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On unstable modules over the Dickson algebras,
the Singer functors Rs and the functors Fixs

GEOFFREY M L POWELL

The category Ds�U of unstable modules over the Steenrod algebra equipped with a
compatible module structure over the Dickson algebra Ds is studied at the prime 2 ,
with applications to the Singer functor Rs , considered as a functor from unstable
modules U to Ds�U . An explicit copresentation of RsM is given using Lannes’ T –
functor when M is a reduced unstable module; applying Lannes’ functor Fixs , this
is used to show that Rs gives a fully-faithful embedding of U in Ds�U . In addition,
the right adjoint Zs to Rs is introduced and is related to the indecomposables functor
and the functor Fixs .

55S10; 18E10

1 Introduction

The Dickson algebras over the field with two elements, F , play an important role in the
theory of unstable algebras over the mod–2 Steenrod algebra; the Dickson algebra Ds

is the algebra of invariants H�V
Aut.Vs/

s , where H�Vs denotes the group cohomology
of the rank s elementary abelian 2–group Vs . The category Ds�U of Ds –modules in
the category U of unstable modules arises naturally; for example, Singer introduced
the functors Rs in his work on the homology of the Steenrod algebra ([22] and related
work), where Rs can be considered as a functor from the category U to Ds�U. One
of the aims of this paper is to study the functor Rs , considered both as a functor to
Ds�U and as a functor to U, from the viewpoint of modern unstable module theory.

The functors Rs can be applied in calculating the E2 –term of the Adams spectral
sequence: Lannes and Zarati [11] related them to the derived functors of destabilization
(the left adjoint to the inclusion of the category U in the category of graded modules
over the Steenrod algebra A) and these derived functors appear, via a Grothendieck
spectral sequence, in the calculation of Ext groups in the category of A–modules. The
role of the Singer functors in calculating these derived functors on general modules
over the Steenrod algebra has been clarified (at odd primes) by the author in [17],
establishing the relationship between the approach of Lannes and Zarati [11] and that
of Singer.
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For these applications, it is important to understand the behaviour of the functor
HomU.RsM;�/, for M 2ObU. Restricting to the full subcategory of U with objects
of the form H�V , this is equivalent to understanding RsM in the category U=Nil of
unstable modules localized away from the nilpotent unstable modules, using the work
of Henn, Lannes and Schwartz [8].

The paper exploits the structure of the module categories Ds�U, their relation with
the categories H�Vs�U of unstable modules over H�Vs and the localized categories
Ds�U=Nil; important tools are the functor FixsW H

�Vs�U! U (see Lannes [10])
and the study of !s –torsion for unstable modules over H�Vs , which was initiated
by Dwyer and Wilkerson [3; 4] and developed by Lannes and Zarati [12]. The latter
leads to the notion of !s –closure: an unstable Ds –module M is !s –closed if it
is !s –torsion-free and is maximal with this property in the equivalence class up to
!s –torsion.

A key new ingredient in studying the functor Rs is an approximation zRsW U!Ds�U

which is defined as the equalizer of a diagram

Ds˝M
�M //
�M

// H�Vs˝TVs
M

in the category Ds�U, where TVs
is Lannes’ T –functor.

Theorem 1 For s 2N , there is a natural monomorphism 
sW Rs ,! zRs of functors
U!Ds�U such that, for an unstable module M ,

(1) zRsM is the !s –closure of RsM ;

(2) the morphism 
sW RsM ! zRsM is an isomorphism if M is reduced.

This is derived from a model for the Singer functor modulo nilpotent unstable modules.
The category U=Nil embeds in the category F of functors from the category Vf of
finite-dimensional F –vector spaces to F –vector spaces and the nillocalization of Ds�U

embeds in a functor category Fg.Ds/ , for which Vf is replaced by a category with
objects .V;W /, where W � V is a subspace of codimension at most s in V 2ObVf .
The functor Rs corresponds to the functor �sW F ! Fg.Ds/ given on F 2 ObF

by �sF.V;W / WD F.W /. The above diagram corresponds to a copresentation of the
functor �s ; throughout the paper, the comparison with the behaviour after nillocalization
is a guiding principle.

Theorem 1 provides a model for RsM (considered either in U or in Ds�U) when M

is a reduced unstable module. In this case, the calculation of TV RsM is accessible
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by using standard techniques of unstable module theory; as such, it provides a way of
approaching the calculation of the functor HomU.RsM;�/.

The functor zRs leads to a proof of the following result, where the natural transforma-
tion Fixs.H

�Vs˝Ds
Rs.�//! 1U is constructed by adjunction from the canonical

monomorphism RsM ,!Ds˝M .

Theorem 2 For s 2N , the natural transformation Fixs.H
�Vs˝Ds

Rs.�//! 1U of
functors on U is an isomorphism.

This result is striking: Fixs.H
�Vs ˝Ds

�/ is equipped with a natural AutVs action;
when composed with Rs , the action is trivial. For instance, applying the functor
Fixs.H

�Vs ˝Ds
�/ to the natural inclusion RsM ,! Ds ˝M yields the natural

inclusion M ,! TVs
M , where TVs

M is an Aut.Vs/–module by functoriality of T� .

The functor Fixs.H
�Vs ˝Ds

.�//W Ds�U! U can be identified in the nillocalized
situation, where it corresponds to the composite functor ‰sIndsW Fg.Ds/! F, which
is given on an object G 2ObFg.Ds/ by ‰sIndsG.V / WDG.V ˚F s;V /. In this setting,
Theorem 2 corresponds to the natural isomorphism ‰sInds�s Š 1F (see Lemma 7.1.6);
the force of the theorem is that this lifts to unstable modules. Since the functor Fixs does
not see !s –torsion, in the proof of Theorem 2, Rs can be replaced by the model zRs

of Theorem 1, which leads to the result.

As a consequence, one obtains the following.

Corollary 3 The functor Rs induces a fully-faithful embedding RsW U ,! Ds�U;

for s 2N .

The Singer functor RsW U!Ds�U admits a right adjoint Zs . The functor Zs leads
to a stronger conclusion (Theorem 8.3.1); Corollary 3 corresponds to the fact that the
adjunction unit 1U! ZsRs is an isomorphism.

The functor Zs is of independent interest; there is a natural transformation Qs! Zs

of functors Ds�U! U, where Qs is the indecomposables functor, and this is an
isomorphism up to nilpotent unstable modules. After nillocalization, Qs corresponds to
R0

s W Fg.Ds/!F given by R0
s G.V /DG.V;V /; in particular the functor Qs becomes

exact upon nillocalization.

The functor Zs is also related to the functor Fixs , via a natural transformation

Zs! Fixs.H
�Vs˝Ds

.�//:

In the case s D 1, this leads to a criterion (see Theorem 9.3.3) for an object of D1�U

to be in the image of R1 .
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Organization of the paper Sections 2, 3 and 4 set the stage, providing background,
introducing the categories of unstable modules over the Dickson algebras and the Singer
functors respectively. Sections 5 and 6 introduce the tools of nillocalization as they
apply to unstable modules over Dickson algebras and Section 7 gives the model for the
Singer functors viewed through the filter of nillocalization.

The main results of the paper are proved in Sections 8 and 9.

2 Background

2.1 Unstable modules and unstable algebras

Throughout the paper, F is the field with two elements and A is the mod–2 Steenrod
algebra (see Schwartz [19] for the basics of the theory of unstable modules over the
Steenrod algebra). The category of graded A–modules is denoted by M and the full
subcategory of unstable modules U; these are equipped with the usual tensor product.
A commutative algebra B in M is unstable if the underlying module is unstable and
satisfies Sq0x D x2 , where Sq0 denotes the top Steenrod operation; the category of
unstable algebras and algebra morphisms is denoted by K . Observe that the degree
zero part of an unstable algebra is a Boolean algebra. An unstable algebra is Noetherian
if the underlying commutative algebra is finitely-generated.

The category of B –modules in M is denoted by B�M and, if K is an unstable algebra,
the category of K–modules in U is denoted by K�U. If K!L is a morphism of
unstable algebras, there is an adjunction

L˝K �W K�U�L�U WRestrictLK ;

where L˝K � is the induction functor, left adjoint to the exact restriction functor.

The degree-doubling functor ˆW M! M restricts to a functor ˆW U! U and Sq0

induces a natural transformation �W ˆ ! 1U (see [19, Section 1.7]). An unstable
module M is reduced if �M is a monomorphism (equivalently, if M does not contain
a nilpotent submodule, where an unstable module N is nilpotent if Sq0 acts locally
nilpotently); M is nilclosed if Ext"U.N;M /D 0, for every " 2 f0; 1g and nilpotent N .
The full subcategory of nilpotent unstable modules Nil�U is a localizing subcategory
(see Gabriel [6] for generalities on localization of abelian categories).

An unstable algebra is reduced (resp. nilclosed) if the underlying unstable module has
this property, hence an unstable algebra K is reduced if and only if K contains no
nilpotent elements. The functor ˆ commutes with tensor products, thus restricts to
a functor ˆW K ! K , and ˆ induces an exact functor ˆW K�U! ˆK�U. If K
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is reduced, ˆK identifies via �K as the unstable subalgebra of K generated by the
squares of elements of K .

The functor ẑ W U! U is the right adjoint to ˆ (see [19, Examples 2.2.3]) and the
adjunction unit M ! ẑˆM is a natural isomorphism. Proposition A.1.1 shows that
ẑ induces a right adjoint to ˆW K�U!ˆK�U.

2.2 Lannes’ T –functor

For V an elementary abelian 2–group (Vs will be written to denote an elementary
abelian 2–group of rank s ), H�V denotes the group cohomology of V with F –
coefficients, which is isomorphic to the symmetric algebra S�.V �/ on the dual of V ;
the underlying unstable module of H�V is injective in U (see [19, Chapter 3]).

Lannes’ T –functor TV W U!U is the left adjoint to H�V ˝�W U!U; it is exact
and commutes with tensor products. Moreover, TV restricts to a functor TV W K! K

and, for an unstable algebra K , induces an exact functor K�U! TV K�U.

A morphism of unstable algebras 'W K!H�V is adjoint to a morphism TV K!F of
unstable algebras, which factors across a morphism of Boolean algebras z'W T 0

V
K! F ,

where T 0
V

denotes the degree zero part of TV ; F is a flat T 0
V

K–module with respect
to this morphism, so that F ˝T 0

V
K � is exact on the category of T 0

V
K–modules.

Definition 2.2.1 For 'W K ! H�V a morphism of unstable algebras, let T.V;'/K

denote the unstable algebra F˝T 0
V

K TV K , where F is a T 0
V

K–algebra via z' , and let
T.V;'/W K�U! T.V;'/K�U be the exact functor F ˝T 0

V
K TV .�/.

The functor TV is natural in V ; in particular, there is a natural inclusion 1UŠT0 ,!TV ,
for V 2 ObVf .

Lemma 2.2.2 For K 2 ObK , M 2 ObK�U and 'W K ! H�V a morphism of
unstable algebras, there are morphisms of unstable algebras

K! TV K! T.V;'/K Š F ˝T 0
V

K TV K;

with respect to which the natural morphisms of unstable modules

M ! TV M ! T.V;'/M Š F ˝T 0
V

K TV M

are morphisms of K�U.
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2.3 The Dickson algebras

The group Aut.V / of linear automorphisms acts on H�V on the right by morphisms of
unstable algebras; the Dickson algebra DV 2ObK is the ring of invariants H�V Aut.V / ;
DVs

will be denoted by Ds . There is an isomorphism of graded algebras

Ds Š F Œ!s;0; : : : ; !s;s�1�;

where the generator !s;i has degree 2s � 2i ; see Wilkerson [25]. The top Dickson
invariant !s;0 will be written !s and identifies with the product of the elements of
.H 1Vs/nf0g; there are related explicit descriptions of the other generators. The algebra
H�Vs is free as a Ds –module, forgetting the action of the Steenrod algebra (see Neusel
and Smith [16] for example), in particular is flat as a Ds –module.

Lemma 2.3.1 [11, Définition-Proposition 4.4.7] Let ˛W U ,! V be the inclusion
of a subspace of codimension c . There is a canonical surjection of unstable algebras
DV �ˆcDU which fits into a commutative diagram

DV

����

� � // H�V

H �˛
����

ˆcDU
� �
�c

DU // DU
� � // H�U:

In particular, for s 2N , the kernel of Ds�ˆDs�1 is the prime ideal !sDs , which is
invariant under the A–action.

The Boolean algebra T 0
W

H�Vs identifies with FHom.W ;Vs/ , and by [19, Proposi-
tion 3.9.8], the subalgebra T 0

W
Ds is isomorphic to FHom.W ;Vs/=Aut.Vs/ . The mor-

phism of Boolean algebras z{W T 0
Vs

Ds Š FHom.Vs ;Vs/=Aut.Vs/ ! F associated to the
canonical inclusion i W Ds ,! H�Vs is induced by evaluation on the element of
Hom.Vs;Vs/=Aut.Vs/ represented by the identity morphism of Vs .

Proposition 2.3.2 For s 2N ,

(1) the unstable algebra T.Vs ;i/Ds is isomorphic to H�Vs ;

(2) T.Vs ;i/ induces an exact functor T.Vs ;i/W Ds�U!H�Vs�U:

Proof The first statement is a case of the calculation of the T –functor on rings of
invariants (cf [19, Proposition 3.9.8], Dwyer and Wilkerson [5, proof of 1.4]). The
second is an immediate consequence, following from the definition of T.Vs ;i/ .
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2.4 Unstable modules over H �Vs and Fixs

The module category Ds�U is related to the category H�Vs�U via the adjunction

H�Vs˝Ds
�W Ds�U�H�Vs�U WRestrictH

�Vs

Ds
:

The functor FixsW H
�Vs�U!U is the left adjoint to the free H�Vs –module functor

H�Vs˝�W U!H�Vs�U; it commutes with tensor products and restricts to a functor
FixsW H

�Vs # K! K which is left adjoint to H�Vs ˝�W K! H�Vs # K (cf [12,
Théorème 1.3.3]). See [10] and [12; 13] for further properties of the categories H�Vs�U

and the functors Fixs .

Lemma 2.2.2 has the following analogue for the functor Fixs , using Lannes’ description
of Fixs in terms of TVs

.

Proposition 2.4.1 For s 2N , the natural transformation 1U! TVs
induces a natural

transformation Forgets! Fixs , where ForgetsW H
�Vs�U!U is the forgetful functor;

this factors naturally

Forgets // //F ˝H �Vs
.�/ //Fixs.�/

across the H�Vs –module indecomposables.

Proof By [10, 4.4.3], FixsM Š F˝TVs H �Vs
TVs

M; where TVs
H�Vs! F is adjoint

to the identity on H�Vs . The natural morphism M ! TVs
M defines a morphism

of H�Vs –modules, as in Lemma 2.2.2. The H�Vs –module structure on FixsM is
induced by the morphism of unstable algebras H�Vs! FixsH�Vs Š F . The result
follows.

3 Unstable modules over the Dickson algebras

3.1 Unstable modules over Ds , !s –torsion and !s –closure

Recall from Lemma 2.3.1 that there is a canonical surjection of unstable algebras
Ds�ˆDs�1 ; this induces the functors in the following standard result.

Proposition 3.1.1 For s 2N , there are adjunctions

ˆDs�1�U
uu .�/=!s

?Restricts
?

//
ii

Ann!s

Ds�U;

where .�/=!sW M 7!M=!sM , for M 2 ObDs�U and Ann!s
M is the submodule

of elements x such that !sx D 0.
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Moreover, the adjunction RestrictsaAnn!s
identifies ˆDs�1�U as the full subcategory

of Ds�U of modules annihilated by !s .

Remark 3.1.2 (1) The functor .�/=!s identifies with ˆDs�1˝Ds
�, the induction

functor.

(2) Localization away from the torsion associated to an invariant ideal of an unstable
algebra has been considered by Henn [7, Section 3] and Meyer [15, Chap-
ter 7]. Dwyer and Wilkerson [3; 4] and Lannes and Zarati [12] have considered
localization away from !s –torsion.

Localization inverting the top Dickson invariant is an important tool. For s 2 N ,
the localized algebras Ds Œ!

�1
s � and H�Vs Œ!

�1
s � are commutative algebras in M (see

Singer [21] and Wilkerson [24]); moreover, Ds Œ!
�1
s �˝Ds

� induces an exact functor

Ds Œ!
�1
s �˝Ds

�W Ds�U!Ds Œ!
�1
s ��M;

which will be denoted M 7!M Œ!�1
s �.

Recall that the inclusion U ,! M has a right adjoint UnW M! U, which gives the
largest unstable module of an A–module. If X;Y are A–modules, there is a canonical
monomorphism .UnX /˝ .UnY /! Un.X ˝Y /. It follows that, for M 2 ObDs�U,
there is a natural morphism M ! Un.M Œ!�1

s �/ in Ds�U.

Definition 3.1.3 [7; 15] An unstable Ds –module M 2ObDs�U is !s –closed if the
map M !Un.M Œ!�1

s �/ is an isomorphism. An unstable H�Vs –module is !s –closed
if the underlying unstable Ds –module is !s –closed.

Proposition 3.1.4 For s 2N , an unstable Ds –module M is !s –closed if the unstable
H�Vs –module H�Vs˝Ds

M is !s –closed.

In particular, for N 2 ObU, Ds˝N is !s –closed.

Proof The unstable Ds –module M embeds in H�Vs ˝Ds
M as the invariants (in

Ds�U) of the action of Aut.Vs/ induced by the action on the left hand factor. This
implies that, if H�Vs˝Ds

M is !s –closed, then M is !s –closed, since the kernel of
a morphism between !s –closed objects is !s –closed.

By [11, Proposition 2.5.2], the morphism

H�Vs˝N ! Un.H�Vs Œ!
�1
s �˝N /

is an isomorphism, for N an unstable module, which shows that H�Vs˝N is !s –
closed. Since H�Vs ˝ N is isomorphic to H�Vs ˝Ds

.Ds ˝ N /, it follows that
Ds˝N is !s –closed.
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Remark 3.1.5 The converse is false in general. Consider H�Vs as a Ds –module
(which is !s –closed); for s > 1 an integer, H�Vs˝Ds

H�Vs is not !s –closed.

3.2 The indecomposables functor

The augmentation Ds! F induces a functor trivsW U!Ds�U which has left adjoint
QsW Ds�U!U given by M 7!M=DsM ŠF˝Ds

M , Ds denoting the augmentation
ideal, and right adjoint which associates to an unstable Ds –module the largest unstable
submodule with trivial Ds –action, thus identifying U as the full subcategory of Ds�U

of objects with trivial Ds –module structure

U
ww

Qs
?trivs
?

//hh Ds�U:

4 Introducing the Singer functors

4.1 The Singer functor Rs

The definition and properties of the Singer functor RsW U!Ds�U are reviewed in
this section; for further details, the reader is referred to the original work of Singer [23;
20] (and related work) and Lannes and Zarati’s paper [11].

In the following, if I is a sequence of nonnegative integers, SqI denotes the Milnor
basis element of the Steenrod algebra indexed by I . The linear map Sts introduced
below corresponds to the Steenrod total power.

Definition 4.1.1 For s � 1 an integer and M an unstable module, let

(1) StsW ˆsM ! Ds ˝ M be the linear map defined on a homogeneous ele-
ment ˆsx by

Sts.ˆsx/ WD
X

ID.i1;:::;is/

!"s;0!
i1

s;1
: : : !

is�1

s;s�1
˝SqI .x/

where jxj D "C i1 � � � C is ;

(2) RsM denote the sub Ds –module (ignoring the A–action) of Ds˝M which
is generated by the image of Sts .

Remark 4.1.2 (1) The linear maps Sts can be constructed as iterates of the linear
maps St1 ; the above definition stresses the intimate relationship between the
Dickson algebras and the dual Steenrod algebra.
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(2) Proposition 4.1.3 below contains the statement that RsM �Ds˝M is stable
under the action of the Steenrod algebra, which is not immediately obvious from
the definition given.

By convention, R0 is taken to be the identity functor on U and R�1 to be the zero
functor.

Proposition 4.1.3 [11] For s 2N , Rs defines a functor RsW U!Ds�U; equipped
with a monomorphism Rs.�/ ,!Ds˝� in Ds�U.

(1) For M an unstable module, the underlying graded Ds –module of RsM is free
on a vector space isomorphic to ˆsM . Moreover, there is a natural isomorphism
QsRsM Š F ˝Ds

RsM ŠˆsM in U.

(2) The functor RsW U!Ds�U is exact and commutes with limits and colimits.

(3) For unstable modules M;N , there is a natural isomorphism Rs.M ˝N / Š

RsM ˝Ds
RsN in Ds�U.

(4) There is a natural surjection �sW RsM �ˆRs�1M in Ds�U which makes the
following diagram commute:

RsM
� � //

�s
����

Ds˝M

����
ˆRs�1M

� � // ˆ.Ds�1˝M /ŠˆDs�1˝ˆM
1˝�M

// .ˆDs�1/˝M;

where the terms of the bottom row are considered as Ds –modules via restriction
of their natural ˆDs�1 –module structures.
Moreover, there is a natural short exact sequence in Ds�U,

0! !sRsM !RsM !ˆRs�1M ! 0:

(5) If N is a nilpotent unstable module, then RsN is nilpotent.

(6) If M is a reduced (respectively nilclosed) unstable module, then RsM is reduced
(resp. nilclosed).

The following result will be strengthened in Section 8.3.

Lemma 4.1.4 For s 2 N and unstable modules M;N , the functor Rs induces a
monomorphism HomU.M;N / ,! HomDs�U.RsM;RsN /:

Algebraic & Geometric Topology, Volume 12 (2012)
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Proof By Proposition 4.1.3, the composite QsRs is naturally isomorphic to the
functor ˆs , hence gives rise to

HomU.M;N /
Rs //HomDs�U.RsM;RsN /

Qs //HomU.ˆ
sM; ˆsN /;

which identifies with the natural morphism corresponding to the functor ˆs . The
functor ˆs is fully faithful, hence the first morphism is injective, as required.

Recall that an unstable module N is locally finite if Ax � N is finite, for every
element x of N .

Proposition 4.1.5 For s 2 N and X a locally finite unstable module, the natural
monomorphism RsX ,!Ds˝X is the !s –closure of RsX in Ds˝X .

Proof The module Ds ˝ X is !s –closed in Ds�U, by Proposition 3.1.4, hence
it suffices to show that the cokernel of RsX ! Ds ˝X is !s –torsion. Since both
functors commute with colimits, it suffices to consider the case where X is a finite
unstable module. This case is established by induction on the total dimension of X ,
using the cases X D †nF , for n 2 N , for the inductive step. The monomorphism
Rs†

nF ,! Ds ˝ †
nF identifies with the n–iterated suspension of the inclusion

!n
s Ds ,!Ds , so the cokernel is !s –torsion.

Proposition 4.1.6 The functor RsW U!Ds�U admits a left adjoint As and a right
adjoint Zs ,

Ds�U
As
? ((oo Rs
?
Zs

66 U:

Moreover,

(1) the functor As sends projective objects of Ds�U to projectives of U;

(2) the functor Zs sends injective (respectively reduced) objects of Ds�U to injective
(resp. reduced) objects of U.

Proof The result is a formal consequence of the properties of Rs . For example, for
M 2ObDs�U, ZsM is reduced if and only if HomU.N;ZsM /ŠHomDs�U.RsN;M /

is trivial for every nilpotent unstable module N . The functor Rs preserves nilpotent
unstable modules; hence, if M is reduced, then HomDs�U.RsN;M / D 0 for nilpo-
tent N .
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Remark 4.1.7 The category Ds�U has enough projectives and injectives [12; 15]. A
family of projective generators of Ds�U is given by the family of unstable Ds –modules
Ds˝F.n/, where F.n/ denotes the free unstable module on a generator of degree n.
Similarly, there is a family of injective cogenerators given by the generalized Brown–
Gitler modules JDs

.n/, for n2N , where JDs
.n/ corepresents the contravariant functor

M 7! .M n/� , for M 2 ObDs�U.

The unstable modules As.Ds˝F.n// and Zs.JDs
.n// are closely related and illuminate

the relationship between the Dickson algebras and the Steenrod algebra.

Recall from Section 3 that trivsW U! Ds�U gives an unstable module the trivial
Ds –module structure and RestrictsW ˆDs�1�U!Ds�U is induced by the canonical
projection Ds � ˆDs�1 . The functor ẑ W ˆDs�1�U! Ds�1�U is provided by
Proposition A.1.1.

Proposition 4.1.8 For s 2N , there are natural isomorphisms
(1) Zs ıRestricts Š Zs�1 ı

ẑ W ˆDs�1�U!U

(2) Zs ı trivs Š
ẑ sW U!U.

Proof For M 2 ObU and N 2 ObˆDs�1�U, there are natural isomorphisms

HomU.M;Zs Restricts N /Š HomDs�U.RsM;Restricts N /

Š HomˆDs�1�U..RsM /=!s;N /:

By Proposition 4.1.3, there is a natural isomorphism .RsM /=!s ŠˆRs�1M , hence

HomˆDs�1�U..RsM /=!s;N /ŠHomDs�1�U.Rs�1M; ẑN /ŠHomU.M;Zs�1
ẑN /;

by adjunction. The first statement follows.

The second statement can either be proved directly by a similar argument, or deduced
by induction from the first, since trivs is the composite of the functors Restricti for
1� i � s .

Further results on the functors Zs are given in Section 9, using deeper properties of the
Singer functors Rs .

5 Functor categories and nillocalization

This section reviews the techniques of nillocalization, as they apply to the study of the
category of unstable modules over an unstable algebra. This is based on the foundations
of Henn, Lannes and Schwartz [8; 9], related to earlier work of Lam, Rector [18] and
Adams and Wilkerson [1], and on subsequent work of Djament [2], Henn [7], Lannes
and Zarati [12; 13], Mekkia [14] and Meyer [15].
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5.1 Nillocalizations

The general theory of localization of abelian categories [6] provides an adjunction
l W U�U=Nil W r and, moreover, the functor l is exact [19, Chapter 5]. The adjunction
unit M ! r lM corresponds to nilclosure: M is reduced (respectively nilclosed) if
and only if it is a monomorphism (resp. isomorphism).

Notation 5.1.1 Write Vf for the full subcategory of finite-dimensional spaces in V,
the category of F –vector spaces; the category of functors from Vf to V is denoted
by F and the full subcategory of locally finite (or analytic) functors, F! (see [8; 19]).

The category U=Nil identifies with the full subcategory F! � F of analytic functors
via l W U! F, lM.V /D T 0

V
M , which has right adjoint equally denoted by r :

l W U� F W r:

Example 5.1.2 For V 2 ObVf , we have that the analytic functor lH�V is the
injective IV .�/D FHom.�;V / . The analogue of the functor TV in the category F is
the shift functor �V W F! F, defined by precomposition with �˚V W Vf ! Vf .

The functors l and r both commute with tensor products, which is an important fact
in considering module structures in the respective categories. Similarly, the functor l

sends an unstable algebra to a functor with values in Boolean algebras. The category of
Boolean algebras is equivalent to the opposite of the category of profinite sets, via the
functor X 7! FX , where FX denotes the space of continuous maps from the profinite
set X to F .

Notation 5.1.3 Let

(1) PS denote the category of presheaves of profinite sets on Vf , so that the
continuous map functor induces F .�/W PSop

! F;

(2) gW Kop
! PS be the functor g.K/W V 7! HomK.K;H

�V /.

Lannes’ linearization principle fits into this framework via the isomorphism

l.K/.V /D T 0
V K Š Fg.K /.V /:

If K is a Noetherian unstable algebra, then g.K/ takes values in finite sets (cf [8]).
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Example 5.1.4 For s 2N ,

(1) g.H�Vs/.W /D HomVf .W;Vs/;

(2) g.Ds/.W / D HomVf .W;Vs/=Aut.Vs/, which is equivalent to the set of sub-
spaces of W of codimension at most s , regarded as a contravariant functor by
pullback of subspaces.

The inclusion Ds
i
,!H�Vs induces the surjection to coinvariants g.H�Vs/� g.Ds/.

5.2 Nillocalization of the category of modules over a Noetherian unstable
algebra

Let K be a Noetherian unstable algebra; an object of K�U is said to be nilpotent
if the underlying unstable module is nilpotent. There is an exact localization functor
K�U! K�U=Nil. (This notation should not lead to confusion, since there is a
forgetful functor to U=Nil and the category K�U=Nil only depends on K up to
nillocalization.)

An element of K�U is nilclosed if and only if the underlying unstable module
is nilclosed; in this case, the unstable K–module structure is the restriction of the
induced unstable r l.K/–module structure (r l.K/ has a canonical unstable algebra
structure [8]).

An element ' 2 g.K/.V / can be considered as a morphism of Boolean algebras
T 0

V
K! F and the functor T.V;'/ is defined (cf Definition 2.2.1), which has degree

zero part denoted T 0
.V;'/

. The pair .V; '/ can be considered as an object of a comma
category, which motivates the following.

Notation 5.2.1 For X a presheaf of finite sets on Vf , denote by

(1) V
f

=X
the comma category, with objects pairs .V;x/, where V 2 Vf and

x 2 X.V /, and a morphism .V;x/ ! .W;y/ is a linear map f W V ! W

such that X.f /y D x ;

(2) FX the category of functors Funct.Vf
=X
;V/;

(3) FX�F the category of FX–modules in F.

Example 5.2.2 (1) The category V
f

=g.H �Vs/
is the over-category Vf =Vs .

(2) The category V
f

=g.Ds/
has objects .V;U /, where U � V is a subspace of

codimension at most s ; a morphism .V;U /! .V 0;U 0/ is a linear map V ! V 0

sending U to U 0 and such that the induced map V =U ! V 0=U 0 is a monomor-
phism.
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The category FX is abelian equipped with a tensor product, this structure being inherited
from V. Moreover, Yoneda’s lemma shows that it has sufficiently many projectives
and injectives.

Example 5.2.3 Consider the case XD g.Ds/, for s 2 N . If .V;U / is an object of
V
f

=g.Ds/
, then

(1) P.V;U / 2 ObFg.Ds/ denotes the projective functor F ŒHom..V;U /;�/�,

(2) I.V;U / 2 ObFg.Ds/ denotes the injective functor FHom.�;.V;U // ,

where Hom is taken in the category V
f

=g.Ds/
. This gives families of projective gener-

ators and injective cogenerators respectively, as .V;U / runs over representatives of
isomorphism classes of objects of V

f

=g.Ds/
.

The functor I.Vs ;0/ plays an important role; it can be identified as follows. There is a
natural isomorphism

Hom
V
f

=g.Ds/

..V;U /; .Vs; 0//Š Inj.V =U;Vs/;

where the right hand side is the set of injective linear maps. Hence we have that
I.Vs ;0/.V;U /Š F Inj.V =U;Vs/ .

The functors T 0
.V;'/

of Definition 2.2.1 are constructed using the splitting associated
to the canonical idempotents of the finite-dimensional Boolean algebra T 0

V
K , which

gives an isomorphism for M 2 ObK�U, namely

T 0
V M Š

M
'2g.K /.V /

T 0
.V;'/M:

This corresponds to a functor defined in the general framework which was introduced in
Notation 5.2.1 (see [2, Chapitre 3]). Namely the forgetful functor V

f

=X
!Vf induces a

functor �XW F! FX by precomposition, given explicitly by �XF.V;x/D F.V /. This
admits a right adjoint �X given by �XG.V /D

L
x2X.V /G.V;x/.

The importance of this adjunction is through the following.

Proposition 5.2.4 [2, Proposition 3.3.10] For X a presheaf of finite sets on Vf , the
adjunction �X a�X induces an equivalence between FX and the category FX�F of
FX–modules in F.

There is a relative version of the above construction [2, Définition et Proposition 3.3.4].
For ˛W X ! Y a morphism of presheaves of finite sets, V

f

=˛
induces a functor
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˛!W FY! FX by precomposition, which admits a right adjoint ˛!W FX! FY given
on F 2 ObFX by

.˛!F /.V;y/D
M

x2˛�1
V

y

F.V;x/:

Consult [2, Chapitre 3] for the general properties.

Remark 5.2.5 For X a presheaf of finite sets, �X D .X!�/! and �X D .X!�/! ,
where � is the terminal presheaf.

Example 5.2.6 For mW K!L a morphism of Noetherian unstable algebras, we have
that g.m/W g.L/! g.K/ induces an adjunction

g.m/!W Fg.K /� Fg.L/
W g.m/!:

This is related to the induction-restriction adjunction L˝K�W K�U�L�U WRestrictLK
in Theorem 5.2.8.

Definition 5.2.7 A functor G of FX is analytic if �XG 2 ObF is analytic; the full
subcategory of analytic functors in FX is denoted FX

! .

Theorem 5.2.8 For K a Noetherian unstable algebra, the adjunction l W U� F W r

induces an adjunction
lK W K�U� Fg.K /

W rK ;

where .lK M /.V; '/ D T 0
.V;'/

M and the underlying functor rK W Fg.K / ! U is the
composite r�g.K / .

The functor lK is exact and commutes with tensor products. Moreover, lK induces an
equivalence of categories

K�U=Nil
Š
! Fg.K /

! :

For mW K!L a morphism of Noetherian unstable algebras,

(1) lL.L˝K �/W K�U! Fg.L/ is naturally equivalent to g.m/!lK ;

(2) RestrictLK rLW Fg.L/!K�U is naturally equivalent to rKg.m/! .

Proof The functor l W U ! F commutes with tensor products, hence induces a
functor l W K�U! Fg.K /�F. The category Fg.K /�F is equivalent to Fg.K / by
Proposition 5.2.4, and this yields the functor lK . Likewise, the composite r�g.K /

induces a functor to r l.K/�U; restriction along the adjunction unit K! r l.K/, which
is a morphism of unstable algebras, gives rK . That these functors are adjoint is formal
and the basic properties follow from the general theory of nillocalization [8].
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Consider the morphism mW K! L. Statement (1) can be verified directly by using
the explicit form of lK and lL , as follows. Consider M 2 ObK�U and an element
 2 g.L/.V /; there are natural isomorphisms

T 0
.V; /.L˝K M /Š F ˝T 0

V
L .T

0
V L˝T 0

V
K T 0

V M /Š F ˝T 0
V

K T 0
V M;

where the latter tensor product is formed with respect to g.m/ 2 g.K/.V /. This
establishes the first identification. Statement (2) follows by adjunction from (1).

Example 5.2.9 For s 2N ,

(1) Ds�U=Nil is equivalent to the category F
g.Ds/
! , embedded as a full subcategory

of Fg.Ds/ ;

(2) H�Vs�U=Nil is equivalent to F
g.H �Vs/
! .

6 Nillocalization of unstable modules over the Dickson alge-
bras

The results of Section 5.2 are applied to the categories Ds�U to obtain the analogues
of the structures considered in Section 3. The reader is referred to [2] for further results;
in particular, the adjunctions considered here fit into recollement diagrams of abelian
categories.

Throughout the section, the identification of V
f

=g.Ds/
given in Example 5.2.2 is used

without further comment.

6.1 Restriction

For 0 < s 2 Z, the surjection Ds � ˆDs�1 of Lemma 2.3.1 induces an inclusion
g.Ds�1/Š g.ˆDs�1/ ,! g.Ds/. As in Section 3.1 in the setting of modules over the
Dickson algebras, there are associated adjunctions.

Proposition 6.1.1 For 1� s 2 Z, there is an adjunction

RsW Fg.Ds/� Fg.Ds�1/ WPs;

in which Rs D g. Ds � ˆDs�1/ is restriction and Ps D g.Ds � ˆDs�1/! is
extension by zero.

Moreover, there are natural equivalences of exact functors

(1) RslDs
Š lDs�1

�
.�/=!s

�
W Ds�U! Fg.Ds�1/ ;

(2) PslDs�1
Š lDs

ıRestrictsW ˆDs�1�U! Fg.Ds/ .
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Proof The identification of the functors is straightforward (cf the general results of [2,
Appendice C.6]); the final statement follows from Theorem 5.2.8.

6.2 Full restriction

The augmentation Ds! F gives rise to an adjunction, as in Proposition 6.1.1. In the
following statement, F 2 ObF and G 2 ObFg.Ds/ .

Proposition 6.2.1 For s 2N , there is an adjunction

R0
s W Fg.Ds/� F WP0

s ;

where R0
s D g.Ds! F/! and P0

s D g.Ds! F/! .

Explicitly, R0
s W Fg.Ds/!F is the restriction functor defined by R0

s G.V / WDG.V;V /

and P0
s W F ! Fg.Ds/ is extension by zero P0

s F.V;U / D 0 unless V D U , when
P0

s F.V;V /D F.V /. In particular, the composite R0
sP0

s is naturally equivalent to 1F .

Moreover, there are natural equivalences of exact functors:

(1) R0
s lDs
Š lQsW Ds�U! F;

(2) P0
s l Š lDs

ı trivsW U! Fg.Ds/ .

6.3 Induction and restriction

The canonical inclusion Ds
i
,! H�Vs induces the functor V

f

=g.H �Vs/
! V

f

=g.Ds/
;

which sends an object f W V ! Vs of Vf =Vs to .V; kerf /. As above, one has the
following.

Proposition 6.3.1 For s 2N , there is an adjunction

IndsW Fg.Ds/� Fg.H �Vs/ WRess;

where Inds D g.Ds
i
,!H�Vs/

! and Ress D g.Ds
i
,!H�Vs/! . The functors Inds and

Ress are exact and Inds commutes with tensor products.

The induction functor is given explicitly by .IndsG/.V
f
! Vs/ D G.V; kerf /, for

G 2 ObFg.Ds/ .

Recall from Section 5.2 that there is an adjunction

�g.Ds/W F� Fg.Ds/ W�g.Ds/:

In the following, F 2ObF, G 2ObFg.Ds/ and H 2ObFg.H �Vs/ . Moreover, I.Vs ;0/

denotes the injective cogenerator of Fg.Ds/ introduced in Example 5.2.3.
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Proposition 6.3.2 For s 2N ,

(1) there are adjunctions

Fg.H �Vs/

‰s
? %%oo
�g.H

�Vs/

?

�g.H�Vs/

99F;

where ‰sH.V /DH.V ˚Vs� Vs/ and the functor ‰s is exact and commutes
with tensor products;

(2) Inds�
g.Ds/ is naturally isomorphic to �g.H

�Vs/ and �g.Ds/Ress is naturally
isomorphic to �g.H �Vs/ ;

(3) the map ‰sIndsW Fg.Ds/! F is determined by ‰sIndsG.V /DG.V ˚Vs;V /;
it is exact, commutes with tensor products and is left adjoint to the functor
Ress�

g.H �Vs/W F! Fg.Ds/ ;

(4) Ress�
g.H �Vs/W F! Fg.Ds/ is exact and is naturally equivalent to the functor

F 7! �g.Ds/F ˝ I.Vs ;0/:

Moreover, there are natural isomorphisms

lFixs Š‰slH �Vs
W H�Vs�U! F;

lFixs.H
�Vs˝Ds

�/Š‰sIndslDs
W Ds�U! F:

Proof The first statement follows from the natural isomorphism

HomVf =Vs
..A! Vs/; .V ˚Vs

pr
�! Vs//Š HomVf .A;V /:

The remaining numbered statements are straightforward and follow from [2, Définition
et Proposition 3.3.4].

The functor l Fixs is left adjoint to the functor

F 7!H�Vs˝ rF Š r.IVs
˝F /;

for F 2 ObF. The latter is isomorphic to rH �Vs
�g.H

�Vs/F , since the underlying
functor of rH �Vs

is r�g.H �Vs/ and �g.H �Vs/�g.H
�Vs/F Š IVs

˝F (cf [2, Définition
et Proposition 3.3.4]). Since lH �Vs

is left adjoint to rH �Vs
and ‰s is left adjoint to

�g.H
�Vs/ , it follows by unicity of adjoints that lFixs is equivalent to ‰slH �Vs

.

The final identification follows from the natural isomorphism given by Theorem 5.2.8,
lH �Vs

.H�Vs˝Ds
�/Š IndslDs

.
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Example 6.3.3 Proposition 6.3.2(4) contains the isomorphism

Ressig.H
�Vs/F Š I.Vs ;0/:

The importance of I.Vs ;0/ is shown by the isomorphism rDs
I.Vs;0/ŠRestrictH

�Vs

Ds
H�Vs

in Ds�U, which follows from Theorem 5.2.8.

7 The Singer functors up to nilpotent unstable modules

This section introduces the functors �sW F!Fg.Ds/ which model the Singer functors
up to nilpotent unstable modules. The proof that these correspond to the functors Rs

is postponed until Section 8.

7.1 Avatars of the Singer functors

Some of the material of this section is available in [2] under a dual formulation using
comodules over Boolean coalgebras.

Definition 7.1.1 For s 2 N , let �sW F ! Fg.Ds/ denote the functor defined on
F 2 ObF by

.�sF /.V;W / WD F.W /:

Notation 7.1.2 For s 2N , V 2 ObVf , let Stab.V;V ˚Vs/� Aut.V ˚Vs/ denote
the pointwise stabilizer of V .

The following is clear.

Lemma 7.1.3 Let V;W 2 ObVf and f W V !W be a linear morphism. Then

(1) Stab.V;V ˚Vs/ is isomorphic to the semidirect product Hom.Vs;V /ÌAut.Vs/,
where Aut.Vs/ acts on the right on Hom.Vs;V / by precomposition;

(2) the action of Aut.V ˚Vs/ on V ˚Vs induces an action of Stab.V;V ˚Vs/ on
.V ˚Vs;V / 2 ObV

f

=g.Ds/
;

(3) f W V !W induces a group morphism Stab.V;V ˚Vs/! Stab.W;W ˚Vs/

which, with respect to the semidirect product decomposition, is induced by
Hom.Vs; f /W Hom.Vs;V /! Hom.Vs;W /.

In the following statement, G 2 ObFg.Ds/ , V 2 ObVf and .V;U / 2 ObV
f

=g.Ds/
.
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Proposition 7.1.4 Let s be a natural number.

(1) The functor �sW F! Fg.Ds/ is exact and commutes with tensor products, limits
and colimits.

(2) There is a natural monomorphism �s ,! �g.Ds/ of functors from F to Fg.Ds/ .

(3) The functor �s is left adjoint to R0
s and admits a left adjoint asW Fg.Ds/! F

given by asG.V /ŠG.V ˚Vs;V /=Stab.V;V ˚Vs/.

(4) The adjunction counit as�s! 1F is an isomorphism.

(5) The adjunction unit 1F!R0
s �s is an isomorphism.

Proof The first statement is clear; for the second, the inclusion U � V induces a
natural morphism F.U /! F.V /.

The fact that R0
s is right adjoint to �s follows from the isomorphism

Hom
V
f

=g.Ds/

..V;V /; .A;B//Š HomVf .V;B/;

for V 2 ObVf and .A;B/ 2 ObV
f

=g.Ds/
.

The left adjoint as exists for formal reasons and as is a right exact functor which
preserves projective objects. Lemma 7.1.3 implies that the association given by
V 7!G.V ˚Vs;V /=Stab.V;V ˚Vs/ defines a right exact functor. Hence, since Fg.Ds/

has enough projectives (see Example 5.2.3), it suffices to check that this coincides
with as on the full subcategory of projective objects in Fg.Ds/ . Let .A;B/ and V be
as above, then there is a natural isomorphism

HomVf .A;B/Š Hom
V
f

=g.Ds/

..A;B/; .V ˚Vs;V //=Stab.V;V ˚Vs/:

It follows that there is a natural isomorphism

asP.A;B/.V /Š P.A;B/.V ˚Vs;V /=Stab.V;V ˚Vs/;

as required. The identification of the adjunction morphisms is clear.

Recall from Example 5.1.2 that, for U 2ObVf , IU is the injective functor FHom
Vf
.�;U /

of F, which is contravariantly functorial in U .

The composite functor �g.Ds/�sW F! F is of particular interest; the following result
is required to relate the functor �s to the Singer functor Rs .

Proposition 7.1.5 For U 2 ObVf , there is a natural isomorphism

�g.Ds/�sIU Š I
Stab.U;U˚Vs/
U˚Vs

:
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Proof The functor �g.Ds/�s is right adjoint to the functor as�
g.Ds/ , which identifies

with the composite functor F 7! .�Vs
F /=Stab.�;�˚Vs/, by Proposition 7.1.4. The

functor �Vs
is left adjoint to the functor �˝IVs

(see Example 5.1.2), hence it follows
that there is a natural isomorphism

HomF..�Vs
F /=Stab.�;�˚Vs/; IU /Š HomF.F; .IU ˝ IVs

/Stab.U;U˚Vs//

and the group action is induced by the natural right action on IU ˝ IVs
Š IU˚Vs

. The
result follows.

We record the following, which is clear.

Lemma 7.1.6 The composite functor ‰sInds�s , considered as a functor F! F, is
naturally equivalent to the identity functor.

7.2 Copresentations of �s

In order to understand the underlying object of �g.Ds/�s , an alternative description is
used; this is obtained by giving a copresentation of �s via an equalizer diagram.

Recall that a diagram

X
d

// Y

g

{{ e //

f

// Z

h
{{

is a split equalizer if there exist morphisms gW Y ! X and hW Z ! Y such that
gd D 1X , hf D 1Y and dg D heW Y ! Y . A split equalizer is, in particular, an
equalizer diagram.

Notation 7.2.1 For s2N , let ısW V
f

=g.Ds/
!Vf denote the functor .V ;U/ 7!V˚V =U .

Lemma 7.2.2 For .V;U / 2 ObV
f

=g.Ds/
, there is a natural equalizer diagram in Vf

U //V
1
Q

0 //

1
Q

q

//V ˚V =U D ıs.V;U /;

where qW V ! V =U is the quotient morphism. If sW V =U ! V is a section of q ,
then the equalizer is split by the morphisms 1

`
�sW V ˚V =U ! V and the induced

projection V ! U .

In the following, the notation introduced in Example 5.2.3 for the injective cogenerators
of Fg.Ds/ is used.
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Proposition 7.2.3 For s 2N ,

(1) there is a monomorphism

.ıs/
!.�/ ,! I.Vs ;0/˝ �

g.Ds/�Vs
.�/

of functors from F to Fg.Ds/ ;

(2) the equalizer of Lemma 7.2.2 induces an equalizer diagram of functors from F

to Fg.Ds/

�s
// �g.Ds/ ////.ıs/

!

and hence an equalizer diagram

(1) �s
// �g.Ds/ ////I.Vs ;0/˝ �

g.Ds/�Vs
.�/I

(3) applying the functor �g.Ds/ to the equalizer (1) gives the equalizer diagram of
functors from F to Fg.Ds/�F

(2) �g.Ds/�s
//Fg.Ds/˝ .�/

� //
�
//IVs
˝�Vs

.�/;

where �; � are induced by the natural morphisms of F

F
� 0

F //

� 0
F

//IVs
˝�Vs

F;

where � 0
F

is the tensor product of the unit F ! IVs
with the natural inclusion

F Š�0F ,!�Vs
F and � 0

F
is the adjunction unit for �Vs

a .IVs
˝�/.

Proof The first statement can be established by an adjunction argument or be seen as
follows. Recall from Example 5.2.3 there is an identification I.Vs;0/.V ;U/ŠF Inj.V =U ;Vs/ .
Consider F 2 ObF; the natural monomorphism

.ıs/
!F.V;U /! I.Vs ;0/.V;U /˝ �

g.Ds/�Vs
F.V;U /Š F Inj.V =U;Vs/˝F.V ˚Vs/

has component indexed by a monomorphism V =U ,! Vs given by the induced mor-
phism F.V ˚V =U /! F.V ˚Vs/.

The first diagram of the second statement is obtained by precomposition with the natural
diagram of Lemma 7.2.2. Since limits are computed in Fg.Ds/ pointwise, it suffices to
show that, for F 2 ObF and .V;U / 2 ObV

f

=g.Ds/
, the diagram in V

F.U /! F.V /
////F.V ˚V =U /
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is a split equalizer; this follows from Lemma 7.2.2, since split equalizers are preserved
by functors. Composing with the monomorphism of the first statement gives the second
equalizer diagram.

The third statement follows by applying the exact functor �g.Ds/ to the previous
equalizer diagram, using [2, Définition et Proposition 3.3.4] to identify the functors.
Namely, for F 2 ObF, there is a natural isomorphism �g.Ds/�g.Ds/F Š Fg.Ds/˝F

in Fg.Ds/�F and there are natural isomorphisms �g.Ds/.I.Vs ;0/ ˝ �
g.Ds/�Vs

F / Š

.�g.Ds/I.Vs ;0//˝�Vs
F Š IVs

˝�Vs
F , where the second isomorphism follows from

�g.Ds/I.Vs ;0/Š IVs
, which is a formal consequence of the adjunction �g.Ds/ a�g.Ds/ .

The identification of the natural transformations � , � follows by unravelling the
definitions.

Remark 7.2.4 Lemma 7.1.6 shows that ‰sInds�s is naturally equivalent to the identity
functor. It is instructive to see how this can be recovered from the copresentation of �s

given in Proposition 7.2.3; this is a guiding principle in the proof of Theorem 8.2.2.

The functor ‰sInds is exact and an explicit description is given in Proposition 6.3.2.
Applying ‰sInds to the parallel arrows of (1), evaluated on F 2 ObF, gives the
diagram

F.�˚F s
1
/ ////F Inj.Fs

1
;Fs

2
/˝F.�˚F s

1
˚F s

2
/;

where the suffixes are used to distinguish the direct factors. Fixing an element
˛ 2 Inj.F s

1
;F s

2
/Š Aut.F s/, the associated components evaluated on V 2 ObVf are

(3) F.V ˚F s
1
/

F.1V

Q
1Fs

Q
0/ //

F.1V

Q
1Fs

Q
˛/

//F.V ˚F s
1
˚F s

2
/:

It is clear that

(1) the natural inclusion F.V / ,! F.V ˚F s
1
/ equalizes the parallel arrows,

(2) for ˛ D 1Fs , the equalizer of (3) is F.V /,

where the second point is seen by applying Lemma 7.2.2 to .V ˚F s
1
˚F s

2
;V ˚F s

1
/.

It follows formally that there is a natural isomorphism ‰sInds�sF.V / Š F.V /, as
expected.
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7.3 Compatibility

The functors �s introduced above are related under restriction and induction, via the
adjunctions RsW Fg.Ds/� Fg.Ds�1/ WPs of Proposition 6.1.1.

Proposition 7.3.1 Let s be a positive integer.

(1) There is a natural isomorphism Rs�
g.Ds/! �g.Ds�1/ and the adjoint �g.Ds/�

Ps�
g.Ds�1/ is a surjection with kernel RsPs�g.Ds/ .

(2) There is a natural isomorphism Rs�s! �s�1 and the adjoint �s� Ps�s�1 is a
surjection with kernel RsPs�s .

(3) There is a commutative diagram of natural transformations

RsPs�s
� � //

� _

��

�s // //
� _

��

Ps�s�1� _

��

RsPs�g.Ds/
� � // �g.Ds/ // // Ps�

g.Ds�1/

in which the rows are short exact sequences.

Proof Straightforward.

Remark 7.3.2 For F 2ObF, the short exact sequence RsPs�sF!�sF!Ps�s�1F

is the analogue of the short exact sequence !sRsM ! RsM ! ˆRs�1M from
Proposition 4.1.3.

8 Deeper properties of the Singer functors

This section introduces an approximation zRs to the functor Rs , by lifting the copresen-
tation of �s of Section 7.2 to the category Ds�U. The functors zRs and Rs are shown
to coincide on reduced unstable modules; in general, zRs is the !s –closure of Rs .

In Section 8.2, the composite of the functor Fixs with H�Vs ˝Ds
Rs.�/ is shown

to be naturally equivalent to the identity. This is used to deduce that the functor Rs

defines a fully-faithful embedding of U in Ds�U.
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8.1 Lifting the functor �g.Ds/�s to U

The parallel arrows of diagram (2) of Proposition 7.2.3 lift to a natural diagram in
Ds�U:

Ds˝M
�M //
�M

//H�Vs˝TVs
M;

for M 2 ObU, where

(1) �M is the tensor product of the inclusions MŠT0M ,!TVs
M and Ds ,!H�Vs ;

(2) �M is the morphism of Ds –modules induced by the adjunction unit (in U)
M !H�Vs˝TVs

M .

Remark 8.1.1 The context should ensure that there is no ambiguity with the notation
used in Section 7.2.

Definition 8.1.2 For s 2 N , let zRsW U! Ds�U be the functor determined on an
unstable module M by

zRsM WD ker
n
Ds˝M

�M //
�M

//H�Vs˝TVs
M
o
:

Recall that an unstable module N is locally finite if and only if the natural monomor-
phism N ,! TN is an isomorphism [19, Theorem 6.2.1].

Proposition 8.1.3 For s 2N ,

(1) there is a natural monomorphism zRs ,!Ds˝�;

(2) zRsW U!Ds�U is left exact and commutes with coproducts;

(3) zRs , considered as a functor with values in U, preserves the class of reduced
(respectively nilclosed) unstable modules;

(4) zRs takes values in the class of !s –closed objects of Ds�U;

(5) for M;X unstable modules, with X locally finite, there is a natural isomorphism
zRs.M ˝X /Š . zRsM /˝X ; in particular, zRs commutes with suspension.

Proof The first three statements are straightforward. The fact that zRs takes values in
the category of !s –closed unstable Ds –modules follows from Proposition 3.1.4.

For the final statement, since X is locally finite, the natural inclusion X ,! TVs
X is

an isomorphism, hence there is a natural isomorphism TVs
.M ˝X /Š .TVs

M /˝X .
It is straightforward to check that, via this isomorphism, there are identifications
�M˝X D �M ˝ 1X and �M˝X D �M ˝ 1X , which implies the result.
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Proposition 8.1.4 For s 2 N , the restrictions of the functors Rs and zRs to the full
subcategory of nilclosed unstable modules are naturally isomorphic.

Proof By Proposition 4.1.3, Rs commutes with coproducts, preserves the class of
nilpotent unstable modules and sends nilclosed unstable modules to nilclosed unstable
modules; Proposition 8.1.3 establishes the analogous properties for zRs . It follows from
Lemma A.2.2 that it is sufficient to show that the two functors coincide on the full
subcategory of U with objects fH�Vsjs 2Ng. Since there are natural monomorphisms
Rs ,! Ds ˝� and zRs ,! Ds ˝�, by composing with the natural monomorphism
i ˝�W Ds˝� ,!H�Vs˝�, it is sufficient to show that the images of RsH�V and
zRsH�V in H�Vs˝H�V coincide, for every V 2 ObVf .

Lannes and Zarati prove that RsH�V is isomorphic to H�.V ˚Vs/
Stab.V;V˚Vs/ in

[11, Section 5.4.7.5]; Proposition 7.1.5 implies that this is isomorphic to zRsH�V . The
result follows.

Theorem 8.1.5 For s 2N , there is a natural monomorphism


sW Rs ,! zRs

of functors U!Ds�U such that

(1) 
s identifies zRs as the !s –closure of Rs ;

(2) the morphism 
sW RsM ! zRsM is an isomorphism if M is reduced.

Proof The construction of the natural monomorphism 
s generalizes the argument
employed in the proof of Lemma A.2.2. Recall (cf [19, Section 3.11]) that the set of
objects H�Vm˝J.n/ (where J.n/ denotes the n–th Brown–Gitler module), indexed
over nonnegative integers m; n, forms a set of injective cogenerators of U and that,
since U is locally Noetherian, any unstable module M admits a copresentation of
the form 0!M ! I0! I1 , where each Ij is a coproduct of objects of this form.
Hence, writing W for Vm , it suffices to show that there is a factorization

Rs.H
�W ˝J.n//� _

��

hH

uu
zRs.H

�W ˝J.n//
� � // Ds˝H�W ˝J.n/:

Now we have that Rs.H
�W ˝J.n//ŠRsH�W ˝Ds

RsJ.n/, Ds˝H�W ˝J.n/Š

.Ds˝H�W /˝Ds
.Ds˝J.n// and the vertical inclusion is the tensor product over Ds

of RsH�W ,!Ds˝H�W and RsJ.n/ ,!Ds˝J.n/; the latter is the !s –closure
of RsJ.n/, by Proposition 4.1.5.
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Similarly, by Proposition 8.1.3, the horizontal inclusion identifies with the tensor product
over Ds of zRsH�W ,!Ds˝H�W and the isomorphism zRsJ.n/!Ds˝J.n/. Since
the images of RsH�W and zRsH�W in Ds˝H�W coincide, by Proposition 8.1.3,
this provides the required factorization.

The cokernel of Rs.H
�W ˝J.n// ,! zRs.H

�W ˝J.n// is !s –torsion, by the above
discussion. It follows that the cokernel of RsM ! zRsM is !s –torsion, for any
unstable module M ; since, zRsM is !s –closed (by Proposition 8.1.3), this exhibits
zRsM as the !s –closure of RsM .

To prove the final statement, one can forget the Ds –module structure. The result
follows from Lemma A.3.1, since 
s is an isomorphism on nilclosed unstable modules,
by Proposition 8.1.4.

Corollary 8.1.6 For s 2N , there is a natural isomorphism lDs
Rs Š �sl of functors

from U to Fg.Ds/ .

Proof The functors lDs
Rs and �sl are exact and send nilpotent unstable modules

to zero. Hence, by Lemma A.2.1, it suffices to prove that the two functors coincide
naturally on the full subcategory of nilclosed unstable modules. On this subcategory,

sW Rs ,! zRs is a natural isomorphism, by Theorem 8.1.5, hence it suffices to prove
that there is a natural isomorphism lDs

zRs Š �sl . This is by construction: applying the
functor lDs

to the equalizer diagram defining zRs gives the copresentation of �g.Ds/�s

given in Proposition 7.2.3.

8.2 The composite of Rs and Fixs.H
�Vs ˝Ds

�/

Under the correspondence between Ds�U=Nil and the category Fg.Ds/ given by
Theorem 5.2.8, the Singer functor corresponds to the functor �s (by Corollary 8.1.6) and
the functor ‰sInds corresponds to the functor Fixs.H

�Vs˝Ds
�/ (by Proposition 6.3.2).

Lemma 7.1.6 states that the composite ‰sInds�s is isomorphic to the identity functor;
the purpose of this section is to establish the corresponding result at the level of unstable
modules.

Recall that i W Ds ,!H�Vs denotes the canonical inclusion and that Proposition 2.3.2
implies that T.Vs ;i/ induces a functor Ds�U!H�Vs�U. The following result is the
key input.

Lemma 8.2.1 For s 2N and M 2 ObDs�U,

Fixs.H
�Vs˝Ds

M /Š F ˝H �Vs
T.Vs ;i/M:

In particular, there is an isomorphism of unstable algebras

Fixs.H
�Vs˝Ds

H�Vs/Š FAutVs :
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Proof By [10, 4.4.3], FixsX Š F ˝TVs H �Vs
TVs

X; for X 2 ObH�Vs�U. The
T –functor commutes with tensor products, so, taking X DH�Vs˝Ds

M , there are
natural isomorphisms

Fixs.H
�Vs˝Ds

M /Š F ˝TVs Ds
TVs

M

Š F ˝T.Vs ;i/Ds
T.Vs ;i/M Š F ˝H �Vs

T.Vs ;i/M:

For the case M DH�Vs , one verifies that T.Vs ;i/H
�Vs identifies with FAut.Vs/˝H�Vs

as an H�Vs –algebra, from which the result follows.

Theorem 8.2.2 For s 2N , the natural transformation

Fixs.H
�Vs˝Ds

Rs.�//! 1U

of functors on U, which is adjoint to the canonical inclusion Rs.�/ ,!Ds˝ .�/ ,!

H�Vs˝ .�/, is an isomorphism.

Moreover, the natural monomorphism Rs.�/ ,!Ds˝� induces the canonical inclusion

Fixs.H
�Vs˝Ds

Rs.�//Š 1U ,! TVs
.�/Š Fixs.H

�Vs˝Ds
.Ds˝�//:

Proof The natural monomorphism 
sW Rs ,! zRs is an isomorphism up to !s –torsion,
by Theorem 8.1.5, hence it suffices to prove the result with zRs in place of Rs , since
Fixs annihilates !s –torsion, by [12, Proposition 0.8]. The defining equalizer diagram
for zRsM gives rise to an equalizer diagram in H�Vs�U:

H�Vs˝Ds
zRsM //H�Vs˝M

////H�Vs˝Ds
H�Vs˝TVs

M;

since H�Vs˝Ds
.�/ is exact.

The functor Fixs is exact, hence this gives the equalizer diagram in U:

Fixs.H
�Vs˝Ds

zRsM / //Fixs.H
�Vs˝M /

////Fixs.H
�Vs˝Ds

H�Vs˝TVs
M /:

There are natural isomorphisms Fixs.H
�Vs˝M /Š TVs

M and

Fixs.H
�Vs˝Ds

H�Vs˝TVs
M /Š FAut.Vs/˝TVs

TVs
M;

obtained by viewing H�Vs˝Ds
H�Vs˝TVs

M as the tensor product over H�Vs of
H�Vs˝Ds

H�Vs and H�Vs˝TVs
M and applying Lemma 8.2.1.

The equalizer diagram therefore identifies with

Fixs.H
�Vs˝Ds

zRsM / //TVs
M

z�M //

z�M

//FAut.Vs/˝TVs
TVs

M;

where z�M WD Fixs.H
�Vs ˝Ds

�M / and z�M WD Fixs.H
�Vs ˝Ds

�M / are identified
below.
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As in Remark 7.2.4, the result is a formal consequence of the following two points:

(1) the natural morphism M ,! TVs
M equalizes the morphisms z�M and z�M ;

(2) M ,! TVs
M is the equalizer of the diagram of unstable modules

TVs
M � TVs

TVs
M;

which is obtained from z�M , z�M by composing with the surjection FAut.Vs/˝

TVs
TVs

M � TVs
TVs

M induced by the augmentation FAut.Vs/� F .

The identification of the morphisms z�M and z�M is a standard calculation with the
T –functor; the precise form depends on the conventions used in the isomorphism
Fixs.H

�Vs ˝Ds
H�Vs/ Š FAut.Vs/ of Lemma 8.2.1. The appropriate form can be

deduced from the nillocalized case, as in Section 7.2, which leads to the following
identifications.

For an automorphism ˛ 2 Aut.Vs/, the components

TVs
M

z�˛
M //

z�˛
M

//TVs
TVs

M Š TVs˚Vs
M;

of z�M and z�M indexed by ˛ are induced by naturality of the T –functor by

Vs

1Vs

Q
0

//

1Vs

Q
˛

//Vs˚Vs:

The two key points are established as in Remark 7.2.4: that M lies in the equalizer
follows since z�M , z�M are derived from the naturality with respect to V of TV ; the
second point follows by observing that the diagram

M //TVs
M ////TVs˚Vs

M

is a split equalizer in unstable modules, by applying Lemma 7.2.2, where the morphisms
TVs

M � TVs˚Vs
M are induced respectively by 1Vs

Q
0W Vs ! Vs ˚ Vs and the

diagonal �W Vs! Vs˚Vs .

The final statement has been established in the course of the proof.

8.3 The Singer functor is a fully-faithful embedding

Proposition 7.1.4 shows that the unit 1F ! R0
s �s of the adjunction �s a R0

s is a
natural isomorphism. This section shows that Theorem 8.2.2 implies the analogous
statement for the adjunction Rs a Zs ; in particular, the functor RsW U! Ds�U is
rigid, considered as a functor to unstable Ds –modules.
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Theorem 8.3.1 For s 2N , the adjunction unit 1U! ZsRs is a natural isomorphism
and the natural inclusions Rs ,! Ds ˝ .�/ ,! H�.Vs/ ˝ .�/ in Ds�U induce
isomorphisms

1U Š ZsRs Š Zs.Ds˝�/Š Zs.H
�Vs˝�/:

In particular, Rs induces a fully-faithful embedding RsW U ,!Ds�U:

Proof For the first statement, it suffices to prove that, for M;N 2ObU, the functor Rs

induces a natural isomorphism:

HomU.M;N / �! HomDs�U.RsM;RsN /:

This is a monomorphism by Lemma 4.1.4; composing with the natural inclusion
RsN ,!Ds˝N ,!H�Vs˝N , there is a natural monomorphism

HomDs�U.RsM;RsN / ,! HomDs�U.RsM;H�Vs˝N /

Š HomH �Vs�U.H
�Vs˝Ds

RsM;H�Vs˝N /:

By adjunction,

HomH �Vs�U.H
�Vs˝Ds

RsM;H�Vs˝N /Š HomU.Fixs.H
�Vs˝Ds

RsM /;N /;

and, by Theorem 8.2.2, Fixs.H
�Vs˝Ds

RsM /ŠM . Thus, there are natural monomor-
phisms

HomDs�U.RsM ;RsN / ,! HomDs�U.RsM ;Ds˝N / ,! HomDs�U.RsM ;H�Vs˝N /

Š HomU.M ;N /:

The composite with the natural inclusion HomU.M;N / ,!HomDs�U.RsM;RsN / is
the identity, which establishes the natural isomorphisms.

The property of the adjunction unit is a formal consequence.

9 The functors Zs , Qs and Fixs

The purpose of this section is to provide a better understanding of the right adjoint Zs

to the Singer functor Rs , in particular its relationship with the indecomposables
functor Qs and with the functor Fixs.H

�Vs˝Ds
�/.
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9.1 The Singer functor Rs and the indecomposables Qs

In [3, Section 3] and [4, Section 3], Dwyer and Wilkerson studied a linear operation
constructed from the Steenrod total power St1 . This is related to the natural trans-
formation defined below (defined for arbitrary s ), where forgetsW Ds�U!U is the
forgetful functor.

Definition 9.1.1 For s 2N , let "sW Rs forgets! 1Ds�U be the natural transformation
defined on M 2 ObDs�U as the composite

RsM ,!Ds˝M !M

of the canonical inclusion followed by the product.

Proposition 9.1.2 The natural transformation forgets�Qs of functors from Ds�U

to U induces a factorization

Rs forgets // //

"s

44RsQs
"s //1Ds�U

of endofunctors of Ds�U.

Proof The proof proceeds by reduction to the behaviour on Ds . For M 2 ObDs�U,
there is an exact sequence of unstable modules

Ds˝M !M !QsM ! 0;

where the first morphism is induced by multiplication. The functor Rs is exact, hence,
by naturality of "s , it suffices to prove that the composite morphism

Rs.Ds˝M /
"s
�!Ds˝M !M

is zero.

There is a natural isomorphism Rs.Ds˝M /ŠRs.Ds/˝Ds
RsM , by the monoidal

property of Rs (see Proposition 4.1.3) and, with respect to this, the above composite
is induced by the tensor product over Ds of "sW RsDs ! Ds and "sW RsM !M .
Therefore, to prove the result, it is sufficient to show that the morphism "sW RsDs!Ds

is trivial.

This can be proved directly, generalizing [3, Lemma 3.3(ii)], by reducing to the case
s D 1, using the fact [12] that Sts is the s–fold iterate of St1 .

An alternative method is to use passage to nillocalization. Since Rs preserves re-
duced objects and Ds is reduced, it is sufficient to prove that the induced morphism
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lDs
Rs.Ds/! lDs

Ds is trivial. The natural transformation "s corresponds to the natural
transformation

�s�
g.Ds/! 1Fg.Ds/

of endofunctors of Fg.Ds/ given by the composite

�s�
g.Ds/ ,! �g.Ds/�g.Ds/! 1Fg.Ds/

induced by the inclusion �s ,! �g.Ds/ and the counit of the �g.Ds/ a�g.Ds/ adjunction.
For G 2 ObFg.Ds/ and .V;W / 2 ObVf =g.Ds/ , by using the explicit form of the
�g.Ds/ a�g.Ds/ adjunction counit, this identifies as the surjectionM

codim U�s

G.W;U /�G.V;W /

given by projection onto the summand indexed by U DW followed by the morphism
G.W;W /!G.V;W / induced by .W;W /! .V;W / in Vf =g.Ds/ .

Now, lDs
Ds is the constant functor F 2Fg.Ds/ and the augmentation ideal gives the

subfunctor lDs
Ds :

.V;W / 7!

(
F V ¤W;

0 V DW:

The result follows.

The following corollary is formal.

Corollary 9.1.3 For s 2 N , the natural transformation �sW Qs ! Zs adjoint to
"sW RsQs! 1Ds�U , fits into a commutative diagram:

forgets e"s

66// //Qs
�s //Zs;

where e"s W forgets! Zs is adjoint to "sW Rs forgets! 1Ds�U .

The following natural transformation is used in Theorem 9.2.2.

Lemma 9.1.4 For s2N , the functor Qs applied to the adjunction counit RsZs!1Ds�U

induces a natural transformation �sW ˆsZs!Qs:

Proof This is an immediate consequence of the natural isomorphism QsRs Šˆ
s of

Proposition 4.1.3.
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9.2 The relationship between Qs and Zs

In order to understand the relationship between Qs and Zs , further information on the
behaviour of Zs is required. Recall that the category Ds�U has enough injectives [12;
7; 15].

Lemma 9.2.1 If I 2ObDs�U is injective, then the natural morphism �sW QsI�ZsI

is surjective.

Proof It suffices to show that the morphism forgets I ! ZsI of Corollary 9.1.3 is
surjective. For k 2 N , there is a canonical embedding RsF.k/ ,! Ds ˝ F.k/ in
Ds�U, and hence, by injectivity of I , a surjection

HomDs�U.Ds˝F.k/; I/� HomDs�U.RsF.k/; I/:

This corresponds to the degree k part of the morphism forgets I ! ZsI , which is
therefore surjective.

Recall that �W ˆ! 1U is the natural transformation induced by Sq0 , which induces
�sW ˆs! 1U by iteration, for s 2N . The natural transformation �s was introduced in
Lemma 9.1.4.

Theorem 9.2.2 For s 2N ,

(1) the composite ˆsQs

ˆs�s
�! ˆsZs

�s
�!Qs is the natural transformation �s

Qs
;

(2) the composite ˆsZs

�s
�!Qs

�s
�! Zs is the natural transformation �s

Zs
.

In particular, �sW Qs ! Zs and �sW ˆsZs ! Qs are isomorphisms up to nilpotent
unstable modules and the functor Zs sends nilpotents to nilpotents.

Proof The first natural transformation is given by applying the functor Qs to the
composite RsQs ! RsZs ! 1Ds�U . The identification follows from the fact that,
modulo decomposables, Sts identifies with the linear map .Sq0/

s .

The functor Zs is left exact and Ds�U has enough injectives, hence it suffices to show
that the natural transformation identifies with �s

Zs
when evaluated on any injective

object I .

Consider the composite

ˆsQsI
ˆs�s

// //

�s
Qs

))
ˆsZsI

�s

//

�s
Zs

==QsI
�s //ZsI:
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Here the surjection ˆs�s is given by Lemma 9.2.1, since the functor ˆs is exact, and
the identification of �s

Qs
follows from the first part of the theorem.

To prove the result, by surjectivity of ˆs�s , it suffices to show that the composites
�s�s.ˆ

s�s/ and �s
Zs
.ˆs�s/ coincide evaluated on I . This follows from the naturality

of �s , which gives the commutative diagram of natural transformations

ˆsQs
ˆs�s //

�s
Qs

��

ˆsZs

�s
Zs

��
Qs

�s

// Zs:

The final statements are immediate consequences of these identifications, since the
functor Qs sends objects with nilpotent underlying unstable module to nilpotent
unstable modules.

In the following, R0
s is the functor of Proposition 6.2.1.

Corollary 9.2.3 For s 2N ,

(1) there are natural isomorphisms
(a) ZsrDs

Š rR0
s W Fg.Ds/!U,

(b) lZs ŠR0
s lDs
W Ds�U! F,

and, in particular, the functor lZs is exact;

(2) for N 2 ObDs�U which is reduced, ZsN D 0 if and only if QsN is nilpotent.

Proof The first isomorphism is a formal consequence of Corollary 8.1.6. Namely,
ZsrDs

is right adjoint to lDs
Rs , which is naturally equivalent to �sl , by Corollary 8.1.6.

The latter is left adjoint to rR0
s , by Proposition 7.1.4.

Precomposing with lDs
and postcomposing with l gives a natural isomorphism

lZrDs
lDs
ŠR0

s lDs
. The natural transformation 1Ds�U! rDs

lDs
is an isomorphism

modulo nilpotent objects, hence, by Theorem 9.2.2, the induced natural transformation
lZs �! lZrDs

lDs
is an isomorphism; this gives the second natural isomorphism.

Suppose now that N 2 ObDs�U is a reduced object; hence, by Proposition 4.1.6,
ZsN is reduced. Thus, ZsN D 0 if and only if lZsN D 0, which is equivalent to
lQsN D 0, by Theorem 9.2.2.

Corollary 9.2.4 If M 2 ObDs�U is a reduced object, then Zs.!sM /D 0.
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Proof The Ds –module !sM is a submodule of M , hence is reduced, so it suffices
to show that Qs.!sM / is nilpotent. The short exact sequence

0! !sM !M !M=!sM ! 0

in Ds�U induces an exact sequence

Qs.!sM /!QsM !Qs.M=!sM /! 0;

which is short exact modulo nilpotent unstable modules, since by Proposition 6.2.1
lQs is exact. The surjection QsM �Qs.M=!sM / is an isomorphism, so the result
follows.

Example 9.2.5 For s 2N , N 2 ObU and M 2 ObDs�U which is reduced,

HomDs�U.RsN; !sM /D 0:

For example, take M DDs .

9.3 The relationship between Zs and Fixs.H
�Vs ˝Ds

�/

It is interesting to have a criterion for the counit RsZsM !M (for M 2 ObDs�U)
to be an isomorphism. By Theorem 8.3.1, if M Š RsN for some N 2 ObU, then
N Š ZsM .

Proposition 9.3.1 For s 2N , there is a natural transformation

Zs! Fixs.H
�Vs˝Ds

.�//

of functors from Ds�U to U.

Moreover, if M 2 ObDs�U such that the counit RsZsM !M is an isomorphism,
then

ZsM ! Fixs.H
�Vs˝Ds

M /

is an isomorphism.

Proof The natural transformation is given by applying the functor Fixs.H
�Vs˝Ds

.�//

to the counit RsZs! 1Ds�U , using the isomorphism of Theorem 8.2.2. If the counit is
an isomorphism, then so is the induced natural morphism.

Remark 9.3.2 (1) Composition with the natural transformation forgets ! Zs of
Corollary 9.1.3 induces a natural morphism

forgets! Fixs.H
�Vs˝Ds

.�//:

This is induced by the natural transformation of Proposition 2.4.1.
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(2) The natural transformation Zs!Fixs.H
�Vs˝Ds

.�// corresponds to the natural
transformation R0

s !‰sInds of functors from Fg.Ds/ to F which is given on
G 2 ObFg.Ds/ by R0

s G.V / D G.V;V / ! ‰sIndsG.V / D G.V ˚ Vs;V /,
induced by .V;V /! .V ˚Vs;V / (cf Propositions 6.3.2 and 6.2.1).

For s > 1, it is straightforward to see that ZsM ! Fixs.H
�Vs ˝Ds

M / being an
isomorphism does not imply in general that the counit is an isomorphism. However, in
the case s D 1, one has the following.

Theorem 9.3.3 For M 2 ObD1�U such that the underlying unstable module is
reduced, the following conditions are equivalent:

(1) the counit R1Z1M !M is an isomorphism;

(2) the natural morphism Z1M ! Fix1M is an isomorphism.

Proof Proposition 9.3.1 gives (1) ) (2).

For the converse, consider the exact sequence in D1�U

0! Ker!R1Z1M !M ! Coker! 0:

The hypothesis (2) implies that Fix1.R1Z1M !M / is an isomorphism. Thus, by [12,
Proposition 0.8], both Ker and Coker are !1 –torsion. However, by construction, Ker is
a subobject of R1Z1M , which is !1 –torsion free, hence KerD 0 and R1Z1M ,!M

is a monomorphism with !1 –torsion cokernel.

By hypothesis, M is reduced, hence Z1M Š Fix1M is reduced. Theorem 8.1.5
implies that R1Z1M is !1 –closed. Hence, to complete the proof, it suffices to show
that M is !1 –torsion free. Consider the submodule A WD Ann!1

M �M , so that A

is in the image of triv1W U!D1�U. The module M is !1 –torsion free if and only
if AD 0.

Applying the functor Z1 yields a monomorphism

ẑAŠ Z1A ,! Z1M Š Fix1M;

where the first isomorphism is given by Proposition 4.1.8. By naturality of Z1! Fix1 ,
this factors across Fix1A, which is trivial (since A is !1 –torsion). Thus ẑA D 0.
However, A is a reduced unstable module, since it is a submodule of M , hence A

must be zero, as required.
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Appendix A General results

A.1 The right adjoint to ˆ on categories of modules

Proposition A.1.1 For K an unstable algebra, ẑ induces a functor ẑ W ˆK�U!K�U

which is right adjoint to ˆW K�U!ˆK�U.

Proof The functor ˆ commutes with tensor products, hence the adjunction counit
ˆ ẑ ! 1U induces a natural morphism

ẑM ˝ ẑN ! ẑ .M ˝N /;

for M;N 2 ObU. Thus, if M 2 ObˆK�U, ẑM is an object of K�U with respect
to the structure morphism:

K˝ ẑM Š ẑˆK˝ ẑM ! ẑ .ˆK˝M /! ẑM;

where the last morphism is induced by the structure morphism of M . (By construc-
tion, this is a morphism of U; the associativity and unit axioms are straightforward
verifications.)

By definition, for N 2 ObK�U, HomK�U.N; ẑM / is the equalizer of

HomU.N; ẑM /� HomU.K˝N; ẑM /:

By adjunction, this is equivalent to the diagram

HomU.ˆN;M /� HomU.ˆK˝ˆN;M /:

A simple verification shows that this corresponds to the equalizer diagram defining
HomˆK�U.ˆN;M /, which completes the proof.

A.2 Formal results for endofunctors of U

The following results explain how to study exact endofunctors of the category U via
passage to U=Nil.

Lemma A.2.1 Let ‚W U!U be an exact functor which preserves the subcategory
Nil, then

(1) U
‚
�! U

l
�! U=Nil induces an exact functor x‚W U=Nil! U=Nil such that

x‚l Š l‚;

(2) if, moreover, ‚ preserves the class of nilclosed unstable modules, then there is a
natural isomorphism ‚r l Š r x‚l . In particular, x‚ determines the restriction of
‚ to the full subcategory of nilclosed unstable modules.
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Recall that U=Nil is equivalent to the category of analytic functors, F! . The cate-
gory F! is locally Noetherian [19, Proposition 5.3.3], hence any coproduct of injective
cogenerators of F! of the form IV is injective in F! and any analytic functor admits
an injective resolution in which each term is of the form

L
˛ IV˛ . This implies the

following result.

Lemma A.2.2 Let ‚1; ‚2W F! ! F! be two exact functors which commute with
arbitrary coproducts. If the restrictions ‚1; ‚2 to the full subcategory with objects
fIVs
js 2Ng are naturally isomorphic, then ‚1 and ‚2 are naturally isomorphic.

A.3 Preservation of reduced unstable modules

Lemma A.3.1 Let 
 W G1 ,! G2 be a natural monomorphism of endofunctors of U

such that

(1) G1 is exact and G2 is left exact;

(2) 
M is an isomorphism if M is a nilclosed unstable module.

Then 
N W G1N !G2N is an isomorphism if N is a reduced unstable module.

Proof Consider a reduced unstable module N and the associated short exact sequence
of unstable modules 0!N ! r lN ! .r lN /=N ! 0. The natural monomorphism 


induces a commutative diagram in U

0 // G1N //
� _


N

��

G1.r lN / //

Š

��

G1..r lN /=N / //
� _

��

0

0 // G2N // G2.r lN / // G2..r lN /=N /

in which the rows are exact and the middle vertical morphism is an isomorphism, since
r lN is nilclosed. The result follows from the five-lemma.
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