Algebraic € Geometric Topology 11 (2011) 839-886 839

Relative fixed point theory

KATE PONTO

The Lefschetz fixed point theorem and its converse have many generalizations. One of
these generalizations is to endomorphisms of a space relative to a fixed subspace. In
this paper we define relative Lefschetz numbers and Reidemeister traces using traces
in bicategories with shadows. We use the functoriality of this trace to identify different
forms of these invariants and to prove a relative Lefschetz fixed point theorem and its
converse.

55M20; 18D05, 55P25

Introduction

The goal of topological fixed point theory is to find invariants that detect if a given
endomorphism of a space has any fixed points. The Lefschetz fixed point theorem
identifies one such invariant.

Theorem (Lefschetz fixed point theorem) Let B be a closed smooth manifold and
f:B—>B
be a continuous map. If f has no fixed points then the Lefschetz number of f,

L(f):=) (=D u(Hi(f;Q)),
is zero.

This gives a necessary, but usually not sufficient, condition for determining if a continu-
ous map does not have any fixed points.

If we put additional restrictions on the map /', such as requiring it to preserve a
subspace of B, the Lefschetz number still gives a necessary condition for f to be fixed
point free. However, this invariant ignores the relative structure and so is not the best
possible invariant. For example, the identity map of the circle is homotopic to a map
with no fixed points and so the Lefschetz number is zero. If this map is required to
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preserve a nonempty, proper subinterval it is no longer homotopic to a map with no
fixed points.

There is a refinement of the Lefschetz number defined using the induced maps on the
rational homology of the subspace and the relative rational homology.

Theorem A (Relative Lefschetz fixed point theorem) Let A C B be closed smooth
manifolds and

f:B—B
be a continuous map such that f(A) C A. If f has no fixed points then the relative
Lefschetz number of f is zero.

The relative Lefschetz number of the identity map of the circle relative to a nonempty,
proper subinterval is not zero.

Both of these theorems give a condition that implies that a continuous endomorphism
f:B—B

has a fixed point. In most cases they do not give a condition that implies f has no
fixed points. To address this question a refined invariant and some restrictions on the
spaces have to be introduced. This refined invariant is called the Nielsen number or the
Reidemeister trace.

Theorem (Converse to the Lefschetz fixed point theorem) Let B be a closed smooth
manifold of dimension at least 3 and

f:B—B

be a continuous map. The map f is homotopic to a map with no fixed points if and
only if the Reidemeister trace of f is zero.

The Reidemeister trace is a partitioning of the Lefschetz number to reflect the ways fixed
points can be changed by a homotopy of the original map. There is a generalization
of the Reidemeister trace to a relative Reidemeister trace that is very similar to the
generalization of the Lefschetz number to the relative Lefschetz number.

Theorem B (Converse to the relative Lefschetz fixed point theorem) Suppose A C B
are closed smooth manifolds of dimension at least 3 and the codimension of A in B is
at least 2. A continuous map

f:B—>B
such that f(A) C A is homotopic to a map with no fixed points via a homotopy H
satistying H(A,t) C A if and only if the relative Reidemeister trace of f is zero.
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The goal of this paper is to provide definitions of the relative Lefschetz number and
relative Reidemeister trace and proofs of Theorems A and B that satisfy several re-
quirements. First, the relative Reidemeister trace should detect if a map is relatively
homotopic to a map with no fixed points. It is not necessary for the relative Reidemeister
trace to provide a lower bound for the number of fixed points. Second, the invariants
should satisfy cyclicity and naturality conditions associated with the trace in linear alge-
bra. The relative Reidemeister trace should to be compatible with the approach of Klein
and Williams in [14; 15]. Those papers give a proof of the converse to the Lefschetz
fixed point theorem that is different from the standard simplicial proof. Finally, the
relative Reidemeister trace should be compatible with an equivariant generalization of
the Reidemeister trace described in Ponto [20].

While the Lefschetz number and the Reidemeister trace have long established definitions,
the relative forms of these invariants are less settled. Versions of the relative Lefschetz
number have been defined by Bowszyc [1] and Jezierski [11] and of the relative
Reidemeister trace by Norton-Odenthal and Wong [19], Schirmer [24] and Zhao [30;
31; 32]. The invariants of Schirmer [24] and Zhao [30; 31] are primarily interested in
determining lower bounds for the number of fixed points and so are generalizations of
the Nielsen number. The invariants defined by Norton-Odenthal and Wong [19] and
Zhao [32] have more of the properties associated with traces, but the definition are still
motivated by connections to the Nielsen number. None of these invariants satisfy all of
our conditions above, and none of them exactly coincide with the definitions given here.

In this paper we give proofs of Theorems A and B following the outline of Ponto [21].
We use duality and trace in bicategories with shadows to define two forms of the relative
Lefschetz number and the relative Reidemeister trace. Then, using functoriality, we
show these invariants coincide. Finally, we generalize Klein and Williams’ proof of
the converse to the Lefschetz fixed point theorem in [14] to complete the proof of the
converse to the relative Lefschetz fixed point theorem.

In the first two sections we will recall the necessary definitions of duality and trace
in symmetric monoidal categories and in bicategories with shadows. In Section 3 we
will describe some examples of bicategories with shadows and generalize results from
Ponto [21] that describe specific examples of duals.

In Section 4 we apply this category theory to the relative Lefschetz number. In Sections 5
and 6 we define the relative Reidemeister trace. We describe how to compare these
invariants to each other and how to compare them to the relative Nielsen number defined
by Schirmer [24] and Zhao [30]. In Section 7 and Section 8 we give a proof of the
converse to the relative Lefschetz fixed point theorem following the proofs given by
Klein and Williams in [14; 15]. In Section 9 we include some formal results omitted
from the third section.
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A review of Nielsen theory
In this section let B be a closed smooth manifold or, more generally, a compact ENR.
Let f: B — B be a continuous map.

Let U C B be an open subset so that f has no fixed points on dU . Since B is an
ENR, there is an open subset W of R”, containing B, and a retraction r: W — B.
Let V =r~1(U) and Fy be the fixed points of f|y .

Let I(f, U) be the composite
H"(S™) < H"(S",8"\0) = H"(R",R"\ 0)
H"(V,V\ Fy) < H*(S", 8"\ Fy) = H"(S").

This is homology with rational coefficients. The horizontal maps are given by excision
or the long exact sequence of a pair. The maps that point to the left are isomorphisms.
The vertical map is induced by x — x — f7r(x). If [S”] is a generator of H"(S"), let
i(f,U) be the rational number defined by

I(f.O)(S™) =i (£ U)[S"].

If U =B, i(f, B) isdenoted i ( /) and is called the fixed point index of f.If F is aset
of fixed points of /" and U C B is an open set containing F' such that Fix(f'|5) = F,
i(f,U) isdenoted i (f, F) and is called the fixed point index of F. This independent
of the choice of U . For more details see Dold [6].

If f is homotopic to a map with no fixed points i ( /) is zero.
Theorem 0.1 (Lefschetz—Hopf) L(f)=i(f).

The Lefschetz fixed point theorem is a corollary of this result. We will describe a proof
of Theorem 0.1 in Section 1.

For the converse to the Lefschetz fixed point theorem we need to refine the Lefschetz
number and index. Let A/ B := {y € BY| f(y(0)) = y(1)}. Constant paths define a
function ¥ from the fixed points of f into 7o(A”/ B). Two fixed points of f are in
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the same fixed point class if they have the same image under . This agrees with the
standard definition of fixed point classes in Brown [2] or Jiang [12]. The (geometric)
Reidemeister trace of f is

RE(f):= Y i(f.o)a]eQm(AlB).

fixed point classes o

Here we identify an element o € A B with the fixed points in the associated fixed
point class. The Nielsen number of f, N(f), is the number of fixed point classes o

with i (f, &) # 0.

There is also a generalization of the Lefschetz number. The action of the fundamental
group m1(B) on the universal cover of B, B, induces an action of Qm{(B) on
C«(B; Q). The endomorphism f induces endomorphisms

¢: m11(B) > m(B) and fy: Cu(B:Q) = Cx(B; Q).

If « € 1y(B) and y € C*(E;Q) these maps satisfy fi(ya) = f«(y)d(a). The
Hattori—Stallings trace of fx is called the generalized Lefschetz number or (global)
Reidemeister trace of f and is denoted Re!( f).

The following identification of invariants, generalizing Theorem 0.1, is due to Hus-
seini [9].

Theorem 0.2 [9, Theorem 1.13] R(f) = RE(f).

The following converse to the Lefschetz fixed point theorem is due to Reidemeister [23]
and Wecken [28].

Theorem 0.3 (Converse to the Lefschetz fixed point theorem) Assume B is a closed
smooth manifold of dimension at least 3. Then f is homotopic to a map with N (f')

fixed points.

These two theorems give a proof of the converse to the Lefschetz fixed point theorem in
the introduction.

Preliminaries on cofibrations

We fix some conventions and recall a fact about cofibrations. Let A C B and X C Y
be topological spaces.

Definition 0.4 A map f: B — Y is arelative map if f(A) C X.
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‘We will write this
f(B,A4)— (Y, X).

A homotopy H: B x I — Y is a relative homotopy if H|4x; factors through the
inclusion X C Y.

The following definition and lemma are standard in relative fixed point theory. See, for
example, Zhao [30].

Definition 0.5 [30, Definition 3.1] A relative map f: (B, A) — (B, A) is taut if
there is a neighborhood N(A) of A in B such that f(N(A4)) C 4.

We will use this condition to isolate the fixed points of 4 from those of B\ 4.

Lemma 0.6 [30, Lemma 3.2] If A C B is a cofibration then any relative map
f: (B, A) — (B, A) is relatively homotopic to a taut map.

In this paper we will assume A C B is a cofibration and all relative maps
f:(B,A)— (B, A).

are taut. If a relative map is not taut it is implicitly replaced by a relatively homotopic
map that is taut. Since all invariants defined here are invariants of the relative homotopy
class, the choice of replacement does not matter.

1 Duality and trace in symmetric monoidal categories

Duality and trace in symmetric monoidal categories is a generalization of the trace
in linear algebra that retains many important properties. The trace in a symmetric
monoidal category satisfies a generalization of invariance of basis and is functorial. The
Lefschetz fixed point theorem is one application of the functoriality of the trace. This
section is a very brief summary of Dold and Puppe’s results in [7]. For more details see
[7], Lewis, May and Steinberger [16, Chapter III] or Ponto and Shulman [22].

Let € be a symmetric monoidal category with monoidal product ®, unit S, and
symmetry isomorphism

Y XQY ->Y Q®X.
Definition 1.1 An object A in € is dualizable with dual B if there are maps

nS—->AQB
and €e: BRA—S
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such that the composites
®id i
A=SRAS AQBRAS A®S =4

" .
and B2B®S 2L BA®B-2LSeoB~B

are the identity maps of 4 and B respectively.

A familiar example of a symmetric monoidal category is the category of modules over
a commutative ring R. The tensor product is the monoidal product. If M is a finitely
generated projective R—module, M is dualizable and the dual of M is Homg (M, R).
The evaluation map

€: Homp(M,R)@r M — R

is defined by e(¢,m) = ¢(m). Since M is finitely generated and projective the

dual basis theorem implies there is a “basis” {m,m,,...,my} with dual “basis”
{m',m,, ... ,my}. The coevaluation is given by linearly extending
n(1) = Zmi ® m}.

The category of chain complexes of modules over a commutative ring R is also
symmetric monoidal. The dualizable objects are the chain complexes that are projective
in each degree and finitely generated.

Definition 1.2 If A is dualizable and f: A — A is an endomorphism in 6, the trace
of f, tr(f), is the composite

®id
s 408 ® 4ot Bod—>5.

The trace of an endomorphism in the symmetric monoidal category of vector spaces
over a field is the sum of the diagonal elements in a matrix representation. The trace of
an endomorphism in the category of chain complexes of modules over a commutative
ring is the Lefschetz number. It is the alternating sum of the level wise traces.

Proposition 1.3 Let F: € — 9 be a symmetric monoidal functor, A be a dualizable
object of € with dual B, and

F(A)® F(B) > F(A® B)
and Sg — F(S¢)

be isomorphisms. Then F(A) is dualizable with dual F(B). If f: A — A is an
endomorphism in 6, F(tr(f)) = tre(F(f)).
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The stable homotopy category is a symmetric monoidal category. There is also a way
to express duality for spaces without using spectra.

Definition 1.4 A compact based space X is n—dualizable if there is a compact based
space Y and continuous maps 7: S” - X AY and €: Y A X — S such that the
diagrams

nAid id An
SIAX — XAYAX YASP——=YAXAY
\ lid/\e \ Le/\id
4 (oADy
X AS" SP"AY

commute up to stable homotopy.

The map o: S” — S” is defined by o(v) = —v.

The following characterizations of dualizable spaces can be found in Lewis, May and
Steinberger [16] and May and Sigurdsson [18].

Proposition 1.5 [16, Theorem II1.4.1, Theorem II1.5.1; 18, Theorem 18.6.5]

(1) If M is a closed smooth manifold that embeds in R, then M is dualizable
with dual T'v, the Thom space of the normal bundle of the embedding of M
in R™,

(2) If L is a closed smooth submanifold of a closed smooth manifold M that embeds
in R™ then M U CL is dualizable with dual Tvp; UCT vy .

(3) If B is a compact ENR that embeds in R", By is dualizable with dual the cone
on the inclusion R" \ B — R”".

(4) If B is a compact ENR that embeds in R" and A is a sub-ENR of B, then
B U CA is dualizable with dual (R" \ A) U C(R"\ B).

Here C denotes the cone. If A C B then B U CA is the mapping cone on the inclusion
A — B. The base point of B U CA is the cone point.

The trace of an endomorphism of spaces regarded as a map in the stable homotopy
category is the fixed point index. The index is the stable homotopy class of a map

S"— S"
and so is an element of the 0—th stable homotopy group of S©, 7y This agrees with
the definition of the index in the introduction.

Since the rational homology functor is strong symmetric monoidal, Proposition 1.3
implies that the fixed point index of a map f is equal to the Lefschetz number of
H.(f), Theorem 0.1.
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2 Duality and trace for bicategories with shadows

Unfortunately, the Reidemeister trace cannot be defined as a trace in a symmetric
monoidal category. It can be defined using the more general trace in a bicategory with
shadows. Duality and trace in a bicategory are very similar to duality and trace in a
symmetric monoidal category but are more flexible. This is a brief summary of May
and Sigurdsson [18, Chapter 16] and Ponto [21, Chapter 4]. For more details see either
of those references or Ponto and Shulman [22].

Definition 2.1 A bicategory % consists of

(1) acollection ob @,
(2) categories B(A, B) foreach A, B € ob %,

(3) functors

Q: B(B,C)xRB(A, B) —> B(A4,C)
Uyg: *—> B(A, A)

for A, B and C in ob%.

Here * denotes the category with one object and one morphism. The functors © are
required to satisfy unit and associativity conditions.

The elements of ob % are called 0—cells. The objects of B(A, B) are called 1—cells.
The morphisms of %B(A4, B) are called 2—cells.

A familiar example of a bicategory is the bicategory Mod with 0—cells rings, 1—cells
bimodules, and 2—cells homomorphisms. The bicategory composition is tensor product.

Definition 2.2 [18, Definition 16.4.1] A 1-cell X € B(B, A) is right dualizable
with dual Y € B(A, B) if there are 2—cells
nUgs—>X0Y, e€YOX-—>Up

y .
such that Xo2U,0X S xovox 2 xouzax

id® i
YevoU~Lyoxoy N uzor=y

are the identity maps of X and Y respectively.
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The map 7 is called the coevaluation and € is called the evaluation.

If R is a (not necessarily commutative) ring and M is a finitely generated projective
right R—module then M is a right dualizable 1—cell in Mod with dual Homg (M, R).
The evaluation map

€: Homg(M,R)®7 M — R

is defined by e(¢, m) = ¢(m). This is a map of R— R-bimodules. Since M is finitely
generated and projective there are elements {m,m,,...,my} and dual elements
{m',m, ... ,my} of Homg(M, R) so that the coevaluation map

n:Z — M ® g Homg(M, R)
is defined by linearly extending n(1) = " m; ® m/. This is a map of abelian groups.

Unlike the symmetric monoidal case, we need more structure before we can define the
trace. The additional structure is a shadow.

Definition 2.3 [21, Definition 4.4.1] A shadow for & is a functor
() ][] #4.4—>9

A€ob B

to a category J and a natural isomorphism
0: (X OY)={(YoX)
for every pair of 1—cells X € B(A4, B) and Y € B(B, A) such that the diagrams

(XoY)oZ) = (ZoX oY) — (ZoX)OY)

| k

(Yo¥o2z) —=(¥oz2)0x) — (Yo (20X))

(ZoUL) 2> (Uso Z) 2~ (Zo UL

(2N

commute whenever they are defined.

Let P be an R— R-bimodule. Let N(P) be the subgroup of P generated by elements
of the form

rp— pr
for p € P and r € R. Then the shadow of P is P/N(P).
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Definition 2.4 [21, Definition 4.5.1] Let X be a dualizable 1—celland f: QO X —
X © P bea2-—cellin %B. The trace of f is the composite

idOn

(O)=(QoUs)—(QoX0OY)

L foid
6 id ©e

(XOPOY)—(POYOX)—(POUp)=(P).

If M is a finitely generated projective right R—module and f: M — M is a map of
right R—modules the trace of f is the trace defined by Stallings in [26, Section 1.7].

A shadow functor is a functor of bicategories F' and a natural transformation

Y (FE)) = FI(-D)

such that (FX 0 FY) —~ (FY 0 F(X))
(F(X oY) (F(Y © X))
14 ¥
b

F((X oY) —— F((Y 0 X))

commutes for all 1—cells X and Y where X ©®Y and Y ® X are both defined.

Proposition 2.5 [21, Proposition 4.5.7] Let X be a right dualizable 1—cell in B with
dual Y,

fi00X—>XOP

be a 2—cell in B and F: B — B’ be a shadow functor. If F(X)® F(Y) > F(XOY),
F(X)© F(P)— F(X O P), and Up(g)y — F(Up) are isomorphisms and f is the
composite

F —1
FQ@FXLF(Q@X)LQF(XQP)LFXQFP

then (Foy L (Fpy

i I

Fo) " ppy

commutes.
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We will use this proposition to compare different forms of the Lefschetz number and
Reidemeister trace.

3 Some examples of bicategories with shadows

The classical descriptions of fixed point invariants require a choice of base point. When
working with a single space this isn’t a problem. With fiberwise spaces, equivariant
spaces, or pairs of spaces, choosing base points requires addition conditions on the
space.

In this section we describe a generalization of the bicategory Mod that we will use
to define fixed point invariants without choosing base points. In this bicategory we
replace rings by categories, modules by functors, and homomorphisms by natural
transformations.

Let V" be a symmetric monoidal category with monoidal product ® and unit S'.

Definition 3.1 A category o is enriched in V' if for each a, b € ob(A), d(a, b) is an
object of V" and the composition for «,

A, c) @ d(a,b) — A(a,c),

is a morphism in V.

For pairs of enriched categories o and % define an enriched category o ® % with
objects pairs (a,b) where a € obsd and b € obB. If a,a’ € obsA and b, b’ € 0b%B,
then

(A @B)((a.b). (@', b") = (sd(a.d") & (B(b.D)).

Definition 3.2 An enriched distributor is a functor ¥: s ® B°® — V" such that the
actions of morphisms of 4 and B on ¥ are maps in V.

This type of functor is also called an sd—%B—-bimodule. If F: s — € is an enriched
functor and ¥: € QRBP — ' is a distributor define a new distributor ¥ : s{ @ BP — V'
by ¥ (a,b) = Y(F(a),b).

Definition 3.3 An enriched natural transformation n: € — % is a natural transforma-
tion where the maps
na,b: %(aa b) - G'y(a9 b)

are maps in V' for all a € obs{ and b € ob RB.
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Enriched categories are the O—cells of a bicategory we denote by €. The 1—cells are
the distributors enriched in %'. The 2—cells are enriched natural transformations. If
X:ARRBP -V and Y: B Q €°P — V" are two distributors, X © Y is a distributor
AR €P — V. For a € ob(sd) and ¢ € ob(B), (X © Y)(a, c¢) is the coequalizer of the
actions of B on ¥ and Y,

[ #@beae.byeud .o [] %a@b) vk,
b,b’€obRB beob B '

If %: A @ A°P — V" is an enriched functor, the shadow of %, (%)), is the coequalizer
of the two actions of 4 on %,

]_[ Ala,a)y@%(a,d) —= ]_[ %(a,a)
a,a’€ob(st) acob(sd) )
In [21, Chapter 9] we observed that if o is a connected groupoid, a distributor
X:A—>V

is dualizable if and only if ¥(«) is dualizable over #(a, a) for any a € obsd. The
categories we will use here and in Ponto [20] to define relative and equivariant fixed
point invariants are not usually groupoids, but we can extend the results from Ponto [21]
to describe these examples.

We begin by recalling a definition from Liick [17].

Definition 3.4 [17, Definition I1.9.2] A category A is an El-category if all endomor-
phisms are isomorphisms.

In an El-category & there is a partial order on the set of objects: x < y if d(x, y) # &.

Let Chg be the symmetric monoidal category of chain complexes of modules over a
commutative ring R and chain maps. Let s be a category enriched in the category
of modules over R. This can be regarded as a category enriched in chain complexes
concentrated in degree zero.

Definition 3.5 A functor X: s§ — Chpg is supported on isomorphisms if X(f) is the
zero map if f is not an isomorphism.

If & is supported on isomorphisms it only “sees” a disjoint collection of groupoids
rather than the entire category .

Let B(s4) be a choice of representative for each isomorphism class of objects in .
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Lemma 3.6 If%: {°° — Chg and Y: s§ — Chpg are supported on isomorphisms then

LoVz P %) R Y(©).
cE€B(sA)

The proof of this lemma is in Section 9. The idea of the proof is to use Definition 3.5 to
show that
P %) ®ue.c) ¥(©)
c€B(A)
satisfies the universal property that defines £ © %Y.

Lemma 3.7 Suppose ¥ and Y satisfy the conditions of Lemma 3.6. If ¥(c) is
dualizable as an (c, ¢)—module with dual Y (c) for each ¢ € B(sd) then ¥ is dualizable
with dual %Y.

The idea of this proof is to use Lemma 3.6 and the coevaluation and evaluation maps
for each &(c) to define coevaluation and evaluation maps for &. This proof can also be
found in Section 9.

Another choice for ¥ is the symmetric monoidal category of pointed topological
spaces, Top,. The bicategory érop, has O—cells categories enriched in based spaces
and 1—cells distributors enriched in based spaces. The 2—cells in €+, are natural
transformations enriched in Top,.

If X°P: { — Top, and Y: A — Top,, are enriched functors X © %Y is the bar resolution
B(%, #4,%). This is the geometric realization of the simplicial space with n—simplices

11 X(ag) Ad(ay,ag) A .. AA(an, an—1) AY(an).
agp,ay ..., ap€ob s

The definition of the shadow is similar. If %: 4 ® A{°°P — Top,, is a enriched functor,
the shadow of %, (%)), is the cyclic bar resolution C(s4,%). This is the geometric
realization of the simplicial space with n—simplices

[I  %@nao)rsdar.ao) A...Aslan.an-y).
ag,ai,..., anp€obd

Let s be a category enriched in based spaces. Let Uy: s ® A°? — Top, be defined
by Uy(a,a’) = A(a’, a). Composition in s defines the action of & and «°P on Uy.

Definition 3.8 An enriched functor ¥: s§ — Top, is n—dualizable if there is a func-
tor Y: AP — Top,, a map 1: S" — B, A,%Y), and an A—s{—equivariant map
€: YAX — S™ AUy such that the usual diagrams commute up to sf—equivariant
homotopy.
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We will use the ideas of Lemma 3.7 to produced dual pairs in this bicategory, but we
will not prove a general characterization.

Definition 3.9 If ¥: s — Top, is dualizable, ?: 4 ® A°P — Top, is an enriched
functor and f: ¥ — ¥ © P is an enriched natural transformation, the trace of f is the
stable homotopy class of the composite

f@ id @¢

ST (L OW) T (X OP OY) — (P OYOL) = " A ().

4 The relative Lefschetz number and index

The relative Lefschetz number and relative index can both be described using a classical
approach, but we will describe them using duality and trace in a bicategory. The formal
structure gives a different perspective on these invariants and is a starting point for the
more complicated invariants we will consider in the later sections.

Let A C B be topological spaces.

Definition 4.1 The relative component category T1y(B, A) of a pair (B, A) has ob-
jects the points of B. The morphisms of ITo(B, A) are

% if x € B\ A and [x] =[y] € mo(B),
@ if x € B\ A and [x] # [y] € mo(B),
Mo(B,A)(x,y) =4* ifx,ye dand[x]=[y] € mo(A4),
@ ifx,y € A and [x]# [y] € mo(A),
@ ifxed, ydA.

—_—

[
[

The composition is defined by the rules
kox =% Jod=¢
Gox=C xod=0O.

For most pairs of spaces A C B this category is an El-category but not a groupoid. For
example, if x € B\ 4, y € A, and [x] = [y] € 7o(B) then I1y(B, A)(x, y) = * and
My(B, A)(y, x) = @. The relative component category is similar to the equivariant
component category. See tom Dieck [4, [.10.3]. When we need to think of this category
as enriched in based spaces we will add disjoint base points.

If A and B are connected and B\ A4 is nonempty this category has two isomorphism
classes of objects.
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If x € 4, 1et A(x) be the component of A4 that contains x. If y € B, let B(y) be the
component of B that contains y.

Definition 4.2 The relative component space, B|A, of the pair (B, A) is the functor
HO(B’ A)OP — Top*

- A(x)+ if x € A,
defined by B|A(x) = )

B(x)uC(ANB(x)) ifxgA
The morphisms A(x) — A(x) and B(x) UC(AN B(x)) — B(x)UC(4AN B(x)) are
the identity maps. The map A(x) — B(x) U C(A4 N B(x)) is the inclusion of A(x) as
the base point.

Recall that C(A4 N B(x)) is the cone on A N B(x). The base point is the cone point.
Since A C B is assumed to be a cofibration B(x)UC(AN B(x)) is homotopy equivalent
to B(x)/(A N B(x)).

Lemma 4.3 If A and B are both compact ENR’s or closed smooth manifolds then
B|A is dualizable.

Remark 4.4 Starting with the proof of this theorem we will focus on the case of closed
smooth manifolds. The results in this section and Section 5 and Section 6 have versions
for compact ENR’s as well. The statements and proofs for compact ENR’s are very
similar to those for closed smooth manifolds.

Some of the results in Section 7 have only been shown for manifolds.

Proof of Lemma 4.3 Define a functor D(B|A): I1o(B, A) — Top, by

D(A(x)4) ifx € A,

D(B|A)(x) = {D(B(x) UC(ANB(x)) ifxgA

where D(A(x)+) and D(B(x) U C(4 N B(x))) denote the duals of A(x)+ and
B(x)UC(AN B(x)) as described in Proposition 1.5. The morphisms are the identity
maps or the inclusion.

To simplify notation, consider the case where A and B are both connected and A # B.
The general case is similar. The evaluation for this dual pair is a natural transformation

e: D(B|A) © B|A — S™ A(I1(B, A))+.
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Let x € A and y € B\ A4 represent the isomorphism classes of objects of T1o(B, A).
Then € consists of four maps:

D(BUCA)A(BUCA) — S™
D(A4+)A(BUCA) — S"
D(BUCA)AN A4 — %
D(Ax)ANAL — S"
By naturality, the second map must be the constant map to a point. Since 44 and

B U CA are both dualizable, the evaluations for these dual pairs are the first and fourth
maps.

Note that B(B|A, T1o(B, A), D(B|A)) is equivalent to
(A AD(A4)) V[(BUCA)A D(BUCA)].
The dualizability of A4+ and B U CA provide coevaluation maps
na: S" —> A+ AD(Ay)
nuca: S" - BUCAAD(BUCA).
The coevaluation for this dual pair is the composite

sn £ Sty Sn

lnAVﬂBUCA

(A+ AD(AL))V[(BUCA) A D(BUCA)).

Verifying that these maps describe a dual pair can be checked for A+ and B U CA
separately. The conditions reduce to conditions checked for Proposition 1.5. a

Let H(J; (B, A) be the functor
H()(B, A) X H()(B, A)Op — TOp*

defined by Hof(B, A)(x,y) =Io(B, A)(f(»), x)+. The left action is composition.
The right action is given by applying f and then the composition.

A relative map f: (B, A) — (B, A) induces a natural transformation
/2 BlA— Bl[AG T (B, A).

Since B|A is dualizable, the trace of f is defined.

Definition 4.5 The relative index of f, ip|4(f), is the trace of f.
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The relative index is the stable homotopy class of a map
S0 — (I3 (B, )+

and so it is an element of the 0—th stable homotopy group of ((Hf (B, A)))+. This group
is denoted no(((H (B, A))) +). Itis the free abelian group on the set ((Hf (B, A))).
Since the relative index is defined to be the trace of f it is an invariant of the relative
homotopy class of f.

Let (1 (4))) be
{[x] € mo(A) | [f1a()] = [x]}

and similarly for B.

Lemma 4.6 There is an isomorphism
(T (B. A)) = (T (A)) L (117 (B))

and the image of ig| 4( /) under this map is

Y. ILEX(NNAC)KI+ Y i(AFx() N (BO)\ D).

xe((T1) (4) ye(I1) (B))
Since f istaut i (f,Fix(f)NA) =i(f|4,Fix(f)N A) and
i(f,Fix(f)N(B\ A)) =i(f,Fix(f))—i(f|a, Fix(f) N A).

The first equality follows from commutativity of the index and the definition of a taut
map. See Zhao [31, Proposition 3.5] for the second equality.

Proof Assume A and B are connected and A is a proper subset of B. These
assumptions restrict the number of components of ((IT; (B, A))). The proof is similar
for the general case.

The set {(TT {; (B, A))) is defined to be the coequalizer
[y Mo(B. A)(x, p) x T (B. A)(y.x) == [, TTL (B, A)(x, x) — (111 (B, A))).

Since I1oy(B, A)(x, y) is empty if x € 4 and y & A, this coequalizer splits as two
coequalizers. One is over pairs (x, y) where x, y € A and the other is over pairs (x, y)
where x, y € A. Each of these coequalizers consists of a single element.

This injection is compatible with Lemma 4.3 so the image of ip|4(/) under the
projection to the first summand is the trace of f restricted to 4. As observed after
Proposition 1.5 this is the fixed point index of f|4.
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The image of ip|4(f) under the projection to the second summand is the trace of
f/A: B/A — B/A. The fixed points of f/A are the fixed points of f|p\ 4 and
the point that represents 4. The point that represents A is the base point and so its
index does not contribute to the trace of f/A; see Lewis, May and Steinberger [16,
Remark II1.8.5]. O

The second component of 7 g| 4( /) is the index defined by Jezierski [11, Theorem 1.1].

Example 4.7 Let J be a nonempty, proper, connected subinterval of S!. Let
f:(S',J)— (S, J) be the identity map. Then isiy(f)=(1,-1).

Corollary 4.8 If f: (B, A) — (B, A) has no fixed points then ig| 4(f) = 0.

Proof Since f has no fixed points i (/') = 0. To compute the relative index of f we
replace f by a relatively homotopic map g that is taut. The map g can be chosen so

that f|4 = gl4. Then i(g) = 0 and i(g|4, Fix(g) N A) = i (f |4, Fix(f) N A) = 0.

Since f has no fixed points and f|4 = g|4, i (g, Fix(g) N A) = 0. Since g is taut,

i(g.Fix(g) N (B\ 4)) = i(g. Fix(g)) —i(gl4. Fix(g) N 4) = 0. O

Let QITo(B, A) be the category with the same objects as I1¢(B, A). For objects x
and y of I1o(B, A)

QITo(B. A)(x. y)

is the rational vector space on I1g(B, A)(x, y). Composing B|A with the rational
homology functor defines a functor

Hy(B|A): QI1o(B, A) — Chg.
Proposition 4.9 If A C B are closed smooth manifolds, then Hy(B|A) is dualizable.

Proof There are two ways to prove this proposition. First, the reduced rational
homology functor is strong symmetric monoidal, so this follows from Proposition 2.5.

We can also show Hy(B|A) is dualizable directly by describing the coevaluation and
evaluation. The functor Hy(B|A) is supported on isomorphisms and so it is enough to
construct a coevaluation and evaluation for the chain complexes of vector spaces Hyx(A)
and Hy (B, A). These are both finite dimensional, and so they are both dualizable with
duals as in Section 1. a
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A relative map f: (B, A) — (B, A) induces a map
Hy(f): Hy(B]A) - H(B[A) © QI1J (B, 4)

by applying the rational homology functor to f .
Definition 4.10 The relative Lefschetz number of f, L g|4(f), is the trace of Hx(f).

Lemma 4.11 The image of L | 4( /) under the isomorphism in Lemma 4.6 is

Y LawNE+ Y. Legyucinson (D]

xe((IT) (A)) ye(@}(B))

Here L 4(x)(f) and L g )uc(anB(y)(f) are the classical Lefschetz numbers of
Slay, and flBoyucanBo)) -

Proof Using Proposition 4.9 this proof is similar to the proof of Lemma 4.6. O

The second component of L | 4(f) in Lemma 4.11 is the relative Lefschetz number
defined by Bowszyc [1, Section 3].

Proposition 4.12 In Q(ITJ (B. A)). Lpja(f) = ip (/).

Proof This proposition follows from Proposition 2.5 and the observation that the
rational homology functor is strong symmetric monoidal. a

This proposition and Corollary 4.8 imply the relative Lefschetz fixed point theorem.

Theorem A (Relative Lefschetz fixed point theorem) Let A C B be closed smooth
manifolds and f: (B, A) — (B, A) be a relative map. If f has no fixed points then

Lpa(f)=0.

Further, if L g|4(f) # 0 all maps relatively homotopic to f have a fixed point.

S The geometric Reidemeister trace

To prove a converse to Theorem A it is necessary to introduce refinements of the
invariants defined in the previous section. The first of these invariants is the geometric
Reidemeister trace. This is a refinement of the relative index and it will serve as a
transition between the global Reidemeister trace in Section 6 and the invariant defined
in Section 7.
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As for the invariants in the previous section, it is possible to define the geometric
Reidemeister trace by generalizing the standard approach of fixed point indices and
fixed point classes. Also as in the previous section, we do not use that approach here.
Instead we use duality and trace in bicategories with shadows. This perspective gives
simple comparisons of different invariants and also unifies the descriptions of different
forms of the Reidemeister trace with the Lefschetz number.

Definition 5.1 The relative fundamental category, I11(B, A), of the pair (B, 4) has
objects the points of B. The morphisms I (B, A)(x, y) are the homotopy classes of
paths from x to y in A if x € A and homotopy classes of paths from x to y in B if
x € B\ A.

The relative fundamental category is a subcategory of the fundamental groupoid of B.
In most cases it is not a groupoid. For example, if A and B are both path connected,
x€A,and y € B\ 4 then I1(B, A)(x, y) is empty and IT; (B, A)(y, x) is nonempty.
This category is an El—category. This category is similar to the equivariant fundamental
category. See tom Dieck [4, 1.10.7].

For x € A4, let A x be the universal cover of A based at x. We think of points in A x as
homotopy classes of paths in A4 that start at x. For y € B\ 4 let By be the universal
cover of B based at y. Let p: By — B be the quotient map and Ay =pl(4) C By.
Definition 5.2 The relative universal cover of the pair (B, A) is the functor

Z?T;l: IT(B, A)°® — Top,

— A if x € A4,
defined by |A(x) = (~ x)+ — 1 o
B,UCA, ifxdA

on objects and by composition of paths on morphisms.

Lemma 5.3 If A C B is a cofibration EX//TX is 71 (B)-homotopy equivalent to
B, UCA,.
Proof There is a 7y (B)—equivariant map
¢: Ex UCA, — Ex//Tx
defined by collapsing the cone to the base point.
Since A C B is a cofibration there is a map

u: B—1
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such that #~1(0) = 4 and a homotopy
h: BxI — B

such that i(b,0) =b forall b € B, h(a,t) =a forallac A and ¢t € I and h(b,1) € A
if u(b) < 1. The map

(/8 Ex//Tx — Ex UCAy

is defined by
sy = VP D-Dlo2a-upamor i 3 Suly) =1,
(h(y(1),0)oy. 1 =2u(y(1))) if0=<u(y(1) <3
The map  is 71 (B)—equivariant. Up to homotopy it is an inverse for ¢. O

Theorem 5.4 If A C B are closed smooth manifolds the relative universal cover m
is dualizable.

Proof The proof of this lemma is very similar to the proof of Lemma 4.3. We will
define this dual pair by defining a dual pair for each isomorphism class of objects in
I1,(B, A).

To simplify notation, consider the case where A and B are connected and A is a proper
subset of B. There are two isomorphism classes of objects in I1;(B, A). Choose
representatives for each of these classes.

Let SV be the fiberwise one point compactification of the normal bundle of 4. This
is a space over A and has a section given by the points at infinity. Let D(/T +) be the
space (/T x4 S¥4)/~ where all points of the form (y, co,,(1)) are identified to a single
point. This is the dual of A + as a distributor over 71 (A); see Ponto [21, Lemma 5.3.3].

Let Cg(S"¥B, SY1) be
(Bx{0)U (S xI)U(SVB x{1}).

This is the fiberwise cone of the map SV4 — SVB over B. Let D(E UCA) be the
space
(B xp Cp(SVE, S™))/~

where all points of the form (y, y (1) x {1}) are identified to a single point. This is the
® composition of the fiberwise spaces (E , P)+ and Cg(SVB, SY4) defined by May
and Sigurdsson [18, Construction 17.1.3]. An argument like that in [21, Lemma 5.3.3]
for 12f+ shows this is the dual of B U C A4 as a distributor over 7 (B).
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The dual of m , denoted D(m), is

DB ) = D(A4) ifxed,
YTADBUCA ifxeB\ A

The action of the morphisms in IT; (B, A) is by composition.

As in Lemma 4.3, there are four maps that define the natural transformation €. Exactly
as in that case there are only two that are nontrivial. These maps are the evaluation
maps for the dual pairs (A4, D(A4+)) and (BUCA, D(BUC A)).

Also as in Lemma 4.3, B(m, I1(B, 4), D(m)) is equivalent to
(A+ Agyay D(A4)) V ((BUCA) Ay, (p) D(BUCA)).
The coevaluation map is the composite of the fold map
S*— S"v Ss"
and the coevaluations for the pairs (/Lr, D(/Lr)) and (E ucC4, D(E UCA)).

The required diagrams commute since the coevaluation and evaluation maps are de-
fined using coevaluation and evaluation maps from the dual pairs (44, D(A+)) and
(BUCA,D(BUCA)). i

Remark 5.5 Later we will need more explicit descriptions of the coevaluation and
evaluation maps for the pairs (A4, D(A44+)) and (BUCA, D(BUCA4)).

The coevaluation for the pair (IL_’ D(A. +)) is the composite

S Tvg sz—i- Ay A D(A’Zf+)
of the Pontryagin—-Thom map for an embedding of A in R” with the map v+ (y, ¥, v)
where y is any element of A that ends at the base of v.

Since A is locally contractible there is a neighborhood U of the diagonal in 4 x A and
a map
H:V — Al

that satisfies H(x,x)(¢t) = x, H(x,y,0) = x, and H(x, y,1) = y. The evaluation
for the pair (44, D(A+)),

DANANAL —> S" A Ay
is defined by (0, y,8) = (e(v, 8(1)), y " LH(S(1), ¥ (1))8)
where € is the evaluation for the dual pair (44, D(A+)).
The coevaluation and evaluation for the dual pair (E UCA, D(E U CA)) are similar.
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A relative map f: (B, A) — (B, A) induces a map
fu: BIA — B[AOTI] (B.A)

where Hf(B A)(x,y) = [I1(B, A)(f(¥), x)+. The left action of HI(B A) on
Hf(B A) is the usual left action. The right action of I1;(B, 4) on IT; (B A) is
given by applying f and then composition.

Definition 5.6 The relative geometric Reidemeister trace of f: (B, A) — (B, A),
Rge| 4(f), is the trace of the map

fu: BlA - BlAo Tl (B, 4).

The relative geometric Reidemeister trace is the stable homotopy class of a map
SO — (I (B, )+

and so it is an element of the 0—th stable homotopy group of ((H{ (B,A))+. The
relative geometric Reidemeister trace is an invariant of the relative homotopy class of
the map.

Let X be a dualizable space. For a space U and a map
A X > X AU
the transfer of an endomorphism f: X — X with respect to A is the composite

idAA

Af
S”—>X/\DX—>DX/\X—>DX/\X—>DX/\X/\U—>S”/\U

Let Aag:={y e Al f(y(0) = y(1)}
and A B:={y e BT f(y(0)) = y(1)}.

Since A and B are locally contractible and /" is taut there are neighborhoods Uy of
the fixed points of 4 and Up of the fixed points of B\ 4 and maps

4 Ug— A4
tp: Ugp - A/ B
that take a fixed point of f* to the constant path at that point.
Let 7y, (f|4) denote the transfer of f* with respect to the diagonal map
Ay = A1 ANU4/0(Uy)

and similarly for B.
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Lemma 5.7 If A is a proper subset of B there is an isomorphism
7y (1] (B, ) +) = my(A M AL) @ w3 (A By,
The image of the relative geometric Reidemeister trace of f under this isomorphism is

(L) (tu, (f14)) + (B)« (T ()
Proof We first define the isomorphism.

Note that 775 (X4) = Zmo(X) for any space X, so it is enough to show g (A1 4) @
7o(AS B) satisfies the universal property that defines the shadow of H{ (B, A).

The shadow of H{ (B, A) is defined to be the coequalizer of the maps

L,y Ti(B. A)(x, y) x (B, A)(f (1), x) —= [ [, 1(B, )(f(x),x) .

The inclusion maps

(Ixeq T1(B. A)(f(x). %)) U (L xgg T1(B. A(f(x).x))
— (A4 4) ® 7o (A B)

define a map
0: 11, TT1(B, A(f(x),x) = mo(Af114) @ o (AT B).

Leta eIl (B,A)(x,y)and BeIl{(B, A)(f(y),x).If x, y€ A then Bo and f(x)p
represent the same element in 7o(A/14 4). If x,y € B\ 4, Ba and f(«)B represent
the same element in (A B). If x and y do not satisfy these conditions, there is no
condition to check on the paths. So 6 coequalizes.
If ¢: [ [, 1(B, A)(f(x),x) — M is a map that coequalizes the maps above define a
map B

¢: mo(A Ay ® mo(A B) > M
by ¢(y) = ¢(B) where B is any element of IT; (B, A)(f(x), x) that maps to y in
no(Af114) ® my(AS B). This is independent of choices since if « is another lift of y
there are paths u and v such that J (v is homotopic to B and vy is homotopic to «.
Then ¢ is unique and 7o(A/4 A) @ 7o (A/ B) is the coequalizer.
To describe the image of the geometric Reidemeister trace under this isomorphism it is
enough to show the trace of

—_—

fla: A—> A4
is (t4)x(ty,(f]4)) and the trace of
fiB/A—B/A

is (tB)«(tuz (f)). We will describe the first, the second is similar.
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In Remark 5.5 we gave explicit descriptions of the coevaluation and evaluation for the
dual pair (A4, D(A4)). Let g: D(A4+) A Ay — DA A A4 be the quotient map. If
n1 and €1 are the coevaluation and evaluation for the dual pair (Z+, D(/T +)) and 71,
and €, are the coevaluation and evaluation for the dual pair (44, DA4) the explicit
descriptions of 7; and €; show that the following two diagrams commute:

n ~ ~
S" ——> A4 Ama D(Ay)
X lq
Ayr AD(Ay)

(fe1 Aid) S™ AT (A)) 4

(D(A4) A Ay A,y 70 (A))

lq id At 4

idAA

. ___exnid P
D(A4) A AL DA A AL AT L)0U 4 25 S" AT /004

Together these diagrams show
(er Aid) (A id) 1 = (id Aug)(e2 Aid) (A AL)g (F Aid) Oy
= (id Atg)(e2 A1) ((d AA)(f Aid)ygm
= (id Atg)(ex AID) (A AL)(f Aid)yn,.

The first composite is the trace of ﬁ;l . The last composite is (14)«(ty,(fla)). O

For a fixed point class B of f: B— B let i;fl be the index of the fixed points associated
to B that are contained in B\ A. For a fixed point class a of f|4: A — A, let iy be
the index of the fixed points associated to «. Since the map f is taut, iy is the fixed
point index of the fixed points in A with respect to either f|4 or f.

The following corollary is a consequence of Lemma 5.7 and is the generalization of
Lemma 4.6. This corollary identifies the relative geometric Reidemeister trace with the
generalization of the classical description of the Reidemeister trace.

Corollary 5.8 If the fixed points of [ are isolated,
RE (/) = (Z iaa) + ( i ) € Zno(AT14 A) @ Zro (A B).
The following two examples were considered by Norton-Odenthal and Wong [19].

In that paper the generalized Lefschetz number and one form of the relative Nielsen
number are computed.
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Example 5.9 [19,Example5.1] Let B=D?xS! and A=S'xS"'. Let f/: B— B be
Sre'. ety = (fi(r)e™?. &)

where fi: [0, 1] — [0, 1] is a continuous function such that f7(0) =0, f;(1) =1 and
/1 has no other fixed points. Then f is a relative map with six fixed points. There are
four fixed points in A. These fixed points all represent different fixed point classes and
all have index —1. The two fixed points outside of A represent different fixed point
classes in B and also have index —1.

Since A is a torus, w1(A) = {(a, blabab = 1). The relation imposed on the shadow
implies {(771(A)?)) consists of 4 elements,

1, a, b, ab.
For B, m1(b) = (b) and ({71 (B)?)) consists of 2 elements,

1, b.
Then Rg,flA(f):—1(1A+aA+bA+abA+lB+bB).

Example 5.10 [19, Example 5.2] Let B=S!xS! and A=1xS!. Let f: B— B be
f(eie eit) — (e3i0 €4it).
There are three fixed points of f in 4 and three additional fixed points of f in B\ A.

The three fixed points of f in A represent each of the three possible fixed point classes.
These fixed points all have index 1. The three fixed points in B that are notin A4 also
represent three distinct fixed point classes, but these are only three of the six possible
fixed point classes. These fixed points also have index 1.

Let 771(B) = (a, blabab = 1). Then 11 (A) = (a). The set ((r; (B)?)) consists of
1, a, a, b, ab, a®b.
The set ((7r;(A)?)) consists of
1, a, a”.

Then R 4(/)=1a+as+ag+bp+(ab)p+(a’h)p.

The relative Nielsen number

One of the expectations for the Reidemeister trace is that it can detect when a map has
no fixed points but it does not have to provide a lower bound for the number of fixed
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points. This is very different from the Nielsen number. The goal of the Nielsen number
is to provide a lower bound.

In the classical case, the Nielsen number is the number of nonzero coefficients in
the Reidemeister trace. This implies the Nielsen number is zero if and only if the
Reidemeister trace is zero. For more general situations the connection between nonzero
coefficients of the Reidemeister trace and the Nielsen number does not hold. It remains
true that the Nielsen number is zero if and only if the Reidemeister trace is zero.

The inclusion of A4 into B induces a map m1(A) — 71(B) and also induces a map
from the fixed point classes of A to the fixed point classes of B. A fixed point class of
f or f|4 is essential if its coefficient in the classical Reidemeister trace is nonzero.
Let
N(f. fla)

be the number of essential fixed point classes of B that are in the image of an essential
class of A. Let N(f) be the classical Nielsen number of f and N(f|4) be the
classical Nielsen number of f|4.

We recall the definition of the relative Nielsen number. See Zhao [31].

Definition 5.11 [31, Definition 2.5] The relative Nielsen number, N(f; B, A), is
N(fla) +(N(f)—N(f, fla) -

Lemma 5.12 The relative Nielsen number of f is zero if and only if the relative
geometric Reidemeister trace of f is zero.

Proof If the relative geometric Reidemeister trace of f is zero Corollary 5.8 implies
(Z i/_{flﬂ) + (Z iaa) is zero. Since Z((H{(B, A))) is a free group generated by the
a’s and B’s each i;}el and iy are zero. Since the iy ’s are zero, N(f|4) and N(f, f|4)
are zero. Since each of the iq’s are zero ig = i;fl = 0 for every f. This implies N(f)
is also zero.

By definition N(f|4), N(f),and N(f, f|4) are all greater than or equal to zero and
N(f, fla) < N(f). If the relative Nielsen number of f is zero N(f|4) = 0 and

N(f) = N(/. fla). Since N(f|4) =0, N(f, fla) =0 and so N(f) = 0. Since
N(fla)=0 alloftheia’sarezeroandig’lziﬂ.Since N(f)=0,ig=0forall . O

The relative Nielsen numbers for the maps in the examples above were computed by
Norton-Odenthal and Wong [19]. The relative Nielsen number for Example 5.9 is 4.
This is not the number of nonzero coefficients in the relative Reidemeister trace. The
relative Nielsen number for Example 5.10 is 6. This does happen to be the number of
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nonzero coefficients in the relative Reidemeister trace. These numbers coincide because
N(f, fla) is zero for this example.

Other references for relative Nielsen theory include Jezierski [11], Schirmer [24; 25]
and Zhao [29; 30]. These invariants are also related to the Nielsen numbers for stratified
spaces defined by Jiang, Zhao and Zheng [13].

6 The global Reidemeister trace

In this section we define the relative global Reidemeister trace. This invariant is a
generalization of the relative Lefschetz number and can be identified with the relative
geometric Reidemeister trace. The relative global Reidemeister trace is a relative
generalization of the global Reidemeister trace defined by Husseini [9]. It is related to
the invariants defined by Norton-Odenthal and Wong [19] and Zhao [32], but it is not
the same as either of these invariants.

In this section we will assume A and B are finite CW—complexes. Just like Remark
4.4 this simplifies the discussion.

Let ZI1,(B, A) be the category with the same objects as I1{(B, A). The morphism
set

ZI11(B, A)(x, y)
is the free abelian group on the set I1; (B, 4)(x, y).

There is a functor
C«(B|A): ZT11(B, A)® — Chyg,

defined by C*(m)(x) = C*(m (x); Z) where the second Cy indicates the cellular
chain complex. The action of the morphisms of I1(B, 4) is induced from the action
on m . This functor is defined in the same way the functor Hy(B|A) is defined from
the functor B|A except we replace the rational homology functor with the integral
chain complex functor.

Note, unlike Section 4, in this section we will use integral chains. For these invariants
we could also use rational chains. Either choice will give the same invariants. In Section
4 we used rational homology since integral homology would have made the definitions
more complicated.

Proposition 6.1 If A C B are finite CW-complexes, then the ZI1(B, A)—module
C«(B|A) is dualizable.
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Proof Like Proposition 4.9 there are two possible proofs of this theorem.

The rational cellular chain complex functor induces a functor on bicategories, and
for A C B closed smooth manifolds, Theorem 5.4 shows that B|A is dualizable.
Proposition 2.5 then implies that Cy«(B|A4) is dualizable.

There is a second approach using Lemma 3.7. If x € A4, C*(m)(x) = Cy (Zx) as
a module over 1 (A, x). This is a finitely generated free module and so is dualizable
with dual ~

HOMZz, (4, (Co(A). Zo1 (4. ).

If xe B\ 4, C*(m)(x) = C*(Ex, Ax) as a module over 7 (B, x). This is also a
finitely generated free module and so is dualizable with dual

Homg, (B.x)(Cx(Bx, Ax), Zx1 (B, x)).

Since C*(m) is supported on isomorphisms, Lemma 3.7 implies C*(m) is dual-
izable. i

A map f: (B, A)— (B, A) induces a map
f«: Cx(B[A) - C4(B[4) © ZT1{ (B, 4).
Since C*(m) is dualizable, the trace of f is defined.

Definition 6.2 The relative global Reidemeister trace R% 4(f) of
f:(B,4A)— (B, A)
is the trace of
fu: Cx(BJA) — C.(B[A) 0 211/ (B, A).
The relative global Reidemeister trace of f is a map
Z — Z(11{ (B, 1)).

We also have a statement similar to Lemma 5.7.
Lemma 6.3 If A is a proper subset of B then

(7 (B, A)) = (] (B)) L (117 (4))).

The image of R%M(f) under this isomorphism is

S RS+ Y. RS lB06).BoNn)Y-

xe((TT) (A4)) ye(@}(B))
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Here Re(f| A(x)) denotes the usual global Reidemeister trace of f'|4(x) as defined by
Husseini in [9]. The invariant R&( |(B(»).B(»)n4)) is the Hattori—Stallings trace of

fa: Cu(By, (B, N 4y)) — Cu(By, (B, N 4,)) @ 7! (B, y)

as a module over 7 (B, y).

Proof To simplify notation, consider the case where 4 and B are connected and A is
a proper subset of B. The proof is similar if 4 and B are not connected.

The shadow is defined to be the coequalizer of the maps
L,y (B, A)(x, y) x M1 (B, A)(f(¥), x) —= [ [, T (B, A(f(x),x) .

Instead of indexing these coproducts over all objects in I1; (B, A) we can index over
representatives of each isomorphism class of objects in I1;(B, 4). This gives four
terms in the first coproduct. The two cross terms are both empty and so this coequalizer
splits into the coequalizer that defines ((H{ (B))) and the coequalizer that defines

(i’ ().

For the second statement, note that this isomorphism is compatible with the description
of the dual pair. Then the trace is the pair of Hattori—Stallings traces. |

This description of the relative global Reidemeister trace shows that the second coordi-
nate is the relative Reidemeister trace of Zhao [32]. This also shows this invariant is
related to, but not the same as, the generalized Lefschetz number defined by Norton-
Odenthal and Wong [19].

Proposition 6.4 If A C B are closed smooth manifolds and f: (B, A) — (B, A) is a
relative map then

RY (/) = RY, (/).

Proof Since both Rggl 4(f) and R“’TBI,| 4(f) are defined as traces and the integral
cellular chain complex functor is strong symmetric monoidal this proposition follows
from Proposition 2.5. |

7 A converse to the relative Lefschetz fixed point theorem

There are several proofs of the converse to the relative Lefschetz fixed point theorem.
Some, like Jezierski [11], Schirmer [24; 25] and Zhao [30], are generalizations of
the simplicial arguments used in the standard proof of the converse to the classical
Lefschetz fixed point theorem; see Brown [2].
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In this section and the next we will describe a proof of the converse to the relative
Lefschetz fixed point theorem that follows the outline of Klein and Williams [14; 15].
This approach is not simplicial and it easily generalizes. For example, see [15] for the
equivariant generalization and Ponto [21] for the fiberwise generalization.

The approach of [14] is based on invariants that detect sections of fibrations. In the next
section we prove relative generalizations of the results in [14]. In this section we apply
those results to relative fixed point invariants.

The main result of this section is:
Theorem B (Converse to the relative Lefschetz fixed point theorem) Suppose A C B

are closed smooth manifolds of dimension at least 3 and the codimension of A in B is
at least 2. The relative global Reidemeister trace of a map

f:(B,A)— (B, A)

is zero if and only if f is relatively homotopic to a map with no fixed points.

The first step in the proof of Theorem B is to describe relative maps with no fixed points
in terms of relative sections.

Lemma 7.1 Let A C B be closed smooth manifolds. Relative homotopies of a map
f: (B, A) — (B, A) to arelative map with no fixed points correspond to liftings in the
diagram below that commute up to relative homotopy.

(BxB\A,Ax A\ D)

|

(BxB,Ax A)

Ty

(B,4)
The function I' is the graph of f and I'r(m) = (m, f(m)).

Proof If f is relatively homotopic to a fixed point free map g via a relative homo-
topy H, then 'y is a relative homotopy from I'r to I'g.
For the converse, suppose there is a relative map
k:(B,A) > (BxB\A,Ax A\ D)
and a relative homotopy K from k to I'y.

If A is a smooth manifold the first coordinate projection

proj;: AXA\A — A4
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is a fiber bundle and there is a lift J4 in the diagram

A—F axa\A

o Ja T .
io projy
- proj; K

Since A C B is a cofibration and proj;: B x B\ A — B is a fibration the diagram

kuJ
BUAXI - BxB\ A
BxI p— B

has a lift J extending the lift J4 above; see Strom [27, Theorem 4]. Note that
proj, oJ(—, 1) =1id. Let g = proj, J(—, 1). This map has no fixed points.

The homotopies K and J define a relative homotopy from I's to I'g. a

Givenamap f: V — Y, letr(f): N(f)— Y denote a Hurewicz fibration such that

V. —=N(f)
; LU)
Y

commutes and ¥V — N(f) is an equivalence.

Lemma7.2 Let X CY, p: My — Y be aspaceover Y and My C p~'(X).
Liftings up to relative homotopy in the diagram

(MY,MX)

e LP

)

(B, 4)

correspond to relative sections of the pair of fibrations

(g"N(py).g"N(px)) — (B, A).
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If p: E — B is a Hurewicz fibration the unreduced fiberwise suspension of p is the
double mapping cylinder

SBE := B x{0}U, Ex[0,1]U, B x{1}.

The map p: E — B defines a fibration

p: SpE — B.
There are two sections of this fibration, 01, 0,: B — SpE, defined by the inclusions
of B x {0} and B x{1}.
It simplifies notation to think of these sections as defining a map of ex-spaces. An
ex-space Y over B is aspace Y and two continuous maps

B>y 2B
such that ps =idp. Let Sg be the ex-space

B—B1II B—~B

where the first map is the inclusion on the first factor and the second map is the identity
on each component. The sections oy and o, define a fiberwise map

S$ — SpE.

For ex-spaces X and Y over B, let [X, Y]p be sectioned fiberwise homotopy classes
of maps from X to Y and let {X, Y} be stable fiberwise homotopy classes of maps
from X to Y. See May and Sigurdsson [18] for more information about the homotopy
theory of ex-spaces. Using 01, Sp E is an ex-space and the fiberwise map Sg, — SpE
determines an element of
[S3. SBE]p.
Letig: B x B\ A — B x B be the inclusion. Then the pair of fibrations
(Tr«(N(B)). Ly, «(N(ig))) — (B, A)

determines an element in

[S3. SET«(N(ig))B ®ST. SaT s« (N(ia)la.

This element will be denoted R%m f.

Proposition 7.3 Let A C B be closed smooth manifolds of dimension at least 3 such
that the codimension of A in B is at least 2. A continuous map

f:(B,A)— (B, A)

is relatively homotopic to a map with no fixed points if and only if Rlém (f)=0.
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The proof of this proposition, except for one key step proved in the next section, follows
the preliminary lemma below.

Lemma 7.4 [14, Lemma 6.1, Corollary 6.2] Let M be a manifold of dimension n,
i: M xM\A— M x M be the inclusion, and f: M — M be a continuous map.
Then I'py(N(i)) — M is (n—1)—connected.

Proof of Proposition 7.3 Lemma 7.1 and Lemma 7.2 convert the question of finding
a lift of a relative map f: (B, A) — (B, A) to the question of finding a section of the
fibration
(Tr(N(p)). (Tfx(N(ia))) — (B, 4).

If the dimension of A is n4 and the dimension of B is np then Lemma 7.4 implies
that I« (N(ig)) — B is (np—1)—connected and I'r|,+(N(ig)) — A is (ng4—1)—
connected. If n4 and np are at least 3 and np —n4 is at least 2, Proposition 8.6 implies
that

(Lr«(N(@B)). Tr4+(N(ig))) — (B, 4)

has a relative section if and only if Rlém (f)=0. a

The hypotheses in this proposition are not the standard hypotheses used in the converse
to the relative Lefschetz fixed point theorem. The standard condition is that
m1(B\ A) — 71 (B)

is surjective. The codimension condition implies this condition. We use a codimension
condition in Proposition 7.3 since it is compatible with the techniques used in the
proof of Proposition 8.6. I don’t know if the surjectivity condition can be used in this
approach.

To complete the proof of Theorem B we need to compare RIE\& (f) and the relative
geometric Reidemeister trace.

Proposition 7.5 Let A C B be closed smooth manifolds and f: (B, A) — (B, A) be
a relative map. Then

R, (/) = 0if and only if R 4(f)=0.
We recall a lemma from [15].

Lemma 7.6 [15, Lemma 7.1; 21, Lemma 8.3.1] Let M be a closed smooth manifold
with normal bundle vy . There is a weak equivalence

SY™ O TraSpxamr Nling) — S A (A My).
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Proof of Proposition 7.5 If A and B are both closed smooth manifolds of dimension
at least three, then the dimension assumption, Lemma 7.4, and the fiberwise Freudenthal
suspension theorem in James [10, Proposition 4.2] imply the maps

[SS. ST« (NGa)a = (S, SaTrx(N(ia))}a
[S3. SBTf+(N(ip))]B — {S§. ST r+(N(ip))}B

are isomorphisms. Costenoble—Waner duality in May and Sigurdsson [18, Theorem
18.5.5, Construction 18.6.3] and Lemma 7.6 imply there are isomorphisms

{4 STy (N ()} = {S". 8" © SaT (N (i)}
=~ (S", ST ANl 4Ly
and {Sp. SeTrx(N(ip))}p = {S",S"2 © SpT'r+(N(ip))}
=~ {S". S" AN B}
Let U4 be a neighborhood of the fixed points of f|4 such that there is a map
ty: Uy — Afla 4

that takes a fixed point to the constant path at that point. In [21, Theorem 6.3.2] it is
shown that the image of RBlA(f) in JT(S)(Af|AA+) is ta(z(fluy,))-

Let Up be a neighborhood of the fixed points of f in B\ A such that there is a map
tg: Up — A B
which takes a fixed point to the constant path at that point.

The image of Rlém (f) in 7$(A/ By) is the composite of the transfer of f with

respect to the diagonal map

By — BL A (UB I UA)/B(UB I UA)
with the map t:=14 p: UALIUB—>AfB.
Since the transfer is additive, Dold [5, 3.17], the image of Rlém( f)in 7} (A By) is

Hruguu, (1) = (g (f) + v, (fla) = g () + ey, (f 1)

Then Rlém(f) is zero if and only if 14 (v (f|u,)) and ((ty,z(f)) + L(‘L’UA (flq)) are
both zero. Using Lemma 5.7 these elements are zero if and only if R Bl A (f) is zero. O

Proof of Theorem B Proposition 7.3 implies f is relatively homotopic to a fixed

point free map if and only if Rlém (f)=0. Proposmon 7.5 1mphees R ( f)=0if
and only if RS A(f) = 0. Proposition 6.4 implies RS A(f) R® A(f) a
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Remark 7.7 Proposition 7.3 and the proof of Proposition 7.5 show if
dim(4) >3 and dim(B) > dim(A4) 42
then R];\IZI (f) is zero if and only if the classical invariants for A and B are zero.

Using these two invariants to define a relative invariant would be analogous to defining
the relative invariants in the previous sections as the pair of classical invariants for
the spaces A and B. This alternate definition would satisfy the requirements of the
introduction for a fixed point invariant. However, there are several reasons why the
corresponding definition in the equivariant case is not acceptable. The definitions
in the previous sections were chosen because they are consistent with the choices in
Ponto [20].

8 Relative sections
In this section we generalize the result due to Klein and Williams [14] on sections of
fibrations to relative fibrations.

If the dimension of B is 2n and the fibration p: £ — B is (n+1)—connected, it is
shown in [14] that the two sections

01,02. B— SpFE

are homotopic over B if and only there is a section of p. We will generalize this result
to relative sections.

If A C B let E4 be a subspace of Epg such that p(E4) C A. Let S4 pE4 be
Bx{0}UE4xTUAXx{l}.

Let [(S3, A L B), (SpEp, S4.BE 4)]|p be the relative sectioned fiberwise homotopy
classes of maps from (S%, A LI B) to (SgEp, S4.BEA).

Definition 8.1 Let A C B, p: Egp — B be a fibration, and E4 C p~!(A4) such that
E 4 — A is a fibration. The relative homotopy Euler class

x€(Sy. AL B), (SpEp. S4,8E4)]B
is o1 oy Sg — SpEpR.

Proposition 8.2 If (Ep, E4) — (B, A) admits a relative section C then yx is trivial.

Conversely, assume p: E4 — A is (m+1)—connected, A is a 2m—dimensional CW-
complex, p: Ep — B is (n+1)—connected and (B, A) is a relative 2n—dimensional
CW-complex. If x is trivial then p has a relative section.
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Before we prove this proposition we recall a preliminary lemma.

Lemma 8.3 [14, Proposition 3.1] Let p: E — B be a (j+1)—connected fibration
and P be the homotopy pullback

P B
T
B—— SBE.

02

A fiberwise homotopy from o to o, defines a 2 j —equivalence q: E — P.
Note that mg = p.

Proof of Proposition 8.2 If there is a relative section ¢ then the homotopy
H: (Sy, AL B)x1 — (SpEp, S4.BE4)

defined by H(b,t) = (C(b), ) shows y is trivial.

If x is trivial there is a relative fiberwise homotopy
K: (Sy,AUB)x I — (SpEp,S4.BEA)

from o, to o7 . The restriction of K to SA9 defines a homotopy between o1|4: A —
S4E4 and 02|4. Lemma 8.3, Whitehead’s theorem, and the homotopy K|s9 imply

qax: [A, Eq] = [A, P4]
is a bijection. The space P4 is as in Lemma 8.3.

The restriction K|s9 induces amap /4: A — P4 such that why = id. Since g4 is
a bijection there is a map k4: A — E 4 and a homotopy J4 from ¢g4k4 to h4. Then
pka = m(qak4) >~ why = idy4 via the homotopy 7(J4). The diagram

A
= l
AxT

has a lift L4, and p(L4(a,1)) =a. Then L4(—, 1) is a section of p~1(4) — A that
is contained in E 4.
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The homotopy K defines a map hg: B — Ppg extending the map /4. The space Ppg
is as in Lemma 8.3. The homotopy extension and lifting property implies the dotted
maps in the following diagram can be filled in.

A 1 AxT 0 A
;/A g A
Pp Ep
hp \* A 7
/ I . kB::
151 . 10 .
B BxI B

This defines maps kg and Jpg extending k4 and J4.
Since the pair (B, A) has the relative homotopy lifting property there is a lift L in
the following diagram.

kgpUL
BU(AxT) 224 pp

b4
7 7(JB)
B B

BxI

Evaluating at 1, p(Lpg(b,1)) =nJp(b,1) =nmwhp(b) =5b. Since Lg(a,1) € E4 for
a€ A, Lg(—,1) is the required section. a

Lemma 7.1, Lemma 7.2, and Proposition 8.2 imply x is a complete obstruction to
determining if a relative fibration has a section. In the examples we are interested in,
it is easier to work with invariants defined from y than with x itself. Under some
additional hypotheses, these associated invariants are zero if and only if y is zero.

If A C B, define
Cp(B,A):=Bx{0}UAx][0,1]UB x{1}.

This is an ex-space over B with section given by the inclusion of B into Cp(B, A) as
B x {0}.

In the diagram below the vertical maps are induced by cofiber sequences and so the
columns are exact. See Crabb and James [3, Proposition 11.2.4]. The horizontal maps
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are forgetful maps. The diagram commutes.

" _
XB.A € [(Cp(B,A),SpA),(SBEBR.S4E4)lp — [Cp(B,A),SpEB|p > XB,4

X |

X € [(S3.S9.(SBER.S4E 4)|B [S.SeEBlB > XB

l |

XA € [AUB,S4.BEAlB [ALL B,SBEBlp > X4

The elements x4, xB, and )4 are the images of x. The element xp 4 is defined if
x4 = 0. Then xp 4 is the preimage of x. The element xp_4 is defined if ¥4 = 0.
Then X p, 4 is the preimage of xp.

Lemma 8.4 Suppose x4 =0.If xp,4 =0 then xp 4 =0.
Proof Since xp 4 = 0 there is a fiberwise homotopy
L: Cp(B,A)xI — SgEp
such that L(b,1,0) =0,(b)
L(b,1,1)=0(b)
L(b,0,1) =01(b)
L(a,s,0) = xp,.a(a,s) € S4E4
L(a,s,1)=01(a)
foralae A,be B,and s,t € 1.
Let J:= ({0} x I) U (I x{1}) U ({1} x I). Define a map
L: BxJ — SgEp
by L(b,0,1) = 01(b)
L(b,s, 1) =0oy(b)
L, 1,t)=L(b,1,1).
The diagram

LUL| 41
(BxJYU(Ax T x ) Z2Hat g p o

BxIxI - B
commutes and there is a lift K since SgpEpg — B is a fibration.
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Then K¢ := K(—,—,0): Bx I — SpFEp satisfies
Ko(b,0) = K(b,0,0) = L(b,0,0) =0 (b)
Ko(b, 1) = K(b,1,0) = L(b, 1,0) = 0,(b)
Ko(a,s) = K(a,s,0) = L(a,s,0) e S4E4.
Define a map
K: Cg(B,A)xI — SgEp
by Kb, 1,0)=Ko(b,1—1)
K(b,0,7) = o1(b)
K(a,s,t) = Ko(a, s(1—1)).

K shows xp_4 is trivial in [(Cg(B. A), SpA). (SpEp. S4E4)]s. O
Lemma 8.5 If the map Eg — B is a (dim(A)+1)—equivalence then p is injective.

Proof In this proof let i denote the inclusion of 4 in B.

Let Xp(A U B):=((AxI)U B)/~ where (a,0) ~i(a) ~ (a,1). Then p is part of
a long exact sequence

[Xp(A U B), SpEglg — [Cp(B. A), SpEBlp
— - [SY. SpEplp — [A11 B. SpEgls.
To show that p is injective it is enough to show
[Xp(AU B), SpEp]s
is trivial.

Let « be an element of [Zg(A11 B), SpEg|p. Then o definesamap S!xA4— SpEp
also denoted « . This map satisfies pa(t,a) =i(a).

io i1

Slx A SlxAxT SlxA
ioproj
o
B SgEp
H : B
140) X 151 °
D?2x A D2x AxI D2x A
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Since SpEp — B is a (dim(A) + 2)—equivalence, the homotopy extension and lifting
property implies there are maps B and H that make the diagram commute.

The solid arrow portion of the diagram below commutes.

BLI (@oproj)
(D2 x AU S' x Ax ] ———> SpEp
==t p
D2xAxI B

Since SgpE'p — B is a fibration there is a lift K so that the entire diagram commutes.
Then

Ko:= K(-,—,0): D*xA— SgEp

satisfies pKo(v,a) = H(v,a,0) =i(a)

and, if w € ST, Ko(w,a) =a(w,a).

Then Kolid: (D*x A)U B)/~— SgEp

shows « is trivial. O

The next proposition is a consequence of Proposition 8.2, Lemma 8.4 and Lemma 8.5.

Proposition 8.6 If p: E4 — A is (m+1)—connected, A is a 2m—dimensional CW-
complex, p: Egp — B is (2m+1)—connected and (B, A) is a relative 4m —dimensional
CW-complex (Ep, E4) — (B, A) admits a relative section if and only if x4 and xp
are both zero.

Obstruction theory

Obstruction theory provides an alternative to Proposition 7.3. There is a relative section
of the fibration

(LCra(N (). (Lfx(N(ia))) = (B, A)
if there is a section of the fibration 'z, + (N (i4)) — A and that section can be extended
to a section of the fibration I's4 (N (ig)) — B.

Let F4 be the fiber of I'r|,«(N(i4)) — A and Fp be the fiber of I'r4(N(ip)) — B.
Let ny = dim(A) and ng = dim(B).

Using Lemma 7.4 we see there is a single obstruction to finding a section of the map
s #(N(iq)) — A. This is a cohomology class wq € H"4(A; 7w, ,—1(F4)). The same
lemma also shows there is a single obstruction to extending a chosen section over A to
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a section of I'r4 (N (ig)) — B. The obstruction to this extension is a cohomology class
a)B,A in HnB(B, A; nnB—l (FB)) .

The assumptions of Proposition 7.3 significantly simplify the identification of wp 4.
Since ng+2<npg, H"8~Y(A; 7, ,—1(Fp)) and H"E(A; 7ty ,—1(Fp)) are both trivial
and there is an isomorphism

H"5 (B, A;7tpp—1(Fp)) = H"P (B 7p5—1(Fp)).

The image of wp 4 is wp, the obstruction to finding a section of I'r4(N(ip)) — B
with no restriction on A.

Recall that a fixed point class of f|4 determines an element of 7 (Af14 4). A choice
of base point * in A and path 7 in 4 from * to f(x) defines a function

w:m(A) —> JT()(AflAA).

If A is connected this is surjective and two loops « and B have the same image under 7
if and only if there is a loop ¥ in A so that yB/x(y~') ~ a. We will identify a fixed
point class with the corresponding element of 71 4 modulo the relation above.

Fadell and Husseini [8, Corollary 3.2] defined isomorphisms 7, ,—1(Fy4) = Zm;(A)
and 7, ,_1(FB) = Zn(B). They also showed, [8, Theorem 1.2], that w4 and wp
have cochain representatives

ca(f) =) i(fla.c)as and cp(f) = i(f.B)Bt

where s is a n4 simplex of A that contains the base point, ¢ is a ng simplex of B that
contains the base point, the first sum is over fixed point classes of f|4 and the second
sum is over fixed point classes of f .

Then Corollary 5.8 shows w4 and wp are both zero if and only if Rgl; 4(f) is zero.
This replaces Proposition 7.5 in the proof of Theorem B.

9 Other descriptions of ® in special cases

These are the proofs omitted from Section 3. Let s{ be an El-category enriched in the
category of abelian groups.

Lemma 3.6 If%: § — Chg and Y: A°P — Chp are supported on isomorphisms

XY= P %) ®ue.c) Y(©)-
ceB(sA)
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Proof We will show that @¥(c) ®gc,c) Y(c) satisfies the universal property that
defines ¥ O Y.

By definition of B(s), for any object @ in s there is exactly one object
¢ € B(#A)
such that there is an isomorphism f: a — ¢ in . Define a map
Oa: X(a) ®z Y(a) — E(c) Qs(c,c) Y(c)
as the composite of
L) QU %(a) ®z V(@) = %(c) @z Y(c)
with the quotient map
x(c) @z Y(c) = %(€) ®uc,ec) Y().

If g is another isomorphism in s from a to ¢, then (X( f)(A), ¥(f~1)(B)) is identi-
fied with (%(g)(A4), ¥(g~1)(B)) and the map 6, is well defined. Let

0: P %a)Rz¥@) > @ %(e) Rue.c) ¥(c)
acob(st) cEB(s)

be the sum of the maps 6, .

If (4, f, B) € X(a) @z A(a,b) ®z Y(b) the images of this element in

@aEOb(&d)%(a) ®z Y(a)

are (A4,%9(f)(B)) and (¥(f)(A), B). The images of these elements are identified
under 6.

Let ¢: P %) ®zY@) — M
acobd

be a map that coequalizes the two maps from EBa,onbgﬁ %(a) ®7z A(a, b) @z Y(b) to
Dacop s X(a) ®z Y(a). Define a map

Vi P %) Rue,c)Y(e) > M
c€B(sA)

by choosing lifts of elements in ¥(c) ®(c,c) Y(c) to elements of
x(c)®zY(c).

Since ¢ coequalizes, the choices do not matter and y is unique. a
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Lemma 3.7 Let ¥ and %Y satistfy the conditions of Lemma 3.6. If ¥(c) is dualizable
as a d(c, c)—module with dual Y(c) for each ¢ € B(sd) then ¥ is dualizable with
dual %Y.

Proof If ¥(c) is dualizable as an s(c, c)—module with dual %¥Y(c) then there is a map
of chain complexes of abelian groups
Ne: Z— X(c) ©N(c)
and a map of chain complexes of (¢, ¢)-bimodules
€c: Y() O %(c) = dAlc, )
for each ¢ € B(A).

Let n: Z — % ©% be the composite
A D ne
25 @25 @ %) B V() =XOY
B(s) B(sh)
where A: Z — gy Z is the map that takes 1 to (1, 1,...,1).

Let a and b be isomorphic objects of s4. Let ¢ be an object of B(s4) that is isomorphic
to @, let i be an isomorphism in &f from a to ¢ and let g be an isomorphism from b
to ¢. Then €, p is the following composite:

W(e) ®z %(c) —= sd(c, ¢)
Y(g~He%(h) T l&i(g,h_l)
Y(b) ®z %(a) (b, a)

If a and b are not isomorphic in A €, p is zero. Since ¢ is unique and the maps €. are
maps of $(c, c)-bimodules, € is a natural transformation. This also implies that € is
independent of the choice of g and /.

Let ne(1) =" ec,i ® fe,i foreach ¢ € B(sd). If x € ¥(a) the value of the composite

P(a) =7 %) > XOVRL(@) > %0 (-, a) = %(a)

applied to x is

> Y Heea e,

ceB(A) i
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The only nonzero terms in this sum are those where there is an isomorphism / from x
to ¢. By definition, €(f¢;, x) = h™Vec(fe.i, £(h)(x)) and

D R e ¥ ee,i) =BT Y B(ee(fei X(h)(x)))(eci)

= &(h~ "2 (h)(x)

= X.

The other diagram is similar. |
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