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The D(2)—problem for
dihedral groups of order 4n

SEAMUS O’SHEA

We give a full solution in terms of k—invariants of the D(2)—problem for Dy,
assuming that Z[Dy,] satisfies torsion-free cancellation.

57MO05; 55P15

1 Introduction
The following question was first posed by Wall in [12]:

D (2)—problem. Let X be a finite connected 3—dimensional CW—-complex, with
universal cover X , such that

Hy(X;Z)=H>(X;:B)=0

for all coefficient systems B on X . Is it true that X is homotopy equivalent to a finite
2—dimensional CW—complex?

The D(2)—problem is parametrized by the fundamental group of X ; we say that the
D (2)—property holds for a finitely presented group G if the above question is answered
in the affirmative for every X with 7;(X) = G.

We shall be concerned with the D(2)—problem for Dy, the dihedral group of order
4n. Johnson [7] has shown that the D(2)—property holds for the groups D44, for
any n > 1; however his result relies on the fact that D4, has periodic cohomology,
a property not shared by D4, . Mannan [9] has shown that the D(2)—property holds
for Dg. We say that torsion-free cancellation holds for a group ring Z|[G] if

XOM=XON=>M=N
for any Z[G]-lattices X, M and N . We shall show:

Theorem 1.1 Suppose that Z [ Dg4,] satisfies torsion-free cancellation. Then the D(2)—
property holds for Dy, .
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The calculations of Swan [11] and Endo and Miyata [3] show that torsion-free cancel-
lation holds for Z[D4p,] when p is prime and 3 < p <31, p =47,179 or 19379. To
date the only finite nonabelian, nonperiodic groups for which the D(2)—property is
known to hold are those of the form Dy, where p is prime.

Let G be a group and set A = Z[G]. Any finite 2—-dimensional CW—complex K with
m1(K) = G gives rise to an exact sequence of A-modules

) 0 72 (K) = Cy(K) 2 C1(K) 25 Co(K) — Z — 0,

where C,(K) = H, (1'5,, IZ,_I; Z) is the free A-module with basis the »—cells of
K. By an algebraic 2—complex over a group G, we mean an exact sequence of right
A —modules of the form

d 0
2) 0sJ > F 25 RS 7z o,

where each F; is finitely generated free. An algebraic 2—complex is said to be ge-
ometrically realizable if it is homotopy equivalent to a 2—complex of type (1). If
every algebraic 2—complex over a group G is geometrically realizable we say that
the realization property holds for G. The following result is due to Johnson [7] and
Mannan [10]:

Theorem 1.2 Let G be a finitely presented group. Then the D(2)—property holds for
G if and only if the realization property holds for G .

We are grateful to the referee for pointing out a paper of Latiolais [8], in which it is
proved that the homotopy type of a CW—complex with fundamental group Dy, is
determined by the Euler characteristic. This result was extended by Hambleton and
Kreck [6] to include those complexes whose fundamental groups are finite subgroups
of SO(3). Latiolais achieves this by realizing all values of the Browning obstruction
group (see Browning [1], Gruenberg [4], Gutierrez and Latiolais [5]); combining this
realization with Theorem 1.2, it seems possible to give a proof of Theorem 1.1 without
assuming torsion-free cancellation.

We begin by briefly recalling the classification of algebraic complexes in terms of
k —invariants — for a full treatment, see Johnson [7, Chapter 6]. Fix a finite group G
andput A =Z[G]. Let P=(0— J —> F, > F; > Fy > Z — 0) be an algebraic
2—complex over Gandlet E=(0—>J > E, > E1 > Ey— Z —>0) € Exti’\(Z, J)
be an arbitrary extension of Z by J. Then by the universal property of projective
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modules, there exists a commutative diagram:

P = (0 J F, Fy Fy Z 0)
la lw laz lal lao lld
E = (0 J E2 E1 E() VA O)

We may extend o4 thus:

0 J F Fy Fy Z 0
l‘” ER l
0 J F, F Fy 7z 0

Then @ is unique up to congruence modulo |G| and we have a well-defined map
k: Endp J — Z /|G| given by k(x4 ) = &. The k —invariant of the transition a: P — &
is defined to be k(P — £) = k(a+). Given o € EndpJ we have a k—invariant
k(P = ax(P)) = k(@)k(P — P) = k(a), where ox(P) is the pushout extension.
Since k(«) is a unit if « is an isomorphism, this induces a mapping

AutpJ — (Z/|G)*

called the Swan map, which is independent of the choice of algebraic complex in which
J appears. We have (see Johnson [7, Theorems 54.6 and 54.7]):

Theorem 1.3 Suppose that the Swan map AutJ — (Z /|G|)* is surjective. Then for
each n > 0 there is, up to chain homotopy equivalence, a unique algebraic 2—complex
of the form

0—>JBAN">F,—>F —Fy—Z —0.

2 The Swan map for D>,

For any n the group D;, may be described by the presentation

1

(x, | x", y%, y Ixpx).

Write A = Z[D,,] and £ =1+ x +x% +--- 4+ x"~1. Applying the Cayley complex
construction to this presentation gives the following 2—complex:

(3) 0T A3 A2 A5 72 50

where ¢ is the augmentation map, d; = (x —1,y—1) and 9, = (% 1_?_y lj_ylx). The
following proposition is easily verified:
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Proposition 2.1 Fix n and let k be any odd integer with 3 <k <n— 1. If we write
m = (k — 1)/2 then the following diagram commutes:

d ad
0——J —— A3 A2—— A ——Z——0
J/g laz lal lao J{k
32 31 &
0 J A3 A2 A Y/ 0
where 81 =(x—1,y—1), 32: (§ 1-?—y 1:—))136)’
o =1+x""+ o+ x"HxTy Xy,
a0o0
011:(3(1)), =010/,
001
a=14+x""4d b x—x 2y o x T yand 6 = sy .

Consider the commutative diagram above as a diagram of (free) Z-modules and
Z —linear maps; taking determinants we have:

Proposition 2.2 k det 0 deta; = det oy detorg.
Proof Let v denote the restriction of « to kere and let u denote the restriction of

a1 to kerdy. Then v(kere) C kere, u(kerd;) C ker d; and we have an commutative
diagram:

0
0 —— ker o, A2 ! kere 0
J/u lal lv
01
0 — ker 0 A2 kere 0

Considered as a diagram of (free) Z —modules, both exact sequences split, and so there
exists o such that

0 —— kerd; —— kerd; dkere —— kere —— 0
| [+«
0—— kerd; —— kerd; dkere —— kere —— 0

commutes with the obvious maps, and where det oz’l = detwq. Therefore we have
deto) =det(§ %) = detu detv. Similarly

detoy =detfdetu and detog = detvdetk = k detw.
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Thus
deta, detag = det 6 detu det(v) k = k det 6 det oy

as required. |

Now, any A-homomorphism is a A—isomorphism if and only if it is an isomorphism
as a Z —linear map. Thus, in order to show that [k] is in the image of the Swan map, it
suffices to show that detf = +1.

Proposition 2.3 Suppose that k is coprime to 2n. Then detoy = tk.

Proof Let M (o) be the matrix of the A —linear map given by x — agx with respect to
the Z —basis {1,x,...,x"" 1, y, ..., x"" 1y}, with the elements of A being interpreted
as columns. Notice that M (ag) = (g ﬁ) where A = (a;,j) and B = (b;j) are nxn

matrices. We know that a; ; = 1 if « contains an x~1 term and a;,1 = 0 otherwise.
Thus

ai1 =

1 ifie{ln—m+1,n—m+2,...,n},
{O otherwise.
Similarly

bt = {1 ifiefn—m+1,n—m+2,...,n},

’ 0 otherwise.

The other columns of A and B are obtained by cyclically permuting the first column; let
o+,0-:41,...,n} = {1,...,n} be the permutations given by o4+ (i) =i +1 mod n
and 0_(i) =i —1 mod n. We now have

ai,j =dgj-1¢Gy,; and b j :ba_{_fl(i),l'

Now label the columns of M (ag) by vq,...,vs,. Let N be the matrix with columns
Vi,..., V5, Where v; = v; for 1 <7 <n and v)_; = Uyt; — Up41—; for 1 <i <n.

For example, if n =4 and k = 3 (so that m = 1), we would have:

(1100 000 1Y (1 100 0 0-1 0)
0110 0010 01 1.0 0-100
0011 0100 001 1-120200
1001 1000 1001 00 0-1I
M(CY())I ;. N =
0001 1100 0001 01 00
0010 0110 0010 0010
0100 0011 0100 00 01
1000 1001 1000 1 000
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If N =(4¢) for matrices C = (c¢;,;) and D = (d;,j) then ¢;,j = b j — ajpnt1—j
and d,',j =daj,j _bi,n+l—j- Now,

. 1 if efn—mn—m+1,...,n},
din = don=1(D,1 = 0 otherwise

and so

Ci1 =

s

-1 ifi=n—-—m,
0 otherwise,

Similarly,

1 ifi=n—m+1,

din = .

0 otherwise.

We also have
Cij = Coi=1),1 and dij =dsi-13y-
There is precisely one —1 appearing in the i —th row of C; fix i, j such that ¢; j = —1.
Then i1 =—1= O_J,__l(i) =n—m= j =o'~ (n—m). The row of D
containing +1 in the j—th position is the k—th, where
dk,Uifl(n—m) =1= do_zL*I(n—m)—l(k),l =1

= ofl—_l(”_m)_l(k) =n—m+1
=sk—0c"'n—my+1=n—m+1 modn
sk—-n+m+i=n—m+1 modn
=k=n—-2m—i+1 modn

=k =0 n—2m).

Let the rows of N be labelled by wy,...,w;,. Put w; =w; forn+1=<i=<2n
and wl’ = Wj + Wyyoi~l(n—2m) for 1 <i <n. If we let P be the matrix with rows
w],..., wy, then by the preceding argument P is of the form P = (g g ) Here D
is a permutation matrix, and so we have det M (ag) = +det E. In the case n = 4,
k =3 we have:

—_ = O =
O = = =
—_— = O

1
1
0
1

If E = (ej,j), then

ei,j =ai,j +bei-1(n—2m),;-
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Consider

€ij = Coi=1(i)1 = dij + boi-t(am).j T 90i-10).0 T 5Nt (1
= boim1Gim1—2m),1 T Lot T 01 (a1

where we have cancelled the a terms. Now,

ofi_l(i)_l(n—2m) =n—2m—c’"Yi)+1=n—-2m—(@G—j+1)+1 modn

=n—2m+j—i modn.

However,

ai_l(oi_l(n—2m)) = "m—-2m)+j—1=n—2m—i+1+,j—1 modn

=n—2m+j—i modn,

so the b terms also cancel, and we can conclude that e;,j = €5j-1(;) 1 -
Consider the first column of E: we know that

1 ifoi"'m—2m)ye{n—m+1,n—m+2,....,n},

byi—1(y_ =
o=l (n—2m),1 {O otherwise.

However,
o m—2myefn—m+1,... .ny=n-2m—i+1]e{ln—m+1],....[n]}
where [ ] represents class modulo 7. This is equivalent to
[—ile{2m—1],2m—=2],...,[m]},
orie{n—2m+1,n—2m+2,...,n—mj. Comparing this with the a; ; s, we see that

1 ifie{l,n—2m+1,...,n},
ej1 =
i1 0 otherwise,

so that £ has 2m + 1 =k 1s in each column. We may cyclically permute the rows of
E to form a new matrix F' = (f; ;) with fi j = foj-1(;,, and

fy = 1 ifl1<ic<k,
h1 7 0 otherwise.

The matrix F is the circulant matrix associated to the row vector (v, v1,...,Vs—1)
with v; =1 for0<i <k —1and v; =0 for Kk —1 <i <n—1. The determinant of
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F is given by the well-known formula (see for example [2]):

n—1n—1

det F = HZ{ijvj,

i=0j=0

where ¢ is a primitive n—th root of unity. Write A; = Z;’;(l) ¢Yvj; clearly Ao = k.
However, for each i > 1, we have

é—lk
A= Z(@ )/ =
and hence
n—1 é'ik _1

det F =k ,U -
We note that since k is coprime to 7, the sets {¢** | i € {1,2,...,n —1}} and
{¢"|ie{l,2,...,n—1}} coincide, and hence detag = *det F = *k. a
Proposition 2.4 deta; = detay, # 0.

Proof The following commutes:

a a
0 J AM—— A2 —— A —7Z 0
l@z la'z lal lao lk
02 01 £
0 J A3 A? A Z 0
where
m+1—-my 0 0
oh = 0 1 0
0 0 1
and 6 is the restriction of o), to J. We proceed to calculate det oy, = det(m + 1 —my).
If we represent (m 4 1—my) with respect to the basis {1, x,...,x" 1, p,... x"" 1y},
then we form the matrix:
A B
v=(5 )

Here A is diagonal with each diagonal entry equal to m + 1, and B is equal to —m
times the permutation matrix associated to (12 3 - %) Label the rows of M by

1lnn—1..2
Vi,...,Vz, and let N be the matrix with rows v{,..., v}, , where v} = v; + vy 1,
v, = v + Vap_jq2 for 2 <i <n,and v] = v; for n 4+ 1 <i < 2n. Now label the
columns of M by wy,...,w;, and let L be the matrix with columns w’l, el w’Zn
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where w] = w; for 1 <i <n, w1,1+1 = Wy+1 —wy and W, ; = Wy41 — Wy—i+2 for
2 <i <n. For example, if n =4 and k = 3 (so that m = 1) we have:

1000 1000 1000 0000
0100 0001 0100 0000
0010 0010 0010 0000
0001 0100 0001 0000
N= . L=
-1 000 2000 -1 0 00 3000
00 0-1 020 0 00 0-1 0300
0 0-1 0 00 2 0 0 0-1 0 00 30
\0-1 00 00 0 2) \0-1 00 00 0 3)

It is easy to see that L is lower triangular with n diagonal entries equal to 1 and n
diagonal entries equal to 2m + 1 = k. Then deta, = det(m + 1 —my) =det L = k".
Using k det ' detar; = detarg deta)y, = +k" 1 we see that deta; =deta, #0. O

Therefore by Propositions 2.2, 2.3 and 2.4:

Proposition 2.5 If3 <k <n—1 is coprime to 2n then detf = 1 and so 0 is an
isomorphism. Thus [k] is in the image of the Swan map.

Clearly [—1] is in the image of the Swan map and so:
Corollary 2.6 The Swan map AutJ — (Z /2n)* is surjective for each D,,,.

Mannan [9] has previously shown that the Swan map is surjective for Djn.

3 The D(2)-property for Z[D4,]

We now restrict to the case Dg4,. An application of Schanuel’s lemma shows that
the module J appearing in (2) is determined up to stable equivalence; that is, if
0>J—>F—>F—>F—>Z—->0ad0—>J - F,—>F —>F,—-Z—0
are two algebraic 2—complexes, we have J @ A" =~ J' @ A™ for some n, m. Write
Q3(Z) for the class of modules J’ appearing in an algebraic 2—complex over Dy, .
Now take J = ker d, in (3); the following proposition is due to Mannan [9]:

Proposition 3.1 J has minimal Z —rank in Q23(Z).

Algebraic & Geometric Topology, Volume 12 (2012)



2296 S O’Shea

Let " be an order over a Dedekind domain R. We say that forsion-free cancellation
holdsfor ' if XM =X &N = M = N for lattices X, M and N over I' (so that
X, M and N are finitely generated as I'—modules and torsion-free over R). There
are very few finite groups G for which I' = Z[G] has torsion-free cancellation; if G
is nonabelian then the only possible candidates are A4, A5, S4 and D5, for certain
values of n. Clearly we have:

Proposition 3.2 Suppose that Z[D,,] has torsion-free cancellation. Then every
J' € Q3(Z) is of the form J' = J & A™ for some m > 0.

For a finite group G, the integral group ring Z[G] is a Z —order in the semisimple
algebra Q[G]; we may choose a maximal Z —order I' in Q[G] containing Z[G], and
define D(Z[G]) = ker(K o(Z[G]) — Ko(I')). A necessary condition for Z[G] to
possess torsion-free cancellation is D(Z[G]) = 0. The following is due to Swan [11]:

Theorem 3.3 Let p be a prime. Then Dy, satisfies torsion-free cancellation if and
only if D(Z[D4,]) =0.

Endo and Miyata [3] calculate the order of D(Z[D,,]) for various values of n. In
particular they show D(Z[D4,]) = 0 for prime p when 3 < p <31, p=47,179 or
19379. However, there do exist values of n for which D(Z[Dy,]) # 0, for example
n = 37. Moreover, results of Swan show that D(Z[D4,]) = 0 is not a sufficient
condition for torsion-free cancellation to hold. For example, D(Z[D,r]) = 0 for all
n, yet torsion-free cancellation fails when n > 7 (see [11, Theorem 8.1]). Of course,
although values of n exist for which Z[Dy,] does not have torsion-free cancellation,
it may still be the case that cancellation of finitely generated free modules holds within
Q3(Z) for such n.

If torsion-free cancellation holds for Dy, then, by Theorem 1.3, Corollary 2.6 and
Proposition 3.2, up to congruence, the only algebraic 2—complexes over Dy, are of
the form

Em=0>JdA" > AP oA 2 A2 A 72 o),
where 71 A3 @ A™ — A3 denotes projection onto the first factor. If a pair of
algebraic 2—complexes are congruent then they are homotopy equivalent (see Johnson [7,
page 182]), and so the &, represent all homotopy classes of algebraic 2—complexes
over Dy4y,. However, &, is geometrically realized by the Cayley complex arising from
the presentation

1

Gm = (x,y| x2”,y2,y_ xyx,1,...,1),
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where there are m trivial relators added to the standard presentation for Dy, . Therefore
every homotopy class of algebraic 2—complex over Dy, is geometrically realized and
hence by Theorem 1.2 we have proved Theorem 1.1. By Theorems 1.1 and 3.3 we

have:

Corollary 3.4 Let p be a prime and suppose that D(Z[D4p]) = 0. Then the D(2)-
property holds for Dy, .

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

(10]

(11]

(12]

W J Browning, Homotopy types of certain finite CW—complexes with finite fundamental
group, PhD thesis, Cornell University (1978) MR2628267 Available at http://
tinyurl.com/d5gtflx

P J Davis, Circulant matrices, Wiley—Interscience, New York (1979) MR543191

S Endo, T Miyata, On the class groups of dihedral groups, J. Algebra 63 (1980)
548-573 MR570730

KW Gruenberg, Homotopy classes of truncated projective resolutions, Comment.
Math. Helv. 68 (1993) 579-598 MR1241473

M Gutierrez, M P Latiolais, Partial homotopy type of finite two-complexes, Math. Z.
207 (1991) 359-378 MR1115169

I Hambleton, M Kreck, Cancellation of lattices and finite two-complexes, J. Reine
Angew. Math. 442 (1993) 91-109 MR1234837

F E A Johnson, Stable modules and the D(2)—problem, London Math. Soc. Lect. Note
Series 301, Cambridge Univ. Press (2003) MR2012779

MP Latiolais, When homology equivalence implies homotopy equivalence for 2—
complexes, J. Pure Appl. Algebra 76 (1991) 155-165 MR1145864

W H Mannan, The D(2) property for Dg, Algebr. Geom. Topol. 7 (2007) 517-528
MR2308955

W H Mannan, Realizing algebraic 2—complexes by cell complexes, Math. Proc. Cam-
bridge Philos. Soc. 146 (2009) 671-673 MR2496351

R G Swan, Torsion free cancellation over orders, lllinois J. Math. 32 (1988) 329-360
MR947032

CT C Wall, Finiteness conditions for CW—complexes, Ann. of Math. 81 (1965) 56-69
MRO0171284

Department of Mathematics, University College London
Gower Street, London, WCIE 6BT, United Kingdom

s.o’shea@ucl.ac.uk

Received: 29 March 2012 Revised: 17 August 2012

Geometry € Topology Publications, an imprint of mathematical sciences publishers :.msp


http://www.ams.org/mathscinet-getitem?mr=2628267
http://tinyurl.com/d5gtflx
http://tinyurl.com/d5gtflx
http://www.ams.org/mathscinet-getitem?mr=543191
http://dx.doi.org/10.1016/0021-8693(80)90090-3
http://www.ams.org/mathscinet-getitem?mr=570730
http://dx.doi.org/10.1007/BF02565836
http://www.ams.org/mathscinet-getitem?mr=1241473
http://dx.doi.org/10.1007/BF02571394
http://www.ams.org/mathscinet-getitem?mr=1115169
http://www.ams.org/mathscinet-getitem?mr=1234837
http://dx.doi.org/10.1017/CBO9780511550256
http://www.ams.org/mathscinet-getitem?mr=2012779
http://dx.doi.org/10.1016/0022-4049(91)90058-A
http://dx.doi.org/10.1016/0022-4049(91)90058-A
http://www.ams.org/mathscinet-getitem?mr=1145864
http://dx.doi.org/10.2140/agt.2007.7.517
http://www.ams.org/mathscinet-getitem?mr=2308955
http://dx.doi.org/10.1017/S0305004108002107
http://www.ams.org/mathscinet-getitem?mr=2496351
http://projecteuclid.org/euclid.ijm/1255988991
http://www.ams.org/mathscinet-getitem?mr=947032
http://dx.doi.org/10.2307/1970382
http://www.ams.org/mathscinet-getitem?mr=0171284
mailto:s.o'shea@ucl.ac.uk
http://msp.org
http://msp.org

	1. Introduction
	2. The Swan map
	3. The D(2)--property
	References

