \cup \cdots \cup C_{i+1}$ we may therefore apply Corollary 7.4 to obtain a 2-component link $L_{i+1} \cup J_{i+1}$ satisfying $\ell k\left(L_{i+1}, J_{i+1}\right) \geq p+1 \geq i+1$.

Each component of $L_{i+1} \cup J_{i+1}$ contains a triangulated n-simplex of side length at least

$$
\left\lfloor\frac{n \ell}{n+1}\right\rfloor=\left\lfloor\frac{2^{\lambda-i-1} n \mu}{n+1}\right\rfloor .
$$

Now $n /(n+1) \geq \frac{1}{2}$, so for $i<\lambda-1$ the quantity $2^{\lambda-i-2} \mu$ is an integer satisfying

$$
\frac{2^{\lambda-i-1} n \mu}{n+1} \geq \frac{2^{\lambda-i-1} \mu}{2}=2^{\lambda-i-2} \mu,
$$

and therefore

$$
\left\lfloor\frac{n \ell}{n+1}\right\rfloor=\left\lfloor\frac{2^{\lambda-i-1} n \mu}{n+1}\right\rfloor \geq 2^{\lambda-i-2} \mu=2^{\lambda-(i+1)-1} \mu .
$$

This establishes condition (3) above when $i+1<\lambda$, completing the inductive step.

References

[1] JH Conway, CM Gordon, Knots and links in spatial graphs, J. Graph Theory 7 (1983) 445-453 MR722061
[2] E Flapan, Intrinsic knotting and linking of complete graphs, Algebr. Geom. Topol. 2 (2002) 371-380 MR1917057
[3] E Flapan, B Mellor, R Naimi, Intrinsic linking and knotting are arbitrarily complex, Fund. Math. 201 (2008) 131-148 MR2448416
[4] E Flapan, J Pommersheim, J Foisy, R Naimi, Intrinsically n-linked graphs, J. Knot Theory Ramifications 10 (2001) 1143-1154 MR1871222
[5] T Fleming, Intrinsically linked graphs with knotted components, J. Knot Theory Ramifications 21 (2012) 1250065, 10 MR2911081
[6] T Fleming, A Diesl, Intrinsically linked graphs and even linking number, Algebr. Geom. Topol. 5 (2005) 1419-1432 MR2171815
[7] M H Freedman, V S Krushkal, P Teichner, Van Kampen's embedding obstruction is incomplete for 2-complexes in \mathbf{R}^{4}, Math. Res. Lett. 1 (1994) 167-176 MR1266755
[8] A Hatcher, Algebraic topology, Cambridge Univ. Press (2002) MR1867354
[9] L Lovász, A Schrijver, A Borsuk theorem for antipodal links and a spectral characterization of linklessly embeddable graphs, Proc. Amer. Math. Soc. 126 (1998) 1275-1285 MR1443840
[10] S A Melikhov, Combinatorics of embeddings arXiv:1103.5457
[11] S A Melikhov, The van Kampen obstruction and its relatives, Tr. Mat. Inst. Steklova 266 (2009) 149-183 MR2603266
[12] S Negami, Ramsey-type theorems for spatial graphs and good drawings, J. Combin. Theory Ser. B 72 (1998) 53-62 MR1604681
[13] S Negami, Note on Ramsey theorems for spatial graphs, Theoret. Comput. Sci. 263 (2001) 205-210 MR1846928
[14] J L Ramírez Alfonsín, Knots and links in spatial graphs: a survey, Discrete Math. 302 (2005) 225-242 MR2179645
[15] H Sachs, On a spatial analogue of Kuratowski's theorem on planar graphs - an open problem, from: "Graph theory", (M Borowiecki, J W Kennedy, M M Sysło, editors), Lecture Notes in Math. 1018, Springer, Berlin (1983) 230-241 MR730653
[16] J Segal, S Spież, Quasi embeddings and embeddings of polyhedra in \mathbf{R}^{m}, from: "Proceedings of the Tsukuba Topology Symposium", (Y Kodama, editor), volume 45 (1992) 275-282 MR1180814
[17] A B Skopenkov, Embedding and knotting of manifolds in Euclidean spaces, from: "Surveys in contemporary mathematics", (N Young, Y Choi, editors), London Math. Soc. Lecture Note Ser. 347, Cambridge Univ. Press (2008) 248-342 MR2388495
[18] M Skopenkov, Embedding products of graphs into Euclidean spaces, Fund. Math. 179 (2003) 191-198 MR2029321
[19] K Taniyama, Higher dimensional links in a simplicial complex embedded in a sphere, Pacific J. Math. 194 (2000) 465-467 MR1760794

Institute of Fundamental Sciences, Massey University
Private Bag 11222, Palmerston North 4442, New Zealand
C.Tuffley@massey.ac.nz
http://www.massey.ac.nz/~ctuffley/

Received: 8 February 2012 Revised: 17 January 2013

