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Klein-four connections and the Casson invariant
for nontrivial admissible U.2/ bundles

CHRISTOPHER SCADUTO

MATTHEW STOFFREGEN

Given a rank-2 hermitian bundle over a 3–manifold that is nontrivial admissible in
the sense of Floer, one defines its Casson invariant as half the signed count of its
projectively flat connections, suitably perturbed. We show that the 2–divisibility
of this integer invariant is controlled in part by a formula involving the mod 2
cohomology ring of the 3–manifold. This formula counts flat connections on the
induced adjoint bundle with Klein-four holonomy.
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1 Introduction

Let E be a U.2/ bundle over a closed, oriented and connected 3–manifold Y with the
property that w2.E/� c1.E/ .mod 2/ has no torsion lifts to H 2.Y IZ/. Following
Floer [4], we call such bundles nontrivial admissible. Floer defined the instanton
homology I�.Y;E/, which is an abelian group that is Z2–graded. Define �.Y;E/ to
be half the Euler characteristic of the instanton homology:

�.Y;E/D 1
2
�ŒI�.Y;E/�:

This number is a signed count of suitably perturbed projectively flat connections on E .
It is well known that �.Y;E/ is an integer. Define the subset of triples

VY D
˚
fa; b; cg �H 1.Y IZ2/ W aC bC c D 0

	
:

This set is naturally in correspondence with the set of subspaces of the Z2–vector
space H 1.Y IZ2/ of dimension at most two. Write b1.2/ for the Z2–dimension
of H1.Y IZ2/. Define for any given x 2H 2.Y IZ2/ the following nonnegative integer:

vY .x/D
ˇ̌˚
fa; b; cg 2 VY W abC bcC ac D x

	ˇ̌
:

For the case in which x D w2.E/ we simply write vY .E/.
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Theorem 1.1 Suppose E is a nontrivial admissible U.2/ bundle over a closed, ori-
ented, connected 3–manifold Y with b1.2/�3. Then �.Y;E/ is divisible by 2b1.2/�3 .
Furthermore, we have

(1) 23�b1.2/�.Y;E/� vY .E/ .mod 2/:

If b1.2/D 2, this congruence also holds, implying that vY .E/ is even. If b1.2/D 1,
then the integer vY .E/ is zero. In these two cases vY .E/ .mod 2/ yields no informa-
tion about �.Y;E/.

Note that Y supports a nontrivial admissible bundle if and only if b1.Y /� 1, where
b1.Y / denotes the rank of H1.Y IZ/. In general we have b1.2/� b1.Y /, with strict
inequality if and only if H1.Y IZ/ has 2–torsion. Theorem 1.1 and its proof are
generalizations of a rather simple idea due to Ruberman and Saveliev [13]. Their result
is the case of Theorem 1.1 when H1.Y IZ/ is free abelian of rank 3, ie when Y is
a homology 3–torus. To obtain their statement, one identifies vY .E/ with the triple
cup product modulo 2, which for a homology 3–torus is a simple computation. (More
generally, see Corollary 1.6.) Our adaptation of Ruberman and Saveliev’s argument is
summarized, modulo perturbations, as follows.

The invariant �.Y;E/ is one half of a signed count of projectively flat connections on
the bundle E . There is an action of H 1.Y IZ2/ on this set of connections, and the
quotient is identified with flat connections on the adjoint SO.3/ bundle induced by E .
The only possible stabilizers of this action are f1g, Z2 and V4 , the Klein-four group
isomorphic to Z2�Z2 . Further, the connections with stabilizer V4 are flat connections
with holonomy group V4 . The number vY .E/ is the number of connections on the
induced SO.3/ bundle with holonomy V4 , up to gauge equivalence. The proof of
Theorem 1.1 follows from counting the H 1.Y IZ2/–orbits with stabilizer V4 .

Vanishing conditions, and relation to Lescop’s invariant The right-hand quantity
vY .E/ .mod 2/ of congruence (1) is often, but not always, equal to zero. The parity
also turns out to be independent of our choice of nontrivial admissible bundle E . To
state the result:

k.Y / WD dimZ2
fa 2H 1.Y IZ2/ W a

2
D 0g D dimZ2

ker.ˇ1/:

Here ˇ1 is the Bockstein homomorphism defined on H 1.Y IZ2/ associated to the
coefficient exact sequence 0!Z2!Z4!Z2!0. As is well known, ˇ1.a/Da2 . We
note that if H1.Y IZ/ is written as a direct sum of prime-power-order cyclic summands
and copies of Z, then k.Y / is just the number of Z2k summands with k > 1, plus the
number of Z summands. In particular, k.Y /� b1.Y /.
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Theorem 1.2 Let Y be a closed, oriented and connected 3–manifold with k.Y /� 1.
Let x 2H 2.Y IZ2/ be any element that is not a cup-square. Then vY .x/ .mod 2/ is
independent of the choice of such x . If furthermore k.Y /� 4 then vY .x/� 0 .mod 2/.

Note that the statement holds for a larger class of elements x 2H 2.Y IZ2/ than those
just coming from admissible bundles. The conditions are best understood through the
following examples, which are surgeries on the Borromean rings; see Figure 1. These
examples have b1.Y /D 0 and b1.2/D 3.

Example 1.3 Consider the 3–manifold Y obtained by performing .2; 2; 4/ surgery
on the Borromean rings. Such a manifold has first homology group isomorphic to
Z2 ˚Z2 ˚Z4 . Then k.Y / D 1. The rank-3 vector space H 1.Y IZ2/ has a basis
formed by a, b , c , classes that are Poincaré dual to the meridians of the surgery loops.
By intersecting homology classes and using Poincaré duality we obtain

c2
D 0; a2

D bc; b2
D ac;

where ab , bc , ac form a basis of H 2.Y IZ2/. Now, ab is not a square, as are not
abC bc , abC ac or abC acC bc . All four of these elements have vY .x/D 1 2 Z.
On the other hand, all other elements in H 2.Y IZ2/ have vY .x/ 2 f0; 2; 4g. This
illustrates the necessity of the nonsquare condition on x .

Example 1.4 Next, consider .2; 4; 4/ surgery on the Borromean rings. The Z2–
cohomology ring is much the same as before, except now b2 D 0, and k.Y /D 2. All
nonzero x 2H 2.Y IZ2/ have vY .x/ odd. In fact, if x ¤ 0, then vY .x/D 1, while
vY .a

2/ D 5 and vY .0/ D 4. Here a2 is a cup-square, but does not have a different
parity from the other nonzero elements.

Example 1.5 Finally, .4; 4; 4/ surgery on the Borromean rings has the same Z2–
cohomology ring as that of the 3–torus. Here k.Y /D 3, and vY .x/D 1 for x ¤ 0,
all nonsquares, while vY .0/D 8.

i j

k

Figure 1: Surgery on the Borromean rings with framings .i; j ; k/ on the
three components. When i , j , k are either 0 or various powers of 2, these
surgeries yield nonvanishing examples of the congruence in Theorem 1.1, in
which vY .E/� 1 .mod 2/ and k.Y /D 1; 2; 3 .
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To make use of Theorem 1.1, one can replace the 4–framings in the above three
examples by 0–framings, to get manifolds with the same Z2–cohomology rings but
b1.Y / > 0, ensuring that they support nontrivial admissible bundles.

In what follows, we describe how to deduce Theorem 1.2 using Theorem 1.1 and
related results of Poudel [11] and Turaev [16]. By Poudel [11], the Casson invari-
ant �.Y;E/ may be identified with Lescop’s invariant of [9], slightly modified. The
proof utilizes Floer’s exact triangle for instanton homology and Dehn surgery techniques
à la Lescop [9]. As a result, the parity of vY .E/ is independent of E , the choice of
nontrivial admissible bundle. After some substitutions, the congruences resulting from
Theorem 1.1 and [11] may be summarized as follows.

Corollary 1.6 Suppose x 2H 2.Y IZ2/ has no torsion lifts to H 2.Y IZ/. Then, mod 2,

(2) vY .x/�

8̂̂̂<̂
ˆ̂:

22�b1.2/�00
Y
.1/ if b1.Y /D 1;

23�b1.2/.#.
 \F // if b1.Y /D 2;

23�b1.2/N � .a[ b[ c/ŒY � if b1.Y /D 3;

0 if b1.Y /� 4;

where N is the cardinality of Tor H1.Y IZ/ and other terms are defined below. In
particular, if b1.Y /D3 and H1.Y IZ/ has an order-4 element, then vY .x/�0 .mod 2/.

The right-hand sides are defined as follows. First, for b1.Y / D 1, �Y .t/ is the
Alexander polynomial of Y , normalized so that �Y .1/D 1 and �Y .t/D�Y .t

�1/.
If Y is 0–surgery on a knot K in an integral homology 3–sphere †, then �Y .t/ is just
the Alexander polynomial �K�†.t/. Next, suppose b1.Y /D 2. Take two oriented
surfaces in Y that generate H2.Y IQ/. Let 
 be their intersection, and 
 0 the curve
parallel to 
 that induces the trivialization of the tubular neighborhood of 
 given by
the surfaces. Then N � 
 0 has a Seifert surface F in Y , and #.
 \F / is the count
of intersection points, in general position. Finally, in the b1.Y /D 3 case, the triple
a, b , c generates H 1.Y IZ/ up to torsion, and ŒY � is the fundamental class of Y .

The vanishing implications of Corollary 1.6 look rather similar to those of Theorem 1.2,
except that the role of k.Y / is weakened to that of b1.Y /. In other words, the role
of counting summands of the form Z and Z2k for k > 1 is replaced by that of just
counting Z summands. From the perspective of the Z2–cohomology ring, these kinds
of summands are all the same. With this thought in mind, it is a rather straightforward
task to establish Theorem 1.2 from Corollary 1.6 using realization results for the
Z2–cohomology structure of 3–manifolds due to Turaev. See Section 7. We remark
that, a posteriori, the divisibility properties of the quantities listed in Corollary 1.6
should imply Theorem 1.2. However, the authors prefer to mostly argue with the
Z2–cohomology ring structure, in line with the definition of vY .x/.
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Some more examples For any finitely generated abelian group H containing an
element of order 4 or 1, there is a 3–manifold Y with H1.Y IZ/ isomorphic to H

and vY .x/D0, in which x is any element that is not a cup-square. For this, just consider
integer-framed surgeries on unlinks. Note also that the integer vY .x/ is stable under
connect sums with RP3 , which increases b1.2/ by 1 while fixing k.Y /. This operation,
applied to the three Borromean surgeries examples above, gives examples where
vY .x/� 1 .mod 2/ for any pair b1.2/, k.Y / such that b1.2/� 3 and k.Y /2 f1; 2; 3g.
In fact, it is straightforward to produce nonvanishing examples with H1.Y IZ/ any
isomorphism class of finitely generated abelian group with those same two constraints.
We also have examples from Seifert-fibered spaces, with orientable base orbifold:

Proposition 1.7 Let Y be a Seifert-fibered space with Seifert invariants given by
.g; b; .˛1; ˇ1/; : : : ; .˛r ; ˇr //, where g is the genus of the base orbifold. Suppose
that x 2 H 2.Y IZ2/ is not a square. Then vY .x/ � 1 .mod 2/ if and only if g D 1,
all ˛i are odd, and bC

P
ˇi � 0 .mod 2/.

We note that such Seifert-fibered spaces have b1.Y /2f2; 3g and b1.2/D3. Included in
this list is of course the 3–torus. This proposition is easily proven using the description
of the mod 2 cohomology ring of a Seifert-fibered space given in Aaslepp, Drawe,
Hayat-Legrand, Sczesny and Zieschang [1]. See Section 8.

We mention that the Seifert-fibered spaces considered here for genus g D 0 are double
branched covers of Montesinos links. However, by Proposition 1.7 the relevant invariant
vY .x/ in these cases is always even. In Section 8 we give an example of a double
branched cover for which Theorem 1.1 has a nonvanishing congruence.

Discussion The integers vY .x/, and not just their parities, are interesting in the context
of SO.3/ gauge theory. Indeed, as is evident in the sequel, the V4–connection classes
counted by vY .E/ are persistent (unmoved) under a large class of perturbations. As
such, they form a distinguished set of generators in the instanton Floer chain complex for
the pair .Y;E/, defined using any such perturbation. Klein-four connections also play a
pivotal role in the SO.3/ instanton homology for webs of Kronheimer and Mrowka [8]
and its relation to the four-color theorem.

The authors did not see how to provide a general algebraic proof of Theorem 1.2,
but we believe it can be done. Our main purpose in this article is to exhibit how the
congruence in Theorem 1.1 requires hardly any work, once the picture for the relevant
moduli spaces is established.

Finally, it should be mentioned that although we refer to the invariant �.Y;E/ as a
“Casson invariant”, we are using the interpretation of Taubes [15] of Casson’s invariant
for integral homology 3–spheres, applied to nontrivial admissible bundles.
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Outline In Section 2 we review the notion of nontrivial admissibility and the suitable
generalization which motivates the hypotheses of Theorem 1.2. Sections 3 and 4 provide
the background for the main argument of Theorem 1.1, which was sketched above and
is presented concisely in Section 5. The issue of perturbations is ignored here, and then
taken up in Section 6. In Section 7 we complete the proof of Theorem 1.2. Finally,
in Section 8 we prove Proposition 1.7, record a connected sum formula for the parity
of vY .x/, and discuss double branched covers.

Acknowledgements The authors would like to thank Danny Ruberman and Nikolai
Saveliev for helpful discussions. Scaduto was supported by NSF grant DMS-1503100.

2 Nontrivial admissible bundles

Here we briefly discuss Floer’s nontrivial admissibility condition. A good reference for
this material is [2]. As in the introduction, we let Y be a closed, oriented and connected
3–manifold. An SO.3/ bundle over Y is nontrivial admissible if its second Stiefel–
Whitney class x 2H 2.Y IZ2/ satisfies the following three equivalent conditions; see
[2, Lemma 1.1]:
� The image of x under hW H 2.Y IZ2/! Hom.H2.Y IZ/;Z2/ is nonzero.
� There is an orientable surface †� Y such that hx; Œ†�i 6� 0.
� The element x 2H 2.Y IZ2/ has no torsion lifts to H 2.Y IZ/.

One then defines a U.2/ bundle to be nontrivial admissible if its induced adjoint
SO.3/ bundle is nontrivial admissible. The definition is motivated by the fact that a
nontrivial admissible U.2/ bundle admits no reducible flat connections. This avoids
complications in instanton Floer theory. Using that h is surjective, and the fact that
SO.3/ bundles over a 3–manifold are characterized by the second Stiefel–Whitney
class, we count the number of nontrivial admissible SO.3/ bundles:

.2b1.Y /� 1/2b1.2/�b1.Y /:

According to Theorem 1.1 and Poudel’s result mentioned in the introduction, the parity
of vY .E/ is the same for all nontrivial admissible bundles E . However, Theorem 1.2
indicates that the parity of vY .E/ is invariant under a larger collection of bundles. Such
bundles are characterized by having a second Stiefel–Whitney class x 2H 2.Y IZ2/

that satisfies the following equivalent conditions:
� The image of x under gW H 2.Y IZ2/! Hom.PD.ker.ˇ1//;Z2/ is nonzero.
� There is a surface †� Y such that hx; Œ†�i 6� 0 and † �†� 0 2H1.Y IZ2/.
� The element x 2H 2.Y IZ2/ has no order-2 lifts to H 2.Y IZ/.
� The element x2H 2.Y IZ2/ is not the cup-square of an element from H 1.Y IZ2/.
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Note that here † is not necessarily orientable, and PDW H 1.Y IZ2/! H2.Y IZ2/

is the Poincaré duality isomorphism. We briefly remark on the equivalence of these
conditions, leaving the details to the reader. The first two bullets are equivalent because
PD.ker.ˇ1// � H2.Y IZ2/ is spanned by the classes Œ†� with the stated conditions.
The equivalence of the third and fourth conditions follow from understanding the
Bockstein homomorphisms in this setting — see eg [5, Section 3.E] — and the remaining
equivalences make use of the nondegeneracy of Poincaré duality. These conditions are
the natural extensions of the prior three conditions when one wants to treat Z summands
and Z2k summands for k > 1 the same. We note that the ring H�.Y IZ2/ cannot see
the difference between such summands. Since g is surjective, the number of SO.3/
bundles of this more general type is

.2k.Y /
� 1/2b1.2/�k.Y /:

The most basic example of such a bundle that is not nontrivial admissible is the nontrivial
SO.3/ bundle over the lens space L.4; 1/.

3 Configuration spaces and stabilizers

Fix a connection A0 on det.E/, and let CE be the space of connections A on E

with determinant connection Tr.A/DA0 . Let GE be the gauge transformation group
consisting of smooth unitary automorphisms of E that are determinant 1. The configu-
ration space is the quotient BE D CE=GE . The nontrivial admissibility of E implies
that all projectively flat points in BE are irreducible, meaning that the GE–stabilizer
of every such connection A 2 CE is as small as possible:

StabGE
.A/D f˙1g:

The U.2/ bundle E induces an SO.3/ bundle su.E/, which may be defined as the
subbundle of End.E/ consisting of trace-free, skew-hermitian endomorphisms. We
let Gsu.E/ denote the full SO.3/ gauge transformation group of su.E/. Any A 2 CE

induces a connection Aad 2 Csu.E/ , and this induces a bijection between CE and Csu.E/ .
Indeed, any U.2/ connection A on E is uniquely determined by Tr.A/ on det.E/
and Aad on su.E/. The condition that A be projectively flat is equivalent to Aad being
flat. In contrast to the U.2/ case, however, when Aad is flat we have

StabGsu.E/
.Aad/ 2

˚
f1g;Z2;V4

	
:

Indeed, the difference between the determinant-1 unitary gauge group and the SO.3/
gauge group is described by an action of H 1.Y IZ2/ on BE that gives Bsu.E/ as its
quotient space. The action is as follows: H 1.Y IZ2/ parametrizes the isomorphism
classes of flat complex line bundles (with connection) � with holonomy f˙1g. Then
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Œ�� acts on ŒA�2BE by tensoring the bundle-with-connection .E;A/ with �. See eg [3,
Section 5.6]. We then have the more precise statement that StabGsu.E/

.Aad/ is naturally
a subspace of H 1.Y IZ2/, with the constraint that

dimZ2
StabGsu.E/

.Aad/ 2 f0; 1; 2g:

In summary, we see that even though any projectively flat connection in BE is irre-
ducible, its image in Bsu.E/ may not be irreducible. Flat connections on su.E/ with
Gsu.E/–stabilizer isomorphic to Z2 are exactly those whose holonomy is contained
in O.2/, but not in an SO.2/ or Klein-four subgroup. Equivalently, these are flat
connections that are compatible with a splitting

su.E/D �˚L;

where � is a nontrivial real line bundle and L is an unoriented real 2–plane bundle, and
for which the connection on L is irreducible. Connections with stabilizer V4 are those
whose holonomy is also isomorphic to V4 . Equivalently, these are flat connections
compatible with a splitting

su.E/D �1˚�2˚�3

into a sum of three nontrivial real line bundles. We write BV4

su.E/
� Bsu.E/ for the subset

of flat connections on su.E/ with V4–stabilizer, which we henceforth call Klein-four
connections.

Remark 3.1 If the assumption of nontrivial admissibility is removed, three other kinds
of stabilizers in the SO.3/–gauge group can occur: SO.2/, O.2/ and SO.3/.

4 Klein-four connections

The subset of Klein-four connections in Bsu.E/ is a finite, discrete set. As the elements
are characterized by having holonomy V4 , a finite group, they must all be flat, as a
simple continuity argument shows. Alternatively, each splitting su.E/D �1˚�2˚�3

into nontrivial real line bundles supports a unique compatible connection, which of
course must be flat. Let us consider the larger set

B�V4Dfconnections over Y on any SO.3/ bundle with holonomy inside a V4g=gauge:

Then B�V4 is parametrized by SO.3/ bundles of the form �1˚�2˚�3 over Y . Noting
that w1.su.E// D 0, sending such a bundle to the triple fw1.�1/; w1.�2/; w1.�3/g

sets up a bijection

B�V4
1W1
 !

˚
fa; b; cg �H 1.Y IZ2/ with aC bC c D 0

	
DW VY :
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Yet another description of B�V4 is as the set of homomorphisms Hom.�1.Y /;V4/

modulo the action of S3 D Aut.V4/. A simple counting argument shows that B�V4

has cardinality
2b1.2/�1

C
1
6
.4b1.2/C 2/:

Now, the elements of B�V4 that live on su.E/ are the ones with

w2.E/D w2.�1˚�2˚�3/D a1a2C a2a3C a1a3; ai D w1.�i/:

Thus we have the following bijection describing Klein-four connections on su.E/:

BV4

su.E/

1W1
 !

˚
fa; b; cg 2 VY with abC bcC ac D w2.E/

	
:

We see now that vY .E/DjBV4

su.E/
j, and the statement of Theorem 1.1 is the congruence

(3) �.Y;E/� 2b1.2/�3
� jBV4

su.E/j .mod 2b1.2/�2/:

5 The argument modulo perturbations

We now prove Theorem 1.1 under the assumption that all moduli spaces to follow
are nondegenerate, so that no perturbations are needed. The argument uses the most
basic information we have from the H 1.Y IZ2/–action. Consider the moduli space of
projectively flat connections on E :

ME WD
˚
ŒA� 2 BE W FA D

1
2
FA0
� idE

	
:

This is a finite set, and each of its points is irreducible. This moduli space is invariant
under the H 1.Y IZ2/–action, and its quotient is the space of flat connections on su.E/:

Msu.E/ WD fŒB� 2 Bsu.E/ W FB D 0g:

We need the following observation. An element w 2H 1.Y IZ2/ affects the relative
mod 8 Floer grading grŒA� of ŒA� 2ME by (see [2, Propositions 1.9 and 1.13])

gr.w � ŒA�/� grŒA�� 4.w2.E/wCw
3/ŒY � .mod 8/;

so the H 1.Y IZ2/–action preserves the Z2–gradings. Here ŒY � is the fundamental
class of Y . In particular, each H 1.Y IZ2/–orbit lies in a single Z2–grading. The proof
is now completed by counting orbit sizes. Each connection in Msu.E/ with stabilizer
at most Z2 gives an orbit of size either

jH 1.Y IZ2/j D 2b1.2/ or jH 1.Y IZ2/=Z2j D 2b1.2/�1;

lying upstairs in ME . Thus 2b1.2/�1 divides the signed count of ME , with the prior
observation about gradings in mind. The remaining connections downstairs in Msu.E/
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are Klein-four connections, and so in fact are given by the set BV4

su.E/
. Each point in

this set contributes an orbit of size

jH 1.Y IZ2/=V4j D 2b1.2/�2

upstairs in ME . Recalling that �.Y;E/ is half the signed count of points in ME , we re-
cover the congruence (3), proving Theorem 1.1 under the assumption of nondegeneracy.

6 Including holonomy perturbations

In general, the moduli space ME is degenerate and we need to perturb the projectively
flat equation to achieve the transversality we want. Henceforth we assume that our 3–
manifold Y is equipped with a Riemannian metric. The standard class of perturbations
used are known as holonomy perturbations [6; 13]. The input for such a perturbation is
an embedding � D f
kg

m
kD1

into Y of solid tori 
k W S
1 �D2! Y . We require that

the embedded tori 
k have a common normal disk, meaning that the image of f1g�D2

under 
k is the same for all k . We also require that the images of the core loops
S1 � f0g are disjoint away from the normal disk. Fix a trivialization of det.E/ over
the image of � , which is homotopically a wedge (bouquet) of circles. This allows us
to consider the holonomy around the 
k as living in SU.2/. Let f W SU.2/m!R be
a conjugation invariant function, ie

f .ga1g�1; : : : ;gamg�1/D f .a1; : : : ; am/ for all g 2 SU.2/:

We also choose a smooth 2–form � on D2 with compact support in the interior and
integral 1. From this data one constructs a holonomy perturbation h, given as follows:

h.A/D

Z
D2

f .Hol
1;z
.A/; : : : ;Hol
m;z

.A// �.z/:

Here 
k;z is the loop t 7! 
k.t; z/ in Y . Fixing only the data � , we define H� to be
the space of perturbations constructed as above. Each h 2H� yields a well-defined
function hW BE!R.

One way to guarantee that the perturbation h is H 1.Y IZ2/–equivariant is to require
that each loop im.
k/ is zero as a class in H1.Y IZ2/. We call such � mod-2 trivial,
following [13], where this condition is introduced. We record their observation:

Lemma 6.1 If � is mod-2 trivial, then each h 2H� is H 1.Y IZ2/–equivariant.

Now, the perturbed U.2/ moduli space Mh
E

is the set of critical points of the perturbed
Chern–Simons functional CSCh. Specifically, for a suitable normalization of CS, we
obtain

Mh
E D

˚
ŒA� 2 BE W FA�

1
2
FA0
� idE C?rh.A/D 0

	
:
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If � is mod-2 trivial, this perturbed moduli space inherits the H 1.Y IZ2/–action
from BE , and its quotient space is the perturbed SO.3/ moduli space for su.E/. We
also record the following:

Lemma 6.2 Suppose � is mod-2 trivial. For any h 2H� , Klein-four connections are
unmoved in the SO.3/ moduli space. More precisely, we always have the relation

Mh
su.E/\BV4

su.E/ D BV4

su.E/:

As such perturbations are H 1.Y IZ2/–equivariant, a similar statement holds for the
connections in the U.2/ moduli space Mh

E
lying above Klein-four connections. In

fact, the lemma clearly follows from this latter case, which is justified as follows. First,
the H 1.Y IZ2/–equivariance of our perturbations imply that Klein-four connections
in BE are always perturbed to Klein-four connections. Second, we recall that the space
of Klein-four connection classes is a finite discrete set. Important here is our earlier
observation that any connection with Klein-four stabilizer is in fact flat. In particular,
the gradient of our perturbation is a Klein-four invariant vector v 2 TBE , which must
be the 0 vector by discreteness of the set of Klein-four connections.

Our goal is to find a mod-2 trivial � such that for small, generic h 2H� the moduli
space Mh

E
is nondegenerate. Section 5 of [13] shows that this can be achieved if �

is abundant at each projectively flat ŒA� 2ME . We need to slightly generalize the
definition of abundancy given in [13], which only considers stabilizers isomorphic to
f1g and Z2 . To begin, note that H 1.Y IAad/, the Zariski tangent space to ŒA� in ME ,
carries an action by the stabilizer, denoted

(4) SA WD StabH 1.Y IZ2/
ŒA�D StabGsu.E/

.Aad/:

We remark that the second equality in (4) is not true in general, and is contingent
upon the nontrivial admissibility of E . Recall that SA is one of f1g, Z2 or V4 . Now,
decompose the tangent space into its SA–invariant subspace VA , and the SA–equivariant
orthogonal complement to VA :

H 1.Y IAad/D VA˚V ?A :

The space VA is the Zariski tangent space of ŒA� internal to the stratum of ME

consisting of connection classes with stabilizer isomorphic to SA . The complement V ?
A

is the Zariski normal bundle fiber in ME at ŒA� relative to the aforementioned stratum.
For a vector space W we write Sym.W / for the space of symmetric bilinear forms
on W . If W has a linear G–action by some group G , we write Sym.W /G for the
forms that are G–invariant.
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Definition 6.3 A mod-2 trivial � is abundant at a projectively flat ŒA� 2ME if there
exist perturbations fhig

n
iD1
�H� and some k such that Dhi.A/D 0 for kC1� i � n,

and such that the following map that is defined from Rn to Hom.VA;R/˚Sym.V ?
A
/SA

is surjective:

(5) .x1; : : : ;xn/ 7!

� kX
iD1

xiDhi.A/;

nX
iDkC1

xi Hess hi.A/

�
:

Note that if SA is trivial, then VA accounts for the entire tangent space, and in particular
V ?

A
D 0. Thus only the left-hand factor of the map (5) is relevant. This is the condition

of “first-order abundancy”, and is sufficient to achieve nondegeneracy for small, generic
perturbations when there are no other (lower) strata to consider. At the other extreme,
when SA is isomorphic to V4 , we have VA D 0. In this case (5) reduces to a condition
purely of “second-order abundancy”.

If SA is isomorphic to Z2 , then VA and V ?
A

are the C1 and �1 eigenspaces of
the Z2–action, respectively, and are VC and V� in the notation of [13]. In this case
Sym.V ?

A
/SA is the same as Sym.V�/. Our choice of Sym.V ?

A
/SA in Definition 6.3 is

sufficient for the arguments of Section 5 in [13] to go through in part because a generic
element therein is nondegenerate; see the proof of Proposition 5.4 in [13]. When SA is
isomorphic to f1g or Z2 , our definition agrees with that of [13].

We are left with producing a mod-2 trivial � which is abundant for all ŒA� 2ME . To
this end, the work of Ruberman and Saveliev implies the following:

Lemma 6.4 [13, Proposition 5.2] There exists a mod-2 trivial � that is abundant for
all connections in ME that do not descend to SO.3/ Klein-four connections.

This allows us to focus on the situations in which SA is isomorphic to V4 , the case
in which Aad is a Klein-four connection. We have the following facts, used in [13,
Section 5.5], stated informally:

� If � is abundant, and � 0 is close to � , then � 0 is abundant.
� If � is abundant and � � � 0 , then � 0 is abundant.

In these situations, we are assuming that � and � 0 have the same fixed normal disk
with basepoint. Now suppose we can show, for each A with SA isomorphic to V4 , the
existence of a mod-2 trivial � abundant at ŒA�. Then it is straightforward to conclude,
using these two facts and Lemma 6.4, that there exists a mod-2 trivial � 0 abundant at
all ŒA� 2ME . Thus the following lemma completes the proof of Theorem 1.1:

Lemma 6.5 There is an abundant mod-2 trivial � for any ŒA� 2ME that descends
to an SO.3/ Klein-four connection.
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Proof We follow the method used in [13] of passing to a finite cover. Let A be a
projectively flat connection on E with stabilizer SA isomorphic to V4 . The SO.3/
connection Aad is compatible with a splitting su.E/D �1˚�2˚�3 in which the �i

are nontrivial and distinct real line bundles. The stabilizer SA is given explicitly by

SA D f0; a1; a2; a3g �H 1.Y IZ2/; ai D w1.�i/:

Here, ai corresponds to the gauge transformation of su.E/ that simultaneously re-
flects �iC1 and �iC2 , while fixing �i , where indices are taken mod 3. Define a
homomorphism �1.Y /! SA by


 7! a1.
 /a1C a2.
 /a2C a3.
 /a3:

Let pW Y 0! Y be the covering space corresponding to this homomorphism. Under
this covering Aad pulls back to a trivial connection, denoted A0ad ; see [13, Lemma 5.6].
In particular, each of �i pulls back under p to a trivial real line bundle �0i . Note that
the covering transformation group of Y 0! Y is the Klein-four group SA .

It is known [6, Proposition 67 and Lemma 58] that there is some � 0 , a collection
of embedded solid tori in Y 0 , that is abundant at the trivial connection A0ad in the
following sense: there exist perturbations fhig

n
iD1
�H� 0 such that the map from Rn

to Sym.H 1.Y 0IA0ad//
SO.3/ given by

(6) .x1; : : : ;xn/ 7!

nX
iD1

xi Hess hi.A
0
ad/

is surjective. The appearance of the SO.3/ here is the gauge stabilizer of the connec-
tion A0ad . Let � be the image of � 0 under p , slightly perturbed in Y so that it is of the
form described at the beginning of this section. By construction, � is mod-2 trivial.
Consider the following map:

(7) Sym.H 1.Y 0IA0ad//
SO.3/

! Sym.H 1.Y IAad//
V4 :

Here the V4 refers to SA . The map (5) is the composition of (6) with (7). Thus, to
show abundancy of � at A, it suffices to show that (7) is surjective. The map (7) is
induced by the pull-back map:

(8) V4 ˚ H 1.Y IAad/
p�

����! H 1.Y 0IA0ad/	 SO.3/

This map is equivariant with respect to the indicated gauge stabilizer actions, upon con-
sidering V4 as a subgroup of SO.3/. More precisely, V4 refers to the Gsu.E/–stabilizer
of Aad , while SO.3/ refers to the Gp�su.E/–stabilizer of A0ad .
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To show that (7) is surjective, consider the following two decompositions:

(9) H 1.Y IAad/D

3M
iD1

H 1.Y I�i/; H 1.Y 0IA0ad/DH 1.Y 0IR/˝R3:

Implicit here is a trivialization for each �0i , and the R3 should be thought of as coming
from the induced trivialization of �0

1
˚ �0

2
˚ �0

3
. The map (8) respects these decom-

positions. In the left-hand decomposition of (9), the V4 action is as follows: ai acts
as �1 on H 1.Y I�iC1/˚H 1.Y I�iC2/, and C1 on H 1.Y I�i/. In the tensor product
appearing in (9), the SO.3/–action on R3 is standard, and is trivial on H 1.Y 0IR/.
From these descriptions, it is straightforward to verify that these decompositions induce
identifications between the domain and codomain of (7) with Sym.H 1.Y 0IR// andL3

iD1 Sym.H 1.Y I�i//, respectively. The map (7) can then be seen as the map

(10) Sym.H 1.Y 0IR//!
3M

iD1

Sym.H 1.Y I�i//;

in which each of the three components is the map induced by pull-back, after trivializ-
ing �0i . Now, (10) is surjective because the three relevant pull-back maps are injective,
and their three images pairwise intersect at 0. This is evident from the decomposition

H 1.Y 0IR/DH 1.Y IR/˚H 1.Y I�1/˚H 1.Y I�2/˚H 1.Y I�3/;

which is induced by the covering transformation group SA acting on H 1.Y 0IR/. This
action should not to be confused with the gauge stabilizer action of SA on H 1.Y IAad/

which was used above. The summand H 1.Y IR/ is the invariant subspace under this
action, while H 1.Y I�i/ is the complement of H 1.Y IR/ inside the invariant subspace
for the subgroup f0; aig.

Remark 6.6 For a discussion of some of the technical assumptions used here, see
Section 5.6 of [13]. For a detailed study of the abundancy of holonomy perturbations
in the context of the equivariant Kuranishi method, see [7].

7 Establishing the vanishing result

Here we complete the proof of Theorem 1.2. The remaining step is to use a realization
result for the Z2–cohomology ring due to Turaev in conjunction with Corollary 1.6.
Recall that for a closed, oriented and connected 3–manifold we have the triple cup
product form

uY W H
1.Y IZ2/˝H 1.Y IZ2/˝H 1.Y IZ2/! Z2; uY .a; b; c/D .a[ b[ c/ŒY �:
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The trilinear form uY determines the Z2–cohomology ring of Y . It was originally
proven by Postnikov that any symmetric trilinear form satisfying u.a; a; b/Du.b; b; a/

is realized by a closed, oriented and connected 3–manifold. Recall also that we have
the linking form

LY W Tor H1.Y IZ/˝Tor H1.Y IZ/!Q=Z;

which is a nondegenerate symmetric bilinear form. The linking form interacts with
the Z2–cohomology ring in the following way. Let  W Z2!Q=Z be the injection
defined by  .k .mod 2//D k=2. Then for all a; b 2H 1.Y IZ2/ we have the relation

(11)  .uY .a; a; b//DLY .a
|; b|/;

where for any a 2 H 1.Y IZ2/ the element a| 2 Tor H1.Y IZ/ is defined by the
condition that LY .a

|; c/D  .a.c// for all c 2 Tor H1.Y IZ/. Here we are of course
identifying H 1.Y IZ2/ with Hom.H1.Y IZ/;Z2/. An implication of Turaev’s work
is the following result (see also [10; 14] for related results):

Theorem 7.1 [16] Let H be a finitely generated abelian group, and let

uW Hom.H;Z2/
˝3
! Z2

be a symmetric trilinear form. There exists a closed, orientable and connected 3–
manifold Y such that the pair .H;u/ is equivalent to .H1.Y IZ/;uY / if and only
if there exists a nondegenerate symmetric bilinear form LW Tor H˝2 ! Q=Z such
that (11) holds with uY D u and LY DL.

Proof of Theorem 1.2 Let Y be such that k.Y / � 4, and suppose that x is not a
cup-square. Equivalently, x has no order-2 lift to H 2.Y IZ/. Our goal is show that
vY .x/� 0 .mod 2/. We choose an isomorphism

H1.Y IZ/'
4M

iD1

Ai ˚B;

where Ai is an abelian group of the form Z2k for k > 1 or a copy of Z. Make these
choices so that x has a lift to H 2.Y IZ/ with support in A1 , not of order 2, which can
be done by our assumption on x . Recall that Tor H1.Y IZ/ is the torsion of H 2.Y IZ/
by the universal coefficients theorem. Now define H by replacing the Ai summands
with copies of Z:

H WD

4M
iD1

A0i ˚B; A0i WD Z

With our identifications we have a natural isomorphism between H 1.Y IZ2/ and
Hom.H;Z2/, and with this understood we set u WD uY . Also, noting that Tor H
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is simply Tor H1.Y IZ/ with some summands possibly thrown away, we define L

to be the restriction of LY . With our identifications, the terms appearing in (11)
are unchanged. Thus Theorem 7.1 implies the existence of a closed, oriented and
connected 3–manifold Z with first homology and triple cup product form given
by .H;u/. By our choices, x has no torsion lifts, and is thus equal to w2.E/ for a
nontrivial admissible U.2/ bundle E over Z . Now Poudel’s result in the guise of
Corollary 1.6 says vZ .x/� 0 .mod 2/, since b1.Z/� 4. Since the Z2–cohomology
rings of Y and Z are the same, we then get vY .x/� 0 .mod 2/. The independence
of x as a choice having no order-2 lift to H 2.Y IZ/ is established in much the same
way as the vanishing.

8 Examples and properties

In this section we prove Proposition 1.7, which yields examples of vY .x/ .mod 2/

for Seifert-fibered spaces. We then produce a connected sum formula for the parity
of vY .x/. Finally, we illustrate how to compute vY .x/ for double branched covers of
links.

Seifert-fibered spaces Let Y be a Seifert-fibered 3–manifold over an oriented base
orbifold, with Seifert invariants .g; b; .˛1; ˇ1/; : : : ; .˛r ; ˇr //. Here g is the genus of
the base orbifold. The mod 2 cohomology ring of Y is completely described in [1].

Lemma 8.1 Suppose x 2H 2.Y IZ2/ is not a square. If any of the ˛i are even, or if
all ˛i are odd and bC

P
ˇi � 1 .mod 2/, then vY .x/D 0.

Proof We begin with the following easily verified observation. In general, we have

(12) fa2
W a 2H 1.Y IZ2/g � fab W a; b 2H 1.Y IZ2/g:

When these sets are equal, then vY .x/D 0. For if the triple fa; b; aC bg 2 VY had
a2C b2C ab D x , then x would in fact be a square, a contradiction. Now we appeal
to [1, Theorem 2.9]. When there is some even ˛i (“case n D 0” in [1]), we easily
check that these two sets in (12) are equal. This is particularly immediate when there
is an ˛i divisible by 4, and the mod 2 cohomology ring of Y is isomorphic to that of a
connect sum of some copies of RP3 and some copies of S1 �S2 . Finally, if all ˛i

are odd and bC
P
ˇi � 1 .mod 2/, then the ring is isomorphic to that of a connect

sum of 2g copies of S1 �S2 , whence by the same reasoning vY .x/D 0.

Proof of Proposition 1.7 First, since b1.Y / is equal to either 2g or 2gC1, the integer
vY .x/ is even by Corollary 1.6 unless gD 1. By the above lemma, it remains to check
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that vY .x/� 1 .mod 2/ when g D 1 and all ˛i are odd and bC
P
ˇi � 0 .mod 2/.

One can conclude from [1] that H 1.Y IZ2/ has a basis a, b , c with a2 D b2 D 0

and nonzero products ab , bc , ac , the three of which provide a basis for H 2.Y IZ2/.
Depending on some divisibility conditions on the ˇi , either c2 D 0 or c2 D ab . The
element ac , for one, is never a square, so we set x D ac . In either case we compute
vY .x/D 1.

Connected sums Now let x be any element of H 2.Y IZ2/. Recall that VY may be
viewed as Hom.�1.Y /;V4/ modulo the action of S3 D Aut.V4/. As such, it makes
sense to keep track of the S3–stabilizers of the orbits. For a set X with S3–action we
define the triple Lv.X /D . Lv1; Lv2; Lv3/ where Lv1 , Lv2 , Lv3 are the numbers of orbits with
stabilizers of orders 1, 2, 6, respectively. For two such sets X1 and X2 with S3–actions
we have

Lv.X1 �S3
X2/D Lv.X1/� Lv.X2/;

where we define the product � on triples as follows:

Lv� Lu WD .6 Lv1 Lu1C3 Lv1 Lu2C3 Lv2 Lu1C Lv1 Lu3C Lv3 Lu1C Lv2 Lu2; Lv2 Lu2C Lv2 Lu3C Lv3 Lu2; Lv3 Lu3/:

Define the norm of a triple to be the L1–norm: j Lvj D Lv1 C Lv2 C Lv3 . Write LvY .x/

for the triple Lv.X /, with X the subset of Hom.�1.Y /;V4/ that lives on an SO.3/
bundle E with x D w2.E/. Thus X=S3 is the subset of fa; b; cg 2 VY such that
abC bcC ac D x . With our new notation, we have

vY .x/D jLvY .x/j:

Now, given xi 2H 2.Yi IZ2/ it is easy to verify the connect sum relation

vY1#Y2
.x1Cx2/D jLvY1

.x1/� LvY2
.x2/j:

Note also that if x is not a cup-square, then LvY .x/ has the form

LvY .x/D . Lv1; 0; 0/:

In general, the third entry Lv3 is equal to 1 if and only if x D 0, and is otherwise 0.
Also, the second entry Lv2 is the number of nontrivial cup-square-roots of x :

Lv2 D jfa 2H 1.Y IZ2/ W a¤ 0; a2
D xgj; where LvY .x/D . Lv1; Lv2; Lv3/:

In particular, the sum Lv2 C Lv3 is either zero or the cardinality of the kernel of the
Bockstein map H 1.Y IZ2/!H 2.Y IZ2/, which is by definition 2k.Y / . Putting these
observations together, and using our freedom to choose x that is not a square (below
choose x2 D 0), we compute the following:

Algebraic & Geometric Topology, Volume 17 (2017)



2858 Christopher Scaduto and Matthew Stoffregen

Proposition 8.2 Suppose xi 2H 2.Yi IZ2/ and that x1 is not a cup-square. Then

vY1#Y2
.x1Cx2/�

�
vY1

.x1/ .mod 2/ if k.Y2/D 0;

0 .mod 2/ otherwise:

In particular, we recover the fact (mod 2) that vY .x/ is stable under connect summing
with RP3 . More generally, these statements clearly hold when the decompositions
are only algebraic, instead of geometric: for example, if there is a decomposition
H 1.Y IZ2/DA˚B where A[B D 0 and B has an element of order 4 or 1, then
vY .x/� 0 .mod 2/ for any x not a cup-square.

Double branched covers The above Seifert-fibered examples for genus g D 0 are
double branched covers of Montesinos links, but in all of those cases vY .x/ vanishes
(mod 2) for nonsquares x . Here we compute a nonvanishing example in which Y is a
double branched cover †.L/ of a link L in S3 . First, we describe the Z2 cohomology
rings of such manifolds. Let L be a link with components L1; : : : ;Ln , and let Si be a
Seifert surface for Li . Then Si lifts to a closed surface Fi in the branched cover †.L/.
Write ai 2H 1.†.L/IZ2/ for the Poincaré dual of ŒFi �.

Proposition 8.3 Let L be an n–component link. The vector space H 1.†.L/IZ2/

has dimension n� 1, and it is generated by the n classes ai subject to the one relation

(13) a1C � � �C an D 0:

The triple cup product form on H 1.†.L/IZ2/ is determined by the values

.ai [ aj [ ak/Œ†.L/��

8<:
P
`¤i lk.Li ;L`/ .mod 2/ for i D j D k;

lk.Li ;Lk/ .mod 2/ for i D j ¤ k;

0 .mod 2/ for i; j ; k distinct.

This proposition is proved for two-component links in [12, Proposition 9.2], and
the proof easily generalizes. We sketch the argument. To begin, we mention that
H1.†.L/IZ2/ is in bijection with the subsets of f1; : : : ; ng of even cardinality:

(14) H1.†.L/IZ2/
1W1
 !

˚
S � f1; : : : ; ng W jS j � 0 .mod 2/

	
:

The bijection goes as follows. Given such a subset, pair off elements. For the pair fi; j g,
draw an arc in S3 between components Li and Lj , otherwise missing L. Lift the arcs
to a union of loops in †.L/ to obtain a class in H1.†.L/IZ2/. Now, assume the Fi

are transverse to one another. Then it is not hard to see, when i ¤ j , that Fi \Fj is
mod 2 homologous to

lk.Li ;Lj / � fi; j g;

where we view fi; j g as an element of H1.†.L/IZ2/ via the above bijection. Upon
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1

2 3
4

Figure 2: The link LDL8n8 with its four components labeled by f1; 2; 3; 4g .
This link has determinant zero and thus its branched double cover supports
nontrivial admissible bundles.

taking Poincaré duals, this yields the proposition. We note that addition on the subsets
appearing on the right side of (14) is the symmetric difference of sets.

Let Y D †.L/, and let f be the function from VY to H1.Y IZ2/ that sends a flat
Klein-four connection class to the Poincaré dual of its second Stiefel–Whitney class:

f fa; b; cg D PD.abC bcC ac/:

Let L be the four-component link L8n8 depicted in Figure 2, and let ai be the classes
described in Proposition 8.3 for L, so that ai is dual to the lifted Seifert surface
of Li . In particular, a1 , a2 , a3 form a basis for H 1.Y IZ2/. For illustration, using
Proposition 8.3 we compute

PD.a2
1/D PD .a1.a2C a3C a4//D

4X
iD2

lk.L1;Li/ � f1; ig D f1; 2gC f1; 3g D f2; 3g:

The bijection (14) is implicit in our notation, aligning subsets of f1; 2; 3; 4g of even
size with elements of H1.Y IZ2/. We then compute f on all fifteen of the Klein-four
connection classes in VY :

f f0; 0; 0g D 0; f fa1; a2; a1Ca2g D f3; 4g;

f fa1; a1; 0g D f2; 3g; f fa1; a3; a1Ca3g D f2; 4g;

f fa2; a2; 0g D f1; 4g; f fa2; a3; a2Ca3g D 0;

f fa3; a3; 0g D f1; 4g; f fa1; a2Ca3; a1Ca2Ca3g D 0;

f fa1Ca2; a1Ca2; 0g D f1; 2; 3; 4g; f fa2; a1Ca3; a1Ca2Ca3g D f1; 3g;

f fa1Ca3; a1Ca3; 0g D f1; 2; 3; 4g; f fa3; a1Ca2; a1Ca2Ca3g D f1; 2g;

f fa2Ca3; a2Ca3; 0g D 0; f fa1Ca2; a1Ca3; a2Ca3g D 0;

f fa1Ca2Ca3; a1Ca2Ca3; 0g D f2; 3g:
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We find that the cup-squares form a 2–dimensional subspace of H 2.Y IZ2/, appearing
as the outputs of the left-hand column. Thus k.Y / D 1. We have four nonsquares,
appearing as the nonzero (underlined) entries in the right-hand column. Each has one
Klein-four class, and so vY .x/� 1 .mod 2/ when x is not a cup-square. The link L

has determinant zero, ie b1.Y / > 0, so Y has a nontrivial admissible U.2/ bundle E .
By Theorem 1.1 we conclude

�.Y;E/� 1 .mod 2/:

Proposition 8.3 similarly computes the parity of 24�n�.Y;E/, when det.L/D 0, from
only knowing the mod 2 linking matrix of L.
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