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We prove a systolic inequality for a �–relative systole of a �–essential 2–complex X ,
where �W �1.X /!G is a homomorphism to a finitely presented group G . Thus, we
show that universally for any �–essential Riemannian 2–complex X , and any G ,
the following inequality is satisfied: sys.X; �/2 � 8Area.X / . Combining our results
with a method of L Guth, we obtain new quantitative results for certain 3–manifolds:
in particular for the Poincaré homology sphere † , we have sys.†/3 � 24Vol.†/ .
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1 Relative systoles

We prove a systolic inequality for a �–relative systole of a �–essential 2–complex X ,
where �W �1.X /!G is a homomorphism to a finitely presented group G . Thus, we
show that universally for any �–essential Riemannian 2–complex X , and any G , we
have sys.X; �/2 � 8 Area.X /. Combining our results with a method of L Guth, we
obtain new quantitative results for certain 3–manifolds: in particular for the Poincaré
homology sphere †, we have sys.†/3� 24 Vol.†/. To state the results more precisely,
we need the following definition.

Let X be a finite connected 2–complex. Let �W �1.X /!G be a group homomorphism.
Recall that � induces a classifying map (defined up to homotopy) X !K.G; 1/.

Definition 1.1 The complex X is called �–essential if the classifying map X !

K.G; 1/ cannot be homotoped into the 1–skeleton of K.G; 1/.

Definition 1.2 Given a piecewise smooth Riemannian metric on X , the �–relative
systole of X , denoted sys.X; �/, is the least length of a loop of X whose free homotopy
class is mapped by � to a nontrivial class.
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When � is the identity homomorphism of the fundamental group, the relative systole
is simply called the systole, and denoted sys.X /.

Definition 1.3 The �–systolic area ��.X / of X is defined as

��.X /D
Area.X /

sys.X; �/2
:

Furthermore, we set
��.G/D inf

X ;�
��.X /;

where the infimum is over all �–essential piecewise Riemannian finite connected
2–complexes X , and homomorphisms � with values in G .

In the present text, we prove a systolic inequality for the �–relative systole of a �–
essential 2–complex X . More precisely, in the spirit of Guth’s text [18], we prove
a stronger, local version of such an inequality, for almost extremal complexes with
minimal first Betti number. Namely, if X has a minimal first Betti number among
all �–essential piecewise Riemannian 2–complexes satisfying ��.X /� ��.G/C" for
an " > 0, then the area of a suitable disk of X is comparable to the area of a Euclidean
disk of the same radius, in the sense of the following result.

Theorem 1.4 Let " > 0. Suppose X has a minimal first Betti number among all �–
essential piecewise Riemannian 2–complexes satisfying ��.X / � ��.G/C ". Then
each ball centered at a point x on a �–systolic loop in X satisfies the area lower bound

Area B.x; r/�
.r � "1=3/2

2C "1=3

whenever r satisfies "1=3 � r � 1
2

sys.X; �/.

A more detailed statement appears in Proposition 8.2. The theorem immediately implies
the following systolic inequality.

Corollary 1.5 Every finitely presented group G satisfies

��.G/�
1

8
;

so that every piecewise Riemannian �–essential 2–complex X satisfies the inequality

sys.X; �/2 � 8 Area.X /:
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In the case of the absolute systole, we prove a similar lower bound with a Euclidean
exponent for the area of a suitable disk, when the radius is smaller than half the systole,
without the assumption of near-minimality. Namely, we will prove the following
theorem.

Theorem 1.6 Every piecewise Riemannian essential 2–complex X admits a point
x 2X such that the area of the r –ball centered at x is at least r2 , that is,

(1-1) Area.B.x; r//� r2;

for all r � 1
2

sys.X /.

We conjecture a bound analogous to (1-1) for the area of a suitable disk of a �–essential
2–complex X , with the �–relative systole replacing the systole; cf the GG–property
below. The application we have in mind is in the case when �W �1.X /! Zp is a
homomorphism from the fundamental group of X to a finite cyclic group. Note that the
conjecture is true in the case when � is a homomorphism to Z2 , by Guth’s result [18].

Definition 1.7 (GG–property1) Let C > 0. Let X be a finite connected 2–complex,
and �W �1.X /!G , a group homomorphism. We say that X has the GGC –property
for � if every piecewise smooth Riemannian metric on X admits a point x 2X such
that the r –ball of X centered at x satisfies the bound

(1-2) Area B.x; r/� C r2;

for every r � 1
2

sys.X; �/.

Note that if the 2–complex X is "–almost minimal, ie, satisfies the bound ��.X /�
G�.G/C ", and has least first Betti number among all such complexes, then it satis-
fies (1-2) for some C > 0 and for r � "1=3 by Theorem 1.4.

Modulo such a conjectured bound, we prove a systolic inequality for closed 3–manifolds
with finite fundamental group.

Theorem 1.8 Let p � 2 be a prime. Assume that every �–essential 2–complex has
the GGC –property (1-2) for each homomorphism � into Zp and for some universal
constant C > 0. Then every orientable closed Riemannian 3–manifold M with finite
fundamental group of order divisible by p satisfies the bound

sys.M /3 � 24C�1 Vol.M /:

More precisely, there is a point x 2M such that the volume of every r –ball centered
at x is at least .C=3/r3 , for all r � 1

2
sys.M /.

1GG–property stands for the property analyzed by M Gromov and L Guth.
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A slightly weaker bound can be obtained modulo a weaker GG–property, where the
point x is allowed to depend on the radius r .

Since the GG–property is available for p D 2 and C D 1 by Guth’s article [18], we
obtain the following corollary.

Corollary 1.9 Every closed Riemannian 3–manifold M with fundamental group of
even order satisfies

(1-3) sys.M /3 � 24 Vol.M /:

For example, the Poincaré homology 3–sphere satisfies the systolic inequality (1-3).

In the next section, we present related developments in systolic geometry and compare
some of our arguments in the proof of Theorem 1.8 to Guth’s in [18]; cf Remark
2.1. Additional recent developments in systolic geometry include Ambrosio and
Katz [1], Babenko and Balacheff [3], Balacheff [4], Bangert et al [5], Belolipetsky and
Thomson [6], Berger [7], Brunnbauer [9; 9; 10], Dranishnikov, Katz and Rudyak [12],
Dranishnikov and Rudyak [13], El Mir [14], El Mir and Lafontaine [15], Guth [18],
Katz and Katz [22; 21], Katz [24], Katz and Rudyak [25], Katz, Schaps and Vishne [27],
Katz and Shnider [28], Nabutovsky and Rotman [30], Parlier [31], Rotman [33], Rudyak
and Sabourau [34], and Sabourau [35; 36].

Acknowledgements Michael G Katz was supported by the Binational Science Foun-
dation (grant 2006393). Shmuel Weinberger was partially supported by NSF grant
DMS 0805913 and the Binational Science Foundation (grant 2006393).

2 Recent progress on Gromov’s inequality

M Gromov’s upper bound for the 1–systole of an essential manifold M [16] is a
central result of systolic geometry. Gromov’s proof exploits the Kuratowski imbedding
of M in the Banach space L1 of bounded functions on M . A complete analytic
proof of Gromov’s inequality [16], but still using the Kuratowski imbedding in L1 ,
was recently developed by L Ambrosio and the second author [1]. See also Ambrosio
and Wenger [2].

S Wenger [40] gave a complete analytic proof of an isoperimetric inequality between the
volume of a manifold M , and its filling volume, a result of considerable independent
interest. On the other hand, his result does not directly improve or simplify the proof
of Gromov’s main filling inequality for the filling radius. Note that both the filling
inequality and the isoperimetric inequality are proved simultaneously by Gromov, so
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that proving the isoperimetric inequality by an independent technique does not directly
simplify the proof of either the filling radius inequality, or the systolic inequality.

L Guth [17] gave a new proof of Gromov’s systolic inequality in a strengthened local
form. Namely, he proved Gromov’s conjecture that every essential manifold with unit
systole contains a ball of unit radius with volume uniformly bounded away from zero.

Most recently, Guth [18] reproved a significant case of Gromov’s systolic inequality [16]
for essential manifolds, without using Gromov’s filling invariants.

Actually, in the case of surfaces, Gromov himself had proved better estimates, without
using filling invariants, by sharpening a technique independently due to Y Burago and
V Zalgaller [11, page 43] and J Hebda [20]. Here the essential idea is the following.

Let 
 .s/ be a minimizing noncontractible closed geodesic of length L in a surface S ,
where the arclength parameter s varies through the interval Œ�L=2;L=2�. We consider
metric balls (metric disks) B.p; r/� S of radius r <L=2 centered at p D 
 .0/. The
two points 
 .r/ and 
 .�r/ lie on the boundary sphere (boundary curve) @B.p; r/ of
the disk. If the points lie in a common connected component of the boundary (which
is necessarily the case if S is a surface and LD sys.S/, but may fail if S is a more
general 2–complex), then the boundary curve has length at least 2r . Applying the
coarea formula

(2-1) Area B.p; r/D

Z r

0

length @B.p; �/ d�;

we obtain a lower bound for the area which is quadratic in r .

Guth’s idea is essentially a higher-dimensional analogue of Hebda’s, where the mini-
mizing geodesic is replaced by a minimizing hypersurface. Some of Guth’s ideas go
back to the even earlier texts by Schoen and Yau [37; 38].

The case handled in [18] is that of n–dimensional manifolds of maximal Z2 –cuplength,
namely n. Thus, Guth’s theorem covers both tori and real projective spaces, directly
generalizing the systolic inequalities of Loewner and Pu; see Pu [32] and Katz [23] for
details.

Remark 2.1 To compare Guth’s argument in his text [18] and our proof of Theorem 1.8,
we observe that the topological ingredient of Guth’s technique exploits the multiplicative
structure of the cohomology ring H�.Z2IZ2/DH�.RP1IZ2/. This ring is generated
by the 1–dimensional class. Thus, every n–dimensional cohomology class decomposes
into the cup product of 1–dimensional classes. This feature enables a proof by induction
on n.
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Meanwhile, for p odd, the cohomology ring H�.ZpIZp/ is not generated by the 1–
dimensional class; see Proposition 9.1 for a description of its structure. Actually, the
square of the 1–dimensional class is zero, which seems to yield no useful geometric
information.

Another crucial topological tool used in the proof of [18] is Poincaré duality which
can be applied to the manifolds representing the homology classes in H�.Z2IZ2/.
For p odd, the homology classes of H2k.ZpIZp/ cannot be represented by manifolds.
One could use D Sullivan’s notion of Zp –manifolds (cf [39; 29]) to represent these
homology class, but they do not satisfy Poincaré duality.

Finally, we mention that, when working with cycles representing homology classes
with torsion coefficients in Zp , we exploit a notion of volume which ignores the
multiplicities in Zp ; cf Definition 10.3. This is a crucial feature in our proof. Note
that minimal cycles with torsion coefficients were studied by B White [41].

3 Area of balls in 2–complexes

It was proved in [16] and [26] that a finite 2–complex admits a systolic inequality
if and only if its fundamental group is nonfree, or equivalently, if it is �–essential
for � D Id.

In [26], we used an argument by contradiction, relying on an invariant called tree energy,
to prove a bound for the systolic ratio of a 2–complex. We present an alternative short
proof which yields a stronger result and simplifies the original argument.

Theorem 3.1 Let X be a piecewise Riemannian finite essential 2–complex. There
exists x 2 X such that the area of every r –ball centered at x is at least r2 for
every r � 1

2
sys.X /.

As mentioned in the introduction, we conjecture that this result still holds for �–essential
complexes and with the �–relative systole in place of sys.

Proof We can write the Grushko decomposition of the fundamental group of X as

�1.X /DG1 � � � � �Gr �F;

where F is free, while each group Gi is nontrivial, nonisomorphic to Z, and not
decomposable as a nontrivial free product.

Consider the equivalence class ŒG1� of G1 under external conjugation in �1.X /. Let 

be a loop of least length representing a nontrivial class Œ
 � in ŒG1�. Fix x 2 
 and a
copy of G1 � �1.X;x/ containing the homotopy class of 
 . Let xX be the cover of X

with fundamental group G1 .
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Lemma 3.2 We have sys. xX /D length.
 /.

Proof The loop 
 lifts to xX by construction of the subgroup G1 . Thus, sys. xX / �
length.
 /. Now, the cover xX does not contain noncontractible loops ı shorter than 
 ,
because such loops would project to X so that the nontrivial class Œı� maps into ŒG1�,
contradicting our choice of 
 .

Continuing with the proof of the theorem, let xx 2 xX be a lift of x . Consider the
level curves of the distance function from xx . Note that such curves are necessarily
connected, for otherwise one could split off a free-product-factor Z in �1. xX /DG1

(cf [26, Proposition 7.5]) contradicting our choice of G1 . In particular, the points 
 .r/
and 
 .�r/ can be joined by a path contained in the curve at level r . Applying the
coarea formula (2-1), we obtain a lower bound Area B.xx; r/ � r2 for the area of
an r –ball B.xx; r/� xX , for all r � 1

2
length.
 /D 1

2
sys. xX /.

If, in addition, we have r � 1
2

sys.X / (which apriori might be smaller than 1
2

sys. xX /),
then the ball projects injectively to X , proving that

Area.B.x; r/�X /� r2

for all r � 1
2

sys.X /.

4 Outline of argument for relative systole

Let X be a piecewise Riemannian connected 2–complex, and assume X is �–essential
for a group homomorphism �W �1.X /! G . We would like to prove an area lower
bound for X , in terms of the �–relative systole as in Theorem 3.1. Let x 2 X .
Denote by B D B.x; r/ and S D S.x; r/ the open ball and the sphere (level curve)
of radius r centered at x with r < 1

2
sys.X; �/. Consider the interval I D Œ0;L=2�,

where LD length.S/.

Definition 4.1 We consider the complement X nB , and attach to it a buffer cylinder
along each connected component Si of S . Here a buffer cylinder with base Si is the
quotient

Si � I=�

where the relation � collapses each subset Si � f0g to a point xi . We thus obtain the
space

.Si � I=�/[f .X nB/ ;
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where the attaching map f identifies Si �fL=2g with Si �X nB . To ensure the con-
nectedness of the resulting space, we attach a cone CA over the set of points AD fxig.
We set the length of the edges of the cone CA equal to sys.X; �/. We will denote by

(4-1) Y D Y .x; r/

the resulting 2–complex. The natural metrics on X nB and on the buffer cylinders
induce a metric on Y .

In Section 5, we show that Y is  –essential for some homomorphism  W �1.Y /!G

derived from � . The purpose of the buffer cylinder is to ensure that the relative systole
of Y is at least as large as the relative systole of X . Note that the area of the buffer
cylinder is L2=2.

We normalize X to unit relative systole and take a point x on a relative systolic loop
of X . Suppose X has a minimal first Betti number among the complexes essential
in K.G; 1/ with almost minimal systolic area (up to epsilon). We sketch below the
proof of the local relative systolic inequality satisfied by X .

If for every r , the space Y D Y .x; r/ has a greater area than X , then

Area B.r/� 1
2
.length S.r//2

for every r < 1
2

sys.X; �/. Using the coarea inequality, this leads to the differential
inequality y.r/� 1

2
y0.r/2 . Integrating this relation shows that the area of B.r/ is at

least r2=2, and the conclusion follows.

If for some r , the space Y has a smaller area than X , we argue by contradiction.
We show that a �–relative systolic loop of X (passing through x ) meets at least two
connected components of the level curve S.r/. These two connected components
project to two endpoints of the cone CA connected by an arc of Y nCA. Under this
condition, we can remove an edge e from CA so that the space Y 0 D Y n e has a
smaller first Betti number than X . Here Y 0 is still essential in K.G; 1/, and its relative
systolic area is better than the relative systolic area of X , contradicting the definition
of X .

5 First Betti number and essentialness of Y

Let G be a fixed finitely presented group. We are mostly interested in the case of a finite
group GDZp . Unless specified otherwise, all group homomorphisms have values in G ,
and all complexes are assumed to be finite. Consider a homomorphism �W �1.X /!G

from the fundamental group of a piecewise Riemannian finite connected 2–complex X

to G .
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Definition 5.1 A loop 
 in X is said to be �–contractible if the image of the homotopy
class of 
 by � is trivial, and �–noncontractible otherwise. Thus, the �–systole of X ,
denoted by sys.X; �/, is defined as the least length of a �–noncontractible loop in X .
Similarly, the �–systole based at a point x of X , denoted by sys.X; �;x/, is defined
as the least length of a �–noncontractible loop based at x .

The following elementary result will be used repeatedly in the sequel.

Lemma 5.2 If r < 1
2

sys.X; �;x/, then the �1 –homomorphism i� induced by the
inclusion B.x; r/ � X is trivial when composed with � , that is � ı i� D 0. More
specifically, every loop in B.x; r/ is homotopic to a composition of loops based at x

of length at most 2r C ", for every " > 0.

Without loss of generality, we may assume that the piecewise Riemannian metric on X

is piecewise flat. Let x0 2X . The piecewise flat 2–complex X can be embedded into
some RN as a semialgebraic set and the distance function f from x0 is a continuous
semialgebraic function on X (cf [8]). Thus, .X;B/ is a CW–pair when B is a ball
centered at x0 (see also [26, Corollary 6.8]). Furthermore, for almost every r , there
exists a � > 0 such that the set

fx 2X j r � � < f .x/ < r C �g

is homeomorphic to S.x0; r/� .r ��; rC�/ where S.x0; r/ is the r –sphere centered
at x0 and the t –level curve of f corresponds to S.x0; r/�ftg; see [8, ~ 9.3] and [26]
for a precise description of level curves on X . In such case, we say that r is a regular
value of f .

Consider the connected 2–complex Y DY .x0; r/ introduced in Definition 4.1, with r <
1
2

sys.X; �/ and r regular. Since r is a regular value, there exists r� 2 .0; r/ such
that B nB.x0; r�/ is homeomorphic to the product

S � Œr�; r/D
a

i

Si � Œr�; r/:

Consider the map

(5-1) � W X ! Y

which leaves X nB fixed, takes B.x0; r�/ to the vertex of the cone CA, and sends Bn

B.x0; r�/ to the union of the buffer cylinders and CA. This map induces an epimor-
phism between the first homology groups. In particular,

(5-2) b1.Y /� b1.X /:
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Lemma 5.3 If r < 1
2

sys.X; �/, then Y is  –essential for some homomorphism
 W �1.Y /!G such that

(5-3)  ı�� D �

where �� is the �1 –homomorphism induced by � W X ! Y .

Proof Consider the CW–pair .X;B/ where B D B.x0; r/. By Lemma 5.2, the
restriction of the classifying map 'W X !K.G; 1/ induced by � to B is homotopic
to a constant map. Thus, the classifying map ' extends to X [CB and splits into

X ,!X [CB!K.G; 1/;

where CB is a cone over B �X and the first map is the inclusion map. Since X [CB

is homotopy equivalent to the quotient X=B (see Hatcher [19, Example 0.13]), we
obtain the following decomposition of ' up to homotopy:

(5-4) X
�
�! Y !X=B!K.G; 1/:

Hence,  ı �� D � for the �1 –homomorphism  W �1.Y / ! G induced by the
map Y !K.G; 1/. If the map Y !K.G; 1/ can be homotoped into the 1–skeleton
of K.G; 1/, the same is true for

X ! Y !K.G; 1/

and so for the homotopy equivalent map ' , which contradicts the �–essentialness
of X .

6 Exploiting a “fat” ball

We normalize the �–relative systole of X to one, ie sys.X; �/D 1. Choose a fixed ı 2
.0; 1

2
/ (close to 0) and a real parameter � > 1

2
(close to 1

2
).

Proposition 6.1 Suppose there exist a point x0 2 X and a value r0 2 .ı;
1
2
/ regular

for f such that

(6-1) Area B > �.length S/2

where B D B.x0; r0/ and S D S.x0; r0/. Then there exists a piecewise flat metric
on Y D Y .x0; r0/ such that the systolic areas (see Definition 1.3) satisfy

� .Y /� ��.X /:
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Proof Consider the metric on Y described in Definition 4.1. Strictly speaking, the
metric on Y is not piecewise flat since the connected components of S are collapsed
to points, but it can be approximated by piecewise flat metrics.

Due to the presence of the buffer cylinders, every loop of Y of length less than sys.X; �/
can be deformed into a loop of X nB without increasing its length. Thus, by (5-3),
one obtains

sys.Y;  /� sys.X; �/D 1:

Furthermore, we have

Area Y � Area X �Area BC 1
2
.length S/2:

Combined with the inequality (6-1), this leads to

(6-2) � .Y / < ��.X /� .��
1
2
/.length S/2:

Hence, � .Y /� ��.X /, since � > 1
2

.

7 An integration by separation of variables

Let X be a piecewise Riemannian finite connected 2–complex. Let �W �1.X /!G

be a nontrivial homomorphism to a group G . We normalize the metric to unit relative
systole: sys.X; �/D 1. The following area lower bound appeared in [34, Lemma 7.3].

Lemma 7.1 Let x 2X , � > 0 and ı 2 .0; 1
2
/. If

(7-1) Area B.x; r/� �.length S.x; r//2

for almost every r 2 .ı; 1
2
/, then

Area B.x; r/�
1

4�
.r � ı/2

for every r 2 .ı; 1
2
/.

In particular, Area.X /�
1

16�
sys.X; �/2:

Proof By the coarea formula, we have

a.r/ WD Area B.x; r/D

Z r

0

`.s/ ds
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where `.s/ D length S.x; s/. Since the function `.r/ is piecewise continuous, the
function a.r/ is continuously differentiable for all but finitely many r in .0; 1

2
/

and a0.r/D `.r/ for all but finitely many r in .0; 1
2
/. By hypothesis, we have

a.r/� �a0.r/2

for all but finitely many r in .ı; 1
2
/. That is,

.
p

a.r//0 D
a0.r/

2
p

a.r/
�

1

2
p
�
:

We now integrate this differential inequality from ı to r , to obtainp
a.r/�

1

2
p
�
.r � ı/:

Hence, for every r 2 .ı; 1
2
/, we obtain

a.r/�
1

4�
.r � ı/2;

completing the proof.

8 Proof of relative systolic inequality

We prove that if X is a �–essential piecewise Riemannian 2–complex which is almost
minimal (up to "), and has least first Betti number among such complexes, then X

possesses an r –ball of large area for each r < 1
2

sys.X; �/. We have not been able
to find such a ball for an arbitrary �–essential complex (without the assumption of
almost minimality), but at any rate the area lower bound for almost minimal complexes
suffices to prove the �–systolic inequality for all �–essential complexes, as shown
below.

Remark 8.1 We do not assume at this point that ��.G/ is nonzero; cf Definition 1.3.
In fact, the proof of ��.G/ > 0 does not seem to be any easier than the explicit bound
of Corollary 1.5.

Theorem 1.4 and Corollary 1.5 are consequences of the following result.

Proposition 8.2 Let " > 0. Suppose X has a minimal first Betti number among
all �–essential piecewise Riemannian 2–complexes satisfying

(8-1) ��.X /� ��.G/C ":
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Then each ball centered at a point x on a �–systolic loop in X satisfies the area lower
bound

Area B.x; r/�
.r � ı/2

2C "=ı2

for every r 2 .ı; 1
2

sys.X; �//, where ı 2 .0; 1
2

sys.X; �//. In particular, we obtain the
bound

��.G/�
1

8
:

Proof We will use the notation and results of the previous sections. Choose � > 0

such that

(8-2) " < 4.�� 1
2
/ı2:

That is,

� >
1

2
C

"

4ı2

�
close to

1

2
C

"

4ı2

�
:

We normalize the metric on X so that its �–systole is equal to one. Choose a point
x0 2X on a �–systolic loop 
 of X .

If the balls centered at x0 are too “thin”, ie, the inequality (7-1) is satisfied for x0 and
almost every r 2 .ı; 1

2
/, then the result follows from Lemma 7.1.

We can therefore assume that there exists a “fat” ball centered at x0 , ie, the hypothesis
of Proposition 6.1 holds for x0 and some regular f –value r0 2 .ı;

1
2
/, where f is

the distance function from x0 . (Indeed, almost every r is regular for f .) Arguing by
contradiction, we show that the assumption on the minimality of the first Betti number
rules out this case.

We would like to construct a  –essential piecewise flat 2–complex Y 0 with b1.Y
0/ <

b1.X / such that � .Y 0/� ��.X / and therefore

(8-3) � .Y
0/� ��.G/C "

for some homomorphism  W �1.Y
0/!G .

By Lemma 5.3 and Proposition 6.1, the space Y D Y .x0; r0/, endowed with the
piecewise Riemannian metric of Proposition 6.1, satisfies

��.G/� � .Y /� ��.X /:

Combined with the inequalities (6-2) in the proof of Proposition 6.1 and (8-1), this
yields �

��
1

2

�
.length S/2 < ":
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From " < 4.�� 1
2
/ı2 and ı � r0 , we deduce that

length S < 2r0:

Now, by Lemma 5.2, the �–systolic loop 
 �X does not entirely lie in B . Therefore,
there exists an arc ˛0 of 
 passing through x0 and lying in B with endpoints in S .
We have

length.˛0/� 2r0:

If the endpoints of ˛0 lie in the same connected component of S , then we can join
them by an arc ˛1�S of length less than 2r0 . By Lemma 5.2, the loop ˛0[˛1 , lying
in B , is �–contractible. Therefore, the loop ˛1 [ .
 n ˛0/, which is shorter than 
 ,
is �–noncontractible. Hence a contradiction.

This shows that the �–systolic loop 
 of X meets two connected components of S .

Since a �–systolic loop is length-minimizing, the loop 
 intersects S exactly twice.
Therefore, the complementary arc ˛ D 
 n ˛0 , joining two connected components
of S , lies in X nB . The two endpoints of ˛ are connected by a length-minimizing arc
of Y n .X n xB/ passing exactly through two edges of the cone CA.

Let Y 0 be the 2–complex obtained by removing the interior of one of these two edges
from Y . The complex Y 0 D Y n e is clearly connected and the space Y , obtained by
gluing back the edge e to Y , is homotopy equivalent to Y 0 _S1 . That is,

(8-4) Y ' Y 0 _S1:

Thus, Y 0 is  –essential if we still denote by  the restriction of the homomor-
phism  W �1.Y /!G to �1.Y

0/. Furthermore, we clearly have

� .Y
0/D � .Y /� ��.X /:

Combined with (5-2), the homotopy equivalence (8-4) also implies

b1.Y
0/ < b1.Y /� b1.X /:

Hence the result.

Remark 8.3 We could use round metrics (of constant positive Gaussian curvature) on
the “buffer cylinders” of the space Y in the proof of Proposition 6.1. This would allow
us to choose � close to 1=.2�/ and to derive the lower bound of �=8 for ��.X / in
Corollary 1.5. We chose to use flat metrics for the sake of simplicity.
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9 Cohomology of Lens spaces

Let p be a prime number. The group G D Zp acts freely on the contractible
sphere S21C1 yielding a model for the classifying space

K DK.Zp; 1/D S21C1=Zp:

The following facts are well-known; see Hatcher [19].

Proposition 9.1 The cohomology ring H�.ZpIZp/ for p an odd prime is the alge-
bra Zp.˛/Œˇ� which is exterior on one generator ˛ of degree 1, and polynomial with
one generator ˇ of degree 2. Thus,

� ˛ is a generator of H 1.ZpIZp/' Zp , satisfying ˛2 D 0;

� ˇ is a generator of H 2.ZpIZp/' Zp .

Here the 2–dimensional class is the image under the Bockstein homomorphism of
the 1–dimensional class. The cohomology of the cyclic group is generated by these
two classes. The cohomology is periodic with period 2 by Tate’s theorem. Every even-
dimensional class is proportional to ˇn . Every odd-dimensional class is proportional
to ˛[ˇn .

Furthermore, the reduced integral homology is Zp in odd dimensions and vanishes
in even dimensions. The integral cohomology is Zp in even positive dimensions,
generated by a lift of the class ˇ above to H 2.ZpIZ/.

Proposition 9.2 Let M be a closed 3–manifold M with �1.M / D Zp . Then its
classifying map 'W M !K induces an isomorphism

'i W Hi.M IZp/'Hi.KIZp/

for i D 1; 2; 3.

Proof Since M is covered by the sphere, for i D 2 the isomorphism is a special case
of Whitehead’s theorem. Now consider the exact sequence (of Hopf type)

�3.M /
�p
�!H3.M IZ/!H3.ZpIZ/! 0

since �2.M / D 0. Since the homomorphism H3.M IZ/! H3.ZpIZ/ is onto, the
result follows by reduction modulo p .
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10 Volume of a ball

Our Theorem 1.8 is a consequence of the following result.

Theorem 10.1 Assume the GGC –property (1-2) is satisfied for some universal con-
stant C > 0 and every homomorphism � into a finite group G . Then every closed
Riemannian 3–manifold M with fundamental group G contains a metric ball B.R/

of radius R satisfying

(10-1) Vol B.R/�
C

3
R3;

for every R� 1
2

sys.M /.

We will first prove Theorem 10.1 for a closed 3–manifold M of fundamental group Zp ,
with p prime. We assume that p is odd (the case p D 2 was treated by L Guth). In
particular, M is orientable. Let D be a 2–cycle representing a nonzero class ŒD� in

H2.M IZp/'H1.M IZp/' Zp:

Denote by D0 the finite 2–complex of M given by the support of D . Without loss
of generality, we can assume that D0 is connected. The restriction of the classifying
map 'W M !K to D0 induces a homomorphism �W �1.D0/! Zp .

Lemma 10.2 The cycle D induces a trivial relative class in the homology of every
metric R–ball B in M relative to its boundary, with R< 1

2
sys.M /. That is,

ŒD\B�D 0 2H2.B; @BIZp/:

Proof Suppose the contrary. By the Lefschetz–Poincaré duality theorem, the relative 2–
cycle D\B in B has a nonzero intersection with an (absolute) 1–cycle c of B . Thus,
the intersection between the 2–cycle D and the 1–cycle c is nontrivial in M . Now,
by Lemma 5.2, the 1–cycle c is homotopically trivial in M . Hence a contradiction.

We will exploit the following notion of volume for cycles with torsion coefficients.

Definition 10.3 Let D be a k –cycle with coefficients in Zp in a Riemannian mani-
fold M . We have

(10-2) D D
X

i

ni�i
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where each �i is a k –simplex, and each ni 2 Z�p is assumed nonzero. We define the
notion of k –area Area for cycles as in (10-2) by setting

(10-3) Area.D/D
X

i

j�i j;

where j�i j is the k –area induced by the Riemannian metric of M .

Remark 10.4 The nonzero coefficients ni in (10-2) are ignored in defining this notion
of volume.

Proof of Theorem 10.1 We continue the proof of Theorem 10.1 when the fundamental
group of M is isomorphic to Zp , with p an odd prime. We will use the notation
introduced earlier. Suppose now that D is a piecewise smooth 2–cycle area minimizing
in its homology class ŒD� 6D 02H2.M IZp/ up to an arbitrarily small error term " > 0,
for the notion of volume (area) as defined in (10-3).

Recall that �W �1.D0/! Zp is the homomorphism induced by the restriction of the
classifying map 'W K ! M to the support D0 of D . By Proposition 9.2, the 2–
complex D0 is �–essential. Thus, by hypothesis of Theorem 10.1, we can choose
a point x 2 D0 satisfying the GGC –property (1-2), ie, the area of R–balls in D0

centered at x grows at least as CR2 for R< 1
2

sys.D0; �/. Therefore, the intersection
of D0 with the R–balls ofM centered at x satisfies

(10-4) Area.D0\B.x;R//� CR2

for every R < 1
2

sys.D0; �/. The idea of the proof is to control the area of distance
spheres (level surfaces of the distance function) in M , in terms of the areas of the
distance disks in D0 .

Let B D B.x;R/ be the metric R–ball in M centered at x with R< 1
2

sys.M /. We
subdivide and slightly perturb D first, to make sure that D \ xB is a subchain of D .
Write

D DD�CDC;

where D� is a relative 2–cycle of xB , and DC is a relative 2–cycle of M nB . By
Lemma 10.2, D� is homologous to a 2–chain C contained in the distance sphere @BD
S.x;R/ with

@C D @D� D�@DC:
We subdivide and perturb C in S.x;R/ so that the interiors of its 2–simplices either
agree or have an empty intersection. Here the simplices of the 2–chain C may have
nontrivial multiplicities. Such multiplicities necessarily affect the volume of a chain
if one works with integer coefficients. However, these multiplicities are ignored for
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the notion of 2–volume (10-3). This special feature allows us to derive the following:
the 2–volume (10-3) of the chain C is a lower bound for the usual area of the distance
sphere S.x;R/.

Note that the homology class ŒC CDC� D ŒD� 2 H2.M IZp/ stays the same. We
chose D to be area minimizing up to " in its homology class in M for the notion of
volume (10-3). Hence we have the following bound:

(10-5) Area.S.x;R//� Area.C/� Area.D�/� "� Area.D0\B/� ":

Now, clearly sys.M / � sys.D0; �/. Combining the estimates (10-4) and (10-5), we
obtain

(10-6) Area.S.x;R//� CR2
� "

for every R< 1
2

sys.M /. Integrating the estimate (10-6) with respect to R and letting "
go to zero, we obtain a lower bound of C

3
R3 for the 3–volume of some R–ball in the

closed manifold M , proving Theorem 10.1 for closed 3–manifolds with fundamental
group Zp .

Suppose now that M is a closed 3–manifold with finite (nontrivial) fundamental group.
Choose a prime p dividing the order j�1.M /j and consider a cover N of M with
fundamental group cyclic of order p . This cover satisfies sys.N /� sys.M /, and we
apply the previous argument to N .

Note that the reduction to a cover could not have been done in the context of M Gromov’s
formulation of the inequality in terms of the global volume of the manifold. Meanwhile,
in our formulation using a metric ball, following L Guth, we can project injectively the
ball of sufficient volume, from the cover to the original manifold. Namely, the proof
above exhibits a point x 2N such that the volume of the R–ball B.x;R/ centered
at x is at least .C=3/R3 for every R< 1

2
sys.M /. Since R is less than half the systole

of M , the ball B.x;R/ of N projects injectively to an R–ball in M of the required
volume, completing the proof of Theorem 10.1.
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