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Sphere paths in outer space

CAMILLE HORBEZ

We give estimates on the length of paths defined in the sphere model of outer space
using a surgery process, and show that they make definite progress in some sense
when they remain in some thick part of outer space. To do so, we relate the Lipschitz
metric on outer space to a notion of intersection numbers.
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Introduction

In order to study the outer automorphism group of a finitely generated free group, Culler
and Vogtmann introduced a space, called outer space, on which the group Out.Fn/

acts in a nice way (see Culler and Vogtmann [4; 13].) This space is built as an analog
of Teichmüller spaces, used to study the mapping class group of a surface. While
Teichmüller spaces are equipped with several interesting metrics, whose properties have
been investigated a lot, there had been no systematic investigation of metric properties of
outer space before Francaviglia and Martino studied an analog of Thurston’s asymmetric
metric [5]. In particular, Francaviglia and Martino proved that outer space is geodesic
for this metric, the geodesics being obtained by using a folding process.

Building on ideas of Whitehead [14], Hatcher defined a new model for outer space,
using sphere systems in a 3–dimensional manifold with fundamental group Fn [10]. In
order to prove the contractibility of the full sphere complex, he also defined a combing
path in this model of outer space, which appears to look like an “unfolding path”. A
modification of this path was also used by Hatcher and Vogtmann to prove exponential
isoperimetric inequalities for Out.Fn/ [11].

Our goal is to investigate the metric properties of this path. As combing paths are
piecewise linear, we can talk about their vertices, and define the length l.
 / of a
combing path 
 to be the sum of the distances from one vertex to the next. We prove
the following result.
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Main Theorem For all n� 2 and � > 0, there exist K;L 2R such that the following
holds. Let A;B 2 CVn be such that the combing path 
 from B to A remains in the
�–thick part of outer space. Then

l.
 /

K
�L� d.A;B/� l.
 /:

In Section 1, we recall some basic facts about the different models of outer space. In
particular, we recall the definition of the Lipschitz metric on outer space (Section 1.1),
as well as two notions of intersection numbers on outer space: the first was introduced
by Guirardel in [8], who defined a convex core for two actions of groups on trees
(Section 1.2), and the second is a geometric notion of intersection in the sphere model
of outer space (Section 1.3). Intersection numbers have turned out to be a powerful
tool in the study of mapping class groups – they were used for example by Bowditch to
give a new proof of the hyperbolicity of the curve complex [3]. It seems that they are
also relevant to study paths in the sphere model of outer space. Finally, in Section 1.4,
we recall the definition of the combing path in the sphere model of outer space from
the works of Hatcher [10] and Hatcher and Vogtmann [11].

In Section 2, we establish the equality between both notions of intersection numbers
(Section 2.1). We then prove the following relation between intersection numbers and
the Lipschitz metric (with the convention log 0D 0), which may be of independent
interest.

Theorem For all n� 2 and � > 0, there exist K0;L0 2R such that for all points X;Y

in the �–thick part of CVn , we have

1

K0
log.i.X;Y //�L0 � d.X;Y /�K0 log.i.X;Y //CL0:

Section 3 is dedicated to the proof of our main theorem. The main step in our proof is
to understand the growth of intersection numbers along combing paths (Section 3.2).
We prove the following estimate, which can be regarded as an analog for combing paths
of the result of Behrstock, Bestvina and Clay about growth of intersection numbers
along the axis of a fully irreducible automorphism of Fn [2].

Proposition For all n � 2 and � > 0, there exist C1;C2 2 .1;C1/ such that the
following holds. Let A;B 2 CVn be such that the combing path from B to A stays
in the �–thick part of CVn , and let ADA0; : : : ;AN D B be the vertices of this path.
Assume that N � 3, then

C N
1 � i.A;B/� C N

2 :

The main theorem easily follows from the two results above.
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1 Preliminaries

1.1 Outer space in terms of graphs and the Lipschitz metric

We recall the construction of outer space by Culler and Vogtmann [4].

A metric graph is a graph, all of whose vertices have valence at least three, endowed
with a path metric: each edge is assigned a positive length l that makes it isometric to
the segment Œ0; l � in R. Denote by Rn the metric graph (called a rose) with one vertex
and n edges of length 1

n
. A marking of a metric graph G of fundamental group Fn is

a homotopy equivalence �W Rn!G . Define an equivalence relation on the collection
of marked metric graphs by .G; �/� .H; �0/ if there exists a homothety hW G!H

such that h ı � is homotopic to �0 . Outer space, denoted by CVn , is defined to be the
set of classes of marked metric graphs under this equivalence relation. As we took
the quotient by homotheties, we can assume the graphs to be normalized to have total
length 1.

To every marked metric graph G , one associates an open simplex by making the lengths
of the edges of G vary, with sum equal to 1. The simplex of a graph H is identified
with a face of the simplex of a graph G if H can be obtained from G by shrinking the
lengths of some edges to 0. Outer space is endowed with the quotient topology of the
natural topology on the union of the simplices by these face identifications.

Given � > 0, the �–thick part of outer space is the subspace consisting of graphs
(normalized to have length 1) that do not contain a loop of length less than � .

The group Out.Fn/ acts on outer space by precomposing the markings. More precisely,
let .G; �/ be a marked metric graph and ˆ 2 Out.Fn/. Choose some representative
� 2 Aut.Fn/ for ˆ, and a homotopy equivalence f W Rn ! Rn that induces � on
the fundamental group. The action of ˆ on .G; �/ is given by ŒG; ��ˆD ŒG; � ı f �
(it is easy to check that this definition does not depend on the choices of � and f ).
This action is not cocompact. However, the group Out.Fn/ acts cocompactly on the
spine of outer space, which is defined to be the geometric realization of the poset of
the simplices of outer space, ordered by inclusion of faces.

In [5], Francaviglia and Martino defined a metric on outer space, compatible with the
topology defined above, in the following way. Given two marked metric graphs .G; �/
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and .H; �0/, a difference of markings from G to H is a map which is homotopic
to �0 ı ��1 , where ��1 denotes a homotopy inverse of the homotopy equivalence � .
Define the stretching factor ƒ.G;H / from G to H as the infimum of the Lipschitz
constant of a difference of markings from G to H . Francaviglia and Martino proved
that d.G;H / WD logƒ.G;H / defines an asymmetric metric on outer space, which
is Out.Fn/–invariant [5, Theorem 4.17]. This metric is not symmetric, and not even
quasisymmetric (see eg the examples in [1, Section 1.3]). However, it is quasisymmetric
when restricted to the �–thick part of outer space for some � > 0.

Proposition 1.1 (Handel and Mosher [9, Proposition 1.3]; Algom-Kfir and Bestvina [1,
Theorem 24]) For all � > 0, there exists C D C.�/ > 0 such that for all X;Y in the
�–thick part of outer space, we have d.Y;X /� Cd.X;Y /, ie ƒ.Y;X /�ƒ.X;Y /C .

1.2 Actions on trees and Guirardel’s intersection number

The universal cover of a marked metric graph is a metric tree, endowed with an action
of Fn given by the marking. This action is free and isometric. It is also minimal,
meaning that there is no proper invariant subtree. One can define outer space as the set
of all minimal, free, isometric actions of Fn on metric simplicial trees, up to equivariant
homothety.

In [8], Guirardel defined a notion of intersection number between two actions on trees.
We recall his construction. Let T1;T2 be two simplicial metric trees with free, minimal,
isometric actions of Fn . A direction in T1 is a component of T1�fxg, for some point
x 2 T1 . A quadrant in T1 �T2 is the product ı1 � ı2 of a direction ı1 in T1 and a
direction ı2 in T2 .

Let �1 (resp. �2 ) be a fixed basepoint in T1 (resp. T2 ). A quadrant QD ı1 � ı2 is
said to be heavy if there exists a sequence .gk/ of elements in Fn such that

(1) gk.�1;�2/ 2Q,

(2) limk!C1 dT1
.�1;gk�1/DC1 and limk!C1 dT2

.�2;gk�2/DC1.

Otherwise Q is said to be light.

Remark (1) This definition does not depend on the choice of the basepoint in
T1 �T2 .

(2) For every g 2 Fn , a quadrant Q is heavy if and only if its translate gQ is heavy.
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The core C.T1 �T2/ of T1 �T2 is defined to be the complement of the union of all
light quadrants in T1 �T2 . By the second remark above, it is an Fn –invariant subset
of T1 �T2 . The intersection number i.T1;T2/ between T1 and T2 is the number of
2–cells in C.T1 �T2/=Fn . (This definition is slightly different from Guirardel’s, as
it does not take into account the lengths of the edges of the trees. In other words, we
consider T1 and T2 as simplicial trees with all edges having length 1 for computing
the intersection number). Given an edge e1 � T1 , the slice of the core at e1 is

Ce1
D fe2 2 T2 j e1 � e2 � C.T1 �T2/g:

Let e1 � T1 be an edge, and g 2 Fn . By Fn –invariance of the core, we have
Cge1
D gCe1

. The intersection number is thus equal to

i.T1;T2/D
X

e1�T1=Fk

jCe1
j;

where jCe1
j denotes the cardinality of Ce1

.

In [2, Section 3], Behrstock, Bestvina and Clay gave an algorithm to compute the slices
of the core C.T1;T2/ for T1;T2 2 CVn , and hence the intersection number i.T1;T2/.
We now describe their construction, which we will use in the proof of Proposition 2.8
to compare the intersection number with the metric on outer space.

Let f W T1! T2 be a morphism, ie an equivariant cellular map that linearly expands
each edge in T1 over a tight edge path in T2 (note that this definition of a morphism
between trees is slightly different from the usual one). It descends to a homotopy
equivalence � W �1 ! �2 , where �1 (resp. �2 ) is the graph corresponding to T1

(resp. T2 ) in outer space, ie its quotient by Fn . Fix a morphism f 0W T2! T1 such
that � 0W �2! �1 is a homotopy inverse of � . Fix basepoints �1 2 T1 and �2 2 T2

such that f 0.�2/D �1 . Slightly abusing notation, we will again denote by �1 and �2

their projections to �1 and �2 .

Let e be an oriented edge of �1 . Subdivide e into eCe� , and let pe be the subdivision
point. Fix a tight edge path ˛e � �1 from �1 to pe which has final edge eC . Let
†e D .�

0/�1.pe/� �2 . For q 2†e , there is a tight path 
q 2 �2 from �2 to q such
that up to homotopy, we have ˛e D Œ�

0.
q/�, where Œ� 0.
q/� denotes the path obtained
after tightening � 0.
q/. As � 0 is a homotopy equivalence, the path 
q is unique. Let z
q

be the lift of 
q to T2 that originates at �2 , let z†e be the set of all terminal points
of z
q for q varying in †e , and let Te be the subtree of T2 spanned by z†e . Behrstock,
Bestvina and Clay proved the following result (in fact, they even gave an algorithm
that enables us to compute precisely the slice of the core at e from the tree Te ).

Proposition 1.2 [2, Lemma 3.7] The slice of the core at e is contained in Te .
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1.3 Outer space in terms of sphere systems

Outer space has a description in terms of sphere systems in a 3–dimensional manifold
with fundamental group Fn , which was introduced by Hatcher [10].

Let n 2N , and Mn D #nS1�S2 be the connected sum of n copies of S1�S2 . The
fundamental group of Mn is a free group of rank n. A sphere set is a collection of
disjoint embedded 2–spheres in Mn . A sphere system S is a sphere set such that no
sphere in S bounds a ball in Mn , and no two spheres in S are isotopic. A weighted
sphere system is a sphere system in which each sphere is assigned a positive weight,
with the sum of all weights equal to 1. A sphere set S is said to be simple if every
component of Mn�S is simply connected. Outer space is defined to be the set of all
isotopy classes of weighted simple sphere systems.

The equivalence with the definitions in the previous sections was shown by Hatcher
in [10, Appendix]. A simple sphere system S has a dual graph G.S/ whose vertices
are the components of the complement of S in Mn , and whose edges are the spheres
in S . The graph G.S/ can be embedded in Mn , each vertex lying in one component
of Mn�S , and each edge crossing exactly one sphere of S exactly once.

An important tool in the study of sphere systems is Hatcher’s normal form. Let † be a
simple sphere system. A sphere system S is said to be in normal form with respect
to † if every sphere in S either

(1) belongs to †,

(2) is disjoint from † and not isotopic to any sphere in †,

(3) intersects † transversely in a collection of circles that split it into components
called pieces, in such a way that for each component P of Mn�†,
(i) each piece in P meets each component of @P in at most one circle;

(ii) no piece in P is a disk which is isotopic, fixing its boundary, to a disk in
@P .

The following proposition was first proved by Hatcher when † is a maximal sphere
system [10, Propositions 1.1 and 1.2]. The extension to the general case is easy, and
can be found for example in [11, Propositions 2.1 and 2.2].

Proposition 1.3 Every sphere system S is isotopic to a sphere system in normal
form with respect to †. Besides, the number of intersection circles between a sphere
system S 0 isotopic to S and † is minimized if and only if S 0 is in normal form with
respect to †.
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Given X;Y 2 CVn , we define their geometric intersection number i.X;Y / as the
minimal number of intersection circles between a sphere system S representing X and
a sphere system S 0 representing Y . This is equal to the number of intersection circles
between two representatives in normal form. In the same way, if s 2X and s0 2 Y are
two spheres, then we define i.s; s0/ to be the minimal number of intersection circles
between a sphere isotopic to s and a sphere isotopic to s0 . Again, this is achieved
when X and Y are in normal form.

1.4 Sphere paths in outer space

Let †;S be two simple sphere systems in Mn , and assume that S is in normal form
with respect to †. Following [11], we describe a surgery process for producing a new
simple sphere system S 0 from S which intersects † in fewer circles. Let C be a
circle component of S \† which bounds an innermost disk D �†, and let s be the
sphere of S that contains C . Taking a parallel copy of s and performing surgery on it
along D creates two spheres s0 and s00 . The new sphere system S 0 is obtained from S

by deleting s , replacing it by s0 [ s00 , and, if necessary, identifying parallel spheres
and deleting spheres that bound a ball. We say that the sphere system S 0 is obtained
by performing surgery on S along †. Hatcher and Vogtmann proved [11, Lemma 3.1]
that the sphere system S 0 is again simple.

Using this surgery process, Hatcher and Vogtmann defined a canonical path between
two points in outer space. The idea is to perform simultaneously all surgeries on S

along innermost intersection circles in †. However, we have to be careful while
defining these processes. Indeed, problems occur when two of the surgery disks lie
on different sides of a sphere s 2 S (because in that case, it is impossible to choose
the parallel copy of s on which we perform surgery), or when one sphere � 2 †
intersects S only once (because there are two possible choices for the disk D , and we
want the construction to be canonical). To solve these problems, Hatcher and Vogtmann
use a doubling trick.

Start by adding a parallel copy of each sphere s 2 S to get a sphere set yS (step 1 in
Figure 1), and give to each copy of s half of the weight of s . Then perform simultaneous
surgeries on yS along all disks in † that are innermost among the disks bounded by
an intersection circle between yS and † (step 2 in Figure 1). This operation is now
well-defined because on each copy of the sphere, all surgeries are performed on the
same side. Besides, all intersection circles have been doubled, so no sphere � 2 †
intersects S exactly once. In that way, we get a new sphere set yS 0 , whose projection S 0

to outer space after deleting trivial spheres and identifying parallel spheres does not
intersect S , hence S and S 0 share a closed simplex in outer space. During the process,
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transfer continuously the weight of any sphere in yS on which surgery is performed
equally between the nontrivial spheres in S 0 obtained from it after the surgery. Then
perform again simultaneous surgeries on yS 0 along all disks in † that are innermost
among the disks bounded by an intersection circle between yS 0 and † to get a sphere
set yS 00 (step 3 in Figure 1). Again, we transfer continuously the weights of a sphere
s0 2 S 0 equally between the spheres that come from it. Assume that no sphere � 2†
intersects S exactly once. Then the sphere set yS 00 is the double of a simple sphere
system S 00 : indeed, performing two successive surgery steps on a sphere s 2B consists
of performing the “same” surgery on each side of the sphere s . We can thus “undouble”
the sphere set yS 00 (step 4 in Figure 1). In the case when one of the sphere � 2 †
intersects S exactly once, it is no longer true that yS 00 is a doubled sphere system (see
Figure 2). In that case, we can still define S 00 to be the sphere system we get from yS 00

by deleting trivial spheres and identifying parallel spheres if necessary. We repeat this
whole process, starting from the sphere system S 00 , until we get a sphere system †0

which does not intersect † (a slight variation on the argument in [11] shows that this
process eventually stops). We then join †0 to † by the unique straight line between
them in the closed simplex they share. The path we get, which we call the combing
path from S to †, is a piecewise linear path, which we parametrize by arc length. In
the sequel, we will say that the sphere system S 00 we get by doubling S , performing
two successive surgeries and undoubling the result is obtained by performing a double
surgery step on S along †.

double first surgery second surgery undouble

Figure 1: A double surgery step

2 Intersection numbers and the Lipschitz metric

2.1 Equality between both notions of intersection numbers

In [8], Guirardel proved the equivalence of his notion of intersection number with
an algebraic notion of intersection number defined by Scott in [12] in the case of a
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double surgery

Figure 2: Surgery along the last intersection circle with a sphere in †

one-edge splitting of a group. Gadgil and Pandit [6; 7] then showed that this was also
equivalent to the geometric intersection number between two spheres in Mn , each
sphere corresponding to a one-edge free splitting of Fn . In this section, we give a
direct proof of the equivalence of the geometric notion of intersection number between
two points in outer space and Guirardel’s notion. We thank Vincent Guirardel for his
help for the proof of this result, which follows the ideas of ([8, Théorème 7.1]).

Proposition 2.1 The geometric intersection number coincides with Guirardel’s inter-
section number.

Proof Let S1 , S2 be two simple sphere systems in normal form. Let � W �Mn!Mn be
a universal cover of Mn . For i 2 f1; 2g, let zSi WD �

�1.Si/, and let Ti be the tree dual
to zSi , ie the tree which has a vertex for each component of �Mn�

zSi and an edge for
each component of zSi . Let Ai be a small open tubular neighborhood of Si (of the form
Si � Œ��; �� for some � > 0), and let zAi be its lift to �Mn . There is an Fn –equivariant
map fi W

�Mn!Ti that maps a component of zAi to the corresponding edge in Ti , and a
component of �Mn�

zAi to the corresponding vertex. Let F D .f1; f2/W �Mn!T1�T2 .
The preimage of any point x1 2 T1 (resp. x2 2 T2 ) by f1 (resp. f2 ) is connected.
In addition, it is easy to check that the image F. �Mn/ is closed. Therefore, by [8,
Corollaire 5.3], we have C.T1 �T2/� F. �Mn/. Furthermore, the map F sends each
connected component of . zS1\

zS2/� Œ��; ��
2 to a 2–cell in T1 �T2 , and conversely

the preimage of a 2–cell in T1 �T2 is of this form, if it is nonempty. Therefore, we
just have to check that intersections between two spheres are mapped by F to cells in
the core.

Let †1 be a sphere in zS1 , and †2 be a sphere in zS2 , such that †1\†2 ¤∅. Using
the fact that S1 and S2 are in normal form, we will show that all the components of
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the complement of †1 [†2 in �Mn are unbounded. Suppose by contradiction that
there exists a bounded component X of �Mn� .†1[†2/. Then the set of components
of �Mn �

zS1 that intersect X is finite, hence its projection to T1 (by f1 ) is a finite
collection of vertices in T1 , one of whose, which we denote by vmax , must be extremal
in the subtree they span. Let Y be the component of �Mn�

zS1 which projects to vmax

by f1 . The boundary of X \ Y intersects only one of the boundary spheres of Y .
As S1 and S2 are in normal form, the boundary of X \Y is a disk whose boundary
circle lies in one boundary sphere of Y , and which is not isotopic, fixing its boundary,
to a disk in @Y . This implies that X is unbounded.

As a result, for every connected component of . zS1 \
zS2/ � Œ��; ��

2 , and for every
quadrant containing the corresponding 2–cell e1�e2�T1�T2 , there exists an element
g 2 Fn whose iterates gk map a basepoint in T1 � T2 towards infinity within the
quadrant. So every quadrant containing e1�e2 is heavy, hence e1�e2�C.T1�T2/.

2.2 Intersection numbers and the Lipschitz metric

In this section, we relate intersection numbers to the Lipschitz metric on outer space.
We will show the following asymptotic estimate comparing the intersection number
and the distance between two points in the �–thick part of outer space (note that no
comparison can hold on the entire outer space, as intersection numbers are symmetric
whereas the Lipschitz metric is not). In the following statement, we take the convention
that log 0D 0.

Theorem 2.2 For all n� 2 and � > 0, there exist K0;L0 2R such that for all points
X;Y in the �–thick part of CVn , we have

1

K0
log.i.X;Y //�L0 � d.X;Y /�K0 log.i.X;Y //CL0:

Given a basis x of Fn and a word w 2 Fn , we denote by jwjx the length of the
word w , when written in the basis x . Given two bases x and y of Fn , we denote
by jyjx the maximal length of an element in y , when written in the basis x .

Lemma 2.3 Let x D .xi/;y D .yi/; w D .wi/ be three bases of Fn , and suppose
that there exists v 2 Fn such that for all i 2 Œj1; nj�, we have xi D vwiv

�1 . Then
jvjy � jwj

2
y jyjx .

Proof If v can be written as a word W .wi/, then we also have v DW .xi/. Hence
jvjx D jvjw . Besides, for all i 2 Œj1; nj�, we have wi D v�1xiv , so there exists
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i0 2 Œj1; nj� such that jwi0
jx D 2jvjxC 1. Hence

jvjy � jvjwjwjy

D jvjxjwjy

� jwi0
jxjwjy

� jwi0
jy jyjxjwjy

� jwj2y jyjx :

This completes the proof.

Let �1; �2 2 CVn . In [5, Lemma 3.4], Francaviglia and Martino proved the existence
of a difference of markings from �1 to �2 with minimal Lipschitz constant, as an easy
application of the Arzelà–Ascoli theorem. We show, when �1 and �2 are roses, that
we can choose the difference of markings to send the vertex of �1 to the vertex of �2 ,
without changing too much its Lipschitz constant.

Lemma 2.4 Let �1; �2 2 CVn be two roses with all petals having length 1
n

. There
exists a morphism f W �1!�2 whose Lipschitz constant is no greater than 2ƒ.�1; �2/.

Proof Denote by v1 (resp. v2 ) the vertex of �1 (resp. �2 ). Let gW �1! �2 be a
difference of markings from �1 to �2 whose Lipschitz constant is equal to the stretching
factor ƒ.�1; �2/. Fix a path 
 � �2 from v2 to g.v1/ having minimal length in �2 .
In particular, the path 
 has length no greater than 1

2n
. We define a morphism

f W �1! �2 by sending each petal e of �1 linearly to the path obtained by tightening
the concatenation 
g.e/x
 . The image f .e/ has length at most .ƒ.�1; �2/C 1/=n,
which is no more than 2ƒ.�1; �2/=n as ƒ.�1; �2/� 1. This implies that the Lipschitz
constant of the morphism f is no greater than 2ƒ.�1; �2/.

In the sequel, we will call a morphism given by Lemma 2.4 quasioptimal.

We fix a standard basis x D .x1; : : : ;xn/ of Fn . Let �1; �2 2 CVn be two roses, the
rose �1 being the standard rose. There is a natural basis associated to any morphism
� 0W �2! �1 : each petal of �2 is labelled with the word of Fn defined by its image
by � 0 . Conversely, a basis .yi/ of Fn defines a morphism from �2 to �1 by subdividing
the petals into jyi jx segments of length 1=njyi jx , and mapping them linearly to the
corresponding petal in �1 .

Lemma 2.5 For all n� 2, there exists C D C.n/ 2R such that the following holds.
Let �1; �2 2CVn be two roses with petal lengths 1

n
. We assume that �1 is the standard

rose with petals labelled by x1; : : : ;xn . Let � 0W �2! �1 be a quasioptimal morphism,
and let y be the associated basis. Then jyjx � 2ƒ.�2; �1/ and jxjy � Cƒ.�1; �2/

C .
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Proof For all i 2 Œj1; nj�, the loop yi is subdivided into jyi jx subsegments of
length 1=njyi jx , and each of these subsegments is mapped by � 0 to a loop in �1

of length 1
n

. As the Lipschitz constant of � 0 is no greater than 2ƒ.�2; �1/, we have
jyi jx � 2ƒ.�2; �1/ for all i 2 Œj1; nj�, hence jyjx � 2ƒ.�2; �1/.

Let x0 D .x0i/ be a basis associated to a quasioptimal morphism from �1 to �2 . Then
there exists v 2Fn such that for all i 2 Œj1; nj�, we have x0i D v

�1xiv . By the previous
argument, we have jyjx � 2ƒ.�2; �1/ and jx0jy � 2ƒ.�1; �2/. In addition, we have
jxjy � 2jvjy C jx

0jy , so Lemma 2.3 implies that jxjy � 2jx0j2y jyjx C jx
0jy . Using

Proposition 1.1, we thus have a polynomial bound on jxjy in terms of ƒ.�1; �2/.

We now relate the stretching factor from a point in outer space to two points that
are close in outer space, and give a similar estimate for intersection numbers. This
will allow us to deal only with the case when X and Y are roses in the proof of
Theorem 2.2.

Lemma 2.6 For all n � 2 and � > 0, there exists C D C.n; �/ 2 R such that if
A 2 CVn and if B;B0 2 CVn are two points in the �–thick part of outer space whose
simplices share the simplex of a rose as a face, then ƒ.A;B0/ � Cƒ.A;B/ and
ƒ.B0;A/� Cƒ.B;A/.

Proof Let K0 denote the diameter of the �–thick part of the star of a rose simplex
in outer space (ie the supremum of d.A;B/ for points A,B lying inside it). This
does not depend on the choice of the rose because Out.Fn/ acts transitively on the
simplices of roses, and the metric is Out.Fn/–invariant. Besides, as the �–thick part
of the star of a rose simplex is compact, we get that K0 is finite. If B;B0 2 CVn are
two points in the �–thick part of outer space whose simplices share the simplex of a
rose as a face, then d.B;B0/ �K0 . By the triangle inequality, for all A 2 CVn , we
have d.A;B0/� d.A;B/CK0 , hence ƒ.A;B0/� eK0ƒ.A;B/. A similar argument
shows that ƒ.B0;A/� eK0ƒ.B;A/.

Lemma 2.7 For all n� 2, there exist C D C.n/ 2R and D DD.n/ 2R such that if
A 2 CVn and if B;B0 2 CVn are two points in outer space whose simplices share the
simplex of a rose as a face, then i.A;B0/� C i.A;B/CD .

Proof This is a consequence of [2, Lemma 2.7] and the Out.Fn/–invariance of
intersection numbers. Indeed, if the simplices of B and B0 share the simplex of a rose
as a face, then there exists B0;B

0
0
2 CVn whose simplices share the simplex of the

standard rose as a face, and ˆ 2 Out.Fn/ such that B D ˆ.B0/ and B0 D ˆ.B0
0
/.
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Now notice that there are only finitely many simplices that have the simplex of the
standard rose as a face.

We now give a geometric proof of this proposition in the model of spheres of outer
space, that does not rely on [2, Lemma 2.7]. Let B and B0 be two sphere systems
whose simplices share the simplex of a rose as a face. We first assume that B � B0 ,
and that A is in normal form with respect to B0 . It is easy to check that a graph with
fundamental group Fn has at least n edges, and at most 3n�3 edges. Hence the sphere
system B0 can have at most 2n� 3 more spheres than B . Let P be a component
of Mn �B . As A is in normal form with respect to B0 , each component of A\P

intersects each sphere of B0 at most once. The number of components of A\P is at
most i.A;B/C 1. Therefore B0 has at most .2n� 3/.i.A;B/C 1/ more intersection
circles with A than B , so i.A;B0/� .n� 2/i.A;B/C n� 3.

More generally, let R be a rose such that the simplices of B and B0 share the simplex
of R as a face. Then by the previous paragraph, we have i.A;B/ � C i.A;R/ and
i.A;R/� i.A;B0/, so the result follows.

Using the construction of Behrstock, Bestvina and Clay, and Proposition 1.2, we prove
the following estimate between intersection numbers and stretching factors. This is
the left-hand side inequality of Theorem 2.2. In the proof, we will use the notation
introduced in Section 1.2, in the paragraph preceding Proposition 1.2.

Proposition 2.8 Given n � 2 and � > 0, there exists C D C.n; �/ > 0 such that for
all points T1 and T2 in the �–thick part of CVn , we have

i.T1;T2/� Cƒ.T1;T2/
C ;

ie
1

C
log i.T1;T2/�

log C

C
� d.T1;T2/:

Proof Let �1 D T1=Fn and �2 D T2=Fn . Assume first that �1 and �2 are roses, all
of whose petals have length 1

n
. Let � 0W �2! �1 be a quasioptimal morphism, and

label the petals of �2 by the corresponding basis. By Lemma 2.5, after subdividing the
petals of �2 in at most 2ƒ.�2; �1/ segments, the morphism � 0 sends each segment
of �2 to a petal of �1 . Hence for every edge e��1 , the set †e has cardinality at most
2nƒ.�2; �1/. Let e��1 be an edge, and q 2†e . To construct 
q , start by joining �2

to q by a path 
 , staying in one petal. The � 0–image of this path in �1 crosses at
most 2ƒ.�2; �1/ petals (counted with multiplicities) denoted by e1; : : : ; ek (the ei

are not necessarily distinct) before crossing either eC or e� . Write each ei as a word
e1

i ; : : : ; e
ji

i in the petals of �2 . Lemma 2.5 ensures that ji is polynomially bounded
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in ƒ.�1; �2/. We form 
q by first crossing the petals xejk

k
; : : : ; xe1

1
, then crossing the

path 
 , and tightening. So the length of 
q is polynomially bounded in ƒ.T1;T2/

and ƒ.T2;T1/. Using Proposition 1.1, we get that the length of 
q is bounded by
a polynomial function of ƒ.T1;T2/, and so is the number of edges in the tree Te .
Proposition 1.2 then implies the proposition in the case when �1 and �2 are roses
with all petals having length 1

n
. The general case follows from Lemmas 2.6 and 2.7, as

one can get a rose from any graph by collapsing a maximal tree.

We now use the geometric interpretation of intersection numbers to prove a converse
estimate. Let Y be a simple sphere system in Mn dual to the standard rose, and X be a
simple sphere system dual to a rose in normal form with respect to Y . We identify each
of the spheres in Y with one of the generators of Fn . Let GX be a graph embedded
in Mn dual to the sphere system X . There is a natural basis associated to GX : each
petal of GX is labelled by the word corresponding to the successive spheres in Y it
crosses.

Proposition 2.9 For all n � 2 and � > 0, there exist A;B 2 R such that for all
points X and Y in the �–thick part of CVn , we have

1

A
ƒ.X;Y /�B � i.X;Y /:

Hence for all n� 2 and � > 0, there exists B0 2R such that for all points X and Y in
the �–thick part of CVn , we have

d.X;Y /� log i.X;Y /CB0:

Proof Let X;Y 2 CVn . We first assume that X and Y correspond to roses whose
petals have length 1

n
, the rose corresponding to Y being the standard rose of Fn . We

claim that we can find a graph GX embedded in Mn and dual to X which crosses at
most twice each connected component of Y �X . Indeed, let G0

X
be a graph embedded

in Mn and dual to X . We first homotope G0
X

so that it does not cross any of the
intersection circles in X \Y . Suppose that an edge e of G0

X
crosses a component of

Y �X in three points x1;x2;x3 , and let 
 (resp. 
 0 ) be the subpath of e from x1

to x2 (resp. x2 to x3 ). As e crosses X exactly once, one of the paths 
 and 
 0 does
not cross X . Without loss of generality, we assume that 
 does not cross X . As X is
a simple sphere system, the path 
 stays in a simply connected region of Mn , so we
can homotope 
 to a path from x1 to x2 that remains in one component of Y �X .
We can then slightly homotope the new edge e so that it crosses this component of
Y �X at most twice.
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Denote by C0 the dimension of CVn , ie the maximal number of spheres in a simple
sphere system. Let s0 be a sphere in Y . By induction on the number of intersection
circles between X and s0 , one gets that the number of connected components of
s0 �X is equal to i.X; s0/C 1. Hence each of the edges in GX crosses Y at most
2.i.X;Y /CC0/ times. Denote by x0 the basis of Fn associated to GX , then we have
jx0jx � 2.i.X;Y /CC0/. The morphism from GX to GY defined by the basis x0 has
Lipschitz constant jx0jx , so ƒ.X;Y /� jx0jx . The claim follows in the case when X

and Y correspond to roses with all petals having length 1
n

, the rose corresponding to Y

being the standard rose of Fn . The general case follows from Lemmas 2.6 and 2.7.

So there exist A;B 2R such that for all X;Y in the �–thick part of outer space,

ƒ.X;Y /�Ai.X;Y /CAB:

If i.X;Y /� 1, we thus have

ƒ.X;Y /� .ACAB/i.X;Y /;

ie

d.X;Y /� log i.X;Y /C log.ACAB/:

If i.X;Y /D 0, then X and Y are compatible, so d.X;Y / �K0 , where K0 is the
maximal diameter of the �–thick part of a closed simplex in outer space. So letting
B0 Dmax.log.ACAB/;K0/ gives the last inequality in the proposition.

Theorem 2.2 follows from Propositions 2.8 and 2.9.

3 Metric properties of the combing path

Given A;B 2CVn , the combing path 
 from B to A is a piecewise linear path, of the
form B DAN ; : : : ;A1 DA. We recall from the introduction that we denote by l.
 /

the length of 
 , defined to be

l.
 / WD

N�1X
iD1

d.Ai ;AiC1/:

The goal of this section is to prove the main theorem of this paper, which states that
combing paths make definite progress in outer space, provided they remain in the
�–thick part for some � > 0.
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Theorem 3.1 For all n� 2 and � > 0, there exist K;L 2R such that the following
holds. Let A;B 2 CVn be such that the combing path 
 from B to A remains in the
�–thick part of outer space. Then

l.
 /

K
�L� d.A;B/� l.
 /:

3.1 A few facts about combing paths

We start by collecting some facts about combing paths, which follow from the construc-
tion of these paths described in Section 1.4. Let A;B 2CVn , and ADA0; : : : ;AN DB

be the vertices in the combing path from B to A. In this setting, a double surgery step
as described in Section 1.4 consists of passing from AN�i to AN�i�2 for some even
i 2 Œj0;N j�, the sphere system AN�i�1 being the sphere system obtained from AN�i

by doubling, performing one surgery, and projecting to outer space.

Fact 1 For all i 2 Œj0;N j� such that N � i is even, the combing path from Ai to A

is a subpath of the combing path from B to A.

We want to understand the evolution of intersection numbers along combing paths.
We describe the evolution of intersection circles between A and Ai for i 2 Œj0;N j�.
On Figure 3, we draw in dotted lines the intersection circles between A and a sphere
system B , and we look at how they evolve when performing a double surgery step. Note
that doubling the sphere system B may (at most) double the number of intersection
circles with A, but undoubling the sphere system at the end ensures that intersection
circles get distributed over the created spheres. However, as we see in Figure 4, this
distribution does not occur when we are performing surgery along the last intersection
circle between a sphere in A and B . We collect these observations in the following
two facts.

double first surgery second surgery undouble

Figure 3: Distribution of intersection circles during a double surgery step

Algebraic & Geometric Topology, Volume 12 (2012)



Sphere paths in outer space 2509

Figure 4: Case of a surgery along the last intersection circle with a sphere in A

Fact 2 After performing a double surgery step on a sphere s 2 B , the intersection
circles in s\A are distributed over the spheres that come from these surgeries on s

(some are even deleted), except possibly when performing surgery along the last
intersection circle of a sphere in A. However, note that this exceptional case cannot
occur more than C0 times, where C0 is the dimension of CVn , ie the maximal number
of spheres in a sphere system in CVn . In particular, this implies that for k 2 Œj0; bN

2
cj�,

we have i.A;AN�2.kC1//� i.A;AN�2k/, except for at most C0 values of k .

Fact 3 For all k 2 Œj0;N � 1j�, we have i.A;Ak/ < 2i.A;AkC1/ (the inequality is
strict because the intersection circle used to perform surgery is removed).

Finally, we will have to understand what happens when only one sphere is created
when performing surgery. Suppose that after performing surgery as on Figure 5, we get
only one sphere. This means that either one of the spheres S1 or S2 is trivial, or that
both get identified. The first case is impossible because it would contradict the fact
that B is in normal form with respect to A, so the spheres S1 and S2 are parallel. This
implies in particular (as in Figure 5) that the pattern of intersection circles between A

and each of these spheres is the same. So the spheres S1 and S2 have at least twice
fewer intersection circles with A than B had. More generally, we get the following
fact.

Fact 4 As a consequence of normal form, it is impossible that after performing a
double surgery step, all the spheres you get except one are trivial. So you cannot get
only one sphere, except if (at least) two of the spheres coming from the initial sphere
have been identified. In particular, they have at least twice fewer intersections with A

than the initial sphere did.
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S1 S2

Figure 5: Understanding the case when only one sphere is created

3.2 Growth of intersection numbers along combing paths and the end of
the proof

In order to prove Theorem 3.1, we first determine the growth of intersection numbers
between vertices in the combing path. The following proposition may be seen as an
analog for combing paths of the result of Behrstock, Bestvina and Clay establishing ex-
ponential growth of intersection numbers along axes of fully irreducible automorphisms
of Fn in outer space [2]. In addition, Behrstock, Bestvina and Clay give the exact
growth rate of intersection numbers, in terms of the Perron–Frobenius eigenvalues of
the fully irreducible automorphism and its inverse. Note that combining the fact that
folding paths are geodesics in CVn [5, Theorem 5.5] with Proposition 2.9 shows that
intersection numbers also grow exponentially along folding paths that remain in the
�–thick part of outer space for some � > 0.

Proposition 3.2 For all n� 2 and � > 0, there exist C1;C2 2 .1;C1/ such that the
following holds. Let A;B 2 CVn be such that the combing path from B to A stays
in the �–thick part of CVn , and let ADA0; : : : ;AN D B be the vertices of this path.
Assume that N � 3, then

C N
1 � i.A;B/� C N

2 :

Proof of the upper bound The combing path from B to A is a piecewise linear path,
each piece staying in one closed simplex; we denote by A D A0; : : : ;AN D B its
vertices. Let C;D be the constants given by Lemma 2.7. We prove by induction on
k 2 Œj0;N j� that i.A;Ak/ � .C CD/k . This is obviously true for k D 0. Assume
that i.A;Ak/ � .C C D/k . If i.A;Ak/ D 0, then by Lemma 2.7, we have that
i.A;AkC1/ � D � .C CD/kC1 . If i.A;Ak/ > 0, then by Lemma 2.7, we have
that i.A;AkC1/ � .C CD/i.A;Ak/, so by the induction hypothesis we have that
i.A;AkC1/� .C CD/kC1 .
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We now prove the lower bound in Proposition 3.2. Let 0 � i � j � N be such that
N � i and N � j are even, and such that when performing the surgeries leading
from Aj to Ai , you never perform surgery along the last intersection circle of a sphere
in A. Let M D .j � i/=2. For p 2 Œj0;M j�, let S1

p ; : : : ;S
kp

p be the spheres in Aj�2p ,
ie the spheres you get from Aj after performing 2p successive surgery steps (ie p

double surgery steps).

We define a function � on finite tuples of integers by

�.i1; : : : ; ik/D

(
i1C 1 if k > 1; i1 D i2 D � � � D ik ;

maxfi1; : : : ; ikg otherwise:

For all p2 Œj0;M j� and all q2 Œj1; kpj�, we associate to the sphere S
q
p an integer X.S

q
p /,

by downward induction on p , in the following way. This integer will help us count the
intersection circles between S

q
p and Ai .

� For all l 2 Œj1; kM j�, let X.S l
M
/D 0.

� Let p 2 Œj1;M j� and q 2 Œj1; kp�1j�. Assume that we have defined X.S l
p/ for

all l 2 Œj1; kpj�. We want to define X.S
q
p�1

/.

Case 1 When performing surgery on the sphere system Aj�2.p�1/ along A, no
surgery is performed on S

q
p�1

. Then S
q
p�1
D S l

p for some l 2 Œj1; kpj�, and we let
X.S

q
p�1

/DX.S l
p/.

Case 2 The sphere S
q
p�1

intersects the sphere system A in at least one circle that
bounds an innermost disk in A. In addition, after performing a double surgery step on
the sphere S

q
p�1

, only one nontrivial sphere S˛p is created (after identifying parallel
spheres). Then we let X.S

q
p�1

/DX.S˛p /C 1.

Case 3 The sphere S
q
p�1

intersects the sphere system A in at least one circle that
bounds an innermost disk in A. In addition, after performing a double surgery step
on the sphere S

q
p�1

, at least two nontrivial spheres are created (after identifying
parallel spheres). We denote by S

˛1
p ; : : : ;S

˛l
p the created spheres. Then we let

X.S
q
p�1

/D �.X.S
˛1
p /; : : : ;X.S

˛l
p //.

Define a sequence u by u0 D 0 and un D 2n�1 for all n� 1. The following lemma
gives a way of comparing the growth of intersection numbers along the combing path
with the exponential growth of u.

Lemma 3.3 Let p 2 Œj0;M j�, and q 2 Œj1; kpj�. Then the number of intersection
circles between S

q
p and the sphere system A is at least uX .S

q
p / .
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Proof The proof is by downward induction on p . The result is obvious when pDM .
Now assume that for all l 2 Œj1; kpj�, the number of intersection circles between S l

p and
the sphere system A is at least uX .S l

p/
. We want to show that for all q 2 Œj1; kp�1j�,

the number of intersection circles between S
q
p�1

and A is at least uX .S
q

p�1
/ .

In Case 1, let l 2 Œj1; kpj� be such that S
q
p�1
D S l

p . By the induction hypothesis, we
have that the number of intersection circles between S l

p and A is greater than uX .S l
p/

.
But by definition, we have X.S

q
p�1

/DX.S l
p/, so the number of intersection circles

between S
q
p�1
D S l

p and A is greater than uX .S
q

p�1
/ .

Suppose now that we are in Case 2, and let S˛p be the unique sphere that is created
from S

q
p�1

after performing a double surgery step. By Fact 4 of the previous section,
the number of intersection circles between S

q
p�1

and A is at least twice the number
of intersection circles between S˛p and A. By the induction hypothesis, the number
of intersection circles between S˛p and A is at least uX .S˛p / . So the number of
intersection circles between S

q
p�1

and A is at least 2uX .S˛p / , which is greater than
uX .S˛p /C1 D uX .S

q

p�1
/ if X.S˛p / > 0. If X.S˛p / D 0, then X.S

q
p�1

/ D 1, and the
number of intersection circles between S

q
p�1

and A is at least 1 by the first assumption
made in Case 2.

Finally, suppose that we are in Case 3, and let S
˛1
p ; : : : ;S

˛l
p be the spheres created

from S
q
p�1

after performing a double surgery step. By Fact 2 of the previous section,
the number of intersection circles between S

q
p�1

and A is greater than the sum of the
number of intersection circles between A and the spheres S j̨

p for j 2 Œj1; l j�. By the
induction hypothesis, this sum is at least equal to uX .S

˛1
p /C� � �CuX .S

˛l
p / . This is greater

than umaxj X .S
j̨

p / , and if all uX .S
j̨

p / are equal and different from 0, it is greater than
uX .S

˛1
p /C1 . In both cases, the sum is greater than u�.X .S˛1

p /;:::;X .S
˛l
p // D uX .S

q

p�1
/ .

So the number of intersection circles between S
q
p�1

and A is at least uX .S
q

p�1
/ . If

all X.S j̨

p / are equal to 0, then uX .S
q

p�1
/D u�.X .S˛1

p /;:::;X .S
˛l
p //D 1, and the number

of intersection circles between S
q
p�1

and A is at least 1 by the first assumption made
in Case 3.

As the sequence u grows exponentially, our goal is now to prove that the integers X.S
q
p /

grow linearly along the combing path. We denote by w.s/ the weight of a sphere s .
For p 2 Œj0;M j�, we define

N.p/D

kpX
qD1

w.Sq
p /X.S

q
p /:
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Lemma 3.4 There exists C3 > 0, such that for all p 2 Œj0;M � 1j�, we have

N.p/�N.pC 1/�
1

C3

max
s
.w.s//;

the maximum being taken over all spheres s 2Aj�2p that get nontrivially subdivided
when performing surgery along A on the sphere system Aj�2p .

Recall that in the definition of the combing path, when a sphere s gets subdivided, its
weight is transferred equally among all the nontrivial spheres that come from it. If a
sphere s0 is obtained from s after a double surgery step, we denote by ws.s

0/ the part
of the weight of s0 that comes from the sphere s .

Proof of Lemma 3.4 Let C0 denote the dimension of CVn , ie the maximal number
of edges in a graph in CVn . Let s be a sphere that gets nontrivially subdivided
when performing a double surgery step along A on the sphere system Aj�2p , and let
S
˛1

pC1
; : : : ;S

˛l

pC1
be the spheres obtained from s after a double surgery step. These

spheres get a weight at least equal to w.s/=C0 from s .

� If there is only one such sphere, then X.s/DX.S
˛1

pC1
/C1 (Case 2 of the definition

of the integers X ), so

w.s/X.s/�ws.S
˛1

pC1
/X.S

˛1

pC1
/D w.s/:

� If there are at least two such spheres, and if X.S
˛1

pC1
/ D � � � D X.S

˛l

pC1
/, then

by Case 3 of the definition of the integers X and the definition of � , we have that
X.s/DX.S

˛1

pC1
/C 1, so

w.s/X.s/�

lX
iD1

ws.S
˛i

pC1
/X.S

˛i

pC1
/D w.s/:

� Finally, if there are at least two such spheres, and if there exist i0; i1 2 Œj1; l j�

with X.S
˛i0

pC1
/ <X.S

˛i1

pC1
/, then by Case 3 of the definition of the integers X and the

definition of � , we have X.s/DmaxifX.S
˛i

pC1
/g. Given a sphere s 2Aj�2p , define

Ns D

lX
iD1

ws.S
˛i

pC1
/X.S

˛i

pC1
/:
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We have

w.s/X.s/�Ns � w.s/X.s/�
X
i¤i0

ws.S
˛i

pC1
/X.s/�ws.S

˛i0

pC1
/X.S

˛i0

pC1
/

� w.s/X.s/�
X
i¤i0

ws.S
˛i

pC1
/X.s/�ws.S

˛i0

pC1
/.X.s/� 1/

D ws.S
˛i0

pC1
/

�
w.s/

C0

:

In all cases, we get that

w.s/X.s/�

lX
iD1

ws.S
˛i

pC1
/X.S

˛i

pC1
/�

w.s/

C0

:

Summing the previous inequality over all the spheres in Aj�2p that get subdivided,
we get that

N.p/�N.pC 1/D
X

s

.w.s/X.s/�Ns/

�

X
s

w.s/

C0

�
1

C0

max
s
w.s/:

This completes the proof.

Lemma 3.5 Assume that the combing path from B to A remains in the �–thick part of
outer space. Then there exist C4;C5 2R such that during a sequence of C4 consecutive
surgeries, at least one sphere with weight greater than �=C5 gets subdivided.

Proof Let † be a sphere system which is a vertex of the combing path. For C5 2R
big enough, the set of spheres †0 �† having weights less than �=C5 corresponds to a
forest in the corresponding graph (otherwise, as the number of edges is bounded, there
is a loop of length less than � , which contradicts the assumption that the combing path
stays in the �–thick part of CVn ). So the sphere system †�†0 is simple. Performing
surgery on spheres in †0 creates a new sphere system of the form †�†0[†00 , which
is compatible with †�†0 , and in which all spheres having weights less than �=C5

belong to †00 . Let C4 be the maximal number of simplices in CVn corresponding to
sphere systems at distance at most 2 in the spine of outer space, which is finite because
the action of Out.Fn/ on the spine is cocompact. Suppose that we perform C4C 1
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consecutive surgeries only on spheres of weights less than �=C5 . Then all the C4C 1

sphere systems we get are compatible with †�†0 , so we get back to a simplex we
had already visited. This is impossible since the combing path must end at A.

Proof of Proposition 3.2 Let 0� i � j �N be such that N � i and N �j are even,
and that you never perform surgery along the last intersection circle of a sphere in A

between Aj and Ai . Combining Lemmas 3.4 and 3.5, we get the existence of C > 0

depending only on n and � such that for all p 2 Œj0;M j�, we have

N.p/�N.pCC /� 1:

By induction on p , this implies that for all p 2 Œj0; bM
C
cj�, we have

kM�pCX
qD1

w.S
q
M�pC

/X.S
q
M�pC

/� p:

In particular, as the weights of a sphere system sum to 1, one of the numbers X.S
q
M�pC

/

is at least p . Let pDbM=C c. Denote by C0 the dimension of outer space. By Facts 2
and 3 of the previous section, we have i.A;B/ � .1=2C0/i.A;Aj�2.M�pC //, so
Lemma 3.3 ensures that i.A;B/� .1=2C0/ubM=C c . Let N0 WD 2dC e. If j � i �N0

(ie M � dC e), then

i.A;B/� 2bM=C c�1�C0

D 2b.j�i/=2C c�1�C0

� 2�2�C0.21=2C /j�i :

Let N 0
0
WD .C0 C 1/.N0 C 2/. If N � N 0

0
, then we can subdivide the combing

path from B to A into at most C0 C 1 pieces, in which no surgery occurs on the
last intersection circle with a sphere in A. One of these pieces contains at least
N=.C0C 1/ �N0C 2 vertices. So we can find 0 � i � j �N satisfying the above
condition, and such that j � i �N=.C0C 1/� 2�N0 . Hence we get

i.A;B/� 2�2�C0�
1
C .21=.2C.C0C1///N :

We can thus find N 00
0
2N and C 0

1
>1 such that if N �N 00

0
, then we have i.A;B/�C 0N

1
.

If 3�N �N 00
0

, then i.A;B/� 2 (otherwise after one single surgery, we would get a
sphere system compatible with †), so letting C1 WDmin.21=N 00

0 ;C 0
1
/ gives the result.

Proof of Theorem 3.1 The right-hand side inequality is an obvious application of the
triangle inequality.
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Let K0 ,L0 be the constants given by Theorem 2.2, and let C1 be given by Proposition 3.2.
Denote by K0 the diameter of the �–thick part of the star of a rose simplex in CVn .
Assume that the combing path 
 from B to A remains in the �–thick part of CVn ,
and denote by ADA0; : : : ;AN D B its vertices. As two consecutive vertices lie in
the closure of the star of a common rose, we have l.
 / �K0N . If N � 3, then by
Proposition 3.2 we have

log i.A;B/�N log C1;

hence by Theorem 2.2 we have

d.A;B/�
log C1

K0
N �L0;

which implies that

d.A;B/�
log C1

K0K0
l.
 /�L0:

If N � 2, then the length of the combing path is bounded above by 2K0 . We conclude
by letting K WD log C1=K0K0 and LDmax.L0; 2 log C1=K

0/.

References
[1] Y Algom-Kfir, M Bestvina, Asymmetry of outer space, Geom. Dedicata 156 (2012)

81–92 MR2863547

[2] J Behrstock, M Bestvina, M Clay, Growth of intersection numbers for free group
automorphisms, J. Topol. 3 (2010) 280–310 MR2651361

[3] B H Bowditch, Intersection numbers and the hyperbolicity of the curve complex, J.
Reine Angew. Math. 598 (2006) 105–129 MR2270568

[4] M Culler, K Vogtmann, Moduli of graphs and automorphisms of free groups, Invent.
Math. 84 (1986) 91–119 MR830040

[5] S Francaviglia, A Martino, Metric properties of outer space, Publ. Mat. 55 (2011)
433–473 MR2839451

[6] S Gadgil, Embedded spheres in S2 �S1] : : : ]S2 �S1 , Topology Appl. 153 (2006)
1141–1151 MR2203026

[7] S Gadgil, S Pandit, Algebraic and geometric intersection numbers for free groups,
Topology Appl. 156 (2009) 1615–1619 MR2521697

[8] V Guirardel, Cœur et nombre d’intersection pour les actions de groupes sur les arbres,
Ann. Sci. École Norm. Sup. 38 (2005) 847–888 MR2216833

[9] M Handel, L Mosher, The expansion factors of an outer automorphism and its inverse,
Trans. Amer. Math. Soc. 359 (2007) 3185–3208 MR2299451

Algebraic & Geometric Topology, Volume 12 (2012)

http://dx.doi.org/10.1007/s10711-011-9591-2
http://www.ams.org/mathscinet-getitem?mr=2863547
http://dx.doi.org/10.1112/jtopol/jtq008
http://dx.doi.org/10.1112/jtopol/jtq008
http://www.ams.org/mathscinet-getitem?mr=2651361
http://dx.doi.org/10.1515/CRELLE.2006.070
http://www.ams.org/mathscinet-getitem?mr=2270568
http://dx.doi.org/10.1007/BF01388734
http://www.ams.org/mathscinet-getitem?mr=830040
http://dx.doi.org/10.5565/PUBLMAT_55211_09
http://www.ams.org/mathscinet-getitem?mr=2839451
http://dx.doi.org/10.1016/j.topol.2005.03.005
http://www.ams.org/mathscinet-getitem?mr=2203026
http://www.sciencedirect.com/science/article/pii/S0166864108004306
http://www.ams.org/mathscinet-getitem?mr=2521697
http://dx.doi.org/10.1016/j.ansens.2005.11.001
http://www.ams.org/mathscinet-getitem?mr=2216833
http://dx.doi.org/10.1090/S0002-9947-07-04066-4
http://www.ams.org/mathscinet-getitem?mr=2299451


Sphere paths in outer space 2517

[10] A Hatcher, Homological stability for automorphism groups of free groups, Comment.
Math. Helv. 70 (1995) 39–62 MR1314940

[11] A Hatcher, K Vogtmann, Isoperimetric inequalities for automorphism groups of free
groups, Pacific J. Math. 173 (1996) 425–441 MR1394399

[12] P Scott, The Symmetry of Intersection Numbers in Group Theory, Geom. Topol. 2
(1998) 11–29 MR1608688

[13] K Vogtmann, Automorphisms of free groups and outer space, volume 94 (2002) 1–31
MR1950871

[14] J H C Whitehead, On certain sets of elements in a free group, Proc. London Math. Soc.
41 (1936) 48–56 MR1575455

Ecole Normale Supérieure
45 rue d’Ulm, F-75005 Paris, France

camille.horbez@ens.fr

Received: 24 June 2012 Revised: 3 November 2012

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.1007/BF02565999
http://www.ams.org/mathscinet-getitem?mr=1314940
http://projecteuclid.org/euclid.pjm/1102365632
http://projecteuclid.org/euclid.pjm/1102365632
http://www.ams.org/mathscinet-getitem?mr=1394399
http://dx.doi.org/10.2140/gt.1998.2.11
http://www.ams.org/mathscinet-getitem?mr=1608688
http://dx.doi.org/10.1023/A:1020973910646
http://www.ams.org/mathscinet-getitem?mr=1950871
http://dx.doi.org/10.1112/plms/s2-41.1.48
http://www.ams.org/mathscinet-getitem?mr=1575455
mailto:camille.horbez@ens.fr
http://msp.org
http://msp.org

	Introduction
	1. Preliminaries
	1.1. Outer space in terms of graphs and the Lipschitz metric
	1.2. Actions on trees and Guirardel's intersection number
	1.3. Outer space in terms of sphere systems
	1.4. Sphere paths in outer space

	2. Intersection numbers and the Lipschitz metric
	2.1. Equality between both notions of intersection numbers
	2.2. Intersection numbers and the Lipschitz metric

	3. Metric properties of the combing path
	3.1. A few facts about combing paths
	3.2. Growth of intersection numbers along combing paths and the end of the proof

	References

