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Unstable splittings
for real spectra

NITU KITCHLOO

W STEPHEN WILSON

We show that the unstable splittings of the spaces in the Omega spectra representing
BP , BP hni and E.n/ from [12] may be obtained for the real analogs of these spectra
using techniques similar to those in [2]. Explicit calculations for ER.2/ are given.

55N20, 55N22; 55N91

1 Introduction

We are concerned with the Z=.2/–equivariant (think complex conjugation) spaces (and
their homotopy fixed points) associated with the pD 2 spectra BP , BP hni and E.n/.
Recall that the homotopy of BP is:

BP� Š Z.2/Œv1; v2; : : :� with degree vn D 2.2n
� 1/:

Likewise,

BP hni� Š Z.2/Œv1; v2; : : : ; vn� and E.n/� Š v
�1
n BP hni�:

We need some notation before we begin. A standard spectrum is just denoted E and
a real spectrum is denoted by E. It is a bigraded (ie RO.Z=.2//–graded) family of
Z=.2/–spaces E.a;b/ , where the indexing is given by aC b˛ , where ˛ is the sign
representation in RO.Z=.2//. The homotopy fixed-point space of the Z=.2/–action on
E.a;b/ is denoted by ER.a;b/ . The collection E.a;0/ forms a Z=.2/–equivariant Omega
spectrum and ER is the corresponding fixed-point spectrum with Omega spectrum
ERa D ER.a;0/ .

In the second author’s [12], the homotopy type of the spaces in the Omega spectrum
for BP was determined. A crucial step was showing that:

BPhni2.2n�1/ Š BPhni4.2n�1/ �BPhn� 1i2.2n�1/:

For example,
BP0 Š

Y
k�0

BPhki2.2k�1/:
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1054 Nitu Kitchloo and W Stephen Wilson

It follows that, for m< 2n ,

.1:1/ E.n/2m Š BPhni2mC2.2n�1/ �

Y
k�0

BPhn� 1i2m�2k.2n�1/;

where
Q

denotes the restricted product given by the colimit of finite products.

These results were all reproven using unstable operations in Boardman, Johnson and
the second author’s [1], but the easy direct proof was finally found by Boardman and
the second author [2]. This last approach carries over to the bigraded equivariant case,
and we obtain:

Theorem 1.2 There is an equivariant splitting of spaces:

BP hni.2n�1/.1C˛/ Š BP hni2.2n�1/.1C˛/ �BP hn� 1i.2n�1/.1C˛/:

Theorem 1.3 There is an equivariant decomposition of H –spaces:

BP0 Š

Y
k�0

BP hki.2k�1/.1C˛/:

Taking the homotopy fixed points, this gives a decomposition of the zeroth space in the
Omega spectrum for BPR, the real BP .

Theorem 1.4 Let m< 2n , then there is an equivariant splitting:

E.n/m.1C˛/ Š BP hni.2n�1Cm/.1C˛/ �

Y
k�0

BP hn� 1i.m�k.2n�1//.1C˛/:

In the case of nD 2, with period 6, of Equation (1.1), we get

.1:5/ E.2/0 Š BPh2i6 �
Y
k�0

.Z.2/ �BU.2//:

In [3], Don Davis proves a major nonimmersion theorem for real projective spaces
using the even part of the BP h2i cohomology. All of his spaces are v2 –torsion free, so
this is equivalent to using the theory E.2/2�.� /. Since his new information does not
come from complex K–theory, it must be contained in the classifying spaces BPh2i2k

for k D 1; 2; 3.

Let ER.n/ be the homotopy fixed-point spectrum associated with E.n/. Where E.n/

has periodicity 2.2n � 1/, ER.n/ has periodicity 2nC2.2n � 1/ (see our [7]). In
particular, ER.2/ is 48–periodic.
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ER.2/16�.� / was used by us [9; 10] to improve some of Davis’s nonimmersions
slightly. The result analogous to Equation (1.5) from the splitting of Theorem 1.4 gives,
for a space Y 0, the homotopy fixed points of BP h2i3.1C˛/ :

ER.2/0 Š Y 0�
Y
k�0

.Z.2/ �BO.2//:

The space Y 0 has lowest homotopy in degree 3. We see below that it splits as the
product of two spaces. It is beyond what we do in this paper, but this split is as the
product of a space Y 00 with lowest homotopy degree 6, and the space that you get by
killing 2 times the generator of H 4.BSpin/.

We have one last splitting:

Theorem 1.6 Let m< 2n , there is an equivariant equivalence

�2nC2.2n�1�1/BP hni.2n�2Cm/.1C˛/

Š BP hni.2n�1Cm/.1C˛/ �

Y
0�k�2n�2

BP hn� 1i.m�k.2n�1//.1C˛/:

Running through this from m D 1 to m D 2n � 1 goes through a multiple of the
complete periodicity.

In the case of the homotopy fixed points for the nD 2 case with 48–periodicity, the
theorem gives us spaces Y 1 and Y 2, the homotopy fixed points for BP h2i4.1C˛/ and
BP h2i2.1C˛/ respectively, such that:

�16Y 0Š Y 1�BO � .Z.2/ �BO/� .Z.2/ �BO/;

where Y 1 has lowest degree element in degree 4. We also have

�16Y 1Š Y 2� .Z.2/ �BO/� .Z.2/ �BO/;

where the lowest degree element in Y 2 is in degree 2 and

Y 2Š Y 20 �BSO;

where Y 20 is the homotopy fixed points for BP h2i5.1C˛/ with lowest degree homotopy
in degree 5. Finally,

�16Y 2Š Y 0� .Z.2/ �BO/� .Z.2/ �BO/� .Z.2/ �BO/:

All put together we have:

�48Y 0Š Y 0�

8Y
kD1

.Z.2/ �BO/:

Algebraic & Geometric Topology, Volume 13 (2013)



1056 Nitu Kitchloo and W Stephen Wilson

This begs the question, what are the splittings for �8Y 0, �8Y 1, and �8Y 2? Although
our description of the homotopy of Y 0 suggests a conjecture, we do not pursue this
here.

Since our new nonimmersion results certainly don’t come from K–theory, the new
information is contained in the spaces Y 0, Y 1 and Y 2.

In [8], we computed the homology of the spaces ER.n/2nC2k and all of the homotopy
fixed-point spaces in all of the splitting theorems listed so far. In the case of ER.2/

we went further and computed the homology of all 48 spaces in the Omega spectrum.
We can read off the homology of Y 0�Y 1�Y 2 with ease from that computation and
do so in Section 7.

The homotopy of ER.2/ is computed in Hu and Kriz [6] and our [7], but best described
for our purposes in [8, Proposition 2.1]. We reorganize the description of this homotopy
so the homotopy of all the BO is visible, even as the spaces are looped down. There is
very little “core” homotopy left that never shows up in a BO , and this is completely
described in Section 6.

It is worth pointing out that there is compelling evidence that suggests that our spectrum
ER.2/ is equivalent to the spectrum TM.3/ (topological modular forms with a level 3–
structure) constructed by Mahowald and Rezk [11]. In particular, the unstable splittings
studied in our paper may have interesting geometric content.

Before we begin with the actual technical results, we mention a word about our notation.
We have chosen to be consistent with [6] in our notation. Consequently, in the sequel ˛
will denote the sign representation of Z=.2/, and � will denote the “shift” operator that
suspends a spectrum by the virtual representation ˛�1. Unfortunately, this notation is
in unavoidable conflict with Hill and Hopkins’s [4], where � is used to denote the sign
representation.

The organization of the paper is as follows. We first prove the main technical result
we need. Then we have three sections proving all the splitting theorems. Section 6
describes the homotopy and Section 7 the homology of interest. Finally, there is a brief
appendix proving some results in a form that we need for the main technical result.

2 Proof of the main technical theorem

Definition 2.1 [8] A Z=.2/–space X is said to be projective if:

(1) H�.X IZ/ is of finite type.

(2) X is homeomorphic to
W

I .CP1/^kI for some weakly increasing sequence of
integers kI , with the Z=.2/–action given by complex conjugation.
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Definition 2.2 A Z=.2/–equivariant H –space Y is said to have the projective property
if there exists a projective space X , along with a Z=.2/–equivariant map f W X ! Y ,
such that H�.Y IZ.2// is generated as an algebra by the image of f .

Spaces with the projective property are not rare because many spaces have homology
generated by the image of elements coming from complex projective space. Our
examples include MUk.1C˛/ , BPk.1C˛/ and BP hnik.1C˛/ , where this last is only for
k < 2nC1 . For these diagonal spaces (as part of a bigraded real spectrum), we have the
following theorem:

Theorem 2.3 Let Y be a space with the projective property. Given any integer
n� 0, let E be the MU –module spectrum BP or BP hni. Then the following map is
surjective:

MUaCb˛
.2/

.Y / �! EaCb˛.Y /; a� b < 2nC1;

where MU.2/ denotes the 2–localization of the spectrum.

The above theorem allows us to prove equivariant versions of all classical splitting
results one has for spaces (with the projective property) that appear in the Omega
spectra representing BP ;BP hni and E.n/.

Proof By [6], BP is an equivariant retract of MU.2/ . So we only need to establish
the theorem for E D BP hni. Furthermore, from Theorem A.3 in the appendix, we
may replace E by the completion bE D Map.EZ=.2/C;E/ in the degrees we are
interested in.

Now recall that by definition of the projective property, there is a projective space
X so that there is a Z=.2/–equivariant map f W X ! Y , whose image generates
the homology. It follows that H�.Y;Z.2// is free, and the Z=.2/–equivariant map
�†X ! Y is surjective in homology. The Atiyah–Hirzebruch spectral sequence
now shows that M U�.�†X / and M U�.Y / are free M U�–modules, and the map
M U�.�†X / ! M U�.Y / is split surjective. The next step is to pick equivariant
representatives for the splitting.

Let Z denote the Z=.2/–CW complex �†X . Now Z admits the equivariant James
filtration, which is known to split (equivariantly) into the wedge of spectra of the form
X^k . Now consider the spectral sequence constructed using the cellular filtration of
Z induced by the canonical (equivariant) cellular filtration of the projective space X ,
and converging to MU�;�.Z/. Since the James filtration of Z splits equivariantly,
and X is projective, all generators in the E2 –term above represent permanent cycles,
and therefore the above spectral sequence collapses. It follows that MU�;�.Z/ is
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a free MU�;�–module, or equivalently, MU ^Z is a free MU –module spectrum
on a generating set of finite type: MU ^Z D

W
i †

ki .1C˛/MU , where fk1; k2; : : :g

is a weakly increasing sequence of nonnegative integers. We may pick a suitable
subsequence fˇ1; ˇ2; : : :g in fk1; k2; : : :g so that we get a Z=.2/–equivariant map_

†ˇi .1C˛/MU �! Y ^MU

which is a (nonequivariant) equivalence. On freeing up our spectra, it follows that we
have an equivariant equivalence of MU –module spectra:_

†ˇi .1C˛/ ^EZ=.2/C ^MU �!EZ=.2/C ^Y ^MU :

Now let n � 0 be any integer, and let E be the MU –module spectrum MU.2/ or
BP hni. Mapping out of the above equivalence in the category of MU –module spectra,
we observe that in degrees aC b˛ for a� b < 2nC1 we have

E�;� .Y /D yE�;�.Y /D E�;�hh
1; 
2; : : :ii;

where 
i is the generator in degree ˇi.1C˛/. In particular, it follows that MUaCb˛
.2/

.Y /

surjects onto EaCb˛
.2/

.Y / for a� b < 2nC1 .

Remark 2.4 Let E.n/D BP hniŒv�1
n � be the equivariant Johnson–Wilson spectrum.

Then the above proof also shows that the map

MU.2/Œv
�1
n ��;�.Y / �! E.n/�;�.Y /

is surjective in all bidegrees. From this it follows easily that E.n/ splits off unstably
from the equivariant E–infinity ring spectrum MU.2/Œv�1

n �.

3 Splitting: BPhni .2n�1/.1C˛/

We will use the main theorem of the previous section to construct unstable splittings of
various spaces that have the projective property. In this section we prove Theorem 1.2.

Proof of Theorem 1.2 Consider the equivariant fibration:

BPn2.2n�1/.1C˛/

vn
�! BP hni.2n�1/.1C˛/ �! BP hn� 1i.2n�1/.1C˛/:

Since BP hn�1i.2n�1/.1C˛/ is a space with the projective property, we know from the
main theorem that the following map is surjective:

BP hni.2
n�1/.1C˛/.BP hn� 1i.2n�1/.1C˛//

�! BP hn� 1i.2
n�1/.1C˛/.BP hn� 1i.2n�1/.1C˛//:
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This implies that there is a section � W BP hn � 1i.2n�1/.1C˛/ ! BP hni.2n�1/.1C˛/

lifting the identity map on BP hn� 1i.2n�1/.1C˛/ inducing a splitting of the form we
wanted.

Remark 3.1 Notice that the above splitting is not as H –spaces. However, for all
nontrivial loopings of the form .r C s˛/ for r; s � 0, this splitting yields splittings as
H –spaces.

4 The case of BP 0

Let us fix splittings as H –spaces,

BP hni0 Š BP hni.2n�1/.1C˛/ �BP hn� 1i0;

that were constructed in the previous section. We can now prove Theorem 1.3 from the
introduction.

Proof of Theorem 1.3 Consider commutative diagrams of the form:

BP0

D

��

// BP hni0

��
BP0

// BP hn� 1i0

Notice that the horizontal maps get increasingly connective as n increases. In addition,
the right vertical maps split by the previous section. It follows on taking homotopy
inverse limits that one has a decomposition of H –spaces:

BP0 Š

Y
k�0

BP hki.2k�1/.1C˛/:

5 The case of E.n/m.1C˛/

In this section we prove Theorems 1.4 and 1.6 from the introduction.

Proof of Theorem 1.4 Consider the commutative diagram with a split top horizontal
sequence:

BP hni.2nCm�1/.1C˛/

D

��

vn // BP hnim.1C˛/

vn

��

// BP hn� 1im.1C˛/

BP hni.2nCm�1/.1C˛/

v2
n // BP hni.m�2nC1/.1C˛/
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Notice also that the vertical map given by multiplication by vn splits with cokernel
given by BP hn� 1i.m�2nC1/.1C˛/ . It follows that the bottom horizontal map is also
split with cokernel given by BP hn� 1im.1C˛/ �BP hn� 1i.m�2nC1/.1C˛/ .

Continuing the diagram vertically, with increasing powers of vn , and taking colimits,
we therefore have an equivariant splitting:

E.n/m.1C˛/ Š BP hni.2nCm�1/.1C˛/ �

Y
k�0

BP hn� 1i.m�k.2n�1//.1C˛/:

As noted earlier, for m D 2n � 1, this splitting is not as H –spaces. However, all
nontrivial loops on that splitting do yield a splitting as H –spaces.

The proof of Theorem 1.4 lets us identify the splitting in terms of homotopy. In particular,
the proof shows that the following map given by multiplication by vi

n is split:

.5:1/ BP hni.2nCm�1/.1C˛/ �! BP hni.m�i.2n�1//.1C˛/

�!

Y
0�k�i

BP hn� 1i.m�k.2n�1//.1C˛/:

In addition, the image

��BP hni.m�i.2n�1//.1C˛/ �! ��E.n/m.1C˛/

is exactly
v�i

n ��BP hni \��E.n/m.1C˛/:

It follows that:

Theorem 5.2 Under the splitting given in the previous theorem, the image

��

�
BP hni.2nCm�1/.1C˛/ �

Y
0�k�i

BP hn� 1i.m�k.2n�1//.1C˛/

�
�! ��E.n/m.1C˛/

is exactly
v�i

n ��BP hni \��E.n/m.1C˛/:

In particular, ��BP hn�1i.m�i.2n�1//.1C˛/ is supported on elements in ��E.n/m.1C˛/
with vn –exponent exactly �i .

Having identified the splitting in homotopy, we can analyze the periodicity of the space
E.n/0 . For this, let �D 22nC1�2nC2C1, and recall that there is an invertible element
y.n/ 2 ���1E.n/�.1C˛/ [7]. This element is given by y.n/D v2n�1

n ��2nC1.2n�1�1/ .
An equivariant equivalence E.n/m.1C˛/ ! ���1E.n/.m�1/.1C˛/ is obtained from
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multiplication by y.n/. Since the vn exponent of y.n/ is exactly 2n � 1, we derive
the useful consequence of the above theorem, namely we have proven Theorem 1.6 of
the introduction.

6 The homotopy of ER.2/

In the computation of the homotopy of ER.2/ by Hu and Kriz [6] and ourselves [7],
the only concern was for the degree mod 48, but that no longer suffices. The homotopy
of the fixed-point spaces for the bigraded object is generated by:

v0.1/ in degree 2˛� 2,

v0.2/ in degree 4˛� 4,

v0.3/ in degree 6˛� 6,

v0.0/D 2 in degree 0,

v1.0/ in degree ˛C 1,

v1.1/ in degree 5˛� 3,

v2 in degree 3˛C 3,

a in degree �˛,

�8 in degree 8˛� 8.

Both v2 and �8 are invertible and we define the invertible:

y.2/D y D v3
2�
�8 in degree 17C˛:

To get the homotopy of ER.2/ we need the ˛–coordinate equal to zero. We can move
our generators there using y and rename them in the process. We capture their degrees
doing this:

y�2v0.1/D ˛1 in degree � 36;

y�4v0.2/D ˛2 in degree � 72;

y�6v0.3/D ˛3 in degree � 108;

y�1v1.0/D ˛ in degree � 16;

y�5v1.1/D w in degree � 88;

y�3v2 D g in degree � 48;

yaD x in degree 17:

The element g is our periodicity operator. Apologies for using ˛ for two different
things.

The relations as written down in [8] must be modified to take into account the real
degrees as opposed to just the mod 48 degrees. The relations are given by:

0D 2x D x7
D x3w D x3˛ D x˛i ;

˛2
1 D 2˛2;

˛1˛2 D 2˛3;

˛˛1g3
D ˛3w;

w˛2 D 2˛g3;

˛2
2 D 4g3;

˛1˛3 D 4g3;

˛˛2 D 2w;

˛2g3
D w2;

˛2
3 D 2˛2g3;

˛2˛3 D 2˛1g3;

˛˛3 D ˛1w:
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As a module over Z.2/Œ˛;g;g�1�, the homotopy can be described as having generators

1; w; ˛1; ˛3 and ˛2;

with one relation
˛˛2 D 2w;

copies of Z=.2/Œ˛;g;g�1� on generators

x; x2; xw; x2w;

and copies of Z=.2/Œg;g�1� on

x3; x4; x5; x6:

We want to rewrite this using a special element, h D g�1˛3 , of degree 0. Because
g is invertible, we can replace any ˛3 with h. Rewritten using h, we have that the
homotopy of ER.2/ is a Z.2/ on each of

˛jw�gshk ; ˛1˛
j gshk ; ˛3˛

j gshk ; ˛2gs;

where 0� j � 2, 0� � � 1, s 2 Z, k � 0, and a Z=.2/ on each of

xi˛jw�gshk ; 1� i � 2 and xvgs; 3� v � 6;

where j , � , s and k are as above.

It is easy to see (look mod 48) that the elements of degree zero are just the hk , but we
can do much better and write down all elements of nonnegative degrees. Let s; k � 0,
the elements and the degrees of all nonnegative degree elements are as follows:

deg deg

48s g�shk 48sC 24 w˛2g�s�3hk

48sC 1 x˛g�shk 48sC 25 xwg�s�2hk

48sC 2 x2˛2g�shk 48sC 26 x2˛wg�s�2hk

48sC 4 ˛3˛
2g�s�3hk 48sC 28 ˛1˛

2g�s�2hk

48sC 8 wg�s�2hk 48sC 32 ˛g�s�1hk

48sC 9 xw˛g�s�2hk 48sC 33 x˛2g�s�1hk

48sC 10 x2w˛2g�s�2hk 48sC 34 x2g�shk

48sC 12 ˛1g�s�1hk 48sC 36 ˛3g�s�3hk

48sC 16 ˛2g�s�1hk 48sC 40 w˛g�s�3hk

48sC 17 xg�shk 48sC 41 xw˛2g�s�3hk

48sC 18 x2˛g�shk 48sC 42 x2wg�s�2hk

48sC 20 ˛3˛g�s�3hk 48sC 44 ˛1˛g�s�2hk
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There are also elements we call CORE homotopy (still with s � 0):

48sC 3 g1�sx3

48sC 6 g2�sx6

48sC 20 g1�sx4

48sC 24 g�s�2˛2

48sC 37 g1�sx5

We will also need elements we call COREC , where we have the same as the CORE
elements except that s 2 Z.

We note that h times the elements with x3 in them are all zero because of the relation
x3˛ D 0, but that

g�s�2˛2hD 2w˛2g�s�3:

Note also that the non-CORE homotopy is exactly the same as an infinite number of
copies of Z.2/ �BO . Unfortunately, that isn’t how it works.

Going back to the splitting in the nD 2 case, we have:

E.2/0 Š BP h2i3.1C˛/ �
Y
k�0

BP h1i�k3.1C˛/:

First, we note that the homotopy fixed points of E.2/0 is ER.2/0 , the zeroth space
of the Omega spectrum for ER.2/. Next, we note that the homotopy fixed points of
BP h1i�k3.1C˛/ is just Z.2/ �BO .

Letting Y 0 be the homotopy fixed points for BP h2i3.1C˛/ , we have, as in the intro-
duction:

ER.2/0 Š Y 0�
Y
k�0

.Z.2/ �BO/:

The space Y 0 is of particular interest and so we would like to have its homotopy. We
already know its homology from [8], so we know it is 2–connected, so the bottom
homotopy group is a Z=.2/ in degree 3 generated by gx3 .

Each hk , k � 0, must be the generator for a Z.2/ associated with one of the Z.2/�BO .
It is now clear that if we know the homotopy of the Z.2/ �BO associated with 1 (ie
k D 0 above), we get the homotopy of all the others by multiplying by powers of h.
Since Y 0 has no homotopy in degree 1, the Z=.2/ in degree 1 for our Z.2/ �BO

associated with 1 must be x˛ . Likewise for the 2–degree element x2˛2 . The 4–degree

Algebraic & Geometric Topology, Volume 13 (2013)



1064 Nitu Kitchloo and W Stephen Wilson

element is a Z.2/ on ˛3˛
2g�3 . From this we can compute our 8–degree homotopy

element by squaring:

.˛3˛
2g�3/2 D ˛2

3˛
4g�6

D 2˛2g3˛4g�6
D 4w˛3g�3

D 4wg�2h:

The degree 8 element in our first BO is wg�2h. This is our BO periodicity element.
From this we can now find all of the rest of the homotopy of our first BO . The main
thing left to do is compute powers of the periodicity element.

For degree 16 we have

.wg�2h/2 D w2g�4h2
D ˛2g3g�4h2

D ˛2g�1h2:

Continuing in this fashion: in degree 24 we have w˛2g�3h3 ; degree 32, ˛g�1h5 ;
degree 40, w˛g�3h6 , degree 48, g�1h8 .

This sequence had a nice ending. Multiplication by the periodicity element g corre-
sponds to looping down 48 times and takes this 48–degree element to h8 in the 9–th
copy of Z.2/ �BO .

We can now write down all the homotopy generators of our first Z.2/�BO , for k � 0:

deg deg

48k g�kh8k 48kC 24 w˛2g�k�3h8kC3

48kC 1 x˛g�kh8k 48kC 25 xwg�k�2h8kC4

48kC 2 x2˛2g�kh8k 48kC 26 x2˛wg�k�2h8kC4

48kC 4 ˛3˛
2g�k�3h8k 48kC 28 ˛1˛

2g�k�2h8kC4

48kC 8 wg�k�2h8kC1 48kC 32 ˛g�k�1h8kC5

48kC 9 xw˛g�k�2h8kC1 48kC 33 x˛2g�k�1h8kC5

48kC 10 x2w˛2g�k�2h8kC1 48kC 34 x2g�kh8kC6

48kC 12 ˛1g�k�1h8kC2 48kC 36 ˛3g�k�3h8kC6

48kC 16 ˛2g�k�1h8kC2 48kC 40 w˛g�k�3h8kC6

48kC 17 xg�kh8kC3 48kC 41 xw˛2g�k�3h8kC6

48kC 18 x2˛g�kh8kC3 48kC 42 x2wg�k�2h8kC7

48kC 20 ˛3˛g�k�3h8kC3 48kC 44 ˛1˛g�k�2h8kC7

The homotopy of all of the other Z.2/�BO are obtained by taking powers of h times
this.

What remains must be the homotopy of Y 0. This is the CORE and all of the above
for lower powers of h than what is used. This has a nice BO –related description.
Recall the notation bohni for the spectrum obtained from the connective version of
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Z.2/�BO by killing off all of the stable homotopy groups in degrees less than n. The
stable homotopy of boD boh0i is the same as the unstable homotopy of Z.2/ �BO .

We can now read off a description of the homotopy of the zeroth space of ER.2/

from the above. We have already written down the homotopy for all of the copies of
Z.2/ �BO , so all we need now is the homotopy of Y 0. We first take every element
that is divisible by h8kC1 and we see, using Bott periodicity and the degree of g , that
there is an isomorphism

��boh48kC 8i Š†48k��boh8i Š g�k��boh8i

and, for the k D 0 case, h multiplied times ��boh8i maps this homotopy injectively
into our first: Z.2/�BO . The bottom class of ��boh8i in degree 8 is wg�2 and maps
by h to the 8 degree class wg�2h in that first Z.2/ �BO listed above. Furthermore,
the 48–degree homotopy would be g�1h7 (we divide all the higher terms by one h),
so looping 48 times, ie multiplying by g , gives us h7 , and we see that the homotopy
we are looking at in this instance becomes the homotopy of the Z.2/ �BO associated
with h7 .

Continuing, dividing by h8kCi , 0 < i � 8, and using the same notation where g�k

keeps track of our degrees for us with k � 0, we have, using the above notation:

Theorem 6.1

��.Y 0/Š CORE�
k�0Y

g�k
�
��boh8i ���boh12i ���boh17i ���boh25i

���boh32i ���boh34i ���boh42i ���boh48i
�
:

Notice that by Bott periodicity there are not so many different types as this seems
to imply. The homotopy associated with 48kC 8, 48kC 32, and 48kC 48 are just
suspensions of the homotopy of bo. 48kC12 is just boh4i, and 48kC17 and 48kC25

are boh1i. Finally, 48kC 34 and 48kC 42 are associated with boh2i.

We keep the notation as is though because h maps these homotopy groups injectively
following this sequence:

� � � // g�k��boh48i // g�k��boh42i // g�k��boh34i //

// g�k��boh32i // g�k��boh25i // g�k��boh17i //

// g�k��boh12i // g�k��boh8i // g�kC1��boh48i //

// g�kC1��boh42i // g�kC1��boh34i // g�kC1��boh32i // � � �
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In the formula for the homotopy of Y 0, we can replace CORE with COREC and let
k 2 Z and we have the homotopy for all of ER.2/. The copies of Z.2/ �BO are
associated with k < 0.

7 ER.2/ and homology

In [8], the complete computation for the homology of all spaces in the Omega spectrum
for ER.2/ is carried out. We would like to have the homology of the spaces Y 0, Y 1

and Y 2. These are easy to read off of the results of [8]. We need to review some
notation.

We are only interested in the 0, �16 and �32 spaces in the Omega spectrum. The
dimension zero elements are free over Z.2/ on Œ˛i � and Œgk � with i � 0 and k 2 Z.

We have elements b2i D b.i/ 2H2iC1E.2/2 that come from the complex projective
space elements bj . We have corresponding elements defined using the invertible
element y.2/:

ˇ2i D ˇ.i/ 2H2i ER.2/�16 DH2i ER.2/1C˛:

The ˇ.i/ all come from the real projective space elements ˇ2i .

Let J D .j0; j1; : : :/ have ji � 0 with only a finite number not equal to zero. Let �i

be the sequence with 1 in the i –th place and zeros everywhere else. We define

ˇJ
D ˇ

j0

.0/
ˇ

j1

.1/
ˇ

j2

.2/
� � � :

Recall that in a Hopf ring we have two products, the circle product coming from
the ring structure and the star product coming from the Hopf algebra structure. We
suppress the circle from our notation so the above products are circle products. We
define ˇJ Œ˛i � Œgk � to be allowable if all jk < 2 when i > 0 and J ¤ 2�i1

C4�i2
CJ 0 ,

i1 � i2 , when i D 0 (where each j 0
k
� 0 as usual). Define the length of J to be

`.J /D†ji .

From [8, (2.6)] we have (where P denotes the polynomial algebra mod 2):

.7:1/ H�ER.2/�16� ' P ŒˇJ Œ˛i � Œgk � �; ˇJ Œ˛i � Œgk � allowable.

We are only interested in the 0, �16 and �32 spaces, and, using hD ˛3g�1 we can
rewrite this. Consider first the positive degree elements:

H�ER.2/0 ' P ŒˇJ Œ˛3�� � Œg�a�1� Œhs � �;

where ˇJ Œ˛3�� � Œg�a�1� Œhs � is allowable and `.J /D 3aC � , a� 0, 0< � � 3, s � 0.
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Whenever there is an ˛ , either because s > 0 or 3� � > 0, we have ji < 2 from the
definition of allowable. If s > 0 we have exactly one element in each degree, giving us
precisely the homology of the BO associated with hs . If s D 0 we get the homology
of one more BO when using all of these J with ji < 2. What is left must be the
homology of Y 0, and that is:

H�.Y 0/Š P ŒˇJ Œg�a��; J allowable, `.J /D 3a, some ji > 1.

Note that the lowest degree element is, indeed, in degree 3: ˇ3
.0/
Œg�1�. A similar

analysis gives:

H�.Y 1/Š P ŒˇJ Œg�a��; J allowable, `.J /D 3aC 1, some ji > 1.

H�.Y 2/Š P ŒˇJ Œg�a��; J allowable, `.J /D 3aC 2, some ji > 1.

For H�.Y 1/, the lowest degree element is in degree 4 and is ˇ4
.0/Œg

�1�. For H�.Y 2/,
the lowest degree element is in degree 2, associated with BSO, and is ˇ2

.0/ , and the
degree 5 element in H�.Y 20/ (from the introduction) is ˇ5

.0/Œg
�1�. Putting this all

together, we get:

Theorem 7.2
H�.Y 0�Y 1�Y 2/' P ŒˇJ Œg�a��;

where J is allowable, 0� `.J /� 3a< 3, some ji > 1.

Appendix A

For the reader’s benefit, we will reprove some results of Hu [5] regarding the homotopy
of BP hni in a manner that is helpful to us. Given a Z=.2/–equivariant spectrum E,
we shall use the (nonstandard) notation bE to denote the Borel cohomology spectrum
Map.EZ=.2/C;E/. This notation is in keeping with [5], where the Borel cohomology
spectrum of E is thought of as the completion of E.

To perform our computation, the standard method used is to consider the Tate diagram
given by rows that are cofibrations:

EZ=.2/C ^BP hni

EZ=.2/C^'
��

// BP hni

'

��

// BEZ=.2/^BP hni

gEZ=.2/^'
��

EZ=.2/C ^bBP hni //bBP hni // BEZ=.2/^bBP hni;

where 'W BP hni ! bBP hni is the “completion” map given by the canonical map
'W BP hni !Map.EZ=.2/C;BP hni/ induced by the projection EZ=.2/C! S0 .
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Since the map ' is a (nonequivariant) equivalence, it follows that EZ=.2/C ^ '
is an equivariant equivalence. Hence, the fiber of ' is equivalent to the fiber of
BEZ=.2/^' . One has standard (trigraded) spectral sequences that compute the homo-

topy of the spectra
bBP hni and BEZ=.2/^bBP hni;

called the Borel cohomology and the Tate cohomology spectral sequences for BP hni
respectively. The respective E2 –terms are given by:

H p.Z=.2/; ��BP hni/H) ���p
bBP hni;bH p

.Z=.2/; ��BP hni/H) ���p
BEZ=.2/^bBP hni;

where bH .Z=.2// denotes Tate cohomology and � is any element in RO.Z=.2// that
can be written as aC b˛ , where ˛ is the sign representation of Z=.2/. One may even
write the respective E1 terms explicitly as:

Z.2/Œvi ; �
˙1; a� and Z.2/Œvi ; �

˙1; a˙1�; i � n; v0 D 2:

The classes vi ; �; a have tridegree given by:

jvi j D .0; .2
i
� 1/.1C˛//; j� j D .0;�1C˛/; jaj D .1; 1�˛/:

In addition, the classes vi and a are permanent cycles, and the differentials are given
by the universal differentials computed for the Borel cohomology spectral sequence
for MU.2/ [6]:

d2kC1�1�
�2k

D vk a2kC1�1:

These differentials induce differentials in the Tate cohomology spectral sequence and it
is straightforward to derive the following result in [5]:

Corollary A.1 The Tate spectral sequence for BP hni collapses at E2nC1�1 to yield:

�� BEZ=.2/ ^bBP hni D Z=.2/Œ�˙2nC1

; a˙1�:

In addition, multiplication by vi is given by zero in ��BEZ=.2/^BP hni. The image
of the map

��bBP hni �! ��BEZ=.2/^bBP hni

is given by Z=.2/Œ�˙2nC1

; a� and the kernel of the map is contained in the image of
��MU.2/ .

The next step is to compute the homotopy of the geometric fixed-point spectrum
BEZ=.2/^BP hni, and identify it as a subgroup of the homotopy of the Tate cohomology

spectrum. Since there is no natural spectral sequence that computes the homotopy
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of the geometric fixed points, the argument used in [5] is by induction starting with
BP h0i and inducting upwards. Alternatively, one may start with the observation that

BEZ=.2/ ^BP DHZ=.2/Œa˙1�;

and kill the elements vi for i > n. Then using the computations made in [4], we see
that ��BEZ=.2/^BP hni can be identified with the subgroup of the homotopy of the
Tate cohomology spectrum given by Z=.2/Œ��2nC1

; a˙1� as calculated in [5]. From
the above observation we derive:

Corollary A.2 Let F denote the fiber of the map from the geometric fixed-point
spectrum to the Tate fixed-point spectrum. Then there is a short exact sequence in
homotopy:

0 �! �� BEZ=.2/ ^BP hni �! �� BEZ=.2/ ^bBP hni �! ��†F �! 0:

In particular, ��†F is isomorphic to the ideal generated by �2nC1

in Z=.2/Œ�2nC1

; a˙1�.
In addition, multiplication by vi is given by zero on ��F .

Now recall that the fiber of completion map ' is given by F . Since we know the
homotopy of F , and the fact that inverting vn collapses the fiber, we have essentially
managed to show:

Theorem A.3 The map ' is an equivalence on inverting vn . In addition, the map
�aCb˛ BP hni ! �aCb˛

bBP hni is an isomorphism for a� b > �2nC1 . Furthermore,
in this range, the homotopy is given by the image of �aCb˛ MU.2/ .
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