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The unstabilized canonical Heegaard splitting
of a mapping torus

YANQING ZOU

Let S be a closed orientable surface of genus at least 2 . The action of an auto-
morphism f on the curve complex of S is an isometry. Via this isometric action
on the curve complex, a translation length is defined on f . The geometry of the
mapping torus Mf depends on f . As it turns out, the structure of the minimal-genus
Heegaard splitting also depends on f : the canonical Heegaard splitting of Mf ,
constructed from two parallel copies of S , is sometimes stabilized and sometimes
unstabilized. We give an example of an infinite family of automorphisms for which
the canonical Heegaard splitting of the mapping torus is stabilized. Interestingly,
complexity bounds on f provide insight into the stability of the canonical Heegaard
splitting of Mf . Using combinatorial techniques developed on 3–manifolds, we
prove that if the translation length of f is at least 8 , then the canonical Heegaard
splitting of Mf is unstabilized.

57M27; 57M50

1 Introduction

Let S be a closed orientable surface of genus at least 2. Then there is a curve com-
plex C.S/ defined by Harvey [5]. Later, Masur and Minsky [6; 7] assigned a metric d

on it and then proved that under this metric, the curve complex is ı–hyperbolic. Assume
that f is an automorphism of S . Then f is extended to be an isomorphism of C.S/
and hence an isometry on .C.S/; dC.S//. For simplicity, this isometry is still denoted
by f . Then there is a translation length d.f /D minfdC.S/.C; f .C // j C 2 C0.S/g

defined on f . If f is either reducible or periodic, there is an universal upper bound on
the translation length of f n for any n 2N . But if f is a pseudo-Anosov map, d.f n/

goes to infinity as n goes to infinity; see [7, Proposition 7.6]. Conversely, if there is an
universal upper bound on the translation length of f n for any n, then by Thurston’s
result (see Casson and Bleiler [3]), f is either reducible or periodic. Otherwise, f
is a pseudo-Anosov map.

Let M DS�I be an I–bundle of S . It is known that there are two standard Heegaard
splittings for M ; see Scharlemann and Thompson [8]. One, called the trivial Heegaard
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splitting, is S � Œ0; 0:5�[S�f0:5g S � Œ0:5; 1�. The other one is as follows. Assume that
there are a point p 2 S and an arc aD p�I in S �I . Let N.a/ be the closed regular
neighborhood of a in S � I , V1 D S � Œ0:3; 0:6��N.a/ and V2 D S � I �V1 . Then
both V1 and V2 are compression bodies. Hence V1[@CV1

V2 is a Heegaard splitting
of M .

For the 3–manifold M DS�I , its boundary components consist of two homeomorphic
surfaces, S�f0g and S�f1g. Thus, gluing these two components by a homeomorphism
f W S � f1g ! S � f0g produces a closed 3–manifold Mf , called a mapping torus.
Here there is a small change in the definition of the translation length of f in Mf ,
which is d.f /DminfdC.S�f0g/.C �f0g; f .C �f1g//g, where C �f0g is an essential
simple closed curve in S � f0g.

B1

N.˛/

Figure 1: A core disk

It is not hard to see that there is a canonical Heegaard splitting for Mf , as follows. Let
V
f

2
D V2=f and let B1 be the core disk of N.a/, as shown in Figure 1. Then V

f
2

is homeomorphic to S � Œ0:5; 1�[f B1 � Œ0; 0:5�, where f maps a disk in S � f1g to
B1�f0g. Let b�V

f
2

be a properly embedded and unknotted arc connecting S�f0:5g

and S � f1g and B2 be the core disk of N.b/. Then

H2 D V
f

2
�N.b/

is a handlebody. Equivalently,

H2 D S �B2 � Œ0:5; 1�[f B1 � Œ0; 0:5�:

Moreover, H1 , the complement of H2 in Mf , is given by

H1 D S �B1 � Œ0; 0:5�[f B2 � Œ0:5; 1�:

So it is also a handlebody. Since @H1 D†D @H2 , H1[† H2 is a Heegaard splitting
of Mf , called the canonical Heegaard splitting.

A Heegaard splitting is stabilized if there is a pair of essential disks in two compression
bodies such that their boundaries intersect in one point. If a Heegaard splitting is
stabilized, then there is a move called a destabilization on it, which produces a smaller-
genus Heegaard splitting. Thus, to study a Heegaard splitting of a 3–manifold, it is
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sufficient to study the destabilized one. Furthermore, there are some problems related
to a Heegaard splitting, which all require that the Heegaard splitting is unstabilized. For
example, the rank-versus-genus problem of a 3–manifold, ie when is r.M /D g.M /?
Hence, for a given Heegaard splitting, it is a priority to determine its stability.

If f is periodic, then S � S1 is a finite covering of Mf , so Mf has the geometry
of H 2 �R; if f is reducible, then Mf contains at least one essential torus; if f
is a pseudo-Anosov map, then Thurston [11, Theorem 0.1] proved that Mf is a
hyperbolic 3–manifold. From this point of view, the geometry of Mf is determined
by f . Moreover, the stability of its canonical Heegaard splitting is also influenced
by f . For example, Schultens [9, Theorem 5.7] proved that if f is isotopic to an
identity map, then the canonical Heegaard splitting of Mf is unstabilized; Souto and
Biringer [10, Theorem 1.1; 2, Theorem 1.1] proved that if the pseudo-Anosov map f
is complicated enough, the canonical Heegaard splitting is unstabilized; Bachmann
and Schleimer [1, Corollary 3.2] proved that if the d.f /� 2g.S/, then the canonical
Heegaard splitting is unstabilized and minimal.

With all these supporting results, it seems that the canonical Heegaard splitting of every
mapping torus is unstabilized. However, this is not true in general; see Example 1.1.

Example 1.1 Let ˛ and ˇ be two essential simple closed curves in S , where ˛\ˇ is
a point p . It is known that �˛ ı�ˇ , the concatenation of the two Dehn twists �˛ and �ˇ ,
maps ˛ to ˇ . Let Sˇ D S �ˇ . By Thurston’s classification [3] of automorphisms of
a surface, there is a pseudo-Anosov map g on Sˇ fixing its boundary pointwise such
that the translation length satisfies d.g/jSˇ

� 6. Naturally g induces an automorphism
on S , still denoted by g . Then f D g ı .�˛ ı �ˇ/.

Since ˛ � Œ0; 0:5� intersects ˇ � Œ0:5; 1� in one point p on S � f0:5g, there are two
points p1;p2 2 ˛ � f0:5g disjoint from p such that f .p2 � f1g/ ¤ p1 � f0g. Let
aD p1 � Œ0; 0:5� and b D p2 � Œ0:5; 1�. Then both

H1 D S � f0; 0:5g�N.a/[f N.b/ and H2 D S � f0:5; 1g�N.b/[f N.a/

are handlebodies. Moreover,

˛� Œ0; 0:5��N.a/ and ˇ� Œ0:5; 1��N.b/

are essential disks in H1 and H2 , respectively, where they intersect in one point p .
This means that the Heegaard splitting H1[† H2 is stabilized.

Remark 1.2 In Example 1.1, the translation length of g in Sˇ is at least 6. It is
known that for any n 2 N , there is an automorphism g of Sˇ whose translation
length restricted to Sˇ is larger than n. So there are infinitely many choices of g in
Example 1.1. Hence there are infinitely many choices of f on S .
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So there is a question:

Question 1.3 What is the least value of d.f / such that the canonical Heegaard
splitting of Mf is unstabilized?

With tools developed in the curve complex, we give a partial answer to this question.

Theorem 1.4 If the translation length satisfies d.f /� 8, then the canonical Heegaard
splitting of Mf is unstabilized.

This paper is organized as follows. We introduce some lemmas in Section 2, and prove
the main theorem in Section 3.

2 Some lemmas

Let C.S/ be the curve complex of S . Masur and Minsky proved:

Lemma 2.1 [6, Proposition 4.6] .C.S/; d/ is connected and the diameter is infinite.

Let F � S be a subsurface. Then F is essential if there is no incompressible simple
closed curve in F bounding a disk in S . If the subsurface F is essential, then Masur
and Minsky [7, Section 2.2] introduced the subsurface projection on F for all of those
vertices in the curve complex, as follows. For any vertex ˛ � C0.S/, by the bigon
criterion [4, Proposition 1.7], there is a representative curve in its isotopy class that
intersects @F essentially, ie there is no bigon capped by them in S . So the subsurface
projection �F .˛/ is defined to be one essential component of @N.˛ [ @F / in F

depending on choice.

An essential simple closed curve ˛ cuts F if �F .˛/¤∅. For any two given disjoint
essential simple closed curves ˛ and ˇ , if they both cut F , then

dC.F /.�F .˛/; �F .ˇ//� 2:

In general, Masur and Minsky proved:

Lemma 2.2 [7, Lemma 2.2] Let F and S be as above, and let G D f˛0; : : : ; ˛kg be
a geodesic in C.S/ such that ˛i cuts F for each 0� i � k . Then dC.F /.˛0; ˛k/� 2k .

It is known that when @F is connected, no component of �F .˛/ cuts out a planar
surface in F . But if @F is not connected, it is possible that some element of �F .˛/

does cut out a planar subsurface of F . In this case, we introduce the definition of a
strongly essential curve in F , which is defined in [12].
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Definition 2.3 An essential simple arc or simple closed curve c � F is strongly
essential if no component of �F .c/ cuts out a planar subsurface in F .

Let F be a compact orientable surface of genus at least 1 with connected boundary.
For the handlebody F � Œ0; 1�, each essential disk intersects @F nontrivially. Moreover:

Lemma 2.4 For any essential disk D � F � Œ0; 1�, there is an essential disk D1 such
that:

(1) @D1\F � f1g is connected and isotopic to a component of @D\F � f1g;

(2) D1 D .@D1\F � f1g/� Œ0; 1�;

(3) @D1\F � f0g is disjoint from some component of @D\F � f0g.

Proof Without loss of generality, for any two essential disks in H , it is assumed that
their intersection consists of arcs. Since @D intersects F � f1g nontrivially, there is an
arc a� @D\F � f1g such that the number of components of .a� I/\D is minimal
among all arcs in @D\F � f1g.

Let DaD a�I . An essential arc ˛ �F �f0g is called a 0–arc. Similarly, an essential
arc ˇ � .@H � F � f0g/ is called an 1–arc. It is not hard to see that the boundary
curve of D consists of alternating 1–arcs and 0–arcs while the boundary curve of Da

consists of one 1–arc and one 0–arc.

If Da\D D∅, then the proof is finished. So suppose that Da\D ¤∅. Then there
is an outermost disk B in D where B \Da is an arc. Since a�D\F � f1g, all of
those intersecting arcs between Da and D have ends in @Da \F � f0g. Therefore
there is a 0–arc of @B \F � f0g in @D\F � f0g disjoint from @Da\F � f0g, for if
not, then @B contains only one 1–arc and no 0–arc. Doing a boundary compression
on Da along B , Da is changed into two disks Da;1 and Da;2 . Since D intersects Da

essentially, these two disks are both essential. As one of Da;1 and Da;2 intersects
F �f0g in one arc, one of these two disks is an I–bundle of the 1–arc of @B\F �f1g.
Without loss of generality, let Da;1 be this disk. By the boundary compression surgery,
the 1–arc of @B \F � f1g lies in @B and therefore in @D \F � f1g. So Da;1 is an
I–bundle of some component of @D\F � f1g. Moreover,

j@Da;1\ @Dj � j@Da\ @Dj � 2:

But this contradicts the choice of Da . Then ˛�f0g is disjoint from some 0–arc of @B
and hence some 0–arc of @D .

Similarly, there is also an essential disk D2 � F � Œ0; 1� such that:
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(1) @D2\F � f0g is connected and isotopic to a component of @D\F � f0g;

(2) D2 D .@D2\F � f0g/� Œ0; 1�;

(3) @D2\F � f1g is disjoint from some component of @D\F � f1g.

3 Proof of Theorem 1.4

Let f , d , S , Mf , a, b , †, H1 , H2 , H1 [† H2 , B1 and B2 be as in Section 1.
Then the main theorem is written as follows:

Proposition 3.1 If the translation length satisfies d.f /� 8, then H1[† H2 is unsta-
bilized.

Before proving Proposition 3.1, we need the following lemma:

Lemma 3.2 For any essential simple closed curve C bounding two essential disks in
H1 and H2 simultaneously, both C \ @B1 ¤∅ and C \ @B2 ¤∅.

Proof Since S � I is irreducible and its boundary components are incompressible,
Mf is irreducible and not homeomorphic to S3 .

The construction of H1[† H2 in Section 1 says that

H1 D S �B1 � Œ0; 0:5�[B2 � Œ0:5; 1�

and
H2 D S �B2 � Œ0:5; 1�[B1 � Œ0; 0:5�:

Assume that C bounds an essential disk D (resp. E ) in H1 (resp. H2 ). If we consider
the intersection between E and B1 in H2 , then:

Fact 3.3 C \ @B1 ¤∅:

Proof Suppose the conclusion is false. Then C is either isotopic to @B1 or disjoint
from @B1 . Since @B1 bounds no disk in H1 , C is not isotopic to @B1 . Thus C is
disjoint from @B1 . Moreover, C is strongly essential in †B1

D†� @B1 , for if not,
then C cuts out a pair of pants P in †B1

such that @P consists of two copies of @B1

and C . Since C bounds an essential disk E in H2 , E cuts out a solid torus ST �H2

containing B1 . Similarly, the essential disk D also cuts out a solid torus in H1 . Then
the Heegaard splitting H1[† H2 is a connected sum of a genus-1 Heegaard splitting
and a smaller-genus Heegaard splitting. Because Mf is irreducible, one of these two
Heegaard splittings is of S3 , which implies that the genus-1 Heegaard splitting is not
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of S3 . The reason is that since the longitude l of the solid torus ST intersects @B1 in
one point, l intersects S �ftg in one point for some t 2 .0; 0:5/. So the representative
of l in �1Mf is nontrivial. Then the Heegaard splittings of genus .g.†/�1/ belongs
to S3 . Hence, under this circumstance, Mf is a lens space. Moreover, it contains a
closed embedded genus at least 1 incompressible surface. But it contradicts the fact
that there is no positive genus closed incompressible surface in a lens space.

After removing N.a/ from H2 , H2 is changed into

H
B1

2
D S � Œ0:5; 1��N.b/:

Let
H�1 DMf �H

B1

2
:

Equivalently, H�
1
D S � Œ0; 0:5�[N.b/. Since C is strongly essential in †B1

and
C \ @B1 D∅, C is essential in @H B1

2
. So E is also an essential disk in H

B1

2
. The

I–bundle structure of H
B1

2
implies that C D @E intersects @B2 nontrivially. Since C

(resp. @B2 ) bounds an essential disk D (resp. B2 ) in H�
1

, by the standard outermost
disk argument, there is an outermost disk of D in S � Œ0; 0:5� D H�

1
�B2 . By the

proof of Lemma 2.6 in [12], this outermost disk is a properly embedded essential disk
of S � Œ0; 0:5�. But this contradicts the fact that @.S � Œ0; 0:5�/ is incompressible in
S � Œ0; 0:5�.

Similarly, C \ @B2 ¤∅. This completes the proof of Lemma 3.2.

Then the proof of the Proposition 3.1 is written as follows:

Proof of Proposition 3.1 Since S �I is irreducible and its boundary components are
incompressible, Mf is irreducible and not homeomorphic to S3 .

Suppose that the conclusion is false. Then H1 [† H2 is stabilized. It is known that
each stabilized Heegaard splitting is either reducible or a genus-1 Heegaard splitting
of S3 . Since Mf is not homeomorphic to the S3 , the canonical Heegaard splitting
H1 [† H2 is reducible. Therefore, there is an essential simple closed curve C �†

such that C bounds an essential disk D (resp. E ) in H1 (resp. H2 ).

It is not hard to see that there is an isotopy on D such that @D\@E D∅ (just pushing
@D away from @E ). Without loss of generality, it is assumed that @D intersects
@B1 t @B2 essentially, ie there is no bigon capped by any two of them in †. By
Lemma 3.2, neither @B1 nor @B2 is disjoint from C . Then D\B2¤∅. Furthermore,
we assume that D intersects B2 minimally. So D \ B2 consists of arcs and no
closed circle. By the standard outermost disk argument, there is an outermost disk
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B1 B2

˛

Figure 2: A one-hole bigon

B1 B2

˛

ˇ

Figure 3: The case where @B1 , @B2 and ˇ bound a rectangle

in D bounded by a component ˛ � @D and an arc of D\B2 . Similarly, there is an
outermost disk in E bounded by a component ˇ � @E and an arc of E \B1 .

Let †B1
D†� @B1 and †B2

D†� @B2 . Then:

Claim 3.4 The arc ˛ (resp. ˇ ) is strongly essential in †B2
(resp. †B1

).

Proof We prove this claim for ˛ only; the other case is similar.

Since @B2 is nonseparating in †, †B2
has two boundary curves C1 and C2 . Suppose

˛ is not strongly essential in †B2
. Then ˛ cuts out an annulus in †B2

which contains
one boundary component of †B2

, for example, C2 . So

jC \C2j � jC \C1j � 2:

But it contradicts the fact that C1 and C2 are isotopic in †.

Let H
B2

1
DH1�B2 and H

B1

2
DH2�B1 . Since C intersects both @B1 and @B2 es-

sentially, there is no bigon capped by ˛ and @B1 (resp. ˇ and @B2 ) in †B2
(resp. †B1

).
Furthermore:

Claim 3.5 There is no one-hole bigon capped by ˛ and @B1 in †B2
.

Note 3.6 A one-hole bigon is shown in Figure 2.

Proof of Claim 3.5 Suppose that the conclusion is false. Then there is a one-hole bigon
capped by ˛ and @B1 in †B2

. Since ˇ\˛D∅ and @ˇ� @B1 , either ˇ\@B2D∅ or
ˇ intersects @B2 in at most two points. In the latter case, there is a rectangle bounded
by @B1 , @B2 and ˇ ; see Figure 3. For both of these two cases, it is not hard to see that
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�†B1
.ˇ/ is disjoint from @B1[ @B2 up to isotopy. But since ˇ is in the boundary of

the outermost disk in E and strongly essential in †B1
, �†B1

.ˇ/ bounds an essential
disk in H

B1

2
. So �†B1

.ˇ/\ @B1 ¤∅ up to isotopy. This is a contradiction.

Similarly, there is no one-hole bigon capped by ˇ and @B2 in †B1
.

Although @D intersects @B1 and @B2 minimally, it is possible there is a rectangle
bounded by @B1 , @B2 and ˛ in †B2

; see Figure 4.

B1 B2
ƒ

Figure 4: A rectangle

Let
S1 D S1 � f0:5g D S � f0:5g�B1;

S3 D S3 � f0:5g D S � f0:5g�B2;

S2 D S1\S3:

Then H
B2

1
D S1 � Œ0; 0:5� and H

B1

2
D S3 � Œ0:5; 1�.

Claim 3.7 There is no rectangle bounded by @B1 , @B2 and ˛ in †B2
.

Proof Without loss of generality, we assume that both @˛ and @ˇ are in S2 . The
other cases are similar, so we omit them here.

Suppose the conclusion is false. Then there is a rectangle ƒ bounded by @B1 , @B2

and ˛ in †. Although the proof is similar to the proof of Lemma 3.9 in [13], for
integrity, it is written here. If ˇ\ƒ¤∅, then ƒ\ˇ is one or two arcs connecting
@B1 and @B2 . Otherwise there is at least one point in ˛\ˇ . Since ˇ\@B1 D @ˇ and
˛\@B2D @˛ , there is an isotopy on ˇ such that ˇ is pushed away from ƒ. Moreover,
˛\ˇ D∅. Therefore we may assume that ˇ is disjoint from ƒ.

For simplicity, �†B2
.˛/, disjoint from ˇ , is abbreviated by ˛ . It is not hard to see that

there is a bigon capped by ˛ and @B1 . Then there is an isotopy on ˛ such that there is
no bigon capped by ˛ and @B1 anymore. As a result of this process, by the proof of
Claim 3.5, there is no one-hole bigon bounded by ˛ and @B1 in †B2

. At the end, there
is no bigon or one-hole bigon capped by ˛ and @B1 in †B2

. So ˛ intersects @B1 in
@H

B2

1
essentially (for if not, then there is a bigon capped by them, which corresponds

to a one-hole bigon or a bigon in †B2
). On one hand, since H

B2

1
D S1 � Œ0; 0:5�,
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by Lemma 2.4, there is one essential arc a � ˛ \ S1 � f0:5g such that a � f0g is
disjoint from some component c � ˛\S1�f0g. On the other hand, for the subsurface
S2 � †B2

, since S1 D S2 [B2 , we have ˛ \ S1 D ˛ \ S2 . Then a � S2 . Since
ˇ intersects no bigon bounded by ˛ and @B1 in this isotopy, ˛ \ ˇ D ∅. Hence
a\ˇ D∅.

If the union of ˇ , @B1 and @B2 bound a rectangle in †B1
, then �†B1

.ˇ/, still denoted
by ˇ , misses ˛ . Otherwise ˛\ˇ ¤∅. By the same argument as above, there is also
an isotopy on ˇ such that there is no bigon bounded by ˇ and @B2 anymore. As a
result of this process, by the proof of Claim 3.5, there is no one-hole bigon bounded
by ˇ and @B2 in †B1

. Therefore there is no bigon or one-hole bigon capped by ˇ
and @B2 in @H B1

2
. So ˇ intersects @B2 in @H B1

2
essentially. On one hand, since

H
B1

2
D S3� Œ0:5; 1�, by Lemma 2.4, there is one essential arc b � ˇ\S1�f0:5g such

that b � f1g is disjoint from some component d � ˇ\S3 � f1g. On the other hand,
for the subsurface S2 �†B1

, since S3 D S2[B1 , we have ˇ\S3 D ˇ\S2 . Then
b �S2 . Since ˛ intersects no bigon bounded by ˇ and @B2 in the isotopy, ˛\ˇD∅.
Hence a\ b D∅.

Since ˛\ˇ D∅, c \f .d/D∅. Hence

�S2
.a/\�S2

.b/D∅I

�S1�f0g.c/\f .�S3�f1g.d//D∅I

dC.S3�f1g/.�S3�f1g.b � f1g/; �S3�f1g.d//� 2I

dC.S1�f0g/.�S1�f0g.a� f0g/; �S1�f0g.c//� 2:

For simplicity, �S2
.a/ (resp. �S2

.b/) is abbreviated by a (resp. b ). Since a� f1g �

S3 � f1g intersects b � f1g trivially, the above equations and inequalities are changed
as follows:

dC.S1�f0g/.a� f0g; �S1�f0g.c//� 2I

dC.S1�f0g/.�S1�f0g.c/; f .�S3�f1g.d///� 1I

dC.S3�f1g/.�S3�f1g.d/; b � f1g//� 2I

dC.S3�f1g/.b � f1g; a� f1g/� 1:

It is known that every essential simple closed curve of S1 D S �B1 is essential in S ,
and similarly for S3 D S �B2 . Then by the triangle inequality,
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dC.S�f0g/.a� f0g; f .a� f1g//� dC.S�f0g/.a� f0g; �S1�f0g.c//

C dC.S�f0g/.�S1�f0g.c/; f .�S3�f1g.d///

C dC.S�f0g/.f .�S3�f1g.d//; f .b � f1g//

C dC.S�f0g/.f .b � f1g/; f .a� f1g//

� dC.S1�f0g/.a� f0g; �S1�f0g.c//

C dC.S1�f0g/.�S1�f0g.c/; f .�S3�f1g.d///

C dC.S�f0g/.f .�S3�f1g.d//; f .b � f1g//

C dC.S�f0g/.f .b � f1g/; f .a� f1g//

� 2C 1C dC.S�f0g/.f .�S3�f1g.d//; f .b � f1g//

C dC.S�f0g/.f .b � f1g/; f .a� f1g//

� 3C dC.S�f1g/.�S3�f1g.d/; b � f1g/

C dC.S�f1g/.b � f1g; a� f1g/

� 3C dC.S3�f1g/.�S3�f1g.d/; b � f1g/

C dC.S3�f1g/.b � f1g; a� f1g/

� 6:

But this contradicts the choice of f .

So there is no rectangle bounded by ˇ , @B1 and @B2 in †B1
. Moreover, there

is no one-hole bigon or bigon capped by �†B1
.ˇ/ and @B2 in †B1

. Otherwise,
there is either a rectangle bounded by ˇ , @B1 and @B2 in †B1

or a one-hole bigon
bounded by ˇ and @B1 , which is prohibited by Claim 3.5. Then each component of
�†B1

.ˇ/ intersects @B2 essentially in @H B1

2
. On one hand, since H

B1

2
DS3� Œ0:5; 1�,

by Lemma 2.4, there is one component b � �†B1
.ˇ/ \ S3 such that b � f1g is

disjoint from one component d of �†B1
.ˇ/ \ S3 � f1g. On the other hand, since

�†B1
.ˇ/\S3 D �†B1

.ˇ/\S2 , we have b � �†B1
.ˇ/\S2 .

Since ˛\ˇD∅, a\b consists of at most two points, where the worst scenario is that
@a is not separated by ˇ in @B1 . Since @a � @B1 and @b � @B2 , �S2

.a/\�S2
.b/

consists of at most two points. For simplicity, �S2
.a/ (resp. �S2

.b/) is abbreviated by
a (resp. b ). Then

dC.S3�f1g/.b � f1g; a� f1g/� 2:

By the same argument as above, d.f /� 7.

Similarly, there is no rectangle bounded by @B1 , @B2 and ˇ in †.

By Claims 3.5 and 3.7, there is neither a one-hole bigon nor a bigon capped by �†B2
.˛/

and @B1 in †B2
. Otherwise there is a rectangle bounded by the union of ˛ , @B1

Algebraic & Geometric Topology, Volume 17 (2017)



3446 Yanqing Zou

and @B2 . This means that �†B2
.˛/ intersects @B1 in @H B2

1
essentially without doing

any further isotopy. Similarly, �†B1
.ˇ/ intersects @B2 in @H B1

2
essentially without

doing any further isotopy too.

Then it is not hard to see that:

Fact 3.8 Each component of �†B2
˛\S2 intersects every component of �†B1

ˇ\S2

in at most two points.

Proof It is sufficient to prove that there are at most two points in �†B2
˛\�†B1

ˇ .
Since ˛ is disjoint from ˇ , the worst scenario is that ˛\@B1 is separated by @ˇ while
ˇ \ @B2 is separated by @˛ . Then there are two points in �†B2

˛ \�†B1
ˇ . So the

conclusion holds.

For simplicity, �†B2
.˛/ (resp. �†B1

.ˇ/) is abbreviated by ˛ (resp. ˇ ). Then:

Claim 3.9 There is an essential simple closed curve 
 in S such that

dC.S�f0g/.f .
 � f1g/; 
 � f0g/� 7:

Proof Since ˛ bounds an essential disk in S1 � Œ0; 0:5�, by Lemma 2.4, there is a
component a of ˛ \ S1 � f0:5g such that a� f0g � S1 � f0g is disjoint from some
component c � ˛\S1�f0g. Similarly, there are two such components b and d for ˇ .

By Fact 3.8, a intersects b in at most two points. Since @a � @B1 and @b � @B2 ,
�S2

.a/ intersects �S2
.b/ in at most two points. Then since g.S/�2, there is a strongly

essential simple closed curve 
 in S2 disjoint from both ˛ and ˇ and hence from
both �S2

.a/ and �S2
.b/. Let 
 � Œ0; 5; 1� and 
 � Œ0; 0:5� be the product I–bundles

in S � Œ0:5; 1� and S � Œ0; 0:5�, respectively. Then


 � f1g\�S3
.b � f1g/D∅ and 
 � f0g\�S1

.a� f0g/D∅:

For simplicity, �S2
.a/ (resp. �S2

.b/) is abbreviated by a (resp. b ). Therefore
�S3

b � f1g (resp. �S1
a � f0g) is isotopic to b � f1g (resp. a � f0g). Then by the

proof of Claim 3.7,

dC.S�f0g/.
 � f0g; f .
 � f1g//� dC.S�f0g/.
 � f0g; a� f0g/

C dC.S�f0g/.a� f0g; �S1�f0g.c//

C dC.S�f0g/.�S1�f0g.c/; f .�S3�f1g.d///

C dC.S�f0g/.f .�S3�f1g.d//; f .b � f1g//

C dC.S�f0g/.f .b � f1g/; f .
 � f1g//
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� 1C dC.S1�f0g/.a� f0g; �S1�f0g.c//

C dC.S1�f0g/.�S1�f0g.c/; f .�S3�f1g.d///

C dC.S�f0g/.f .�S3�f1g.d//; f .b � f1g//

C dC.S�f0g/.f .b � f1g/; f .
 � f1g//

� 1C 2C 1C dC.S�f0g/.f .�S3�f1g.d//; f .b � f1g//

C dC.S�f0g/.f .b � f1g/; f .
 � f1g//

� 4C dC.S�f1g/.�S3�f1g.d/; b � f1g/

C dC.S�f1g/.b � f1g; 
 � f1g/

� 4C dC.S3�f1g/.�S3�f1g.d/; b � f1g/

C dC.S3�f1g/.b � f1g; 
 � f1g/

� 7:

This completes the proof of Claim 3.9.

By Claim 3.9, the translation length of f is at most 7. This contradicts the assumption
on f and completes the proof of Proposition 3.1.
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