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Line arrangements and direct products of free groups

KRISTOPHER WILLIAMS

We show that if the fundamental groups of the complements of two line arrangements
in the complex projective plane are isomorphic to the same direct product of free
groups, then the complements of the arrangements are homotopy equivalent. For
any such arrangement A , we also construct an arrangement A0 such that A0 is
a complexified-real arrangement, the intersection lattices of the arrangements are
isomorphic, and the complements of the arrangements are diffeomorphic.

52C30; 32S22, 14F35

1 Introduction

Let ADfH0; : : : ;Hng be an arrangement of projective lines in CP2 with complement
denoted by M.A/DCP2

n
Sn

iD0 Hi . The intersection lattice of the arrangement L.A/
is the partially ordered set consisting of nonempty intersection of hyperplanes and is
ordered by reverse inclusion (see the work by Orlik and Terao [11] as a general reference
on arrangements). Any information that may be determined from the intersection lattice
is called combinatorial.

One of the major questions in arrangements is to what extent the topology of M.A/ is
determined by the combinatorics of A. It is well known that the cohomology algebra
of M.A/ is so determined. However, Rybnikov [12] has shown examples of two
arrangements with isomorphic intersection lattices, but the fundamental groups of the
complements of the arrangements are not isomorphic.

Examples of the latter type have proven difficult to find, with more results showing how
the combinatorics may determine the topology. One such result in this direction comes
from the work of Fan [8], where a graph associated to an arrangement is introduced.
If the graph is a forest of trees, it is shown that the fundamental group of M.A/ is
isomorphic to a direct product of free groups. The converse was latter shown to hold by
Eliyahu, Liberman, Schaps and Teicher [3]. More information about these results and
the fundamental group of the complement of an arrangement are given in Section 2.

Using the work of Fan, we are able to show that arrangements with complements
isomorphic to a direct product of free groups have nice combinatorics (see Jiang and
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Yau [9] or Section 3 for definitions). Using some constructions from matroid theory
and properties of nice arrangements, in Section 3 we prove the following theorem.

Theorem 1.1 Let A be an arrangement in CP2 such that the fundamental group of
M.A/ is isomorphic to a direct product of free groups. Then, there exists an arrange-
ment A0 with defining polynomial whose linear factors have only real coefficients, and
M.A/ is diffeomorphic to M.A0/.

Let D denote the complement of the variety defined by the algebraic plane curve
y2 � x3 � x2 D 0 in C2 . One may show that �1.D/ Š ha; b W Œa; b�; a D b�1i Š Z
and the 2–complex constructed from the presentation has the same homotopy type
as D . Therefore, D is homotopy equivalent to S1 _ S2 . For any arrangement A
in C2 consisting of one line �1.M.A//Š ha W �i Š Z. Further, M.A/ is homotopy
equivalent to S1 . Thus there are examples of complements of curves with isomorphic
fundamental groups that are not homotopy equivalent.

Libgober [10] states the following problem as being open: construct two algebraic
plane curves in C2 such that the complements have isomorphic fundamental groups
and the same Euler characteristic, but are not homotopy equivalent. A related problem
is to determine sufficient conditions on a family of curves so that the fundamental
group determines the homotopy type of the complement.

Falk [5] gives examples of two arrangements in C3 such that the complements have
the same homotopy type, but the intersection lattices are not isomorphic. As the
complements are homotopy equivalent, they have isomorphic fundamental groups; in
particular, the fundamental groups are isomorphic to Z2 �Fp �Fq where Fn is the
free group on n generators. In Section 4, we extend this result to the main theorem of
this paper.

Theorem 1.2 Let A1 and A2 be arrangements in CP2 such that �1.M.A1// Š

�1.M.A2// and �1.M.A1// is isomorphic to a direct product of free groups. Then
M.A1/ and M.A2/ are homotopy equivalent.

Acknowledgements The author wishes to thank Richard Randell for many useful
conversations and the anonymous referee for a careful reading of the first draft and
many useful suggestions.

2 Arrangements and direct products of free groups

2.1 Fundamental group of arrangement complements

Let A be an arrangement of lines in CP2 , and denote the complement of the arrange-
ment by M.A/ WD CP2

n
S

H2A H . By choosing a line H0 2 A to be the “line at
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infinity,” we will consider the arrangement A n fH0g as an arrangement in C2 . As
M.A/ WDCP2

n
S

H2A H ŠC2 n
S

H2A;H¤H0
H DWM.AnH0/, we will study the

complement of the projective arrangement by examining the complement of an affine
arrangement.

All presentations in this paper will be Arvola–Randell presentations. A quick intro-
duction to these presentations in the case of complexified-real arrangements may be
found in work of Falk [5]. We work with these presentations in order to make use of
the following theorem.

Theorem 2.1 [2, Corollary 6.5] For any arrangement A in C2 , the standard CW–
complex associated to the Arvola–Randell presentation of �1.M.A// is homotopy
equivalent to M.A/.

Recall that the standard CW–complex associated to a (finite) presentation P has one
0–cell, a 1–cell for each generator (with both ends attached to the 0–cell), and a 2–cell
for each relator (with boundary attached by following along the 1–cell associated
to each generator with respect to orientation). Given any two finite presentations of
a group, it is possible to transform one presentation into the other via a sequence
of Tietze transformations. However, one must exercise care when performing these
transformations as they can alter the homotopy type of the associated CW–complex.
In [5], Falk lists the following transformations as not affecting the homotopy type:

(i) Replace any relator r by w�1r˙1w where w is any word in the generators.

(ii) Delete a generator g and a relator gw�1 where w is a word in the generators
that does not contain g , and in each relator replace g with w .

(iii) For any distinct relators r and s , replace r with rs .

Also listed is a transformation that changes the homotopy type by wedging the complex
with a copy of S2 :

(iv) Insert a relator that is a consequence of other relators.

Any two presentations of a group may be attained by a sequence of these transformations
and their inverses.

2.2 Fan’s graph

In [8], Fan defines a graph on an arrangement in CP2 . We will denote the graph of an
arrangement by F.A/. The vertices of F.A/ will consist of all points on the arrange-
ment with multiplicity at least three. For each projective line H in the arrangement,
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let fai;H g
nH

iD1
denote the collection of higher order multiple points contained in H . For

any ai;H and aiC1;H draw an edge on H such that the endpoints of the edge are ai;H

and aiC1;H , no two edges intersect, and the edge does not intersect any other point on
the arrangement of multiplicity at least two. The result of repeating this construction
over all lines in the arrangement is the graph F.A/.

Fan proves that this graph is well-defined up to homotopy type and uses the graph to
prove the following theorem.

Theorem 2.2 [8, Theorem 1; 3, Theorem 6.2] Let A be a line arrangement in CP2 .
The graph F.A/ is a forest of trees if and only if �1.M.A// is isomorphic to a direct
product of free groups.

The forward direction was proven by Fan [8] and the backwards direction was proven
by Eliyahu, Liberman, Schaps and Teicher [3].

2.3 Affine nodal arrangements

Choudary, Dimca, and Papadima [1] define an affine nodal arrangement as an arrange-
ment of lines in C2 such that the lines intersect only in double points. Therefore,
all higher order multiple points occur on the line at infinity. If an affine nodal ar-
rangement has r � 2 multiple points at infinity, then A is split solvable of type
mD .m1;m2; : : : ;mr / with multiple points of order m1C 1;m2C 1; : : : ;mr C 1. A
split solvable arrangement is an arrangement of r sets of parallel lines, each set have
mj lines for 1� j � r . Any two lines not in the same set of parallel lines intersect in
a double point.

If an arrangement has only one multiple point on the line at infinity, then the arrangement
consists of set m1 parallel lines. We will abuse notation and say that the arrangement is
affine nodal of type .m1/. An affine nodal arrangement of type mD .m1; : : : ;mr / is a
split solvable arrangement of type m if r � 2. As the class of affine nodal arrangements
has nice combinatorics, the combinatorics determine the diffeomorphism type of the
complement (see Jiang and Yau [9] or Section 3.1). Therefore, we may determine a
presentation for any affine nodal arrangement.

Lemma 2.3 Any affine nodal arrangement of type .m1; : : : ;mr / has Arvola–Randell
presentation given by˝

a1;1; : : : ; a1;m1
; a2;1; : : : ; ar;mr

W Œai;j ; ak;l �
˛

where the relations are commutators and indexed by 1 � i < k � r , 1 � j � mi ,
1� l �mk .
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Given any finite direct product of free groups G we may find an arrangement such that
the fundamental group of the complement is isomorphic to G .

Lemma 2.4 Let G D�n
iD1

Fmi
for mi a positive integer for all 1� i � n, and let A

be an affine nodal arrangement of type mD .m1; : : : ;mn/. Then �1.M.A//ŠG .

3 Diffeomorphism type

The goal of this section is to prove the following theorem.

Theorem 3.1 Let A be an arrangement in CP2 such that the fundamental group
of M.A/ is isomorphic to a direct product of free groups. Then, there exists an arrange-
ment A0 with defining polynomial whose linear factors have only real coefficients, and
M.A/ is diffeomorphic to M.A0/.

We begin by reviewing some necessary theorems and constructions from arrangements
and matroids. The constructions are explained in terms of the intersection lattice asso-
ciated to the arrangement. For more information about matroid theory see White [13].

3.1 Nice arrangements

Jiang and Yau [9] define the class of nice arrangements in CP2 and prove the following
theorem:

Theorem 3.2 [9, Main Theorem] If A is a nice arrangement and A0 is another
arrangement such that L.A/ŠL.A0/, then M.A/ is diffeomorphic to M.A0/.

In order to define nice arrangements, Jiang and Yau construct a graph associated to the
arrangement. We recall their definition and terminology here for convenience. We will
denote this graph by JY.A/ or simply by JY if the arrangement is understood. Let
VJY be the set of vertices of the graph and consist of all points of the arrangement with
multiplicity at least three. Let EJY denote the set of edges of JY. Any two vertices v
and w that span a line in the arrangement will be associated to a unique edge denoted
by .v; w/.

A reduced path of JY is an n–tuple .v1; : : : ; vn/ of vertices such that .vi ; viC1/ is
an edge in EJY and vi ; viC1; viC2 are not on the same line for i D 1; : : : ; n� 2. A
reduced circle is a reduced path such that v1D vn and the tuple is a reduced path upon
any re-indexing.
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For any vertex v0 2 VJY, the star of v0 is a subgraph of JY denoted by St.v0/

and consists of vertices VSt.v0/ D fv0g [ fv 2 VJY W .v; v0/ 2 EJYg and edges
ESt.v0/D f.v; w/ 2 EJY W vD v0 or wD v0; or v;wand v0 span the same line in Ag.

An arrangement is called nice if there exists v1; : : : ; vn 2 VJY such that St.v1/, : : : ,
St.vn/ are pairwise disjoint in JY and JY0 D JY�

Sn
iD1.ESt.vi/[fvig/ contains no

reduced circles.

Let A be an arrangement in CP2 such that the fundamental group of the complement
is a direct product of free groups. By Theorem 2.2, we have that F.A/ is a forest of
trees. One may see that F.A/ is a subgraph of JY.A/ and that adding the edges to
form JY.A/ will not introduce any reduced circles to the graph. Therefore we have
shown:

Theorem 3.3 If A is an arrangement of lines in CP2 such that �1.M.A// is isomor-
phic to a direct product of free groups, then A is a nice arrangement.

Remark 3.4 By Theorem 3.6 we may conclude that any two lattice isomorphic
arrangements with fundamental groups isomorphic to a direct product of free groups
will have diffeomorphic complements.

3.2 Truncation

In the following sections we use terminology and constructions involving the intersection
lattice of the arrangement. For more information on these from a matroid theoretic
point of view see White [13].

Let A be a central, essential arrangement in Cl . The truncation of the intersection
lattice is an operation that removes all elements of the lattice of rank l�1 and lowers the
rank of the top element to l�1. Geometrically, the truncation of an arrangement is the
arrangement formed by intersecting an arrangement A in Cl with a generic hyperplane
through the origin. A generic hyperplane is one that preserves the intersection lattice
from rank 0 to l � 2. The resulting arrangement is still central, and has intersection
lattice isomorphic to the truncation of L.A/.

The truncation of the lattice will be denoted by T .L.A//. If the repeated truncation
of the matroid of an arrangement A yields a arrangement in C3 such that the corre-
sponding arrangement in CP2 has nice combinatorics, we may denote the truncation
of the arrangement as T3.A/, and note that the arrangement is well-defined up to
diffeomorphism type. Note that if A is a complexified real arrangement, then T3.A/
is also a complexified real arrangement as we may choose the generic hyperplanes to
preserve the real structure of the arrangement.
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3.3 Parallel connection

We briefly describe the construction of parallel connection. For more information see
Falk [6], White [13] and Eschenbrenner and Falk [4].

A base-pointed lattice is a pair .L.A/;H / where H is a hyperplane in A. It will be
useful in the next construction to think of the flats of the intersection lattice as the set of
hyperplanes containing the subspace rather than as the intersection of the hyperplanes.

The parallel connection between base-pointed lattices .L.A1/;H1/ and .L.A2/;H2/

will be a base-pointed lattice

.P;H 0/ WD
�
P ..L.A1/;H1/; .L.A2/;H2// ;H

0
�

with rank one elements fH W H 2 A1 nH1; or H 2 A2 nH2g [ fH
0g. Using the

identification H 0 DH1 DH2 , we may take the flats of the lattice P to be

fK WK\A1 2L.A1/; and K\A2 2L.A2/g

The rank of a flat is given by rP .K/ D r1.K \A1/C r2.K \A2/� r1.K \ fH
0g/

where ri is the rank function associated to L.Ai/.

Given two arrangements, one may find an arrangement realizing the parallel connection
by the work of Eschenbrenner and Falk [4] and White [13]. Let A1 and A2 be
central arrangements with defining polynomials Q1 and Q2 , respectively. By a change
of coordinates, the hyperplane associated to the base-point is given by a coordinate
hyperplane in each polynomial, ie

Q1.x/D x1
yQ1.x1; : : : ;xn/;

Q2.y/D y1
yQ2.y1; : : : ;ym/:

In the parallel connection, the hyperplanes y1D 0 and x1D 0 will be identified. Define
a polynomial in coordinates .x1; : : : ;xn;y2; : : : ;ym/ by

QDQ1.x1; : : : ;xn/ yQ2.x1;y2; : : : ;ym/:

Then Q is a defining polynomial for an arrangement realizing the intersection lattice P

in CnCm�1 . Denote the arrangement resulting from parallel connection by

P ..A1;H1/; .A2;H2//:

Different choices of base-point in the parallel connection may yield nonisomorphic
lattices. However, as a corollary to Corollary 4.3 in a paper by Falk and Proudfoot [7],
one may prove the following theorem.
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Theorem 3.5 Let A1 and A2 be central arrangements of hyperplanes, let .L.A1/;H1/

and .L.A1/;H
0
1
/ be base-pointed lattices with different base-points associated to the ar-

rangement A1 , and let .L.A2/;H2/ be a base-pointed lattice associated to the arrange-
ment A2 . If A and A0 are realizations of the lattices P ..L.A1/;H1/; .L.A2/;H2//

and P ..L.A1/;H
0
1
/; .L.A2/;H2// respectively, then M.A/ and M.A0/ are diffeo-

morphic.

If AD P ..A1;H1/; .A2;H2// is an arrangement such that T 3.A/ is a matroid with
nice combinatorics, then we may define the 3–truncated parallel connection of A1;A2

by TP3..A1;H1/; .A2;H2//, and see that it is defined up to diffeomorphism type of
the complement.

The 3–truncated parallel connection has a simple geometric description if the initial
arrangements are in CP2 . In this case one may simply consider the arrangement result-
ing from identifying the arrangements along the base-point hyperplane and perturbing
the rest of the arrangements into general position with respect to each other, being sure
to maintain the respective intersection lattices. Passing to the associated arrangement
in C3 realizes the 3–truncated parallel connection. If the initial arrangements are
complexified-real arrangements, this operation may be performed so that the resulting
arrangement is complexified real as well. One simply needs to perform the identification
of the arrangements “far enough away” from the intersection points of the respective
arrangements.

3.4 Direct sums

Let A and A0 be arrangements in Cn and Cm respectively. The sum of the arrange-
ments is defined as

A˚A0 D fHi ˚Cm;Cn
˚Hj WHi 2A;Hj 2A0g

and is an arrangement in CnCm [11].

If T 3.A˚A0/ yields a matroid with nice combinatorics, we will call D3.A;A0/ WD
T3.A˚A0/ the 3–generic direct sum of A and A0 . The geometric description for
two arrangements in CP2 is to place the arrangements in projective space in general
position with respect to each other and consider the associated arrangement in C3 . If
the arrangements are complexified real arrangements, this operation may be performed
so that the resulting arrangement is also complexified real arrangement.

3.5 Construction

In this section we will prove the following:
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Theorem 3.6 Let A be an arrangement in CP2 such that �1.M.A// is isomorphic
to a direct product of free groups. Then there exists an arrangement B that may be
constructed by applying 3–truncated parallel connection and 3–generic direct sum
to a sequence of central, complexified-real arrangements in C2 , such that M.B/ is
diffeomorphic to M.A/ as arrangements in CP2 .

We divide the proof into a series of lemmas. For each of the lemmas, we let F denote
Fan’s graph of the arrangement. We also let A denote both the arrangement in CP2

and C3 . By Theorem 3.3 A has nice combinatorics, so we need only show that B and
A are lattice isomorphic.

Lemma 3.7 If F is an empty graph, then the arrangement B is constructed via a series
of 3–generic direct sums.

Proof If the graph is empty, then A has no higher order multiple points, ie all
hyperplanes intersect in double points. The lattice for the A is the rank three boolean
lattice on jAj elements. The arrangement may be realized by inductively applying
3–generic direct sums to the arrangement with defining polynomial Q.A/D x in C2 .
Denote the resulting arrangement by B and note that the lattices of A and B are
isomorphic.

Lemma 3.8 Suppose that F is a tree, and every hyperplane has at least one multiple
point. Then B is constructible via a series of 3–truncated parallel connections.

Proof We proceed by induction on the number of higher order multiple points, k , in
the arrangement (ie vertices in F.A/).

If k D 1, then, all hyperplanes meet at a single point. By choosing homogeneous
coordinates Œx W y W z� and applying a lattice isotopy deformation, we may assume the
arrangement is given by a defining polynomial QD zx.x�z/.x�2z/ � � � .x�.n�2/z/

in C3 .

Let A0 be the arrangement with defining polynomial Q but considered as an arrange-
ment in C2 . Let A00 be an arrangement in C2 consisting of one hyperplane. By
forming the parallel connection along the hyperplanes given by H 0 D Ker.z/ and
H 00 2A00 we have

B D TP3..A0;H 0/; .A00;H 00///
It follows that B and A have isomorphic lattices as the operation identifies H 00 with H 0 ,
adding no new elements to the lattice.
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Now assume the theorem holds for k � p and we will show it holds for pC 1. As the
graph is a forest of trees, we may assume that there is a vertex a such that a has only
one edge e emanating from it. The vertex a has mC 1� 3 hyperplanes containing it,
which we shall denote by fHig

m
iD0

, letting H0 denote the hyperplane corresponding to
the edge e . Consider the subarrangement A0 DA n fHig

m
iD1

. We may then associate
to A0 a graph F 0 in the sense of Fan such that F 0 is the graph F with the vertex a

and edge e removed.

The graph F 0 has p vertices and is a tree; therefore A0 is constructible via 3–truncated
parallel connection.

Let C denote the arrangement in C2 with polynomial Q.C/ D x.x � y/.x � 2y/

� � � .x�my/. Let H C
j DKer.x�jy/ We will now show that the intersection lattices of

B D TP3..C;H C
j /; .A

0;H0//

and A are isomorphic.

We first describe the elements of L.A/. The only rank 0 flat is the empty set,
L0.A/D f∅g. The rank 1 flats are fH g such that H 2A0 and fHig for 1 � i �m.
The rank 2 flats are B 2L2.A0/, fHig

m
iD0

and fH;Hig for all H 2A0 and 1� i �m.
(This follows from the fact that a is the only multiple point in CP2 that the Hi intersect
in; therefore, each Hi intersects any H 2 A0 in a double point). Finally, the only
rank 3 flat is the origin corresponding to the set of all hyperplanes.

The flats of B can be determined from the flats of rank zero, one and two arising in
the parallel connection of C and A0 . As the flats of C are ∅, fH C

0
g; : : : fH C

mg; and
fH C

0
; : : : ;H C

mg, we have the flats of T giving three different cases:

fK WK 2L.A0/g(1)

fK[fH
0

i g WK 2L.A0/;H0 …K; 1� i �mg(2)

fK[fH
0

0; : : : ;H
0

mg WK 2L.A0/g(3)

The flat K has rank zero, one, two. Note that we are identifying H0 DH C
0

.

Let rB ,rA0 , rC be the respective rank functions of B;A0; and C . Then for any closed
set J in the parallel connection we have

rB.J / WD rA0.J \A0/C rC.J \ C/� rC.J \fH0g/:

We now examine each case. In case (1), we have that rC.K\EC/� rC.K\H0/D 0.
If H0 2K , then H C

0
DH0 2K . Therefore case (1) produces all elements of Li.A0/

for i D 0; 1; 2.
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For case (2) we have

rB.K[fH
C
i g/D rA0.K/C rC.fH

C
i g/� rC.∅/

D rA0.K/C 1:

Thus, K may only be flats of rank zero or one in A0 , ie the empty set or consist of
one hyperplane.

Finally, in case (3) we have

rB.K[fH
C
0 ; : : : ;H

C
mg/D rA0.K[fH0g/C rC.fH

C
0 ; : : : ;H

C
mg/� rC.fH

C
0 g/

D rA0.K[fH0g/C 2� 1

D rA0.K[fH0g/C 1:

Thus K[fH0g must have rank zero or one. As the set is nonempty, it must have rank
one and therefore K D∅ or K D fH0g.

In summary, we have

� (1) produces all flats of rank zero, one or two from A0 .

� (2) produces rank one flats of the form fH g for H 2A0 or fH C
i g for 1� i �m.

� (3) produces the rank two flat fH C
0
; : : : ;H C

mg.

These are exactly the flats of A listed above with the same ranks, thus L.A/ and L.B/
are isomorphic and the lemma is proven.

Lemma 3.9 Suppose that F is a forest of trees, and every hyperplane has at least one
multiple point. Then B is constructible via a series of 3–truncated parallel connections
and 3–generic direct sums.

Proof Suppose that Fan’s graph has more than one component and each hyperplane
in the arrangement intersects one of these components in a point with multiplicity at
least three. By Lemma 3.8 each component is constructible via 3–truncated parallel
connection. Pairwise, the arrangements defining the components are in general position
in CP2 . Thus, any hyperplane in a fixed component intersects a hyperplane in a
different component in a point of multiplicity two. One can show that this is exactly the
3–generic direct sum of the arrangements corresponding to each component. Letting the
resulting arrangement be denoted by B , it follows immediately that L.B/ is isomorphic
to L.A/.
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Proof of Theorem 3.6 Let A0 denote the subarrangement of A formed by removing
all hyperplanes that only intersect the arrangement in double points, and let m D

jA nA0j. By Lemma 3.9, one may build an arrangement B0

such that L.B0

0
/ and

L.A0/ are isomorphic. Let C denote the arrangement of one hyperplane in C1 and
let B0

i DD3.B
0

i�1
; C/ for i D 1; : : : ;m. Then setting B D B0

m one can see L.B/ is
isomorphic to L.A/ and the theorem is proven.

As each step in the construction may be performed in such a way as to preserve the
real coefficients of the defining equations, we have the following corollary:

Corollary 3.10 Let A be an arrangement in CP2 such that the fundamental group
of M.A/ is isomorphic to a direct product of free groups. Then, there exists an
arrangement A0 such that A0 has a defining polynomial that factors into linear factors
such that each factor has only real coefficients, and M.A/ is diffeomorphic to M.A0/.

Remark 3.11 It is currently unknown if all arrangements with nice combinatorics
have real representations with diffeomorphic complements. Using techniques of geo-
metric addition and geometric multiplication, one may construct an arrangement with
a connected representation space, but no representation with only real coefficients. See
White [14] for the techniques and use x2Cy2 D�1 as the desired initial variety for a
representation space.

4 Homotopy type

Lemma 4.1 Any two affine nodal arrangements with isomorphic fundamental groups
have diffeomorphic complements.

Proof An affine nodal arrangement has nice combinatorics, and the intersection lattice
is determined by the fundamental group. Therefore by Theorem 3.2, the complements
of the arrangements are diffeomorphic.

Theorem 4.2 Let A be an arrangement in CP2 such that �1.M.A// is isomorphic to
a direct product of free groups.. Then M.A/ has the homotopy type of the complement
of an affine nodal arrangement.

Proof By Theorem 3.3 and Corollary 3.10, we know that A has nice combinatorics
and may assume that A is a complexified real arrangement. Let F D F.A/ be Fan’s
graph for the arrangement A. We will let dA denote the arrangement in C2 that
results by letting any line H 2 A be the line at infinity, and we may assume there
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are no vertical lines in the arrangement. We will proceed by induction on the number
of vertices in F that are not contained in H (ie the number of higher order multiple
points in the arrangement dA).

If the number of vertices is zero, then we are done. In this case, all vertices (higher
order multiple points) lie on the line at infinity, thus the lines intersect in only double
points. This is the definition of an affine nodal arrangement, hence M.A/ has the
homotopy type of an affine nodal arrangement.

Now, let k denote the number of vertices in the arrangement and suppose k > 0. In this
case, at least one of the vertices must be an endpoint or isolated point of F . Suppose
not, then all vertices v in F \dA have two edges. Therefore, we have a loop in the
graph in F \dA or there is a loop going through a point on H . In either case, this is
a contradiction as F is a forest of trees.

Let v be some vertex that is an endpoint or isolated point. In either case, let H1[fH
0
ig

m
iD2

be the lines intersecting at v . If v is an endpoint, we let H1 be the line containing the
edge of the graph. If v is an isolated point, we let H1 be any of the lines.

Let BD dAnfH 0
2
; : : : ;H 0mg and let P be the set of points of B of multiplicity at least

two. As B is a complexified-real arrangement, one may choose a real number N such
that for all points in P , the x–coordinate of the point is less than N . We now let q be
the point on the line H1 with x–coordinate equal to N C 1. Next, we choose lines
H2; : : : ;Hm through q satisfying the following conditions:

� Each line Hi has negative slope. Also, the slope of HiC1 is less than the slope
of Hi .

� For all H 2 B n fH1g, the point H \Hi has multiplicity two and the multiple
points on Hi have x–coordinates greater than N .

If C D B[fH2; : : : ;Hmg, then we can see that L.dA/ is isomorphic to L.C/, thus
M.dA/ is homeomorphic to M.C/ by Theorem 3.6. See Figure 1.

Therefore, after possibly performing some transformations of types (i) and (iii) we
have a Arvola–Randell presentation given by˝

h1; : : : ; hm; b1; : : : ; bj W Œhi ; bl �; Œh1; h2; : : : ; hm�;RB
˛

where 2� i �m; 1� l � j and RB are relators from the Arvola–Randell presentation
for B . One should also note that any word in RB is written in terms of bi ’s and h1 .
The generators fhig correspond to small meridional loops around each H 0i and the
generators fblg correspond to meridional loops around each line in B . (The base point
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Figure 1: These arrangements have diffeomorphic complements and isomor-
phic lattices.

for these loops lies in a generic line y DM , with M �N C 1.) Finally, we note that
the bracket Œh1; h2; : : : ; hm� stands for the relations:

h1h2 � � � hm D h2 � � � hmh1 D � � � D hmh1 � � � hm�1:

We apply a transformation of type (ii) inverse by adding a generator b0 and rela-
tor of the form b0.h1h2 � � � hm/

�1 and replacing every occurrence of h1h2 � � � hm

by b0 . Next, apply a transformation of type (ii) by deleting h1 and the relator
h1.b0h�1

m h�1
m�1
� � � h�1

2
/�1 . We finish the transformation by replacing every occurrence

of h1 by .b0h�1
m � � � h

�1
2
/. The resulting presentation is˝

h2; : : : ; hm; b0; b1; : : : ; bj W Œhi ; bl �; Œb0h�1
m � � � h

�1
2 ; h2; : : : ; hm�;RB;b0;hi

˛
Applying transformations of types (i) and (iii) to Œb0h�1

m � � � h
�1
2
; h2; : : : ; hm� results in

commutators Œb0; hi � for 2� i �m. As all hi ’s commute with all bl ’s, all of the hi ’s
may be removed from relators in RB;b0;hi

via transformation of types (i) and (iii). The
end result is a set of relators RB;b0

that are identical to the relators in RB except the
letter h1 has been changed to the letter b0 .

Therefore, we have a presentation of the form

P WD
˝
h2; : : : ; hm; b0; b1; : : : ; bj W Œhi ; bl �;RB;b0

˛
where 2� i �m; 0� l � j and RB;b0

is a set of relators that do not involve any hi .
As we have performed transformations that do not change the homotopy type of the
associated 2–complex, we know that M.C/ is homotopy equivalent to the canonical
2–complex constructed from P .

Now consider the arrangement DD B[fG2; : : :Gmg where Gi are parallel lines that
intersect the arrangement B in points of multiplicity two. One may choose these lines
such that they intersect all lines in B in points with x–coordinate greater than N .
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Therefore, the Arvola–Randell presentation for the fundamental group of is given by

P 0 WD
˝
g2; : : : ;gm; b0; b1; : : : ; bj W Œgi ; bl �;RB;b0

˛
where 2� i �m; 0� l � j and RB;b0

is a set of relators that do not involve any gi . As
P and P 0 differ by a change of letters, the 2–complexes associated to the presentations
are homotopy equivalent, thus M.C/ and M.D/ are homotopy equivalent.

As Fan’s graph associated to D has k � 1 multiple points, by induction we conclude
that M.D/ has the homotopy type of some affine nodal arrangement. Therefore,

M.A/ŠM.C/�M.D/

and we conclude that M.A/ is homotopy equivalent to the complement of an affine
nodal arrangement.

Corollary 4.3 (Theorem 1.2 from the Introduction) Let A1 and A2 be arrangements
in CP2 such that �1.M.A1//Š�1.M.A2/ and �1.M.A1// is isomorphic to a direct
product of free groups. Then M.A1/ and M.A2/ are homotopy equivalent.

Proof Let A3 be an affine nodal arrangement in C2 such that �1.M.A3// Š

�1.M.A1//. By Theorem 4.2, M.A1/ is homotopy equivalent to M.A3/, and
M.A2/ is homotopy equivalent to M.A3/. Thus, we have the theorem.

5 Examples

Example 5.1 Falk [5] gives two arrangements in C3 with defining polynomials

Q.A1/D .xCy/.x�y/y.xC z/.x� z/z

R.A2/D .xC z/.x� z/z.yC z/.y � z/.x�y � z/:

Deconing with respect to the hyperplane defined by zD0 yields the affine arrangements
depicted in Figure 2.

These arrangements are the first in an infinite family of pairs of arrangements in C3

such that each pair has homotopy equivalent complements. However, for each pair, the
fundamental group of the complement is isomorphic to Z�Z�Fp �Fq where Fn is
the free group on n generators. In the example given, �1.M.A1//ŠZ�Z�F2�F2 .

Example 5.2 Consider the arrangements depicted in Figure 3. We will show explicitly
the sequence of transformations between the Arvola–Randell presentations of the
fundamental groups.
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dA1 dA2

Figure 2: Arrangements from [5] that have homotopy equivalent complements

c

d

w

v

a

bdA1

d

c

f

e

a b

dA2

Figure 3: Arrangements that have homotopy equivalent complements

The presentations are given by

�1.M.dA1//Š

�
a; b; c; d; v; w

Œb; d �; Œa; c�; Œb; w�; Œa; v; b�; Œb; c�;

Œa; w�; Œc; vb �; Œa; d �; Œc; w; d �; Œd; vb �

�
�1.M.dA2//Š

�
a; b; c; d; e; f

Œa; c�; Œa; d �; Œa; e�; Œa; f �; Œb; c�; Œb; d �;

Œb; e�; Œb; f �; Œc; e�; Œc; f �; Œd; e�; Œd; f �

�
We will apply transformations to the presentation of �1.M.dA2// and find that we
have the same presentation as given for �1.M.dA1//. We first employ transformations
of types (i) and (iii) to remove the conjugations from the commutators (ie replace Œc; vb �

by Œc; v� and replace Œd; vb � by Œd; v� as Œb; c� and Œb; d � are relations).

We next apply a transformation of type (ii) and type (ii) inverse by adding the generator e

and relation eDvba, then removing the generator v by rewriting vDeb�1a�1 . Finally,
apply a transformation of type (ii) and type (ii) inverse using the substitution f Dwxu

and removing w via the relation w D f u�1x�1 . This will result in the presentation
given for �1.M.dA1//.
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Example 5.3 Consider the arrangements defined by the polynomials

Q.A1/D xyz.y � 2x/.xC z/.yC z/.2x� 3y � 6z/.4x� 5y � 10z/

Q.A2/D xyz.y � 2x/.xC z/.yC z/.2x� 3y � 6z/.6x� 8y � 17z/:

In Figure 4 we have depicted the decones of the arrangements with respect to z D 0.

dA1 dA2

Figure 4: Arrangements that have homotopy equivalent complements. The
fundamental group of the complement is not a direct product of free groups.

These arrangements arise as two dimensional generic sections of a pair of combinatori-
ally distinct yet diffeomorphic arrangements in C4 by techniques in Eschenbrenner and
Falk [4]. Therefore, by the Lefschetz theorem we know that the fundamental groups
are isomorphic.

By using transformations of types (i), (ii) and (iii) one may see that the Arvola–Randell
presentations for the fundamental groups are equivalent, thus the complements of the
arrangements are homotopy equivalent. However, by Theorem 2.2 the fundamental
group is not a direct product of free groups.

This last example leads naturally to the following questions:

Question 1 Will any two line arrangement complements with isomorphic fundamental
groups be homotopy equivalent?

Question 2 Are all examples of such arrangements consequences of the 3–generic
direct sum and parallel connection operations?
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[1] A D R Choudary, A Dimca, Ş Papadima, Some analogs of Zariski’s theorem on nodal

line arrangements, Algebr. Geom. Topol. 5 (2005) 691–711 MR2153112

Algebraic & Geometric Topology, Volume 11 (2011)

http://dx.doi.org/10.2140/agt.2005.5.691
http://dx.doi.org/10.2140/agt.2005.5.691
http://www.ams.org/mathscinet-getitem?mr=2153112


604 Kristopher Williams

[2] D C Cohen, A I Suciu, The braid monodromy of plane algebraic curves and hyperplane
arrangements, Comment. Math. Helv. 72 (1997) 285–315 MR1470093

[3] M Eliyahu, E Liberman, M Schaps, M Teicher, The characterization of a line ar-
rangement whose fundamental group of the complement is a direct sum of free groups,
Algebr. Geom. Topol. 10 (2010) 1285–1304 MR2661527

[4] C J Eschenbrenner, M J Falk, Orlik–Solomon algebras and Tutte polynomials, J.
Algebraic Combin. 10 (1999) 189–199 MR1719136

[5] M Falk, Homotopy types of line arrangements, Invent. Math. 111 (1993) 139–150
MR1193601

[6] M Falk, Combinatorial and algebraic structure in Orlik–Solomon algebras, from:
“Combinatorial geometries (Luminy, 1999)”, European J. Combin. 22 (2001) 687–698
MR1845492

[7] M J Falk, N J Proudfoot, Parallel connections and bundles of arrangements, from:
“Arrangements in Boston: a Conference on Hyperplane Arrangements (1999)”, Topology
Appl. 118 (2002) 65–83 MR1877716

[8] K-M Fan, Direct product of free groups as the fundamental group of the complement
of a union of lines, Michigan Math. J. 44 (1997) 283–291 MR1460414

[9] T Jiang, S S-T Yau, Diffeomorphic types of the complements of arrangements of
hyperplanes, Compositio Math. 92 (1994) 133–155 MR1283226

[10] A Libgober, On the homotopy type of the complement to plane algebraic curves, J.
Reine Angew. Math. 367 (1986) 103–114 MR839126

[11] P Orlik, H Terao, Arrangements of hyperplanes, Grund. der Math. Wissenschaften
300, Springer, Berlin (1992) MR1217488

[12] G Rybnikov, On the fundamental group of the complement of a complex hyperplane
arrangement arXiv:math/9805056

[13] N White, editor, Theory of matroids, Encyclopedia of Math. and its Appl. 26, Cam-
bridge Univ. Press (1986) MR849389

[14] N White, editor, Combinatorial geometries, Encyclopedia of Math. and its Applica-
tions 29, Cambridge Univ. Press (1987) MR921064

Department of Mathematics, University of Iowa
14 MacLean Hall, Iowa City 52242, USA

kristopher-williams@uiowa.edu

http://math.uiowa.edu/~kjwillia

Received: 8 October 2010 Revised: 9 December 2010

Algebraic & Geometric Topology, Volume 11 (2011)

http://dx.doi.org/10.1007/s000140050017
http://dx.doi.org/10.1007/s000140050017
http://www.ams.org/mathscinet-getitem?mr=1470093
http://dx.doi.org/10.2140/agt.2010.10.1285
http://dx.doi.org/10.2140/agt.2010.10.1285
http://www.ams.org/mathscinet-getitem?mr=2661527
http://dx.doi.org/10.1023/A:1018735815621
http://www.ams.org/mathscinet-getitem?mr=1719136
http://dx.doi.org/10.1007/BF01231283
http://www.ams.org/mathscinet-getitem?mr=1193601
http://dx.doi.org/10.1006/eujc.2000.0488
http://www.ams.org/mathscinet-getitem?mr=1845492
http://dx.doi.org/10.1016/S0166-8641(01)00042-6
http://www.ams.org/mathscinet-getitem?mr=1877716
http://dx.doi.org/10.1307/mmj/1029005704
http://dx.doi.org/10.1307/mmj/1029005704
http://www.ams.org/mathscinet-getitem?mr=1460414
http://www.numdam.org/item?id=CM_1994__92_2_133_0
http://www.numdam.org/item?id=CM_1994__92_2_133_0
http://www.ams.org/mathscinet-getitem?mr=1283226
http://dx.doi.org/10.1515/crll.1986.367.103
http://www.ams.org/mathscinet-getitem?mr=839126
http://www.ams.org/mathscinet-getitem?mr=1217488
http://arxiv.org/abs/math/9805056
http://dx.doi.org/10.1017/CBO9780511629563
http://www.ams.org/mathscinet-getitem?mr=849389
http://www.ams.org/mathscinet-getitem?mr=921064
mailto:kristopher-williams@uiowa.edu
http://math.uiowa.edu/~kjwillia

	1. Introduction
	2. Arrangements and direct products of free groups
	2.1. Fundamental group of arrangement complements
	2.2. Fan's graph
	2.3. Affine nodal arrangements

	3. Diffeomorphism type
	3.1. Nice arrangements
	3.2. Truncation
	3.3. Parallel connection
	3.4. Direct sums
	3.5. Construction

	4. Homotopy type
	5. Examples
	References

