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Rational topological complexity

BARRY JESSUP

ANICETO MURILLO

PAUL-EUGÈNE PARENT

We give a new upper bound for Farber’s topological complexity for rational spaces in
terms of Sullivan models. We use it to determine the topological complexity in some
new cases, and to prove a Ganea-type formula in these and other cases.

55M30, 55P62

1 Introduction

Motion planning is a rapidly growing area of research in

[14]. From the topological point of view, a motion planning algorithm has as input two
states of the motion, ie, two arbitrary points in the configuration space X . As output
it has to provide a continuous path between the two chosen states. In other words,
such an algorithm consists of a section (not necessarily continuous) sW X �X �!X I

of the unpointed path fibration pW X I �!X �X; p.�/D .�.0/; �.1//, where X I

denotes the space of free paths on X .

One sees immediately that a section of p can be chosen to be continuous if and
only if the configuration space X is contractible, and, indeed, any such contraction
readily produces a continuous motion planning algorithm. Inspired by the work of
Smale [18], Farber [2] took this observation as his starting point for defining the
topological complexity of X , which is the following measure of the difficulty of finding
a motion planning algorithm for a given configuration space:

Definition 1.1 [2] Let X be a path-connected topological space. The topological
complexity of X , TC.X /, is the least integer k for which there exists a covering of
X �X formed by kC 1 open sets U1; : : : ;UkC1 , admitting continuous local sections
si W Ui!X I of p , ie, p ı si D 1Ui

, for each i D 1; : : : ; kC 1.

This is the sectional category (refer to Cornea, Lupton, Oprea and Tanré [1] and
Schwarz [17]) of the path fibration. (Note that our definition differs from that of [2] by
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one, so that here, the topological complexity of a point is zero.) For a compendium
of basic facts and known results on this homotopy invariant we refer to the excellent
survey [3]. There, Farber poses in Section 31 the open problem of an “algebraic
description of the rational version of TC.X / in terms of the Sullivan minimal model
of X ”.

The first progress in this direction was the work of L Fernández, P Ghienne, T Kahl and
L Vandembroucq. In [9] they introduced, for any simply connected space X , a lower
bound for TC.XQ/, namely MTC.X /, which is an invariant of the rational homotopy
type of X , and is defined in terms of a Sullivan model of X .

Later on, using the general approach of Fassò Velenik [4] for describing the sectional
category of the rationalization of a given fibration, an algebraic description of TC.XQ/

in terms of the Sullivan model of X was explicitly presented by Lechuga and the
second author in [16]. However, like that of [9], this description is not easy to handle.

Here, we give a simple upper bound for TC.XQ/ and MTC.X / [9], which was
inspired directly by the highly successful algebraic characterization of the Lusternik–
Schnirelmann category of XQ in terms of Sullivan minimal models given by Félix and
Halperin in [5].

In the following, we will assume that our spaces are of the homotopy type of simply
connected CW–complexes of finite type.

Let .ƒV; d/ (or simply ƒV ) be a Sullivan model of X and let K � ƒV ˝ƒV be
the kernel of the multiplication �W ƒV ˝ƒV !ƒV . For any n� 1, denote by Kn

the n–th power of K , ie, the ideal generated by products of elements of K of length
at least n.

Definition 1.2 Consider the projection

ƒV ˝ƒV
pm
�!ƒV ˝ƒV =KmC1:

Then,

(i) tc.X / is the smallest m for which pm has a homotopy retraction as algebras

(ii) mtc.X / is the smallest m for which pm has a homotopy retraction as
.ƒV ˝ƒV /–modules.
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Recall that, in this context, having a homotopy retraction means that in any Sullivan
model of the projection,

ƒV ˝ƒV
i
//

((

ƒV ˝ƒV ˝ƒW
�

mm

'

��

ƒV ˝ƒV =KmC1

the map i has a retraction � WƒV ˝ƒV ˝ƒW !ƒV ˝ƒV , which is a map of a
differential algebras, or .ƒV ˝ƒV /–modules.

We prove:

Proposition 1.3 For any simply connected space X ,

MTC.X /� TC.XQ/� tc.X / and MTC.X /�mtc.X /� tc.X /:

This simple upper bound is particularly interesting since it is an NP–hard problem to
determine whether the topological complexity of a rational space is finite, given its
minimal model as codification. Indeed, due to the well known inequality [2]

cat.X /� TC.X /� 2 cat.X /;

the finiteness of the topological complexity of a given space is equivalent to that
of its LS–category. But, since determining the finiteness of the LS–category of a
rational space is NP–hard (see Lechuga and Murillo [15, Theorem 2]), this shows that
determining whether the topological complexity is finite is also NP–hard.

We find a class of spaces whose topological complexity attain this lower bound.

Theorem 1.4 Let X be a space for which ��.X / ˝Q is finite dimensional and
concentrated in odd degrees. Then,

TC.XQ/D dim��.X /˝QD cat.XQ/:

Indeed, the last equality is a well known identity by Félix and Halperin [5] or Félix,
Halperin and Thomas [7, Example 6, Section 29]. Here, the lower bound of the
inequality cat.X /� TC.X /� cat.X �X / of [2] is attained. Another consequence of
Proposition 1.3 is a sharpening of [9, Proposition 6.2]. Recall that given A a CDGA, its
nilpotence index, denoted by nil A, is the least integer n (possibly infinite) for which
AnC1 D 0.

Algebraic & Geometric Topology, Volume 12 (2012)



1792 Barry Jessup, Aniceto Murillo and Paul-Eugène Parent

Proposition 1.5 Let N be a CDGA of the rational homotopy type of the space X

with multiplication �N . Then,

TC.XQ/� tc.X /� nil ker�N :

Recall that the Ganea conjecture for LS–category stated that the LS–category of a
space increases by one when taking a product with a sphere [10]. This conjecture was
proved to be false in the general case by Iwase [12] but it remains true in the rational
category. For example, see Félix, Halperin and Lemaire [6], Hess [11] and Jessup [13].
Here, a final application to the Ganea conjecture for rational topological complexity is
obtained using mtc.

It is well known [2] that topological complexity satisfies the subadditive formula

TC.X �Y /� TC.X /CTC.Y /:

To the authors’ knowledge, no example of strict inequality in the above has previously
appeared in the literature. However, if X D S2 [f e3 and Y D S2 [g e3 , where
f and g are maps of degree 2 and 3 respectively, then in Section 3 we show that
strict inequality does occur in this case. If we endow a given robot with configuration
space X with an extra articulated arm with n degrees of freedom, the configuration
space of the new robot is X �Sn , which satisfies

TC.X �Sn/� TC.X /CTC.Sn/D

(
TC.X /C 1 if n is odd,

TC.X /C 2 if n is even.
(1)

We do not know if equality holds in (1) for rational spaces. However we are able to
show that equality does hold for mtc in all cases, and in some for tc, MTC and TC.

Theorem 1.6 If X is a simply connected CW–complex of finite type and n� 2, then

MTC.X �Sn/�MTC.X /CMTC.Sn/DMTC.X /CTC.Sn/:

Moreover,

mtc.X �Sn/Dmtc.X /Cmtc.Sn/Dmtc.X /CMTC.Sn/Dmtc.X /CTC.Sn/:

Though the following result can be proven directly from the characterization of TC
given in the next section, here we obtain it as a corollary of Theorem 1.6.

Corollary 1.7 If X is a formal, simply connected, rational CW–complex of finite
type, and n� 2, then

TC.X �Sn/D TC.X /CTC.Sn/:
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2 Rational Topological Complexity

We shall be using known results in rational homotopy for which the excellent reference
Felix, Halperin and Thomas [7] is now standard. Here we present a summary of
some basic facts. For any simply connected CW–complex of finite type X (all spaces
considered here shall be of this kind), its rationalization XQ is a rational space (ie, its
homotopy groups are rational vector spaces), together with a map X !XQ inducing
isomorphisms in rational homotopy. On the other hand, to any space X there corre-
sponds, in a contravariant way, a Sullivan algebra, ie, a commutative differential graded
algebra .ƒV; d/, called the minimal model of X , which is unique up to isomorphism
and algebraically models the rational homotopy type of the space X , or equivalently,
the homotopy type of its rationalization XQ . By ƒV we mean the free commutative
algebra generated by the graded vector space V , ie, ƒV D T V =I where T V denotes
the tensor algebra over V and I is the ideal generated by v˝w� .�1/jwjjvjw˝v for
all v;w 2 V , homogeneous elements of degrees jvj and jwj respectively. Moreover,
as all spaces considered here are 1–connected, the differential d satisfies the following
minimality condition: for any element of v 2 V , dv is a polynomial in ƒV with no
linear term. This is known in this context as the nilpotence condition [7, page 138]. This
correspondence yields an equivalence between the homotopy categories of 1–connected
rational spaces of finite type and that of 1–connected rational commutative differential
graded algebras (CDGA) of finite type.

We next give an algebraic description of TC.XQ/, different from that of Lechuga and
the second author [16], which is based on characterizations of the sectional category
of a rational fibration given in terms of generalized fat wedges [4]. The fat wedge
can also be seen as a generalized polyhedral product. If we use the diagonal map
�W X ! X � X to regard .X � X;X / as a CW pair, then by Félix and Tanré [8,
Theorem 1] the m–th fat wedge is .X �X;X /S

m

.
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Let .ƒV; d/ be a Sullivan model of X . The multiplication map of ƒV ,

�W .ƒV; d/˝ .ƒV; d/! .ƒV; d/;

is a model of the diagonal �W X ! X �X . Let A denote .ƒV; d/˝ .ƒV; d/ and
K�A the kernel of �. Then, a model of the m–th fat wedge associated to the diagonal
�W X !X �X is given by the projection

A˝
mC1 P
�!A˝

mC1

=K˝
mC1

:

If A˝
mC1 M
�!A denotes the iterated multiplication ˛1˝� � �˝˛mC1 7!˛1 � � �˛mC1 and

A˝
mC1 j

,!A˝
mC1

˝ƒW
'
�!A˝

mC1

=K˝
mC1

is a relative Sullivan model of P , then we have the following proposition:

Proposition 2.1 (a) [4, Proposition 8.4.1] TC.XQ/ is the least m for which there
is a map of differential graded algebras

� WA˝
mC1

˝ƒW !A

with �j DM .

(b) [9, Section 6] MTC.X / is the least m for which there is a map of differential
graded A–modules � WA˝

mC1

˝ƒW !A with �j DM .

Henceforth, we use (a) and (b) above as definitions of TC and MTC.

The proof of Proposition 1.3 is now immediate:

Proof of Proposition 1.3 With the notation of the above, simply note that the multi-
plication map M above takes K˝

mC1

to KmC1 , and so induces a map of differential
graded algebras

A˝
mC1

=K˝
mC1 �M
�!A=KmC1:

Thus, any homotopy retraction of A!A=KmC1 will, essentially by precomposition
with �M , induce the desired map � .

From this, some important consequences are deduced. The first, Proposition 1.5 (see
Section 1) is a sharpening of [9, Proposition 6.2].

Algebraic & Geometric Topology, Volume 12 (2012)
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Proof of Proposition 1.5 Let 'W .ƒV; d/
'
�! N be the minimal model of N (and

hence of X ) and denote by � the multiplication in ƒV . As .'˝'/.ker�/� ker�N

we have, for any m, a commutative square:

ƒV ˝ƒV

pm

��

'

'˝'
// N ˝N

��

.ƒV ˝ƒV /=KmC1 // .N ˝N /=.ker�N /
mC1

Whenever m� nil ker�N , .ker�N /
mC1 D 0 and so this becomes the triangle:

ƒV ˝ƒV
'

'˝'
//

pm ((

N ˝N

.ƒV ˝ƒV /=KmC1

OO

This readily implies the existence of a homotopy retraction of pm , and so

TC.X /� tc.X /� nil ker�N :

Recall that if
[KW H

�.X IK/˝H�.X IK/!H�.X IK/

denotes the cup product for any field K, the main cohomological lower bound for
topological complexity is given by [2, Theorem 7]

TC.X /� nil ker[K:

From Proposition 1.5 we can thus immediately obtain the main result of [16]. Recall
that a simply connected space X is said to be formal if its rational homotopy type
depends only on its rational cohomology algebra.

Corollary 2.2 For any formal space X ,

TC.XQ/D nil ker[Q:

Another class of spaces for which rational topological complexity can easily be com-
puted via Proposition 1.3 is given by Theorem 1.4. We begin its proof with the following
observation:

Lemma 2.3 If �W ƒV ˝ƒV !ƒV is the multiplication map, then ker� is generated,
as an ideal, by fv˝ 1� 1˝ v j v 2 V g.

Algebraic & Geometric Topology, Volume 12 (2012)
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Proof Let I D hfv˝1�1˝v j v 2 V gi. It is clear that I � ker�, and that moreover,
.ƒV ˝ƒV /=I ŠƒV via the homomorphism induced by �.

We now proceed to the proof of Theorem 1.4:

Proof of Theorem 1.4 Let .ƒV; d/ be a minimal model of X , and fv1; : : : ; vng a
basis of V such that jvi j � jviC1j. If

U D ker�\ƒ1.V ˚V /D spanfvi ˝ 1� 1˝ vi j 1� i � ng;

then ker�W ƒV˝ƒV !ƒV is just ƒV˝ƒCU , and KmD .ker�/mDƒV˝ƒ�mU .

Since ��.X /˝QŠU DU odd and dim U Dn, KnC1D0, and so, by Proposition 1.3,
TC.XQ/� tc.X /� n.

We conclude by noting that TC.XQ/� cat.XQ/D dim V D n.

3 The Ganea conjecture for rational topological complexity

We begin here with the example of strict inequality of the subadditive formula on
products for TC mentioned in the introduction. The following may be compared to
Farber [3, Theorem 19.1].

Lemma 3.1 Suppose X and Y are well-pointed. If X _Y ,!X �Y is a homotopy
equivalence, then

TC.X _Y /�maxfTC.X /;TC.Y /g:

Proof If we regard X _Y as the subset X � fy0g[ fx0g �Y of the product X �Y ,
then .X _Y /� .X _Y / is the union of the following subsets of X �Y �X �Y :

.X _Y /� .X _Y /DX � fy0g �X � fy0g[X � fy0g � fx0g �Y

[fx0g �Y �X � fy0g[ fx0g �Y � fx0g �Y:

On the other hand, since our spaces are well pointed, the inclusion X _Y ,!X �Y is
a cofibration, and thus, as it is a homotopy equivalence, it is also a deformation retract
(though not necessarily strong); see Spanier [19, Corollary 10, page 31]. Hence, we
use the deformation retraction of X �Y onto X � fy0g[ fx0g �Y to deduce that

X � fy0g � fx0g � fy0g[ fx0g � fy0g � fx0g �Y;

fx0g � fy0g �X � fy0g[ fx0g �Y � fx0g � fy0g

Algebraic & Geometric Topology, Volume 12 (2012)
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are also deformation retracts of

X � fy0g � fx0g �Y;

fx0g �Y �X � fy0g;

respectively. Therefore,

.X �X /_ .Y �Y /DX � fy0g �X � fy0g[ fx0g �Y � fx0g �Y

is a deformation retract of .X _Y /� .X _Y /. We denote this retraction by r :

.X �X /_ .Y �Y /
� � j

// .X _Y /� .X _Y /
r
oo

Now, consider homotopy sections of the fibrations X I ! X �X and Y I ! Y �Y

over coverings fU1; : : : ;Ung and fV1; : : : ;Vmg of X �X and Y � Y respectively.
Assume n�m. Using the homotopy lifting property, we may assume those sections to
be base point preserving whenever any of the elements of these coverings contain the
base point. Thus, there are homotopy sections of

.X _Y /I �! .X _Y /� .X _Y /
r
�! .X �X /_ .Y �Y /

over the covering fU1 _ V1; : : : ;Um _ Vm;UmC1; : : : ;Ung. Finally, consider the
induced homotopy sections of .X _Y /I �! .X _Y /� .X _Y / over the covering

fr�1.U1 _V1/; : : : ; r
�1.Um _Vm/; r

�1.UmC1/; : : : ; r
�1.Un/g:

If X D S2 [f e3 and Y D S2 [g e3 , where f and g are maps of degree 2 and 3

respectively, then TC.X / and TC.Y / are positive, and X _Y ,!X �Y is a homotopy
equivalence. Then, by all of the above, this is also a deformation retract and, by
Lemma 3.1, we have

TC.X �Y /D TC.X _Y /�maxfTC.X /;TC.Y /g< TC.X /CTC.Y /:

As stated in the introduction, it is open whether, for a rational simply connected CW–
complex X of finite type, one always has the equality TC.X �Sn/DTC.X /CTC.Sn/.
However, this Ganea formula does hold for mtc, as we prove in our final result,
Theorem 1.6. Note that, for Sn ,

MTC.Sn/Dmtc.Sn/D TC.Sn
Q/D tc.Sn/D TC.Sn/D

(
1 if n is odd,

2 if n is even.

The first three equalities trivially hold as Sn is a formal space while the fourth is well
known [3]. For the second note that TC.Sn

Q/D nil ker[Q D TC.Sn/.

Algebraic & Geometric Topology, Volume 12 (2012)
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Proof of Theorem 1.6 We first prove subadditivity of mtc, ie,

mtc.X �Y /�mtc.X /Cmtc.Y /:

Let ƒV and ƒW be Sullivan models of X and Y . Write V ˚V D V 2 and observe
that, if KV denotes the kernel of the multiplication ƒV 2 ! ƒV , then KV˚W is
generated as a ƒ.V ˚W /–module by fv˝ 1� 1˝ v;w˝ 1� 1˝w j v 2 V; w 2W g

(see Lemma 2.3). Thus, for m; n� 1, there is a natural morphism of algebras

ƒ.V 2
˚W 2/=KmCnC1

V˚W
�!ƒ.V 2/=KmC1

V
˝ƒ.W 2/=KnC1

W

which induces, via the lifting lemma [7, Proposition 12.9], a morphism h between the
Sullivan models of the quotients:

ƒ.V 2˚W 2/

i

��

j
//ƒV 2˝ƒR˝ƒW 2˝ƒS

'

��

ƒ.V 2˚W 2/˝ƒT
'
//

h

22

ƒ.V 2˚W 2/=KmCnC1
V˚W

//ƒ.V 2/=KmC1
V
˝ƒ.W 2/=KnC1

W

Thus, if j has a retraction � (either as a morphism of algebras or ƒ.V ˚W /–modules),
then �h is a retraction of i . This proves the assertion and also the subadditivity of
“rational” TC.

We now prove the reverse inequality for mtc whenever Y is a sphere. Again, let
.ƒV; d/ be a Sullivan model of X and .ƒUn; d/ denote the model of an n–sphere Sn ,
so that U2kC1 D spanfug, U2k D spanfx;yg, du D 0 D dx; dy D x2 , juj is odd
and jxj is even. In what follows, we suppress the dependence on n wherever possible.

Let ADƒV ˝ƒV , C DƒUn˝ƒUn , and B DA˝C , all differentials being those
from the products. Denote by K and L the kernel of the multiplication in A and B

respectively. Consider in C the element z˝ 1� 1˝ z 2 Un˚Un , denoted by z� z0

henceforth, and observe that z� z0 2L.

Now define

 D

(
u�u0 if n is odd,

.x�x0/2 if n is even.

Note that

 2

(
L if n is odd,

L2 if n is even,

and that, Œ � 6D 0 in H�.C /, and thus it is also nonzero in H�.B/.
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Hence, as graded differential vector spaces, we may write

C D h i˚M

and define a map pW C !Q of graded differential vector spaces by p.k Cm/D k .
Note that p is homogenous of degree �j j.

This allows us to write B D .A˝h i/˚ .A˝M /, the direct sum being now one of
differential A–modules. Now define two maps of differential A–modules � W A! B

and � W B!A by

�.˛/D ˛  and �.˛0 C˛1m/D ˛0:

It is easy to check that, for all m, �.Km/ � LmCmtc.Sn/ , which implies that the
following diagram commutes:

A

pmC1

��

�
// B

�
��

A=KmC1 x�
// B=LmCmtc.Sn/C1

Moreover, � is a retraction of � . Thus, if � has a homotopy retraction, pmC1 does as
well. This proves that

mtc.X /Cmtc.Sn/�mtc.X �Sn/;

and so establishes the Ganea formula for mtc.

The inequality MTC.X �Sn/�MTC.X /CTC.Sn/ is established in a similar fashion,
which we now outline. We use the same notation as before.

Briefly, the map
x� W A˝

mC1

�! B˝
mCMTC.Sn/C1

defined by

˛1˝ � � �˝˛mC1 7!

(
˛1˝ � � �˝˛mC1˝ .u�u0/ n odd,

˛1˝ � � �˝˛mC1˝ .x�x0/˝ .x�x0/ n even;

satisfies x�.K˝
mC1

/�L˝
mCMTC.Sn/C1

and so induces a commutative diagram

A˝
mC1

PA

��

x�
//
B˝

mCMTC.Sn/C1

PB

��

MB
// B

A˝
mC1

=K˝
mC1 z�

// B˝
mCMTC.Sn/C1

=L˝
mCMTC.Sn/C1

�

44
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where MB is multiplication. Thus, if there is (up to a relative Sullivan model) a map �
as shown with �PB 'MB , postcomposition with � defined earlier shows that

MTC.X /�MTC.X �Sn/�MTC.Sn/:

We end with the following:

Conjecture For all spaces X with the homotopy type of simply connected CW–
complexes of finite type,

TC.XQ/D tc.X /:
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