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Periodic flats in CAT.0/ cube complexes

MICHAH SAGEEV

DANIEL T WISE

We show that the flat closing conjecture is true for groups acting properly and cocom-
pactly on a CAT(0) cube complex when the action satisfies the cyclic facing triple
property. For instance, this property holds for fundamental groups of 3–manifolds
that act freely on CAT(0) cube complexes.

20E99, 20F65, 20F67

In memory of Bob Brooks

1 Introduction

One of the best known properties of a word-hyperbolic group, is that it cannot contain
a subgroup isomorphic to Z�Z. For a group G acting properly and cocompactly on
a CAT(0) space X , it is known that G is word-hyperbolic if and only if X does not
contain an isometrically embedded flat plane E2 . The “flat torus theorem” asserts that
if G contains a subgroup H Š Z�Z, then there is a flat plane stabilized by H . One
is led to the following problem:

Problem 1.1 (Flat Closing) Let G act properly and cocompactly on a Hadamard
space X . Suppose X contains a flat plane. Does X contain a “periodic” flat plane?
Equivalently, does G contain a subgroup isomorphic to Z�Z?

While it is widely believed that Problem 1.1 admits a negative solution in general, there
is no known counterexample, nor even specific candidate counterexamples. In fact, it
appears that in many geometrically interesting cases, Problem 1.1 actually admits a
positive solution.

Groups acting on CAT(0) cube complexes are playing an increasingly prominent role
in geometric group theory, and we are led to examine Problem 1.1 for CAT(0) cube
complexes both because of the richness of examples, and because of their attractive
simple nature as a test case. The characteristic feature of a CAT(0) cube complex
are the “hyperplanes” which are lower-dimensional CAT(0) cube complexes that cut
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it in half. For example, the hyperplanes in a tree are the centers of edges, and the
hyperplanes in the usual CAT(0) cube structure on En are copies of En�1 cutting
orthogonally through cubes.

This paper hinges upon the following property:

Definition 1.2 A facing triple in a CAT(0) cube complex X , is a set of three disjoint
hyperplanes H1;H2;H3 such that no hyperplane separates the other two.

Let G act on the CAT(0) cube complex X . Then G has cyclic facing triples if for
each facing triple H1;H2;H3 , the group

T
i Stabilizer.Hi/ is either finite or virtually

cyclic.

Our main result is:

Theorem 1.3 Let X be a cocompact cube complex with cyclic facing triples. Then
X contains a flat plane if and only if X contains a periodic flat plane.

This result generalizes a theorem of Mosher [6] where the result was proven when
X is a 3–dimensional manifold with a nonpositively curved cubing (in which case it
follows that X has cyclic facing triples). The result also generalizes a result of the
second author [9] where the theorem was proven in the case that X is 2–dimensional.

It appears unlikely that Problem 1.1 has an affirmative solution even in the limited
category of CAT(0) cube complexes. Gromov proposed in [4] that the existence of
aperiodic sets of Wang tiles suggests that there might even be a counterexamples to
Problem 1.1 in the category of 2–dimensional CAT(0) cube complexes. Some efforts
were made towards this by Kari and Papasoglu in [5] where examples were constructed
whose periodic flat planes were more limited than the general flat planes.

There are some cases where Problem 1.1 can be strengthened to state that:

Problem 1.4 Let G act properly and cocompactly on the CAT(0) space X . Is every
flat plane in X the limit of periodic flats?

This stronger statement does not hold in the category of CAT(0) 2–complexes, since
in [10] the second author gave an example of a group acting on a 2–dimensional CAT(0)
cube complex containing a flat plane that is not the limit of periodic flats. We are
unaware of any further such examples. It was explicitly proven that flats are limits of
periodic flats in groups acting properly and cocompactly on the product of trees in [9],
and under the hypotheses considered by the second author in [11]. Such density of
flats in periodic flats was further established for Euclidean buildings by Ballman and
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Brin [1]. We believe that with a bit of further care, the method in this paper would
show that under the cyclic facing triple hypothesis, every flat in X is actually the limit
of periodic flats.

The results in this paper hold (and the proof is nearly identical) under the following
more general definition of cyclic facing triples:

T
i Stabilizer.Hi/ is cyclic, whenever

the facing triple H1;H2;H3 satisfies d.Hi ;Hj /� C for some constant C .

Finally, because of its less significant group theoretical impact, we have not considered
higher dimensional periodic flats, but we expect that a similar analysis to that done in
this paper would yield analogous results under the hypothesis that facing triples are
abelian.

1.1 Sketch of the argument

If some hyperplane Y in X contained a flat, then by induction on the dimension,
Stabilizer.Y / would contain Z �Z, so we may assume that each hyperplane is ı–
hyperbolic. This has several important consequences that enable the arguments in the
paper. For instance, we can assume that there is a uniform lower bound on the angle
between any flat and hyperplane.

Letting F be a flat plane, we let Hull.F / denote the intersection of all halfspaces
in X containing F . To facilitate further arguments, we show that Hull.F / lies in a
finite neighborhood of F . Moreover, Hull.F / can be chopped into rectangular “blocks”
by two infinite families of disjoint hyperplanes that intersect F in boundedly spaced
“vertical” and “horizontal” lines. We can then view Hull.F / as the union of vertical
“strips” consisting of infinite sequences of blocks bounded by consecutive vertical
hyperplanes.

If there is a G –periodic strip of blocks in Hull.F /, then it follows that each such strip
of blocks is periodic. The cyclic facing triples condition then implies that all these
strips have a uniform period. Consequently, Hull.F / is stabilized by a Z subgroup,
and it is then easy to form periodic flats by finding distinct strips in Hull.F / that are
in the same G –orbit.

We are left to show that the flat is singly periodic. A limiting argument shows that there
must exist a hyperplane Yo which contains a line `o parallel to a line ` in F . This
hyperplane forms a facing triple with hyperplanes Y1 and Y2 that intersect F in lines
`1 and `2 that are also parallel to `. Applying the cyclic facing triple to Yo;Y1;Y2

we obtain the desired periodic strip in Hull.F /.

In a concluding section, we verify that if M is a 3–manifold and �1M acts properly
and cocompactly on a CAT(0) cube complex X , then the cyclic facing triple hypothesis
is satisfied.
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2 Preliminaries: Hyperplanes in CAT(0) cube complexes

We recall basic terminology and facts about CAT(0) cube complexes. For more details,
see the paper [7] by the first author.

A CAT(0) cube complex is a simply-connected combinatorial cell complex whose closed
cells are Euclidean n–dimensional cubes Œ0; 1�n of various dimensions such that:

(1) Any two cubes either have empty intersection or intersect in a single face of
each.

(2) The link of each 0–cell is a flag complex, a simplicial complex such that any
.nC 1/ adjacent vertices belong to an n–simplex.

Since an n–cube is a product of n unit intervals, each n–cube comes equipped with
n natural projection maps to the unit interval. A hypercube is the preimage of f1

2
g

under one of these projections; each n–cube contains n hypercubes. A hyperplane
in a CAT(0) cube complex X is a subspace intersecting each cube in a hypercube.
Hyperplanes are said to cross if they intersect non-trivially; otherwise they are said to
be disjoint.

Here are some basic facts about hyperplanes in CAT(0) cube complexes which we will
use throughout our arguments.
� each hyperplane is embedded (that is, it intersects a given cube in a single

hypercube)
� each hyperplane separates the complex into precisely two components, called

half-spaces
� if fH1; : : : ;Hkg is a collection of pairwise crossing hyperplanes, then

T
kHk¤∅

� each hyperplane is itself a CAT(0) cube complex

A triple of hyperplanes is said to be facing if they are disjoint from each other and the
union of each pair of them is contained in a single halfspace of the third. Otherwise,
the triple is said to be nested, which means that one of them separates the other two.

A CAT(0) cube complex has cyclic facing triples if for each facing triple H1;H2;H3 ,
the intersection of their stabilizers is virtually infinite cyclic or finite.

Finally, given a vertex v in X .0/ , we define the dual block containing v as follows.
The hyperplanes of X provide a subdivision of X into another cube complex X 0 , in
which each n–cube of X is subdivided into 2n subcubes. The dual block containing v
is the union of the cubes of X 0 containing v .

Algebraic & Geometric Topology, Volume 11 (2011)



Periodic flats in CAT.0/ cube complexes 1797

3 Flats and hyperplanes

3.1 The assumption that hyperplanes are hyperbolic

Let X be a CAT(0) cube complex and let G be a group which acts properly and
cocompactly on X . By a flat in X we mean an isometric embedding of a 2–dimensional
Euclidean plane into X . We will prove Theorem 1.3 by induction on the dimension of
X . For 0–dimensional complexes, the theorem holds, so we focus on the inductive
step. If any hyperplane H of X contains a flat, then viewing H as a CAT(0) cube
complex in its own right, we see that the dimension of H is less than the dimension
of X . Note that since G acts properly and cocompactly on X , and preserves the
family of hyperplanes, it follows that for each H , stab.H / acts cocompactly on H .
Since facing triples in H are simply the intersection with H of facing triples in X ,
it follows that H , together with the action of stab.H / on it, has cyclic facing triples.
Thus, Theorem 1.3 holds for H , so that by induction, there exists a periodic flat in
H . But then there exists a periodic flat in X and our theorem is proved. We will thus
assume henceforth that H has no flats. It follows by the Flat Plane Theorem that each
hyperplane is ı–hyperbolic; since there are finitely many orbits of hyperplanes, we
may choose ı universally over all hyperplanes in X .

3.2 Intersections of flats and hyperplanes

A subset Y of a geodesic metric space Z is said to be geodesically contained if
extensions of geodesics in Y are also contained in Y ; more precisely, given a geodesic
segment I � Y , if J �X is a geodesic segment with I � J , then J � Y . A CAT(0)
space Y is said to be geodesically extendable if every geodesic segment in Y can be
extended to a bi-infinite geodesic in Y . Euclidean space, for example, is geodesically
contained and geodesically extendable. However, a flat in an arbitrary CAT(0) space
is geodesically extendable but need not be geodesically contained. (For example,
imagine a space formed by gluing three half-planes glued along their boundary lines
via isometries. In this case, each flat is not geodesically contained.)

Lemma 3.1 Hyperplanes in a CAT(0) cube complex are convex and geodesically
contained.

Proof We will show that hyperplanes are geodesically contained by showing that they
are “locally" geodesically contained. Let H be a hyperplane and that I �H a geodesic
segment. Suppose that J is a geodesic extension of I which is not contained in H . By
possibly replacing I with a larger geodesic segment contained in J , we may assume
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that J \H D I . Let p be a boundary point of I . If there exists a neighborhood U

of p in J so that U is contained in a cube of X , then U is contained in H because
geodesic containment clearly holds for a hyperplane in a single cube. So suppose then
that there is no such neighborhood of p . We then have two cubes �1 and �2 of X and
two subintervals I1 and I2 of J such that I1\ I2 D fpg, I1 � �1 and I2 � �2 (see
Figure 1).

�1 �1

p I2

I1

Figure 1: Hyperplanes are locally geodesically contained.

But now we see that I1[ I2 is not a local geodesic, a contradiction.

A similar argument shows that hyperplanes are locally convex and hence convex.

Remark If H is a hyperplane and C.H / is its carrier, that is, the union of cubes
meeting H , then C.H /ŠH � I and there exists a natural projection q W C.H /! I

with H Dq�1.1=2/. The above arguments show that q�1.t/ is convex and geodesically
contained, for any t 2 .0; 1/.

We now show that intersections of hyperplanes and flats are what we expect.

Proposition 3.2 Let F be a flat in X and H a hyperplane in X . Then F \H is
either empty or a line.

Proof By Lemma 3.1, hyperplanes are convex and geodesically contained; flats are
convex. It follows that F \H is a convex and geodesically contained subset of F .
Hence F \H is either empty, a point, a line or all of F . Since H does not contain
flats, F \H 6D F . We thus need to rule out the possibility that F \H is a point.

Recall that C.H /, the carrier of H , has a product structure C.H /ŠH � I , with a
projection map q W C.H /! I for which H D q�1.1=2/. So now suppose that F \H

is a single point, F \H D fpg. Note that H separates X , so that if F n fpg met both
components of X nH , then fpg DH \F would separate F , a contradiction. Thus,
we have that F n fpg meets only one of the components of X nH . Now suppose that
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l �F is a line in F containing p . Then l meets a single component U of X nH . But
then it follows that there exists t 2 Œ0; 1�, t 6D 1=2, so that l meets q�1.t/ in at least
two points a and b , with p between a and b . But q�1.t/ is convex, a contradiction
to the remark following Lemma 3.1.

The next basic fact that we will need is that there is a lower bound on the angle between
the hyperplanes and F . First, we define the angle between a flat and a hyperplane (see
Figure 2). Suppose that H is a hyperplane which intersects F . Let l DH \F and
choose x 2 l . Let n denote one of the two normal vectors to H at x and let n0 denote
the normal vector to l in F at x , which lies on the same halfspace as n. Then we
define the angle between H and F to be †.H;F /D �=2�†.n;n0/. (F lies in H if
and only if †.H;F /D 0.)

n
n0

F H

Figure 2: The angle between a flat and a hyperplane.

Note that we may similarly define the angle between a line and a hyperplane. If l is
a line meeting H , we let x DH \ l and replace n0 by the tangent vector to l in the
previous definition.

Lemma 3.3 There exists a lower bound on the angle between a hyperplane and a flat.

Proof Suppose there exists a sequence of hyperplanes Hi meeting flats Fi , with
�i D†.Hi ;Fi/ and �i ! 0. Then since there are finitely many orbits of hyperplanes,
we may assume, after translation and passing to a subsequence, that we have a single
hyperplane H and a sequence of flats Fi such that Fi \H 6D ∅ and the angle �i

between Fi and H approaches 0. Since the stabilizer of H acts on H cocompactly,
we may further assume that there exists a closed ball B such that Fi \H \B 6D ∅
for every i . Each Fi can be viewed as an isometric embedding fi W E2! X , with
fi.0/ 2 B . This is a sequence of maps and we may now pass to a subsequence of
ffig which converges uniformly on compact sets. The limiting map is an isometric
embedding of a Euclidean plane in H , a contradiction.

The above argument can be adapted slightly to prove the following technical lemma.
Given two geodesic segments (possibly lines or rays) I1 and I2 meeting at a single
point, we define †.I1; I2/ to be the minimal angle which they subtend.
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Lemma 3.4 Given a number � > 0, there exists �D �.�/ > 0, such that the following
holds. Let F be a flat and H a hyperplane in X and suppose that F and H meet in a
line l . Let p be a point on l . If l 0 is a line in F containing p such that †.l; l 0/ > � ,
then †.l 0; I/ > � for all geodesic intervals I in H containing p .

3.3 Parallelism classes of lines in a flat

Consider the intersection of F with the collection of hyperplanes in X . This intersection
is a collection L of lines in F . As noted earlier, a basic fact about CAT(0) cube
complexes is that if a collection of hyperplanes pairwise intersect, then they intersect.
Since the number of hyperplanes that can intersect is bounded by the dimension of the
complex, this puts a bound on the collection of hyperplanes that can pairwise intersect.
Since X is finite dimensional, it follows that L contains a finite number of parallelism
classes. Note also that each complementary region of L is mapped into a dual block of
X . Since dual blocks have bounded diameter, each complementary region of L in F

is bounded. A parallelism class Li of lines in L is boundedly spaced if there exists
k > 0 such that the k –neighborhood of [L2Li

L contains F .

Lemma 3.5 Every parallelism class is boundedly spaced.

To prove this we use the following basic lemma about CAT(0) cube complexes.

Lemma 3.6 Let x 2 X and H be a hyperplane in X . Suppose that ˛ D Œx;y� is a
shortest geodesic from x to H . Then every hyperplane crossed by ˛ is disjoint from
H .

Proof Let H 0 be a hyperplane crossed by ˛ and suppose that H \H 0 6D ∅ (see
Figure 3). Let z D ˛ \H 0 . Consider a shortest geodesic segment Œz; w� from z to
H \H 0 . Now the normal vector to H at w lies in H 0 and hence agrees with Œz; w�.

w

x

y

z

H

H 0

Figure 3: A geodesic from a point to a hyperplane.

Therefore the 4.z; w;y/ is a triangle with two right angles, a contradiction.
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Proof of Lemma 3.5 Refer to Figure 4. Consider an equivalence class of lines Li

in L, and let l be a line in Li . Let H be a hyperplane such that H \F D l . Let D

denote the maximal diameter of a dual block in X . By Lemma 3.3, there is a lower
bound on the angle between F and H . Thus there exists k D k.D/ such that if x 2F

and d.x; l/ > k , then d.x;H / >D .

H\FDl

H

F > k

>D

x

Figure 4: If a point in a flat is far from the intersection of a hyperplane and
the flat, then the point is far from the hyperplane.

Now given x 2F such that d.x; l/ > k , we claim that there exists another line l 0 2Li

such that d.x; l 0/ < d.x; l/ and d.l; l 0/ > 1. This proves the claim, for then every
point of F is within k of some line in Li . Since d.x;H / > D , the geodesic ˛
between x and H is crossed by some hyperplane H 0 . By Lemma 3.6, H 0 is disjoint
from H . Moreover, since H 0 separates x from H , it follows that H 0 intersects F

non-trivially. But since H and H 0 are disjoint, H 0\F is a line parallel to l and is
thus in Li . Moreover, since disjoint hyperplanes are at least distance 1 apart, we have
that d.l; l 0/ > 1, as required.

4 Utilizing hyperbolicity

In this section we collect the lemmas that show that all sorts of things do not intersect
due to hyperbolicity. We suppose as usual that F is a flat in X and that all of the
hyperplanes of X are hyperbolic. Let L1 and L2 be two parallelism classes of lines
in F as above. For convenience, we call L1 vertical and L2 horizontal. We also refer
to the hyperplanes that produce the vertical lines as vertical hyperplanes and those that
produce the horizontal lines as horizontal hyperplanes.

We start with the following lemma, which provides a lower bound on the angle between
lines in L1 and lines in L2 .
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Lemma 4.1 The parallelism classes L1 and L2 can be chosen so that the angle
between lines in L1 and lines in L2 is at least �0D arcsin.1=

p
d/, where d D dim.X /.

For this we we need the following basic linear algebra fact.

Lemma 4.2 Consider Rd with the standard basis E D fe1; : : : ; edg. If R is a ray
emanating from the origin, then there exists a codimension 1 hyperplane H spanned by
some collection of d � 1 vectors in E , such the angle between R and H is at least �0 .

Proof In fact, one shows that the angle with one of the hyperplanes is at least
arcsin.1=

p
d/.

Consider the unit vector v in the direction of R. Then in the standard basis v D
.v1; : : : ; vd /. Since †v2

i D 1, there exists some i such that vi � 1=
p

d . So if �
denotes the angle between v and ei , then �� arccos.1=

p
d/ and so the angle between

v and the plane spanned by all the remaining elements of E is at least arcsin.1=
p

d/.

Proof of Lemma 4.1 Let L1 be some parallelism class and let l1 be a line in L1 .
Let C be some d –cube such that l1 intersects C in an interval I . Let l denote
a line containing the barycenter of C and parallel to I We identify C with the
standard unit cube in Rd . By Lemma 4.2, there exists some hyperplane H such that
†.H; l/� �0D arcsin.1=

p
d/. Consider now the carrier C.H / of H . Since the metric

on C.H / is the product metric of H and I , we have that †.H; l1/D†.H; l/� �0 .
Thus the angle between l1 and any line in H containing H \ l1 is at least �0 in
particular, the angle between l1 and H \F is at least �0 , as required.

From this point on we assume that the angle between the vertical and horizontal lines
in F is always at least �0 .

Lemma 4.3 (Bounded Prisms) There exists a number K > 0 (depending only on
X ), such that the following holds. Let H and H 0 be two hyperplanes that meet F in
parallel lines l and l 0 . If H \H 0 6D∅, then there exists a line l 00 �H \H 0 parallel to
l and l 0 such that d.l; l 00/ <K and d.l 0; l 00/ <K .

Remark.It follows from the lemma that if l and l 0 are distance at least 2K apart then
H and H 0 are disjoint.

Proof Without loss of generality, we may assume that l and l 0 are vertical. Suppose
that H \H 0 6D∅. Consider a horizontal line m in F corresponding to an intersection
of F with a horizontal hyperplane J (see Figure 5). Let p Dm\ l and q Dm\ l 0 .
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Let � � �0 denote the angle between l and m, and let � D �.�/ > 0 be the required
angle appearing in Lemma 3.4. Then the angle between m and any geodesic in H

containing p is greater than � and the angle between m and any geodesic segment in
H 0 containing q is greater than � . Let Œp; r � denote the geodesic segment obtained by
dropping a perpendicular from p to H \H 0 .

k-

z

angles> �

p q

F

J
w

r

H

H 0

Figure 5: A prism formed by a flat and two hyperplanes.

Now since all the angles in the triangle4.p; q; r/ are bounded below by minf�; �=2g>

0, and 4.p; q; r/ is contained in J , which is ı–hyperbolic, we have a bound K D

K.�; ı/ on the lengths of the edges of 4.p; q; r/.

Now let us enumerate the lines in L2 , f: : :m�1;m0;m1; : : :g. By the above argument,
if H \H 0 6D ∅, for each line mi , we get a triple of points pi ; qi ; ri of bounded
diameter K , with pi Dmi \ l , qi Dmi \ l 0 and ri 2H \H 0 . Now we consider the
sequence of geodesic segment ˛i D Œr�i ; ri �. This sequence of geodesic segments lies
in a K–neighborhood of l and l 0 . Thus f˛ig limits on a geodesic in H \H 0 in the
K–neighborhood of l and l 0 , as required.

We will also need the following basic lemma which controls how close a flat can get to
a hyperplane when it is disjoint from it. It is very similar to Lemma 3.3.

Lemma 4.4 There exists a number C such that if F \H D∅, then d.F;H / > C .

Proof Suppose not. Then, as in the proof of Lemma 3.3 there exists a sequence of
flats Fi and a hyperplane H such that Fi \H D∅ and d.Fi ;H /! 0. Moreover, by
the compactness of the G action we may assume that there exists a ball B such that
a nearest point of Fi to H lies in B . Let ˛i denote a geodesic from Fi to H . We
now note two things. First, as in Lemma 3.3, we get that the Fi ’s converge uniformly
to a limiting flat F . Next, if †.H;F / > 0, then we would get that F crosses H
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transversely, and hence so would Fi for sufficiently large i , it follows that F �H , a
contradiction.

The above lemma tells us that flats cannot get too close to hyperplanes. Here is another
version of this fact that we will use as well.

Lemma 4.5 Given a number R> 0 there exists C DC.R/ > 0 such that if F is a flat,
H is a hyperplane and D is a disk of radius r in F with D �NR.H /, then r < C .

Proof Suppose we have an R such that NR.H / contains arbitrarily large flat disks:
disks fBng � F with Bn of radius n. In each disk Bn , choose a regular geodesic
triangle Tn D 4.an; bn; cn/ of side length n. For each edge of each such triangle,
we can find points a0n; b

0
n; c
0
n 2H distance R from an; bn and cn respectively. Since

X is CAT(0), the edges of the geodesic triangle 4.a0n; b
0
n; c
0
n/ are within R of their

respective edges in 4.an; bn; cn/. But now for sufficiently large n, this produces
non-ı–thin triangles in H , a contradiction.

Remark 4.6 Note that the above lemma does not require the existence of the entire
flat F . The hyperbolicity of H provides a bound on the size of a Euclidean disk that
can be embedded in NR.H /.

Here is a specific corollary which we will make use of.

Corollary 4.7 Suppose that R> 0 is given. Let F be a flat and H be a hyperplane
disjoint from F . Suppose that H contains a line l 0 parallel to a line l in F , and so
that d.l; l 0/ < R. Suppose that m is a line in F transverse to l . Then there exists a
bound (depending on R and the angle between l and m) on the length of a segment of
m which can lie in NR.H /.

Proof Suppose that ˛ D Œx;y� is a segment of m lying in NR.H /. Then the hull
Hull.˛; l/ of ˛ and l is contained in NR.H /. Since the distance function is convex.
But then if ˛ is long, Hull.˛; l/ contains large disks in NR.H /. Thus we get a bound
on the length of ˛ .

5 Convex Hulls

Recall that a halfspace in X is the closure of the complement of a hyperplane of X .
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Definition 5.1 (Hull) For a subset S �X we define Hull.S/ to be the intersection
of halfspaces of X containing S . If no halfspace of X contains S then we define
Hull.S/ to be X .

Theorem 5.2 Let F �X be a flat plane. Then there exists K > 0, such that Hull.F /
is contained in a K–neighborhood of F .

We will need the following technical lemma for hyperbolic CAT(0) cube complexes.

Lemma 5.3 Suppose that X is a ı–hyperbolic CAT(0) cube complex, with uniformly
bounded geometry in the sense that there is a uniformly bounded number of cells in
a ball of a given radius. Let l be a line in X and R > 0 a given number. Then there
exists a number n> 0, such that if p is a point in X such that d.p; l/ > n, then there
exists a hyperplane H separating p and l such that H \NR.l/D∅.

Proof First, recall that the hyperplanes subdivide X into bounded complementary
regions called dual blocks (for brevity, we will call these just blocks). Let D be the
maximal diameter of a block. It follows that if ˇ is a geodesic segment of length at
least Dn, it meets at least n hyperplanes. Let M be a number larger than the maximal
number of hyperplanes which meet a ball of radius 2ı in X . This number is bounded
since X has bounded geometry.

Now suppose that d.p; l/ >DM CRC 2ı . Let ˛ be the shortest geodesic from p to
l and let q D ˛\ l . If some hyperplane crossed by ˛ does not meet NR.l/, we have
found our desired hyperplane. So let us assume that every hyperplane crossed by ˛
meets NR.l/.

Suppose that H is a hyperplane crossing ˛ , so that there exists some point rH with
H \NR.l/D rH . Let pH DH \˛ . Let tH be the point along l closest to rH . Now
we have a geodesic rectangle �H .pH ; q; rH ; tH /.

l
q tH

rH )
NR.l/

S2ı

H

p
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Now geodesic rectangles are 2ı thin; each point on a side is within 2ı of one of the
other sides. Since ˛ is a geodesic from p to l , it follows that the piece of the geodesic
ŒpH ; q� which is within ı of Œq; tH � has length no more than ı . Furthermore the length
of the edge ŒrH ; tH � is no longer than R. Thus, if we let s denote a point along Œp; q�
such that d.s; q/D 2ıCR, we have that the geodesic segment ŒpH ; s� lies within 2ı of
ŒpH ; rH � and hence within 2ı of H . Now by our assumption about d.p; l/, we have
that the length of Œp; s� is at least DM . Thus Œp; s� crosses at least M hyperplanes.
But each of these meets the ball of radius 2ı about s , a contradiction to our choice of
M .

Proof of Theorem 5.2 As in the previous lemma, let D denote the maximal diameter
of a complementary region to the hyperplanes in X . Note that this same D serves
as such a bound for each hyperplane in X (when each hyperplane is viewed as a
CAT(0) cube complex). Let M be the bound in the previous lemma on the number
of hyperplanes which meet a ball of radius 2ı . By Lemma 4.3, there is a bound on
the size of prisms. More precisely, there exists some K > 0, such that if H and H 0

are hyperplanes meeting F in parallel lines m1 and m2 , and H \H 0 6D∅, then there
exists a line l in H \H 0 , parallel to the mi ’s and such that d.l;mi/ <K .

We consider a point x such that d.x;F / >D.M C 1/CKC 2ı . We wish to find a
hyperplane not meeting F separating x from F . Consider the geodesic ˛ in X from
x to F . If ˛ is contained in a hyperplane, let H denote that hyperplane. If ˛ is not
contained in a hyperplane, do the following. Consider the first hyperplane H crossed
by ˛ and let y D ˛\H . If this hyperplane does not meet F , we are done. If H does
meet F , then replace the part of ˛ from y to F in X by the geodesic path from y

to F in H . We now consider the hyperplane H as a cube complex in its own right.
We will use that it is ı–hyperbolic. Let l DH \F . Note that the geodesic from y to
l has length at least DM CKC 2ı . Thus, by Lemma 5.3, we have that there exists
some hyperplane J in H crossed by ˛ , such that H does not meet NK .l/.

Now in X , J is the intersection of H with some hyperplane H 0 . Since H 0 does not
intersect l , if it intersects F , it does so in a line l 0 parallel to l . But now the hyperplanes
H and H 0 would form a prism. But this would mean, by Lemma 4.3 (Bounded Prisms),
that there is a line l 0 in J DH\H 0 parallel to l such that d.l; l 0/<K , a contradiction
to the fact that J does not meet NK .l/.

Besides knowing that hulls of flats lie within a bounded neighborhood of a flat, we
will also need to know that the hyperplanes that meet the flat cut up the hull into
bounded pieces. More precisely, let L1 and L2 be two parallelism classes of lines in
F which correspond to the intersection of F with two classes of hyperplanes H1 and
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l

	
NR.l/

F

J
D

H\H 0

H 0

y

x

H
J misses NR.l/

so H 0 misses F

H2 . We will often refer to one of these classes as vertical and the other as horizontal.
By applying Lemma 4.3, we may cull H1 and H2 so that the each parallelism class is
still boundedly spaced, but the hyperplanes in H1 are disjoint and the hyperplanes in
H2 are disjoint. Now the hyperplanes in H1 and H2 subdivide Hull.F / into regions
which we call F –blocks.

Proposition 5.4 F –blocks are uniformly bounded.

Proof Recall by Lemma 3.5, that each parallelism class of lines in F is boundedly
spaced, in particular this holds for L1 and L2 . Furthermore, this remains true after
culling as above. Thus the components of F � .L1 [L2/ are a uniformly bounded
collection of rhombi. Let R be a region of Hull.F / nH1 [H2 and let D be the
corresponding rhombus. We will now show that R lies in some uniformly bounded
neighborhood of one such rhombus.

Let x2R. We know by Theorem 5.2 that d.x;F /<C for some constant C , depending
on X . Now drop a perpendicular ˛ from x to F . Since the length of ˛ is bounded by
C , it follows that ˛ crosses a bounded number N DN.C / of hyperplanes.

Let y 2 F be the other endpoint of ˛ . Since ˛ crosses at most N hyperplanes, and
x is not separated from D by any hyperplanes in H1 [H2 , it follows that y and z

are separated by at most N lines in L1[L2 . The rhombi are uniformly bounded, so
there exists K > 0, such that all the rhombi are of diameter less than K . It follows
that d.y;D/ <KN . Thus d.x;D/ <KN CC , as required.

6 Dippers

Given a parallelism class L of lines on F , an n–dipper in X relative to L is a
hyperplane H which satisfies
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� H does not intersect F .

� H contains a line l parallel to L
� d.l;F /� n (Here distance between sets is the mindistance between pairs of the

points in the sets.)

A vertical (horizontal) n–dipper is an n–dipper relative to the vertical (horizontal)
direction. A dipper is an n–dipper for some n. The following lemma will allow us to
restrict our later arguments to dippers that are a uniformly bounded distance from the
flat F .

Lemma 6.1 There exists a number n0 , such that if H is a vertical (horizontal) n–
dipper, then there exists a vertical (horizontal) m–dipper H 0 , such that H 0 separates
H from F and such that m� n0 .

Proof Let H be a vertical n–dipper. We wish to see that if n is sufficiently large,
then we can find a vertical dipper H 0 separating H from F . Let l 2H and l 0 2 F be
parallel lines with l 0 vertical in F , and d.l; l 0/� n. We assume that l and l 0 realize
the minimal distance between lines in H and vertical lines in F . Let S denote the
strip bounded by l and l 0 . By our choice of l and l 0 , S is perpendicular to F , so that
the angle between any segment in S perpendicular to l 0 and any line in F meeting l 0

is �=2.

Choose a point p 2 l 0 that lies in the intersection of l 0 and a horizontal hyperplane J .
Let ˛ denote the segment in S containing p and perpendicular to l 0 . We first claim
that there is a lower bound on the angle †.H; ˛/. This follows from Remark 4.6, for
if †.H; ˛/ were small, we would obtain a fat Euclidean triangle (that is, containing
a large Euclidean disk) in S that is close to H . Such a triangle can be constructed
by taking the segment ˛ together with a large segment of l as two of the sides of
the triangle. It follows that there is a constant C > 0 depending on X , such that if
length.˛/ > n, then d.p;H / > C n.

Now note that if d.p;H / > C n, and D is the maximal diameter of a dual block, then
p is separated from H by at least N D ŒC n=D� hyperplanes. Denote these hyperplanes
byH1; : : : ;HN . Since each Hi separate p from H , each Hi must meet S . Moreover,
since each Hi is disjoint from H , it follows that Hi \S is a line parallel to l .

We now need to find such an Hi that is disjoint from F . So suppose that all the Hi ’s
intersect F . Then for each i , Hi meets F in some line vertical line l 00 parallel to l 0 .
We aim to bound d.l 0; l 00/. Consider the horizontal hyperplane J and let mD J \F .
By Lemma 4.1, †.l;m/ � �0 . We now have three points: p D J \ l 0; q D J \ l 00
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and r D J \ l . These bound a triangle 4D4.p; q; r/� J . Now since †.F;Hi/ is
bounded below, so too is the angle at q in 4. Moreover, the angle of 4 at p is �=2.
Thus, by hyperbolicity of J , the segment Œp; q� is bounded by a constant depending
only on X . Thus, there is a bound C 0 depending only on X , such that d.l 0; l 00/ < C 0 .
By bounded geometry, we have a bound N D N.C / on the number of hyperplanes
meeting F in vertical lines at distance less than C away from l 0 . This gives us an
upper bound on N . Since N is bounded above, so is n, as required.

The following proposition is reminiscent of Lemma 4.3.

Proposition 6.2 Let F be a flat. Let H denote the collection of hyperplanes which
meet F in a particular parallelism class L. Suppose that H is a dipper relative to L.
Then there exists a bound, depending only on ı , on the number of hyperplanes of H
which intersect H .

Proof This will be an application of Corollary 4.7. Label the elements of H in
order f: : : ;H�1;H0;H1 : : :g. We regard the elements of H as vertical hyperplanes.
Consider a horizontal hyperplane J . Now since J crosses all the vertical lines, it
crosses the line l in H which is parallel to the vertical direction of F . Thus J crosses
H . Now we suppose that we have enumerated the vertical hyperplanes so that H

crosses the hyperplanes fH�k ; : : :Hkg. We will show that this will mean that F lies
close to H along a subdisk of F whose radius depends on k . This will then bound
k . We consider the intersection of this pattern with the hyperplane J . That is, let
H 0 D H \ J , H 0i D Hi \ J and let x D F \Hk \ J and let y D F \H�k \ J .
We drop a perpendicular in J \Hk from x to H 0 and let z denote the foot of the
perpendicular. Similarly, we let w denote the foot of the perpendicular from y in
J \H�k to H 0 . We then have a rectangle in J , R D R.x;y; w; z/. Note that we

J

w

xy

z

F

H

H�k Hk

have right angles at the vertices w and z . At the vertices x and y we have angles
greater than � D �.�/, where � is the angle between the horizontal and vertical lines
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and � is the angle provided in Lemma 3.4. Now applying hyperbolicity, we have (as
in Lemma 4.3) that the lower bound on the angles of the rectangle provides a bound
on the length of the subsegments of Œx;y� which are within ı of Œx; z� or Œy; w�. It
follows that as k gets larger, we obtain larger segments of Œx;y� which are within ı of
H . But then Corollary 4.7 bounds this segment as well, so that we obtain a bound on
k .

Suppose that H is an n–dipper relative to L. Then by the above lemma, if we choose
a line l0 2L closest to H , we may choose lines l1; l2 sufficiently far away from l0 on
either side of l0 , so that the corresponding hyperplanes H1 and H2 are disjoint and
disjoint from H . Since there are paths from l0 to each of the H;H1 and H2 , they
form a facing triple. Moreover, note these hyperplanes contain lines, l; l1 and l2 , which
are a bounded distance from one another (that is, bounded only by the hyperbolicity
constant ı ).

Now we show that the existence of dippers yields periodicity. Here our cyclic facing
triple condition comes into play.

Lemma 6.3 Suppose that fH1;H2;H3g is a disjoint facing triple, with each Hi

containing a line li , such that for each i; j , li is parallel to lj and d.li ; lj / < n. Then
\ stab.Hi/ is an infinite virtually cyclic group. Moreover, there exists C.n/, such that
\ stab.Hi/ contains an infinite order element whose translation length bounded above
by C .

Proof Since the action of G on X is proper and cocompact, there are finitely many
conjugacy classes of finite subgroups. Thus there exists a number J D J.G/ such that
the order of every finite subgroup is bounded by J .

By assumption, we have that Nn.l1/ contains each of the lines l1; l2; l3 . Choose a
sequence of points fpig along l1 such that d.pi ;piC1/ D 1. As before, we let D

denote the maximal diameter of a dual block. We then have that every point in X is
within D of some vertex and hence some edge of X . So for each pi , we may find
edges ek

i (for k D 1; 2; 3) transverse to Hk and such that d.ek
i ;pi/ < nCD . Thus

we obtain an infinite sequence of distinct triples of edges fe1
i ; e

2
i ; e

3
i g such that

� ek
i is transverse to the hyperplane Hk for k D 1; 2; 3,

� for each i , d.ek
i ; e

j
i / < 2nC 2D .

Now by cocompactness, up to the action of the group there exists a bound on the
number of such triples. So there is a single orbit containing more then J triples. Thus
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two of these triples differ by a non-torsion element. This element g 2 \ stab.Hi/, as
required.

We now claim that the translation length can be chosen to be bounded by some uniform
constant C DC.n/. There are finitely many facing triples intersecting any given n–ball.
Thus, since there are only finitely many orbits of n–balls, there are only finitely many
orbits of cyclic facing triples satisfying the hypothesis of the lemma. For each orbit,
there exists some translation and hence a translation length. Choose some bound for
all of them.

Remark 6.4 Note that there is at most one parallelism class of lines lying in a bounded
neighborhood of all three hyperplanes in a facing triple of hyperplanes. In particular, the
axis of an infinite order element stabilizing all three hyperplanes lies in this parallelism
class.

We will employ the above lemma in Section 7 to obtain periodicity along strips in the
hull of flats.

7 The main argument

7.1 The setup

We first describe our setup a bit more precisely. As before, we have two parallelism
classes of lines L1 and L2 in F corresponding to collections of hyperplanes H1 and
H2 . By applying Lemma 4.3 (Bounded Prisms), we may remove some lines in L1 and
L2 and their corresponding hyperplanes in H1 and H2 so that no two hyperplanes
in H1 intersect and no two hyperplanes in H2 intersect. As before, we will call the
lines in L1 vertical and the ones in L2 horizontal. We use this same language for
the elements of H1 and H2 . Recall that these families cut up Hull.F / into regions
called F –blocks with compact closure. Let B denote the collection of F –blocks.
Since F –blocks have uniformly bounded size and G acts cocompactly on X , there
are finitely many orbits of F –blocks.

Let us develop a bit more terminology which will give us a slightly more restrictive
notion of blocks being in the same orbit. We imagine that our flat F is laid out in front
of us so that there is a notion of right, left, top and bottom. Suppose B is an F –block
bounded by hyperplanes H1;H

0
1
2H1 with H1 to the left of H 0

1
and H2;H

0
2
2H2 ,

with H2 below H 0
2

. We say that B is bounded on the left by H1 , on the right by
H 0

1
, on the bottom by H2 and on the top by H 0

2
. The F –block B together with these

bounding hyperplanes is called an oriented block. We say that two F –blocks B and
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B0 are in the same orbit if there exists a group element g 2G such that B D gB0 , so
that B0 is bounded on the left by gH1 , on the right by gH 0

1
, on the bottom by gH2

and the top by gH 0
2

. There are only finitely many orbits of oriented F –blocks, so we
view the oriented F –blocks as being labeled by a finite labeling set. Henceforth, when
we say that two F –blocks are in the same orbit or have the same label, we will mean
that they are in the same orbit as oriented blocks.

If H1 and H2 are disjoint vertical (horizontal) hyperplanes, then the union of all F –
blocks lying between by H1 and H2 is called a vertical (horizontal) strip of Hull.F /.
The distance between the hyperplanes H1 and H2 is called the width of this strip. If
there exists an infinite order element stabilizing a strip we say that the strip is periodic.
As with blocks, we define an oriented strip as a strip together with the hyperplanes H1

and H2 . So if S is a vertical strip, then it is bounded on the left by H1 and bounded
on the right by H2 . If g stabilizes S as well as H1 and H2 we say that g stabilizes
the oriented strip. The period of S relative to g is the number of blocks in S=hgi. The
period of S is the minimal number of elements in such a quotient for any g stabilizing
S .

We now see how dippers give rise to periodicity in the strips of the hull. We state the
following for vertical dippers and note that it is equally valid for horizontal ones.

Lemma 7.1 Suppose that g 2G has an axis l parallel to the vertical direction of F .
Let S be a vertical strip in Hull.F /. Then there exists n > 0, depending only on the
distance from l to S and the width of S , such that hgni stabilizes S .

Proof Let S be a vertical strip of Hull.F / between two vertical hyperplanes J1 and
J2 . This strip is a complementary region of J1;J2 and a collection of hyperplane
yH which meet the boundary of Hull.F /. Let H denote the union of the orbits of

elements of yH under the action of hgi. This collection of hyperplanes H consists of
two subsets:

H1 D fH 2H WH contains a line parallel to lg

and H2 DH nH1 .

Now for each H 2H1 , let lH denote a line in H which is parallel to l . Since each
H lies in the orbit of a hyperplane adjacent to S , there is an upper bound R on the
distance from lH to l , which depends only on the distance from l to S . By local
finiteness, there is a bounded number of hyperplanes which contain a line lying in the
R–neighborhood of l . Thus H1 is finite. We can thus choose n so that hgni stabilizes
each element of H1 as well as J1 and J2 . We now show the following claim

Claim For each H 2H , gnH \F 6D∅ if and only if H \F 6D∅.

Algebraic & Geometric Topology, Volume 11 (2011)



Periodic flats in CAT.0/ cube complexes 1813

To see this claim, first note that it is trivial for the elements of H1 since they are
stabilized by gn . So now consider an element H 2H2 . If gnH meets F , it must then
do so in a line m not parallel to l . Thus, gnH intersects a vertical line. Since l is
parallel to a vertical line in F , it follows that gnH meets l . But l is invariant under
g and so H meets l and hence any vertical line in F , a contradiction. This proves the
claim.

Now consider a vertical line l 0 , equidistant from the lines J1\F and J2\F . Since
H1 is finite, there exists a lower bound on the distance between l 0 and hyperplanes in
H1 . The hyperplanes in H2 do not meet F , so that by Lemma 4.4, there is a lower
bound on the distance between l 0 and hyperplanes in H2 . Thus there is a lower bound
C on the distance between l 0 and hyperplanes in H . Since l 0 is parallel to l , which is
stabilized by g , we choose some power m of n so that d.l 0;gm.l 0// < C . We then
have that no hyperplanes of H separate l 0 and gm.l 0/.

Now for each hyperplane H 2H[fJ1;J2g, let HC denote the half space containing
l 0 . From the above, it follows that gm.HC/D .gm.H //C . Since

S D JC
1
\JC

2
\

\
H2H

HC;

it follows that gm.S/D S , as required.

This gives the following corollary

Corollary 7.2 Suppose that H is a vertical n–dipper. Let l be a line in F , such
that d.l;F / � n. Then there exist a vertical strip S in Hull.F / between vertical
hyperplanes H1 and H2 with the following properties:

� S contains l

� the width of S is bounded by a constant depending only on n

� fH;H1;H2g form a facing triple

� there exists a number m.n/ > 0 such that S has period less than m.

Proof By Proposition 6.2, there exists a bound (depending only on ı ) on the number
of vertical hyperplanes crossed by H . Thus, we may find vertical hyperplanes H1

and H2 intersecting F in lines on either side of l , so that H1 and H2 are a bounded
distance apart and which are disjoint from H . By Lemma 4.3 , we may further choose
H1 and H2 to be disjoint. The cyclic facing triple condition applied to H;H1;H2

gives us that there is cyclic element which stabilizes all three hyperplanes. Moreover,
we have a bound on the distances between these hyperplanes, so that we obtain a bound
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on the translation length of their common stabilizing element. By Remark 6.4, this
infinite order element has an axis which must be parallel to a vertical line in F . We
now apply Lemma 7.1.

7.2 One periodic strip suffices.

The aim of this section is to prove the following.

Theorem 7.3 Suppose that Hull.F / contains a periodic strip. Then G contains a
Z�Z subgroup.

Without loss of generality, we may assume that the strip is vertical. We prove several
lemmas, which we will need in the course of the proof of this theorem. First, we note
that by Lemma 7.1, if one vertical strip is periodic then they all are. Thus we may
assume that all vertical strips are periodic. Now we see that to get a Z�Z in G , all
we need are two equivalent vertical strips. (Two strips are equivalent if they are in the
same G –orbit as oriented strips.)

Lemma 7.4 Suppose that Hull.F / contains two equivalent vertical strips. Then G

contains a Z�Z subgroup.

Proof Suppose that S and S 0 are equivalent vertical strips. Let g denote an infinite
order element in the stabilizer of S . Since S is periodic, for any strip wider than S

which includes it, there exists a power of g which stabilizers it. It follows that there
exists a power hD gn which stabilizes both S and S 0 . Now let k 2G be an element
such that kS D S 0 .

h

k

A

B

C

A

B

C

A

B

C

A

B

C

S S 0

Note that h and k�1hk both stabilize S , so that h and k�1hk are commensurable.
Thus there exists m; n 2Z such that hm D k�1hnk . Since X is a CAT(0) group, we
have that mD˙n. In either case, we obtain that hm and k2 commute.
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Finally, we need to see that hm and k2 generate a Z�Z. To see this, note first that k

carries the oriented vertical strip S to the oriented strip S 0 . Let H be the hyperplane
bounding S so that S and S 0 are both contained in closure of the same halfspace
defined by H . Thus k carries this halfspace into itself. This implies that k is an infinite
order element. It further implies that the axis of k is transverse to H , which means
that k and hm have non-parallel axes. Thus k and hm generate a Z�Z subgroup, as
required.

Now consider an oriented vertical strip S0 stabilized by some infinite order element g .
Let l denote the line running through the middle of S0\F ; it divides F into two half
planes FR , the right half-plane, and FL , the left half-plane. We will need to examine
what g does to FR or FL . To this end, we have the following lemma.

Lemma 7.5 Suppose that g.FR/ is contained in some tubular neighborhood of FR .
Then there are two equivalent vertical strips.

Proof Let Hull.FR/ denote the convex hull of FR (that is, the intersection of all the
halfspaces containing FR ). Since g has an axis parallel to l , for any � > 0, there
exists n such that gn.FR/�N�.FR/. Now as in Lemma 4.4, we can not have FR too
close to a hyperplane. Thus, we may choose n sufficiently large so that no hyperplane
separates FR and g.FR/. It follows that FR and gn.FR/ have the same convex hull,
which means that gn 2 stab.Hull.FR//. We thus have that gn stabilizes all the vertical
strips. Since there are finitely many orbits of strips of a given period, we have that two
of them are in the same orbit and hence equivalent.

Proof of Theorem 7.3 We assume that the periodic strip in question is vertical, so
that all the vertical strips are periodic. The goal will be to produce two equivalent
vertical strips and then apply Lemma 7.4.

We let S0 be a vertical strip bounded on the left by HL and on the right by HR , and
we consider a vertical halfspace FR as in Lemma 7.5. By Lemma 7.5 we may assume
that g.FR/ is not contained in any tubular neighborhood of FR . Note also that g.FR/

cannot lie in a tubular neighborhood of FL since it preserves the oriented strip S0 and
hence HL and HR . Thus g.FR/ does not lie in any tubular neighborhood of F .

It follows that there exists some line l1 2 g.FR/ such that:

� l1 is the intersection of some hyperplane H1 with g.FR/,

� l1 is parallel to l (as all lines in FR are parallel to l ),

� l1 is separated from l by HR ,
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� l1 is not contained in the M –neighborhood of F , where M DM.ı/ is the upper
bound on the distance between two parallel geodesics in a CAT(0), ı–hyperbolic
space,

� l1 is contained in the N –neighborhood of F , where N DM C k , where k is
the maximal distance between two lines in a parallelism class for F .

l

g.FR/

N –dipper

FR

From the above, it follows that H1 is an N –dipper relative to F . Moreover, there exists
a line l2 2 F to the right of HR \F which satisfies the hypothesis of Corollary 7.2.
Thus by Corollary 7.2, there exists a vertical hyperplane H2 to the right of HR which
bounds a strip S1 of period less than m.N /. We then repeat this argument with S1

and produce a sequence of vertical strips all of bounded period. Thus two of them are
equivalent and so by Lemma 7.4, we have a Z�Z subgroup as required.

We now repeat this argument with the strip S1 .

7.3 Producing a single periodic strip

The aim of this section will be to produce a periodic strip. By the previous section, this
will imply that there exists a Z�Z subgroup.

Theorem 7.6 If X contains a flat plane, then X contains a flat plane whose hull
contains a periodic strip.

Proof In order to produce a periodic strip, we need to show that there exists a dipper.
In order to do so we will need a more refined notion of a dipper. Given a flat F and a
parallelism class L in F , a .k; n/–dipper relative to L is a hyperplane which contains
a geodesic segment of length k , which in turn is contained in an n–neighborhood of a
geodesic segment of F parallel to L.

The strategy of our proof will be to examine the following two cases:

(1) There exist arbitrarily long vertical .k; n/–dippers. That is, there exists some
fixed n, a sequence ki !1, and a sequence of .ki ; n/–dippers. In this case,
we use a limiting argument to produce a vertical dipper.
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(2) There exists an some n> 0 and an upper bound M , such that any .k; n/–dipper
has k <M . Here we choose a horizontal strip of width much larger than k0 .
We then seek horizontal periodicity.

So suppose that there exists a number M >0 so that there exist vertical .k;M /–dippers
with arbitrarily large k . This means that for each n> n0 , there exists a vertical strip
Sn of length n, and a hyperplane Hn , which satisfies

(1) Hn\F D∅.

(2) F contains a vertical geodesic segment ln of length n, and Hn contains a
geodesic segment l 0n of length n, such that dHaus.ln; l

0
n/ <M .

By translation we may assume that Sn � SnC1 . This comes at the cost of changing of
F , so that Sn is a strip in a convex hull of a flat Fn . Now Fn limits on a flat F which
has an M –dipper. So by Corollary 7.2, one of the vertical strips is periodic and we are
done.

Thus, suppose that there exists a bound K , such that all the vertical .k;M /–dippers are
of length k <K . We choose a horizontal strip S of width w much larger than K (we
will say later how much larger). Now S is of finite width, so there exist two equivalent
horizontal segments S1 and S2 along S . We consider the group element g which
carries S1 to S2 . Now if g carried a horizontal line to one parallel to a horizontal line,
then we would have horizontal periodicity, by Lemma 7.1. So we can assume that if l

is a horizontal line, g.l/ is not parallel to a horizontal line. Now if g.l/ is parallel to
another line in F , then by choosing the the strips S1 and S2 sufficiently far apart, we
would obtain two parallelism classes in F \H with arbitrarily small angles between
them, contradicting the fact that there are finitely many parallelism classes of lines of
intersection of F \H .

Thus we may assume that for any horizontal line l , g.l/ escapes every neighborhood
of F .

We need some names for some objects now. Let F 0 D gF . Let HR denote the vertical
hyperplane bounding S1 on the right. So gHR bounds gS1 on the right. The image
under g of the vertical direction in F is called the vertical direction in F 0 . Let H1

and H2 denote the two horizontal hyperplanes which bound the strip S . For i D 1; 2,
let li DHi \F and l 0i DHi \F 0 .

We now consider the hyperplane H1 , which, as we recall, is hyperbolic. Now since l 0i
is escaping F , and there exists a lower bound on the angle between li and the vertical
hyperplanes in F 0 . There will be one such vertical hyperplane H in F 0 , such that
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the line l 0 D H \F 0 meets H1 in a point distance larger than M from F , which
ensures that l1 and H do not intersect. We know, without loss of generality, that this
happens in H1 before it happens in H2 . Now we claim that H does not meet F . For
suppose H \F Dm. Since H does not meet l1 , it follows that m is a horizontal line
in F . But now F meets H along m and is within M of H along the line segment
between F 0\H between H1 and H2 . If the strip S is wide enough, this contradicts
Lemma 4.5. So now by choosing w large enough, we obtain that H is a .k;M / for
k >K , a contradiction.

8 Application to 3–manifolds

Given a group G and a collection of codimension-1 subgroups, the construction given
by the first author in [7], produces an action of G on a CAT(0) cube complex C whose
hyperplanes have stabilizers commensurable with the codimension-1 subgroups. One
of the most geometric examples of this construction arises from a manifold and a
collection of immersed codimension-1 submanifolds that lift to 2–sided embeddings
in the universal cover. In this section we examine the cube complex C which arises
when the manifold is 3–dimensional.

Let us first examine the model situation that would arise most naturally from the
construction in [7]. We emphasize that though M is 3–dimensional, the cube complex
C would usually have dimension � 3.

Theorem 8.1 Let M be a 3–manifold, and suppose that GD �1M acts properly on a
CAT(0) cube complex C , with a G –equivariant map �W �M ! C with the property that
for each hyperplane H � C , the preimage ��1.H / is a nonempty simply-connected
surface. Then G acts on C with cyclic facing triples.

Proof Consider a facing triple H1 , H2 , and H3 in C . Let C 0 be the subspace
of C bounded by this triple. Consider the equivariant map �W �M ! C . Consider
the preimage �M 0 D ��1.C 0/ which is bounded by surfaces zSi D ��1.Hi/. Let
K D\iStabilizer.Hi/, and let M 0 DKn �M 0 . For each i let Si DKn zSi .

Let N 0 be the double of M 0 along S1 , S2 , and S3 . Then �1N 0 DK�F2 where F2

is a rank 2 free group, and K is a surface group so we will now exclude the second
and third of the following possibilities:

(1) K is Z or Z2 or 1,

(2) K contains Z2 ,

(3) K contains a copy of F2 .
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In the second case, F2 �Z2 would be a subgroup of �1N 0 which is impossible, since
then N 0 would have an infinite degree cover yN 0 with fundamental group Z3 , which
leads to a contradiction. Indeed, we can assume without loss of generality that N 0 is
irreducible since �1N 0 has no free factor, and then H3. yN

0/D 0 which is impossible.

In the third case, note that 3–manifold fundamental groups are coherent (see Scott [8])
which means that every finitely generated subgroup is finitely presented. However,
�1N 0 contains F2 �F2 which is impossible since F2 �F2 is not coherent. Indeed, it
is well-known and readily verified that the kernel of the homomorphism F2 �F2 Š

ha1; a2i � ha3; a4i ! Z induced by ai 7! 1 is finitely generated but not finitely
presented. It seems the earliest reference to this subgroup pathology is in the paper by
Baumslag, Boone and Neumann [2] but it has been reproven numerous times especially
and most recently in the context of Bestvina–Brady Morse theory (see the paper by
Bestvina and Brady [3]).

Remark In fact, one can use the construction in [7] to show that whenever G acts
properly and cocompactly on a CAT(0) cube complex, then it acts properly and co-
compactly on a possibly different CAT(0) cube complex satisfying the conditions of
Theorem 8.1 are satisfied. As in the proof of the Theorem, one considers the equivariant
map from �M ! C as above and to produce a collection of surfaces in �M . One then
builds the cube complex associated associated to this collection of surfaces. This new
CAT(0) cube complex comes equipped with an action of �1.M / and satisfies the
conditions of the Theorem 8.1.

One can use this to prove the following statement, were “sufficiently many” means a
finite collection of surface subgroups so that the construction of [7] leads to a proper
action on a CAT(0) cube complex.

Corollary 8.2 An atoroidal compact 3–manifold with sufficiently many surface sub-
groups has word-hyperbolic fundamental group.

We end with a question.

Question 8.3 Let G act faithfully and cocompactly on a CAT(0) cube complex C with
cyclic facing triples. Suppose the stabilizer of each hyperplane of C is a quasiconvex
subgroup of G in some appropriate sense. Then G is word-hyperbolic if and only if
G does not contain a subgroup isomorphic to ha; b j t�1.an/t D ami where nm¤ 0.
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