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Dehn surgeries and rational homology balls

PAOLO ACETO

MARCO GOLLA

We consider the question of which Dehn surgeries along a given knot bound rational
homology balls. We use Ozsváth and Szabó’s correction terms in Heegaard Floer
homology to obtain general constraints on the surgery coefficients. We then turn our
attention to the case of integral surgeries, with particular emphasis on positive torus
knots. Finally, combining these results with a lattice-theoretic obstruction based on
Donaldson’s theorem, we classify which integral surgeries along torus knots of the
form Tkq˙1;q bound rational homology balls.

57M27; 57M25, 57R58

1 Introduction

A filling of a closed 3–manifold Y is a smooth, compact 4–manifold Z with @Z D Y .
It is very natural to ask how simple fillings of a given Y can be: Lickorish [14] and
Wallace [32] showed that there is always a simply connected filling; Milnor [19] proved
that there is always a spin filling. The Rokhlin invariant [30] and, more recently,
Donaldson’s theorems [6] provided formidable obstructions to the existence of fillings
which are integral or rational homology balls (ie have the homology of a point, with
integral or rational coefficients).

On the more constructive side, Casson and Harer [5] built families of Seifert fibred
spaces admitting a rational homology ball filling. Lisca [15; 16] used Donaldson’s
theorem to find all relations among lens spaces in the rational homology 3–dimensional
cobordism group. Lecuona [13] tackled the problem of determining which 3–legged
Seifert fibred spaces bound rational homology balls; the first author [1] studied which
rational homology S1 �S2 ’s bound rational homology S1 �D3 ’s.

In another direction, Owens and Strle [23] addressed the question of when the inter-
section form of Z can be negative definite, in the case when Y is obtained as Dehn
surgery along a knot in S3 , and answered it completely in the case of torus knots.

Given a knot K in S3 we address the following question: which Dehn surgeries
along K bound rational homology balls? From this viewpoint Lisca’s work [15] can
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be regarded as a complete answer for the unknot. Moreover, since Dehn surgeries on
concordant knots are homology cobordant, this provides a complete answer for every
smoothly slice knot.

We use Ozsváth and Szabó’s correction terms in Heegaard Floer homology [24] to
obtain constraints on the surgery coefficients. For instance, we prove the following:

Theorem 1.1 For every knot K and every positive integer q , there exist finitely many
positive integers p such that S3

p=q
.K/ bounds a rational homology ball.

Many of our results will be expressed in terms of the knot invariant �C , a byproduct
of the Heegaard Floer package defined by Hom and Wu [9] (see Section 3 below).

Theorem 1.2 There are at most two positive integer values of n such that S3n.K/
bounds a rational homology ball; if there are two, they are consecutive squares and
1C 8�C.K/ is a perfect square.

We then turn our attention to the case of positive torus knots. We prove the following:

Theorem 1.3 If p , q > 1 are coprime integers with p > 9q , then no positive integral
surgery along Tp;q bounds a rational homology ball.

Finally, combining these results with a lattice-theoretic obstruction based on Don-
aldson’s theorem, we classify which integral surgeries along torus knots of the form
Tkq˙1;q bound rational homology balls.

Theorem 1.4 Let p , q > 1 be integers such that p �˙1 .mod q/. The 3–manifold
S3n.Tp;q/ bounds a rational homology ball if and only if the triple .p; qIn/ is in one of
these cases:

(i) .p; qIn/D .qC 1; qI q2/ for some q � 2;

(ii) .p; qIn/D .qC 1; qI .qC 1/2/ for some q � 2;

(iii) .p; qIn/D .4q˙ 1; qI .2q/2/ for some q � 2;

(iv) .p; qIn/ 2 f.5; 2I 9/; .5; 3I 16/; .8; 3I 25/; .13; 2I 25/; .29; 5I 144/; .34; 5I 169/g;

(v) .p; qIn/ 2 f.9; 4I 36/; .25; 4I 100/g;

(vi) .p; qIn/ 2 f.17; 3I 49/; .22; 3I 64/; .43; 6I 256/g.

The manifolds corresponding to triples in (iv) are lens spaces; the ones corresponding to
triples in (v) are connected sums of two lens spaces; all the other manifolds are Seifert
fibred over S2 with three singular fibres.
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It is very interesting to compare our list with the list of Fernández de Bobadilla, Luengo,
Melle Hernández and Némethi [2], who classify singularities with one Puiseux pair that
appear as cusps of rational unicuspidal curves in the complex projective plane. The com-
plement of a regular neighbourhood of such a curve (taken with the opposite orientation
with respect to the one inherited by CP2 ) is in fact a rational homology ball whose
boundary is a positive surgery along a torus knot (see also Borodzik and Livingston [4]).

The family (ii) and the subfamily .4q�1; qI .2q/2/ of (iii) correspond to the families (a)
and (b) in [2, Theorem 1.1]; the cases .2; 13I 25/ and .5; 34I 169/ belong to family (d),
while .4; 25I 100/, .3; 22I 64/ and .6; 43I 256/ correspond to cases (c), (e) and (f),
respectively. On one hand, the comparison shows that the topological setting is, perhaps
unsurprisingly, richer than the algebraic setting; on the other, it shows that the two
nonalgebraic infinite families we find are not too far from the algebraic ones. Finally,
it also shows that there are many more triples .p; qIn/ for which S3n.Tp;q/ bounds
a rational homology ball if we drop the assumption p � ˙1 .mod q/ (namely, the
families (c) and (d) in [2, Theorem 1.1]).

In a forthcoming paper, joint with Kyle Larson, we will address related questions for
integral surgeries along cables of knots.

Organisation of the paper In Sections 2 and 3 we recall some basic facts about
plumbings and Donaldson’s theorem, and about correction terms in Heegaard Floer
homology. In Section 4 we study correction terms of lens spaces and rational surg-
eries along knots in S3 and prove Theorem 4.12, which is a quantitative version of
Theorem 1.1. In Section 5 we focus on integral surgeries and prove Theorem 1.2 as
a corollary of Theorem 5.1; we then turn to the special cases of alternating and torus
knots, proving Theorem 1.3. Finally, in Section 6 we study in more detail surgeries
along torus knots and we prove Theorem 1.4.

Acknowledgements We would like to thank József Bodnár, Daniele Celoria, Kyle
Larson, Francesco Lin, Paolo Lisca and Duncan McCoy for interesting conversations.
Aceto was partially supported by the ERC Advanced Grant LDTBud. Golla was partially
supported by the PRIN-MIUR research project 2010–11 “Varietà reali e complesse:
geometria, topologia e analisi armonica”, by the FIRB research project “Topologia
e geometria di varietà in bassa dimensione” and by the Alice and Knut Wallenberg
foundation.

2 Plumbed manifolds and rational homology cobordisms

In this section we briefly recall the language of plumbed manifolds; we then state the
lattice-theoretic obstruction based on Donaldson’s diagonalisation theorem which we
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will use in Section 6, and we study the extension of spinc structures from the boundary
to a rational homology ball.

2.1 Plumbings

In this paper, a plumbing graph � is a finite tree where every vertex has an integral
weight assigned to it. To every plumbing graph � we associate a smooth oriented
4–manifold P.�/ with boundary @P.�/ in the following way. For each vertex take
a disc bundle over the 2–sphere with Euler number prescribed by the weight of the
vertex. Whenever two vertices are connected by an edge we identify the trivial bundles
over two small discs (one in each sphere) by exchanging the role of the fibre and the
base coordinates. We call P.�/ (resp. @P.�/) a plumbed 4–manifold (resp. plumbed
3–manifold).

This definition can be extended to reducible 3–manifolds; if the graph is a finite forest
(ie a finite disjoint union of trees) we take the boundary connected sum of the plumbed
4–manifolds associated to each connected component of � .

The group H2.P.�/IZ/ is free abelian, generated by the zero sections of the sphere
bundles (ie by vertices of the graph). Moreover, with respect to this basis, the intersection
form of P.�/, which we indicate by Q� , is described by the matrix M� whose entries
.aij / are defined as follows:

� ai i equals the Euler number of the corresponding disc bundle.

� aij D 1 if the corresponding vertices are connected.

� aij D 0 otherwise.

Finally note that M� is also a presentation matrix for the group H1.@P.�/IZ/.

Recall from [20] that every plumbed 3–manifold has a unique description via a positive
canonical plumbing graph as well as a negative one. Note that if � is the positive
canonical plumbing graph of a plumbed 3–manifold, Q� is not necessarily positive
definite. Moreover, given a plumbed 3–manifold @P.�/ where � is a positive canonical
plumbing graph, there is an algorithm to construct the positive plumbing graph of
�@P.�/ (ie @P.�/ with the reversed orientation). We call this graph the dual of �
and we denote it by �� . We will recall in Section 6 how to derive �� from � when
the latter is a star-shaped graph.

2.2 Intersection forms and spinc structures

An integral lattice is a pair .G;QG/ where G is a free abelian group, equipped with
a symmetric bilinear form QG . We denote with .ZN ;˙I / the standard positive
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or negative definite diagonal integral lattice. A morphism of integral lattices is a
homomorphism of abelian groups which preserves the intersection form. In particular,
to a plumbed 3–manifold we can associate the intersection lattice H2.P.�/IZ/.

The next result is implicit in several papers; see for instance [15; 13].

Proposition 2.1 Let @P.�/ be a rational homology sphere plumbed 3–manifold
described by its positive or negative canonical plumbing graph � which has N vertices.
Suppose that Q� is definite and that @P.�/ bounds a rational homology ball. Then
there exists an injective morphism of integral lattices

.H2.P.�/IZ/;Q�/ ,! .ZN ; I / or .H2.P.�/IZ/;Q�/ ,! .ZN ;�I /;

depending on the sign of � .

If there exists an embedding as in the statement above, we will often simply say that
H2.P.�/IZ/ (or even Q� or � ) embeds.

Proof Let W be the rational homology ball bounded by @P.�/; let X DP.�/[�W .
By Donaldson’s diagonalisation theorem the intersection form on X is standard and
the inclusion P.�/ ,!X induces the desired morphism of integral lattices.

We now turn to studying the extension problem for spinc structures. Recall that the
space Spinc.Z/ of spinc structures on a manifold Z is freely acted upon by H 2.ZIZ/,
and that the restriction Spinc.Z/! Spinc.Y / induced by an inclusion Y ,! Z is
equivariant with respect to this H 2–action. Namely, fix a spinc structure s on Z and a
class ˛ 2H 2.ZIZ/; call t the restriction of s to Y and ˇ 2H 2.Y IZ/ the restriction
of ˛ . Then, the restriction of ˛ � s is ˇ � t.

The following proposition is well-known, and it will be extensively used in the following
sections. For completeness, we also sketch a proof.

Proposition 2.2 Let K be a knot in S3 , r D p
q
¤ 0 be rational, and suppose that

Y D S3r .K/ bounds a rational homology ball Z . Then p Dm2 is a square and the set
of spinc structures on Y that extend to Z is a cyclic quotient of H 2.ZIZ/ comprised
of m elements.

Proof (sketch) Since Y is a rational homology sphere, H 1.Y IZ/ D 0. Moreover,
since @ZD Y , the map H 3.Y IZ/!H 4.Z; Y IZ/ is an isomorphism. The long exact
sequence in cohomology for the pair .Z; Y / is

0!H 2.Z; Y IZ/!H 2.ZIZ/!H 2.Y IZ/!H 3.Z; Y IZ/!H 3.ZIZ/! 0:
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From Poincaré–Lefschetz duality and the universal coefficient theorem, one obtains
that all groups involved are finite, and moreover jH 2.Z; Y IZ/j D jH 3.ZIZ/j and
jH 2.ZIZ/j D jH 3.Z; Y IZ/j. This shows that jH 2.Y /j D p is a square, and that the
image of the map H 2.ZIZ/!H 2.Y IZ/ has order mD

p
p .

That is, the set of spinc structures on Y that extend to Z has order m, and since
H 2.Y IZ/ is cyclic, so is the image of H 2.ZIZ/!H 2.Y IZ/.

3 Correction terms in Heegaard Floer homology

Heegaard Floer homology is a family of invariants of 3–manifolds introduced by
Ozsváth and Szabó [27]; in this paper we are concerned with the “plus” version, which
associates to a rational homology sphere Y equipped with a spinc structure t a Q–
graded ZŒU �–module HFC.Y; t/. Recall that the action of U decreases the degree
by 2.

The group HFC.Y; t/ further splits as a direct sum of ZŒU �–modules T C˚HFCred.Y; t/,
where T C D ZŒU; U�1�=U �ZŒU �. The degree of the element 1 2 T C is called the
correction term of .Y; t/, and it is denoted by d.Y; t/.

Theorem 3.1 [24] The correction term satisfies the following properties:

� d.Y; Nt/D d.Y; t/D�d.�Y; t/, where Nt is the conjugate of t.

� If .W; s/ is a negative definite spinc 4–manifold with boundary .Y; t/, then

c1.s/
2
C b2.W /� 4d.Y; t/:

In particular, d.Y; t/ is invariant under spinc rational homology cobordisms.

Corollary 3.2 If W is a rational homology ball with boundary Y and t is a spinc

structure on Y that extends to W , then d.Y; t/D 0.

When Y is obtained as rational surgery along a knot K in S3 , one can recover the
correction terms of Y in terms of a family of invariants of K , first introduced by Ras-
mussen [29] and then further studied by Ni and Wu [22] and Hom and Wu [9]. We call
these invariants fVi .K/gi�0 , adopting Ni and Wu’s notation instead of Rasmussen’s —
who used hi .K/ instead — as this seems to have become more standard.

We write O for the unknot.
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Theorem 3.3 [29; 22] The sequence fVi .K/gi�0 takes values in the nonnegative
integers and is eventually 0. Moreover, Vi .K/�1�ViC1.K/�Vi .K/ for every i � 0.

For every rational number p
q

and for an appropriate indexing of spinc structures on
S3
p=q

.O/ and S3
p=q

.K/, we have

(1) d.S3p=q.K/; i/D�2maxfVbi=qc.K/; Vd.p�i/=qe.K/gC d.S
3
p=q.O/; i/:

Definition 3.4 [9] The minimal index i such that Vi .K/D 0 is called �C.K/.

In order to know the correction terms of S3
p=q

.K/ it suffices to know the values of
Vi .K/ for each i as well as the values of the correction terms of lens spaces.

Proposition 3.5 [24, Proposition 4.8] Let p , q and i be integers with p > q > 0,
gcd.p; q/D 1 and 0� i < pCq . Let r and j be the reductions of p and i modulo q ,
respectively. Then, for an appropriate indexing of spinc structures,

(2) d.L.p; q/; i/D
1

4
�
.pCq�2i�1/2

4pq
� d.L.q; r/; j /:

Remark 3.6 In [24; 22; 9] the lens space L.p; q/ is defined as obtained by doing
p
q

–surgery along the unknot O . We adopt the convention that L.p; q/ is obtained by
doing �p

q
–surgery along O , following [20; 15] (among others); this explains the sign

difference in (2) with respect to the original.

4 Generalities on rational surgeries

In this section we study correction terms of lens spaces; we then turn to surgeries along
arbitrary knots in the 3–sphere.

4.1 Correction terms of lens spaces

Recall from [15] that the function I W Q>1! Z is defined in terms of the negative
continued fraction expansion as follows. If p

q
2 Q is larger than 1, we denote by

Œa1; : : : ; an�
� , where ai � 2 for each i , its negative continued fraction expansion, that

is p
q
D a1�

1
a2����

. If p
q
D Œa1; : : : ; an�

� , we let

I
�
p

q

�
D

nX
iD1

.ai � 3/:

Algebraic & Geometric Topology, Volume 17 (2017)



494 Paolo Aceto and Marco Golla

K
: : :

a1
a2 an

Figure 1: The integral surgery picture for p
q

–surgery along K , where p
q
D Œa1; : : : ; an�

�

Given a rational number p
q
> 1, we associate to p

q
the linear plumbing P

�p
q

�
repre-

sented by the diagram with n vertices and weights �a1; : : : ;�an . Its plumbing graph
is the following:

� : : : �

�a1 �an

Recall that P
�p
q

�
is the negative canonical plumbing with boundary L.p; q/ and that

its associated intersection form is negative definite.

Definition 4.1 We say that a rational number p
q
D Œa1; : : : ; an�

� > 1 is embeddable
if there exists an embedding of the integral lattice associated to P

�p
q

�
in .Zn;�I /.

Remark 4.2 We observe here that if S3
p=q

.K/ bounds a rational homology ball, then
p
q

is embeddable. To this end, recall that one can express a rational surgery along a
knot K as an integral surgery along a link as follows: consider the negative continued
fraction expansion p

q
D Œa1; : : : ; an�

� ; then S3
p=q

.K/ is obtained by doing integral
surgery on the link shown in Figure 1. In particular, the intersection form of the
corresponding 4–dimensional 2–handlebody is the same as the intersection form
of P

�p
q

�
, and the claim follows from the proof of Proposition 2.1.

Lemma 4.3 If p
q
> 1 is embeddable and I

�p
q

�
< 0, then L.p; q/ bounds a rational

homology ball.

This result is implicit in Lisca [15]; here we adopt his notation.

Proof (sketch) Theorem 6.4 of [15] shows that the standard subset associated to p
q

with I
�p
q

�
< 0 can be contracted to the standard subset associated to 4

3
; in [15,

Section 7] this fact is used to characterise the set of possible continued fraction
expansions of p

q
; in [15, Section 8], by direct inspection, it is shown that each of

these lens spaces does in fact bound a rational homology ball.
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Lemma 4.4 Let p Dm2 and q be positive integers. If there exists 0 � k < m such
that

d.L.p; q/; k/D d.L.p; q/; kCm/D � � � D d.L.p; q/; kC .m� 1/m/D 0;

then q�m�1. In particular, if L.p; q/ bounds a rational homology ball, then q�m�1.

Proof Suppose that the assumption holds and that, by contradiction, q �m� 2. In
this case, kC qm < p , and hence

d.L.p; q/; k/D d.L.p; q/; kC qm/D 0:

We now apply (2) to both correction terms above and subtract them, to obtain

.kCqm/2

pq
�
k2

pq
�mq

�
1

pq
�
1

p
�
1

q

�
D 0;

from which one gets
0D 2kCmqC 1�m2� q < 0;

yielding a contradiction.

As for the second part of the statement, assume that L.p; q/ bounds a rational homology
ball. By Proposition 2.2 and Corollary 3.2, there exists an integer 0� k0 <p such that
d.L.p; q/; k0C hm/D 0 for each integer h (where we think of the spinc structures
as being cyclically labelled). In particular, we can assume that k0D k is the remainder
of the division of k0 by m, and hence 0� k < m. The assumptions of the first part of
the statement are now fulfilled, and therefore q � p� 1.

Lemma 4.5 Whenever q and r are coprime and 0 < r < q , for every 0� j � q� 1
we have 4jd.L.q; r/; j /j � q� 1. Moreover, if equality is attained then r is either 1
or q� 1.

Proof The statement is symmetric with respect to the involution r 7! q � r ; hence,
we can assume r < q

2
. Moreover, if r D 1 or if q D 5 and r D 2 the result can be

readily checked from (2); hence, we can suppose q � 6 and 2� r < q
2

.

We will proceed by induction on q . We now apply the recursion for 0� j < q :

d.L.q; r/; j /D
1

4
�
.qC r � 2j � 1/2

4qr
� d.L.r; s/; k/:

The second summand is bounded from above by 0 and from below by � .qCr�1/
2

4qr
, while

the last summand is bounded by r�1
4

in absolute value, by the inductive assumption.
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Summing up,
4d.L.q; r/; j /� 1C 0C r � 1D r < q� 1

and

�4d.L.q; r/; j /�� 1C
.qCr�1/2

qr
C r � 1

D� 1C

�
q�2

r
C r

�
C 2C

r

q
�
2

q
C
1

qr
� 1:

Now notice that q�2
r
C r is bounded from above by 2.q�2/

q�1
C
q�1
2
< qC3

2
, that r

q
< 1
2

,
and that 1

qr
< 2
r

. Therefore,

�4d.L.q; r/; j / <
q

2
C
3

2
C
1

2
D
q

2
C 2;

and the latter quantity is bounded by q� 1 if q � 6.

Lemma 4.6 Let p
q

be an embeddable rational number. Then at least one of the
correction terms of L.p; q/ vanishes.

Proof Let Œa1; : : : ; an�� be the negative continued fraction expansion of p
q

.

The plumbing P DP
�p
q

�
has no bad vertices in the sense of [26], hence the correction

terms of its boundary can be computed in terms of the squares of the characteristic
vectors in H2.P /. More specifically, it follows from [26, Corollary 1.5] that

(3) d.�Y; t/D 1
4
.max c21.s/Cn/;

where the maximum is taken over all spinc structures on P whose restriction to Y
is t.

Fix an embedding of the intersection lattice L Š H2.P IZ/ of P in the negative
definite diagonal lattice D D .Zn;�I /, with a fixed orthonormal basis fe1; : : : ; eng.
The vector space LQ WD L˝QDD˝Q comes with a natural scalar product, and
there is an embedding � of the dual lattice L� into LQ that turns evaluations into
products. That is, for every � 2 L� and l 2 L we have

�.l/D �.�/ � l:

The sum sD e1C� � �Cen 2LQ is in L� , and it is a characteristic covector (since it is
a characteristic vector in D ); s also maximises the norm among characteristic vectors
in D , and in particular it maximises the norm in the set sCL. By (3) the associated
spinc structure on �Y has correction term s2Cn

4
D 0.

Lemma 4.7 If p Dm2 is a square and d.L.p; q/; i/ 2Z, then 2i C 1� q .modm/.
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Proof Recall that correction terms of lens spaces can be computed in terms of Dedekind
and Dedekind–Rademacher sums; we only need two properties of these sums, and we
refer the reader to [10; 11] for precise definitions and proofs.

More specifically, it is shown in [11, Theorem 1.2] that

(4) d.L.q; t/; j /D 2s.t; qI j /C s.t; q/�
1

2q
;

where s.t; qI j /; s.t; q/ are two rational numbers such that 6qs.t; q/ and 12qs.t; qI j /
are both integers (see [10, Section 2], where the notation for s.t; qI j / is rj .t; q/). In
particular, 12qd.L.q; t/; j / is an integer for each j .

We apply (4), setting tDp and j equal to the reduction of i modulo q : if d.L.p; q/; i/
is an integer, then so is 12qd.L.p; q/; i/. However, applying (2),

12qd.L.p; q/; i/D 3q� 3
.pCq�2i�1/2

p
� 12qd.L.q; t/; j /;

and this implies that 3
�pCq�2i�1

m

�2 is an integer, hence that m divides m2Cq�2i�1,
which is equivalent to the thesis.

Lemma 4.8 If pDm2 and d.L.p; q/; i/2Z, then d.L.p; q/; iCm/2Z. Moreover,
if d.L.p; q/; i/ and d.L.p; q/; i 0/ are both integers, then mj.i � i 0/.

The proof of this lemma follows closely the proof of [11, Corollary 1.8].

Proof Recall that [11, Lemma 2.2] asserts that 2pd.L.p; q/; i/ and 2qd.L.q; r/; j /
are integers for every i and j . We refine this by applying (2) at i < p and i C q :
subtracting the two equations and multiplying by p we obtain that

pd.L.p; q/; i/� pd.L.p; q/; i C q/ .mod 1/;

ie either pd.L.p; q/; i/ is an integer for each i , or it is a half-integer for each i .

Consider (2) for i and i 0 , and let j and j 0 be the reductions of i and i 0 modulo q ;
multiplying by q and subtracting the two identities we get

(5) q.d.L.p; q/; i/� d.L.p; q/; i 0//

D
.i 0�i/.pCq�i�i 0�1/

p
� qd.L.q; r/; j /C qd.L.q; r/; j 0/:

We can now prove that if d.L.p; q/; i/ is an integer, then so is d.L.p; q/; iCm/. Set
i 0D iCm in (5). Notice that d.L.p; q/; i/ is an integer by assumption, and the last two
summands on the right-hand side are either both integers or both half-integers, and in
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either case their sum is an integer. Moreover, i � i 0Dm by assumption, and m divides
pCq� i � i 0�1D pC2�2i �m�1 by Lemma 4.7. It follows that qd.L.p; q/; i 0/
is an integer and, since 2pd.L.q; p/; i 0/ is an integer, so is d.L.p; q/; i 0/.

The second part of the statement is obvious when p is odd. Suppose p is even and
d.L.p; q/; i/ is an integer; combining Lemma 4.7 with the first part of the statement,
it is enough to show that d

�
L.p; q/; i C m

2

�
is not an integer.

Let m D 2n and plug in i 0 D i C n in (5): multiplying by 2, the left-hand side is
congruent to �2qd.L.p; q/; i 0/ modulo 1, and the right-hand side is congruent to
2n.pC q� 2i �n� 1/=.4n2/D .pC q� 2i � 1/=.2n/� 1

2
�

1
2

modulo 1. The first
summand is an integer by Lemma 4.7, hence 2q.L.p; q/; i 0/ cannot be an integer.

4.2 Correction terms of rational surgeries

Lemma 4.9 Let pDm2 . The correction term d.S3
p=q

.K/; i/ is an integer if and only
if d.S3

p=q
.O/; i/ is. In particular, if S3

p=q
.K/ has an integral correction term, there are

exactly m integers i0; i0Cm; : : : ; i0C .m� 1/m such that d.S3
p=q

.K/; i/ 2 Z.

Proof Using (1), we see that d.S3
p=q

.K/; i/ is an integer if and only if d.S3p;q.O/; i/
is, and applying Lemma 4.8 we conclude the proof.

Proposition 4.10 Let 0 < q < p be coprime integers with I
�p
q

�
< 0, and suppose

that S3
p=q

.K/ bounds a rational homology ball; then �C.K/D 0.

Proof By Remark 4.2, p
q

is embeddable; since I
�p
q

�
< 0, Lemma 4.3 shows that

L.p; q/D S3
�p=q

.O/ bounds a rational homology ball. It follows from Lemma 4.4 that
q �m� 1, where m2 D p . Notice also that I

�
m2

m�1

�
D 1 > 0, hence the possibility

p
q
D

m2

m�1
is excluded, and we can suppose q > m.

By Proposition 2.2, m equally spaced correction terms of L.p; q/ vanish, and there is
an 0� i �m� 1 < q such that

0D d.S3p=q.K/; i/D d.L.p; p� q/; i/� 2Vbi=qc.K/D 0� 2V0.K/;

hence V0.K/D 0, or, equivalently, �C.K/D 0.

Remark 4.11 The following partial converse to the proposition above holds: if
�C.K/D 0 and S3

p=q
.K/ bounds, then also L.p; q/ bounds. In fact, since �C.K/D 0,

the correction terms of S3p=q.K/ are the same as those of �L.p; q/D S3p=q.O/. Since
S3p=q.K/ bounds, it has

p
p vanishing correction terms, hence so does ˙L.p; q/ and

Greene has recently shown that this in turn implies that L.p; q/ bounds a rational
homology ball [8].
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We are now ready to prove a quantitative version of Theorem 1.1.

Theorem 4.12 Let K be a knot in S3 with �C.K/D� , and p , q be positive, coprime
integers with p Dm2 ; suppose that S3

p=q
.K/ bounds a rational homology ball. Then,

if � > 0, p
.2� � 1/q < m <

qC2C
p
q2C8q�C8

2
;

while if � D 0 then m� qC 1.

Proof We treat the case � D 0 first. If � D 0, then the correction terms of S3p=q.K/
are the same as the correction terms of �L.p; q/, and Proposition 2.2 implies that
there exists 0� k < m such that

d.L.p; q/; tk/D d.L.p; q/; tkCm/D � � � D d.L.p; q/; tkC.m�1/m/D 0:

It follows from Lemma 4.4 that q �m� 1.

We now treat the case � > 0. We first rule out the possibility that p D 1; in fact,
if pD 1, then S3p=q.K/ is an integral homology sphere, and by (1) its unique correction
term is �2V0.K/¤ 0. In particular, it never bounds a rational homology ball.

We can now suppose p>1. We begin by proving the left-hand side inequality: if p
q
>1,

by Remark 4.2 we know that p
q

is embeddable.

If p < q , we can write1 p
q
D Œ1; 2; : : : ; 2; a1 C 1; : : : ; a`�

� for some ai � 2. The
plumbing graph associated to this continued fraction expansion is negative definite and
the intersection form of the plumbing embeds, according to Remark 4.2. By successively
blowing down we obtain an embedding of P.p=q0/, where q0 D Œa1; : : : ; a`�� , and
0 < q0 D q�

� q
p

˘
p < p . In particular, p=q0 is embeddable and L.p; q0/D L.p; q/;

by extension, we say that also p
q

is embeddable.

Regardless of whether p < q or p > q , it follows from Lemma 4.6 that at least one
of the correction terms of S3p=q.O/ vanishes; choose i0 such that d.S3

p=q
.O/; i0/D 0.

By Lemma 4.9, the values of i for which d.S3p=q.O/; i/ is an integer are all integers
of the form i D i0C km between 0 and m� 1.

Since S3
p=q

.K/ bounds a rational homology ball, by Proposition 2.2 there are m spinc

structures on S3
p=q

.K/ with vanishing correction terms. In particular, these have to be
the m spinc structures with integral correction term, ie the ones labelled with i0Ckm.

1In Section 4.1 we defined negative continued fraction expansions only for pq > 1 and we required
that all terms in the expansion be larger than 1 . We make an exception here to treat the case p

q < 1 .
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We now apply (1) with i D i0 :

0D d.S3p=q.K/; i0/D�2maxfVbi0=qc.K/; Vd.p�i0/=qe.K/gC d.S
3
p=q.O/; i0/

D�2maxfVbi0=qc.K/; Vd.p�i0/=qe.K/g;

hence Vbi0=qc.K/ D Vd.p�i0/=qe.K/ D 0. These equalities imply that i0 � q� and
p� i0 > .� � 1/q , respectively, and summing them yields p > .2� � 1/q .

Notice that this implies, a posteriori, p > q .

We now turn to the right-hand side inequality, keeping in mind that we can assume p>q .
From (2),

d.L.m2; q/; i/D
1

4
�
.m2C q� 2i � 1/2

4m2q
� d.L.q; r/; j /:

Hence, applying Lemma 4.5, d.L.m2; q/; i/ can vanish only if .m2C q� 2i � 1/2 �ˇ̌
m2q

�
4d.L.q; r/; j /C 1

�ˇ̌
�m2q2 , that is only if

m2�mq � 2i C 1� q �m2Cmq:

Moreover, by Lemma 4.7, if d.L.m2; q/; i/ is integral then 2i C 1� q � 0 .modm/,
hence if 2i is one of m2�mqCq�1�m or m2�mqCq�1�2m, the corresponding
correction term of L.m2; q/ is integral but does not vanish.

If S3
p=q

.K/ bounds a rational homology ball, then for each i < m2�mq� q� 1 for
which the corresponding spinc structure extends, (1) shows that the invariant Vbi=qc.K/
is nonzero, and in particular

�
i
q

˘
< � . Thus, the following inequality holds:

m2�mqCq�1�2m

2
Dmin

n
m2�mqCq�1�2m

2
;
m2�mqCq�1�m

2

o
< q�;

from which the right-hand side inequality follows.

Remark 4.13 We can gain something more from the right-hand side inequality if we
assume that m2 6� ˙1 .mod q/. In this case, we know that the inequality coming from
Lemma 4.5 is strict, hence we can use m2�mqCq�1 instead of m2�mqCq�1�2m,
obtaining

m<
qC1C

p
.q�1/2C8q�C4

2
:

However, this assumption is not particularly harmful, since whenever m2�˙1 .mod q/
the correction terms of L.m2; q/ can be computed explicitly by applying the symmetry
formula once, together with the computation of d.L.q; 1/; j /.
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Corollary 4.14 If p � 1 .mod q/, then S3
p=q

.T3;2/ bounds a rational homology ball
if and only if p D .qC 1/2 or p

q
D

25
3

.

Proof First, we observe that the case p D 1 is excluded by Theorem 4.12.

We are now going to prove the “only if” direction. Let p Dm2 and K D T3;2 , and
suppose that S3p=q.K/ bounds a rational homology ball. Since m2

q
D
�˙
m2

q

�
; 2Œq�1�

�� ,
we have that

I

�
m2

q

�
D

l
m2

q

m
� q� 2;

and hence I
�p
q

�
< 0 if m � q � 1. Since �C.K/ D 1, Proposition 4.10 shows

that m� qC 1.

On the other hand, the right-hand side inequality in Theorem 4.12 says that

m<
qC2C

p
q2C8qC8

2
<
qC2C

p
q2C8qC16

2
D qC 3;

hence the only possible values for m are qC 1 and qC 2. Observe that if mD qC 2,
then the condition m2 � 1 .mod q/ reads .q C 2/2 � 1 .mod q/, from which q j3.
Therefore, the “only if” direction is proved.

When q � 5, the 3–manifold S3.qC1/2=q.K/ bounds the negative definite plumbing
associated to the graph (see Section 6.1 below for the details)

� � � : : : � �

�

�2

�3

�2 �2 �2 �.qC 1/

q�5‚ …„ ƒ

which Park, Shin and Stipsicz have proven to bound a rational homology ball (see [28,
Figure 1], third graph from the bottom). When qD 4, S3

25=4
.K/DL.25; 14/, and this

bounds by the work of Lisca [15].

When q D 3, we have that �S3
16=3

.K/ bounds the plumbing

� � � �

�

�2

�2

�3 �2 �2
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and also the plumbing

� � � � � �

�

�2

�2

�1 �20 �2 �2

It follows from [1, Proposition 4.6] that �S3
16=3

.K/ is rationally homology cobordant
to L.4; 3/, hence it bounds a rational homology ball.

When q D 2, it is known that S3
9=2
.K/ is diffeomorphic to �S39 .K/ [18], hence it

bounds a rational homology ball as well (eg see Theorem 1.4). Finally, S3
25=3

.K/

bounds a rational homology ball, too; this was included in Casson and Harer’s list [5],
setting p D 3, s D 4 and k D 5 in their first family.

5 Integral surgeries

In this section we study integral surgeries along knots in the 3–sphere, and we then
focus on alternating knots and torus knots.

The following is a quantitative version of Theorem 1.2:

Theorem 5.1 Let m be a positive integer, K�S3 be a knot and suppose that S3
m2.K/

bounds a rational homology ball. Let � D �C.K/. Then

1C
p
1C 8� � 2m < 3C

p
9C 8� or, equivalently, 0�

m.m� 1/

2
� � < m:

Lemma 5.2 The correction term d.S3
m2.K/; i/ is integral if and only if iD m.m�2k�1/

2

for some integer k .

Proof By a direct computation from (2),

(6) d.S3
m2.O/; i/D

.m2� 2i/2

4m2
�
1

4
:

This is an integer if and only if m2�2i �m .mod 2m/, which in turn is equivalent to
the condition i D m.m�2k�1/

2
for some integer k ; the same holds for S3

m2.K/ in light
of Lemma 4.9.

Applying (1) and (6), we obtain

(7) d.S3
m2.K/; i/D�2Vi .K/C

.m2� 2i/2

4m2
�
1

4
:
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Lemma 5.3 If S3
m2.K/ bounds a rational homology ball, then

d

�
S3
m2.K/;

m.m�2k�1/

2

�
D 0

for each k D 0; : : : ;
�
m�1
2

˘
.

Proof It follows from Proposition 2.2 that if S3
m2.K/ bounds a rational homology

ball Z , then m of its spinc structures extend to a Z ; Corollary 3.2, in turn, implies
that the corresponding correction terms vanish. Lemma 5.2 now pins down exactly
which correction terms of S3

m2.K/ can be integral; since there are exactly m of them,
they must all vanish.

Proof of Theorem 5.1 Notice that the first chain of inequalities is obtained from the
second by solving for m; hence, we set out to prove the latter.

It follows from Lemma 5.3 the correction term of S3
m2.K/ corresponding to m.m�1/

2

vanishes; if m� 3, that corresponding to m.m�3/
2

vanishes, too.

Since the correction term corresponding to m.m�1/
2

vanishes, from (7) we obtain

0D d

�
S3
m2.K/;

m.m�1/

2

�
D�2Vm.m�1/=2.K/C d

�
S3
m2.O/;

m.m�1/

2

�
D�2Vm.m�1/=2.K/;

from which we obtain the inequality m.m�1/
2
� � .

Notice now that if m< 3 then the second inequality is automatically satisfied by m, so
to prove the remaining part of the statement we can assume m� 3. From the vanishing
of the correction term corresponding to m.m�3/

2
from (7) we obtain

0D d

�
S3
m2.K/;

m.m�3/

2

�
D�2Vm.m�3/=2.K/C d

�
S3
m2.O/;

m.m�3/

2

�
D 2� 2Vm.m�3/=2.K/;

from which m.m�1/
2
�mD m.m�3/

2
< � follows.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2 Let � D �C.K/. Theorem 5.1 asserts that, if S3m2.K/ bounds
a rational homology ball, then 2m is in the interval I� D Œ1C

p
1C 8�; 3C

p
9C 8�/;

I� has length

2C
p
9C 8� �

p
1C 8� D 2C

8
p
9C 8�C

p
1C 8�

� 4;
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hence it contains at most two even integers, and, if it contains two, they are consecutive.

Moreover, if I� contains two even integers, then we have

1C
p
1C 8� � 2m < 2mC 2 < 3C

p
9C 8�:

The left-hand side inequality can be rearranged as 1C 8� � .2m � 1/2 , while the
right-hand side inequality reads .2m� 1/2 < 9C 8� ; that is,

1C 8� � .2m� 1/2 < 9C 8�:

Since odd squares are congruent to 1 modulo 8, we have .2m� 1/2 D 1C 8� .

Example 5.4 There exist knots that have two positive, integral surgeries bounding a
rational homology ball: if K is the .qC1; q/–torus knot, then Theorem 1.4 shows that
both S3

q2.K/ and S3
.qC1/2

.K/ bound rational homology balls.

The second example is in fact realised in an algebro-geometric fashion [2]: the curve
C D fxqC1Cyqzg is rational with a unique singularity at .0; 0; 1/, of type .qC1; q/;
the boundary of an open regular neighbourhood of C is S3

.qC1/2
.K/.

Remark 5.5 When m is odd and S3
m2.K/ bounds a rational homology ball, we can

also infer that m2 D 1C 8V0.K/. In particular, 1C 8V0.K/ is a perfect square.

This follows immediately from the fact that when m is odd, the spinc structure labelled
with 0 extends to the rational homology ball, hence

0D d.S3
m2.K/; 0/D�2V0.K/C d.L.m

2;�1/; 0/D�2V0.K/C
m2�1

4
:

5.1 Alternating knots

The knot Floer homology of alternating knots is very simple, and it is fully determined
by the Alexander polynomial and the signature [25]; in fact, alternating knots are
Floer-thin, in the sense that their knot Floer homology is supported on a diagonal with
constant i � j (we refer to [25] for the notation).

More generally, quasi-alternating knots have been shown to be Floer-thin by Manolescu
and Ozsváth [17]; for all quasi-alternating knots, the constant i � j is equal to half of
the signature.

Proposition 5.6 Let K be a Floer-thin knot supported on the diagonal i �j D �
2

, and
m be an integer such that S3

m2.K/ bounds a rational homology ball. Then m� 5.

Moreover,
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� if mD 1, then � � 0;

� if mD 2, then � � �2;

� if mD 3, then either � D�2 or � D�4;

� if mD 4, then either � D�6 or � D�8;

� if mD 5, then � D�12.

In particular, the statement holds when K is alternating, and � D �.K/ is its signature.

Proof Combining results from [25; 17] as in [9, Theorem 2], one has

(8) Vi .K/Dmax
nl
�.K/�i

2

m
; 0
o
:

Suppose m� 5. According to Lemma 5.3, the spinc structures on S3
m2.K/ labelled

by m.m�2k�1/
2

for k D 0; 1; 2 have vanishing correction term. By (7), one gets

Vm.m�3/=2.K/D 1; Vm.m�5/=2.K/D 3

But it follows from (8) that jVi .K/�Vj .K/j �
�
ji�j j
2

˘
, and therefore 2�

�
m
2

˘
, from

which m� 5 follows.

As for the second part of the statement, recall that when K is Floer-thin, one has that
2�.K/D�� , and moreover

�C.K/D

�
�.K/ if �.K/� 0;
0 if �.K/ < 0:

Bearing these in mind,

� if mD 1, then V0.K/D 0, hence �.K/� 0 and �.K/� 0;

� if mD 2, then V1.K/D 0, hence �.K/� 1 and �.K/� �2;

� if mD 3, then V0.K/D 1, hence either �.K/D 1 or �.K/D 2;

� if mD 4, then V2.K/D 1, hence either �.K/D 3 or �.K/D 4;

� if mD 5, then V0.K/D 3 and V5.K/D 1, hence �.K/D 6.

Remark 5.7 Theorem 1.4 shows that all cases with � < 0 above are realised; the
cases with � D 0 are realised by the unknot. Finally, Fintushel and Stern [7] have
proved that S3

C1.T3;�2/ bounds a rational homology ball, hence showing that the pair
.�;m/D .2; 1/ is realised, too.

Algebraic & Geometric Topology, Volume 17 (2017)



506 Paolo Aceto and Marco Golla

5.2 Torus knots

Now we can prove Theorem 1.3. A second proof will be given in Section 6.1.

First proof of Theorem 1.3 The case of integral surgeries along alternating torus
knots (ie T2kC1;2 ) has already been treated in Proposition 5.6, hence we will focus on
the case q > 2.

Recall that for a torus knot Tp;q the function V.i/ D Vi .Tp;q/ is related to the gap
counting function I� of the semigroup � D hp; qi � Z�0 generated by p and q as
follows. Let � D �C.Tp;q/ and recall that � D g.Tp;q/D

.p�1/.q�1/
2

. The function
I� is defined as

I�.j /D #.Z�j n�/I

Borodzik and Livingston [4] proved that

V.j /D I�.j C �/:

In particular, V.j /D 1 exactly when jC� varies between the second largest gap of the
semigroup and its largest gap, ie between the last two elements that are not expressible as
a nonnegative integer combination of p and q . Similarly, V.j /D2 between the second
and third largest gaps. The largest gap is well-known to be g1 D pq�p� q D 2�� 1.
A graph of the function V. � / is sketched in Figure 2.

Suppose now that p > 9q .

In what follows, we will need to use Lemma 5.3 with k D 4, and this is allowed only
when m� 9. However, we notice that if q > 3, then � � 9q.q�1/

2
� 36 > 28, and that

if q D 3 and p > 29 then � > 28; in both cases, thanks to Theorem 5.1, m is strictly
larger than 1

2
.1C
p
1C 28 � 8/D 8.

The two cases qD3, pD28; 29 need separate treatment: in both instances, Theorem 5.1
implies that the only possible value of m is 8, and a direct computation shows that the
correction term d.S364.Tp;3/; 20/ is �4. That is, S364.T28;3/ and S364.T29;3/ do not
bound rational homology balls.

Since neither T28;3 nor T29;3 has a surgery that bounds a rational homology ball, we
can suppose that � > 28, and in particular m� 9.

Recall that the semigroup of the singularity is symmetric [31, Theorem 4.3.5], in the
sense that x belongs to the semigroup if and only if pq�p� q� x does not. Hence,
since p > 9q , the first nine elements of the semigroup are 0; q; : : : ; 9q , and therefore
the nine largest gaps g9 < � � �< g1 are gk D .q� 1/p� kq (see Figure 2).

This shows that if V.i/D 10, then i < g9� � ; if k D 1; : : : ; 9, then V.i/D k exactly
when gk � � � i < gk�1� � .
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Vi .Tp;q/

i

: : :
� � 9q � � 8q � � 7q � � 6q � � 5q � � 4q � � 3q � � 2q � � q �

VD1‚…„ƒ
VD3‚…„ƒ

VD6‚…„ƒ

VD10‚…„ƒ

Figure 2: A portion of the graph of the function V. � / , under the assumption
p > 9q . We let � D �.Tp;q/D

.p�1/.q�1/
2

.

If S3
m2.Tp;q/ bounds and m � 9, then Lemma 5.3 implies that its correction terms

in the spinc structures labelled by m.m�9/
2

, m.m�7/
2

, m.m�5/
2

, m.m�3/
2

and m.m�1/
2

must all vanish. Applying (7), we obtain

V

�
m.m�9/

2

�
D10; V

�
m.m�7/

2

�
D6; V

�
m.m�5/

2

�
D3; V

�
m.m�3/

2

�
D1:

These translate into the inequalities

m.m�9/

2
< � � 9q;

� � 3q �
m.m�5/

2
< � � 2q;

� � 6q �
m.m�7/

2
< � � 5q;

� � q �
m.m�3/

2
< �:

In particular, the first row of inequalities implies that mD m.m�7/
2
�
m.m�9/

2
> 3q ;

the second row, on the other hand, shows that m D m.m�3/
2
�
m.m�5/

2
< 3q , which

leads to a contradiction.

5.3 Asymptotic classification

Recall that Theorem 5.1 asserts that if S3
m2.K/ bounds a rational homology ball, then

1C
p
1C8�

2
�m<

3C
p
9C8�

2
;
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from which one obtains

2�C 2� .1C
p
1C 8�/� .m� 1/.m� 2/ < 2�C 2:

If we call 2" the difference 2�C2�.m�1/.m�2/, we have 0<2"�1C
p
1C 8��2m.

Let us now focus on the case K D Tp;q , so that 2�D .p�1/.q�1/. We can recast the
inequalities above in terms of the semigroup function � that associates to an integer i
the i th element �.i/ of the semigroup �p;q generated by p and q . Since q < p , we
always have �.1/D 0 and �.2/D q . Manipulating the identity d.S3

m2.Tp;q/; j /D 0

as in [3, Section 6] yields, for each j 2 f0; : : : ; m� 2g, the two inequalities

(9) �

�
.jC1/.jC2/

2

�
� jmC "

and

(10) �

�
.jC1/.jC2/

2
C 1

�
> jmC ":

These are formally very similar to the inequalities .?j / and .??j / in [3, Section 6.1].
In fact, the two latter inequalities collapse to an identity for g D 0 (as in [4]), and
these identities are sufficient to classify singularities with one Puiseux pair that appear
as the only singularity of a rational plane curve, up to finitely many exceptions [2,
Theorem 1.1] (see [3, Remark 1.5]). It is natural to ask whether (9) and (10) are strong
enough to provide the same kind of result in the topological, rather than in the complex
curve, setting.

Question 5.8 Are (9) and (10) sufficient to recover all but finitely many triples
.p; qIm2/ for which S3

m2.Tp;q/ bounds a rational homology balls?

6 Integral surgeries on torus knots

The goal of this section is the proof of Theorem 1.4. Along the way, we briefly recall
the plumbing description for Seifert fibred manifolds and a lemma on rational homology
cobordant Seifert manifolds. We also recall Owens and Strle’s concordance invariant m,
and we describe the plumbing graph of the Seifert fibred spaces which arise as Dehn
surgery on torus knots.

Suppose � is a negative canonical plumbing graph with n vertices. Let �� be the
graph with the opposite sign on each weight. Then @P.��/D�@P.�/ and �� is the
positive canonical plumbing graph of �@P.�/. The dual of � , ie �� , is the negative
canonical plumbing graph of �@P.�/. Finally, ��� is the positive canonical plumbing
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b

: : :˛1
ˇ1

˛2
ˇ2

˛k
ˇk

Figure 3: A surgery description for the Seifert fibred manifold Y.bI˛1=ˇ1; : : : ; ˛k=ˇk/

graph of @P.�/. Note that �.��/D .��/� . If � is negative definite then � embeds
in .Zn;�I / if and only if �� embeds in .Zn; I /.

In order to simplify the notation and to make the proofs easier to read, in this section we
switch from negative plumbing graphs to positive ones. Since the topological property
we want to detect is not affected by reversal of orientation, this modification will not
affect the arguments in our proofs.

6.1 Preliminaries

We recall from [21] the basic definitions of Seifert manifolds. A closed Seifert fibred
manifold over S2 can be described by its unnormalised Seifert invariants�

bI
˛1

ˇ1
; : : : ;

˛k

ˇk

�
:

Here b , ˛i and ˇi are integers, ˛i > 1 and gcd.˛i ; ˇi / D 1. We denote such a
manifold by Y.bI˛1=ˇ1; : : : ; ˛k=ˇk/. These data determine the manifold, but every
Seifert fibred manifold admits several such descriptions. A surgery description for
Y.bI˛1=ˇ1; : : : ; ˛k=ˇk/ is depicted in Figure 3.

We briefly pause to recall how to obtain the dual graph �� from a canonical positive
plumbing graph � when the latter is either linear or star-shaped, since these are the
only two cases we will be considering (see [20, Section 7] for the general case).

A positive canonical linear plumbing graph � can be described by a sequence of
integers a1; : : : ; an � 2 as follows:

� : : : �

a1 an

The associated plumbed 3–manifold is the lens space �L.p; q/DS3
p=q

.O/D�@P
�p
q

�
,

where p
q
D Œa1; : : : ; an�

� . The dual graph �� is associated to the continued fraction
expansion of p

p�q
; that is, if p

p�q
D Œc1; : : : ; cm�

� , then �� is the following:

� : : : �

c1 cm
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When � is represented by the following positive canonical star-shaped graph (note that
b is not necessarily positive):

�

� �

� �

� �

: : :

: : :

: : :

:::

b

a11 a1n1

a21 a2n2

ak1 aknk

and the dual graph �� is represented by

�

� �

� �

� �

: : :

: : :

: : :

:::

k� b

c11 c1m1

c21 c2m2

ck1 ckmk

where each leg of �� is dual to the corresponding leg of � , as explained above for the
linear case.

Theorem 6.1 Let � be the following star-shaped positive canonical plumbing graph:

�

� �

� �

� �

: : :

: : :

: : :

:::

b

a11 a1n1

a21 a2n2

ak1 aknk

Then @P.�/ is orientation-preserving diffeomorphic to Y.bI˛1=ˇ1; : : : ; ˛k=ˇk/, where
˛i=ˇi D Œa

i
1; : : : ; a

i
ni
�� .

The following lemma is implicit in [13, Section 3.1]. Here we deduce it as a special
case of a more general result, which can be found in [1, Section 4].
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Lemma 6.2 Let Y WDY.bI˛1=ˇ1; : : : ; ˛n=ˇn/ be a Seifert manifold with ˛i >ˇi �1
for each i . Assume that there exist h and k such that

ˇh

˛h
C
ˇk

˛k
D 1:

Let Y 0 WD Y.b� 1I˛1=ˇ1; : : : ; 1˛h=ˇh ; : : : ; 1˛k=ˇk ; : : : ; ˛n=ˇn/. Then Y and Y 0 are
rational homology cobordant.

Proof This lemma is a direct consequence of [1, Proposition 4.6]. In order to apply this
result we need to show that the positive canonical plumbing graph of Y is obtained from
that of Y 0 by attaching a plumbing graph which represents S1 �S2 . The attachment
is obtained by identifying two vertices, the weight of the new vertex is the sum of the
weights of the identified vertices.

Consider the linear graph

� : : : � � � : : : �

an a1 1 b1 bm

where ai � 2 and bj � 2 for each i and j , and

Œa1; : : : ; an�
�
D
˛h

ˇh
; Œb1; : : : ; bm�

�
D
˛k

ˇk
:

It is easy to see that this plumbing graph describes the plumbed 3–manifold S1 �S2 .
It follows from Theorem 6.1 that the canonical plumbing graph of Y is obtained from
that of Y 0 by adding two legs with weights .a1; : : : ; an/ and .b1; : : : ; bm/ and by
increasing the weight of the central vertex by one. This operation is precisely the
attachment described above and the conclusion now follows from [1, Proposition 4.6].

Observe that, in order to apply Lemma 6.2, one needs ˛h D ˛k , ie that the two fibres
must have the same multiplicity.

Given a knot K � S3 , Owens and Strle [23] introduce the following invariant:

m.K/D inffr 2Q>0 j S
3
r .K/ bounds a negative definite 4–manifoldg:

They show that m is a concordance invariant and that it vanishes on negative knots.
They also show the following:

Theorem 6.3 Let Tp;q be the positive .p; q/–torus knot. Then

m.Tp;q/D

�
pq� q=p� if n is even;
pq�p=q� if n is odd;

where
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� n is the number of steps in the Euclidean algorithm for p and q ,

� 0 < q� < p is such that qq� � 1 .mod p/,

� 0 < p� < q is such that pp� � 1 .mod q/.

Remark 6.4 Since rational homology balls are negative definite, if S3r .K/ bounds a
QHB4 for some r > 0, then r �m.K/.

We are now in position to give the second proof of Theorem 1.3.

Second proof of Theorem 1.3 It follows from Theorem 6.3 that m.Tp;q/� q.p�1/;
therefore, by the remark above, if m2 < q.p � 1/ then S3

m2.Tp;q/ does not bound a
rational homology ball.

Applying the right-hand side inequality of Theorem 5.1, we get that if�
3C
p
9C8�

2

�2
� q.p� 1/;

no integral surgery along Tp;q bounds a rational homology ball. We now set out to
prove that if p>9q then the above inequality holds. Indeed, expanding and substituting
2� D .p� 1/.q� 1/ yields

3
p
9C 8� � 2p� 11:

Since p > 9q � 18, we can square again and obtain

81C 36pq� 36p� 36qC 36� 4p2� 44pC 121 () 9.p� 1/q � p2� 2p� 1

() 9qC 1� p;

which is exactly what we required.

The following lemma is proved in [23, Lemma 4.4]:

Lemma 6.5 For any rational number r ,

S3r .Tp;q/D Y

�
2I
p

q�
;
q

p�
;
pq� r

pq� r � 1

�
:

Now we give an explicit description of the canonical plumbing graphs which describe
certain surgeries on torus knots.
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Proposition 6.6 Assume that r … Œpq�1; pqC1�. The 3–manifold S3r .Tp;q/ can be
described via the following positive canonical plumbing graph:

�

� �

� �

� �

: : :

: : :

: : :
d

a1 an

b1 bm

c1 ck

where Œa1; : : : ; an�� D p=q� , Œb1; : : : ; bm�� D q=p� and

� if r > pqC 1 then d D 1 and Œc1; : : : ; ck�� D r �pq ;

� if r < pq� 1 then d D 2 and Œc1; : : : ; ck�� D
pq�r
pq�r�1

.

Proof Note that p=q� > 1 and q=p� > 1. Moreover,

pq�r

pq�r�1
D

r�pq

r�pqC1
D 1�

1

r�pqC1
:

If r �pq > 1, by Lemma 6.5 and Figure 3 we see that S3r .Tp;q/ is described by the
positive canonical plumbing graph depicted above. The case r < pq� 1 is analogous.

6.2 Main results

A 2–chain is a linear connected plumbing graph where the weight of every vertex is 2.

Lemma 6.7 Let � be a positive definite plumbing graph with m vertices. Suppose
that there exist vertices v1; : : : ; vk such that � n fv1; : : : ; vkg D �1 t � � � t�h , where
each �i is a 2–chain whose length is not 3, there is at most one 2–chain of length 1,
and h > k . Then � does not embed.

Proof Every 2–chain whose length is not 3 has an essentially unique realisation as a
sublattice of the standard lattice .ZN ; I /. In particular N is strictly larger than length
of the 2–chain. If, moreover, there are no chains of length 1 it is easy to see that
each basis vector, say ei , appears in the expression of a unique 2–chain. Therefore
every 2–chain requires a set of basis vectors which are orthogonal to each vector
belonging to any another 2–chain. It follows that the subgraph z� WD� nfv1; : : : ; vkgD
�1 t � � � t�h has a unique realisation as a sublattice of the standard lattice .ZN ; I /
and that N �m� kC h > m.
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Following [15], we use the notation Œ : : : ; 2Œh�; : : : �� to denote a length-h string of 2
in a continued fraction expansion.

Lemma 6.8 For each q � 2 and k � 1 we have:

(1)
kqC 1

kqC 1� k
D Œ2Œq�1�; kC 1�� .

(2)
kq2C qC 1

q2
D ŒkC 1; 2Œq�2�; 2C q�� .

(3)
kq2C q� 1

q2
D ŒkC 1; 2Œq�; q�� .

(4)
q2

q� 1
D ŒqC 2; 2Œq�2��� .

(5)
q2

qC 1
D Œq; 2Œq��� .

These identities can easily be proved by induction. We omit the proof.

Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4 We start by dealing with two special cases, namely q D 2
and k D 1.

First assume that q D 2. In this case Tp;q is alternating and therefore we can apply
Proposition 5.6. If S3n.Tp;q/ bounds a QHB4 then n� 25. Moreover, since p� 1D
2�C.Tp;2/D��.Tp;2/D�� < 0 we have:

� If nD 1 then � � 0 and we can ignore this possibility because Tp;2 is a positive
torus knot.

� If n D 4 then � D �2, that is p D 3 and S34 .T3;2/ D Y
�
2I 3
2
; 2; 2

�
bounds a

QHB4 by Lemma 6.2;

� If nD 9 then p 2 f3; 5g. The 3–manifold S39 .T3;2/D Y
�
2I 3
2
; 2; 3

2

�
bounds a

QHB4 by [2] while S39 .T5;2/D�L.9; 4/ bounds a QHB4 by [15].

� If n D 16 then p 2 f7; 9g. By Lemma 6.2 both S316.T7;2/ and S316.T9;2/ are
rational homology cobordant to �L.4; 1/ and therefore each bounds a rational
homology ball.

� If nD 25 then p D 13 and S325.T13;2/D�L.25; 4/, which bounds a rational
homology ball by [15].
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Now assume that k D 1. It is easy to see, via Lemma 6.5, that

S3n.TqC1;q/D Y

�
2I
qC 1

q
; q;

q2C q�n

q2C q�n� 1

�
:

If, in particular, nD q2 we have S3
q2.TqC1;q/D Y

�
2I qC1

q
; q; q

q�1

�
. By Lemma 6.2

this manifold is rational homology cobordant to S3 . Since m.TqC1;q/D q2 , if TqC1;q
has another integral surgery that bounds a QHB4 then, by Theorem 1.2, this manifold
is S3

.qC1/2
.TqC1;q/. We have

S3
.qC1/2

.TqC1;q/D Y

�
2I
qC 1

q
; q;

qC 1

qC 2

�
D Y

�
1I
qC 1

q
; q; qC 1

�
;

which, again by Lemma 6.2, bounds a QHB4 .

From now on we may assume that k > 1 and q > 2. Write p D kq˙ 1 and assume
that S3n.Tp;q/ bounds a QHB4 . We split the proof in two cases according to whether
p D kqC 1 or p D kq� 1. Each case is further divided into subcases distinguishing
the possible values for the surgery coefficient n.

First case (p D kq C 1) Note that n � m.TkqC1;q/ D kq2 . We distinguish the
following three cases:

(1) n > kq2C qC 1.

(2) kq2 � n < kq2C q� 1.

(3) n 2 fkq2C q� 1; kq2C q; kq2C qC 1g.

First subcase (n > kq2C qC 1) We claim that there are no candidate triples in this
subcase. It is enough to show that

(11) n� kq2C qC 1:

Note that inequality (11) implies that there is at most one value of n such that the
corresponding surgered manifold bounds a QHB4 . To see this we need to show that the
interval Œkq2; kq2C qC 1� contains at most one square. Suppose N 2 is the smallest
square in Œkq2; kq2C qC 1�. We have

kq2 �N 2
D) q �

N
p
k

and therefore

kq2C qC 1�N 2
C
N
p
k
C 1 < N 2

C 2N C 1D .N C 1/2:
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To prove inequality (11) we consider the positive canonical plumbing graph associated
to �S3n.TkqC1;q/ with n > kq2C qC 1D pqC 1, which is easily seen to be positive
definite. This plumbing graph is obtained by taking the dual of the graph described in
Proposition 6.6, and it has the form:

�

� �

� �

� � �

: : :

: : :

: : :

k�1‚ …„ ƒ
qC 1 2 22

2 2

2 2

n�kq2�q�1‚ …„ ƒ

q�1‚ …„ ƒ

By removing the vertex whose weight is q C 1 we obtain a disjoint union of two
2–chains. One of these 2–chains has length

.q� 1/C 1C .n� kq2� q� 1/� 4

since q� 3 and n>kq2CqC1, and the other has length k�1. If k¤ 4, it follows by
Lemma 6.7 that the above plumbing graph does not embed and therefore S3n.TkqC1;q/
does not bound a QHB4 . If k D 4 the plumbing graph has the form:

�

� �

� �

� � �

: : :

: : :

�

qC 1 2 222

2 2

2 2

n�4q2�q�1‚ …„ ƒ

q�1‚ …„ ƒ

Consider the following portion of the above plumbing graph:

� � � �

qC 1 2 2 2

There are two choices for the embedding of the 2–chain. One choice requires four
basis vectors and can be excluded (as in the proof of Lemma 6.7). The other choice
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gives us an embedding of the 2–chain of the form

e1C e2; e2C e3; e2� e1:

It is easy to see that there is no vector v such that v �.e1Ce2/D 1 and v �.e2�e1/D 0.
This shows that n� kq2C qC 1 and inequality (11) follows.

Second subcase (kq2 � n < kq2C q � 1) Suppose that k D 4. We have

S3
4q2.T4qC1;q/D Y

�
2I
4qC 1

4q� 3
; q;

q

q� 1

�
By Lemma 6.2, applied to the two exceptional fibres with invariants q and q

q�1
, this

manifold is rational homology cobordant to a lens space obtained via the following
plumbing graph:

� � : : : �

1 a1 an

where Œa1; : : : ; an�� D
4qC1
4q�3

. It is easy to see that this lens space is just �L.4; 1/.
It follows that S3

4q2.T4qC1;q/ bounds a QHB4 and, by (11) this is the only integral
surgery on T4qC1;q with this property.

Recall from Theorem 1.3 that k < 9. Now we will examine each possible value of k
in the set f2; 3; 5; 6; 7; 8g. We have

S3n.TkqC1;q/D Y

�
2I

kqC 1

kqC 1� k
; q;

kq2C q�n

kq2C q�n� 1

�
and all the Seifert invariants are strictly greater than 1. It follows that the positive
canonical plumbing graph for S3n.TkqC1;q/ has the form

�

� � �

� �

�

: : :

: : :

q

kC 1

2

2 2

2 2

kq2Cq�n�1‚ …„ ƒ

q�1‚ …„ ƒ
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where we have used Lemma 6.8, ie that kqC1
kq�1Ck

D Œ2Œq�1�; k C 1�� . In order to
emphasise the 2–chain in this plumbing graph we rewrite it as:

�� � � : : : � �: : :

�

q

22 2 2 2 2 kC 1

q�1‚ …„ ƒkq2Cq�n�1‚ …„ ƒ

Write N D kq2C 2q � n� 1 for the length of the 2–chain. Note that N � 4. The
graph has N C 2 vertices. If the corresponding integral lattice embeds in .ZNC2; I /
then we can write the vectors corresponding to the 2–chain as

e1C e2; : : : ; ekq2Cq�n�1C ekq2Cq�n; ekq2Cq�nC ekq2Cq�nC1; : : : ; eN C eNC1:

Let us call v the vector whose weight is kC 1. It can be written in one of the two
following ways:

� v D ˛eNC2CˇeNC1C 

PN
iD1.�1/

iei , with 
 ¤ 0.

� v D eNC1C
p
keNC2 .

The second equality implies that k is a square and can be excluded (since we already
dealt with the values 1 and 4 and we know that k < 9). Therefore the first equation
holds. Since v � v D kC 1 we have

˛2Cˇ2CN
2 D kC 1� 9:

Since v � .eN C eNC1/ D 1 we see that ˇC 
 D 1. Then, we may write k C 1 D
˛2Cˇ2CN.1�ˇ/2 . Moreover, since N � 4, we obtain

˛2Cˇ2C 4.1�ˇ/2 � ˛2Cˇ2CN.1�ˇ/2 � 9

from which we get .1�ˇ/2 � 1. Since 
 ¤ 0 and ˇC 
 D 1 we see that ˇ ¤ 1. We
conclude that .1�ˇ/2 D 1, ie ˇ 2 f0; 2g.

If ˇ D 2 we have
8� ˛2C 4CN � 9;

which implies .˛; k/ 2 f.0; 7/; .0; 8/; .˙1; 8/g. Note that N � q C 1. In the first
case we quickly obtain .p; qIn/D .22; 3I 64/ and by [2] the corresponding surgered
manifold bounds a QHB4 . In the second case we have n 2 f72; 126g, and thus it is
not a square. In the third case we get nD 73 which is not a square.
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If ˇ D 0 we have
˛2C 4� ˛2CN � 9:

In particular, j˛j � 2. If ˛D 0 we have N D kC1 and nD kq2C2q�k�2. Notice
that since N � qC 1 and k < 9 there are only finitely many possible values of q .

By listing all possibilities, we obtain the set of all candidate triples .p; qIn/. The only
one for which n is a square is .21; 4I 64/. The corresponding definite plumbing graph
is positive definite:

�

� � �

� �

�

: : :

�

4

2 6

2

2 2

2 2

19‚ …„ ƒ
And the corresponding integral lattice does not embed, by direct inspection.

If j˛j D 1 we have 4 � N D k � 9. Just like in the previous case we can list all the
candidate triples and discard the ones whose surgery coefficient is not a square. We are
left with .43; 6I 256/, which by [2] corresponds to a manifold which bounds a QHB4 .

If j˛j D 2 we have N 2 f4; 5g and k DN C 3. In this case the only triple we get is
.22; 3I 64/, which, as already noted, bounds a QHB4 .

Third subcase (n2fkq2Cq�1; kq2Cq; kq2CqC1g) Suppose nDpqDkq2Cq ;
then we have

S3
kq2Cq

.TkqC1;q/Š�L.kqC 1; q/ #�L.q; kqC 1/Š�L.kqC 1; q/ #�L.q; 1/:

It follows from [16] that this manifold bounds a rational homology ball if and only if
qD 4 and k 2 f2; 6g. These values correspond to the triples .25; 4I 100/ and .9; 4I 36/.
Recall that S3pq˙1.Tp;q/ D �L.pq ˙ 1; q

2/. It follows that when n D pq ˙ 1 D

kq2C q˙ 1 we have

S3
kq2Cq˙1

.TkqC1;q/D�L.kq
2
C q˙ 1; q2/:

According to [15] if this lens space bounds a QHB4 then �3�I..kq2CqC1/=q2/�1.
It follows from Lemma 6.8 that I..kq2C qC 1/=q2/D k� 1, and therefore we may
assume that k D 2. Again by Lemma 6.8 the positive plumbing graph associated to
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L.2q2C qC 1; q2/ can be depicted as:

� � : : : � �

3 2 2 2C q

q�2‚ …„ ƒ
It is easy to check that the corresponding integral lattice does not embed (start with the
2–chain and then examine the vector whose square is 3). In order to conclude we need
to the study the family of lens spaces L.kq2C q� 1; q2/. By Lemma 6.8 the positive
plumbing graph corresponding to �L.kq2C q� 1; q2/ can be depicted as:

� � : : : � �

kC 1 2 2 q

q‚ …„ ƒ
The dual of this linear graph is:

� : : : � � � : : : �

2 2 qC 3 2 2

k�1‚ …„ ƒ q�2‚ …„ ƒ
Recall that we may assume k … f1; 4g and q >2. If .k; q/… f.2; 3/; .2; 5/g, the integral
lattice which corresponds to the above graph does not embed, by Lemma 6.7.

If .k; q/D .2; 3/ the surgery coefficient is 20, and if .k; q/D .2; 5/ it is 54; in neither
case is it a square, hence the corresponding 3–manifolds do not bound.

Second case (p D kq � 1) By Theorem 1.3 we may assume that k � 9. Note that
p� D q� 1 and q� D k . We obtain

S3n.Tkq�1;q/D Y

�
2I
kq� 1

k
;
q

q� 1
;
kq2� q�n

kq2� q�n� 1

�
:

Just like in the first case we split the proof according to the following possibilities:

(1) n > pqC 1D kq2� qC 1.

(2) n < pq� 1D kq2� q� 1.

(3) n 2 fkq2� q� 1; kq2� q; kq2� qC 1g.

First subcase (n > pqC 1D kq2� qC 1) The positive canonical plumbing graph
for S3n.Tkq�1;q/, described in Proposition 6.6, is indefinite. By taking the dual of this
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graph, ie by considering the positive canonical plumbing graph of �S3n.Tkq�1;q/, we
obtain a positive definite plumbing graph. It can be written as:

�

� : : : � � � : : : �

� : : : �

: : :

�

q

2 2 3 2 2

2

2

2

n�kq2Cq�1‚ …„ ƒ

q�2‚ …„ ƒ k�2‚ …„ ƒ

This graph has two 2–chains: the first has length N1D .n�kq2Cq�1/C1C.q�2/,
which is at least 3 since all summands are positive; the second has length N2 D k� 2.

Observe that N1 D 3 only if q D 3 and nD pqC 2, in which case n can never be a
square since 2 is not a quadratic residue modulo 3. We can then assume that N1 > 3,
and that the vectors in the corresponding chain are

e1C e2; : : : ; en�kq2CqC en�kq2CqC1; : : : ; eN1
C eN1C1;

where en�kq2Cq C en�kq2CqC1 corresponds to the central vertex of the plumbing
graph. As in the proof of Lemma 6.7, the second 2–chain can be written as

eN1C2C eN1C3; : : : ; eN1CN2C1C eN1CN2C2

since it is easy to exclude the exceptional embedding fe1 C e2; e1 C e3; e1 � e2g
when N2 D 3. Note that in the above expressions for the 2–chains we already used all
the available basis vectors. Call v the vector whose square is 3. Clearly v must hit
at least two basis vectors which appear in the same 2–chain. If v hits more than one
basis vector appearing in a 2–chain then it hits all the basis vectors in that chain. It
follows that N2 D 2, ie k D 4.

Call w the vector whose square is q . The top portion of the 2–chain linked to w
involves q�1 basis vectors. It follows that w must hit some basis vector in the bottom
portion of 2–chain, and therefore all of them. This implies that w does not hit any
basis vector in the top portion of the two chain (we would have w �w > q ). Therefore
n� kq2C q D q , ie nD 4q2 . The surgered manifold is

Y

�
2I
4q� 1

4q� 5
; q;

q

q� 1

�
:
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By Lemma 6.2 these manifolds are rational homology cobordant to L.4; 1/, and
therefore to S3 . They correspond to the triples .4q� 1; qI 4q2/.

Second subcase (n < pq�1) The positive canonical plumbing graph of S3n.Tkq�1;q/
may be written as:

�

� �

� �

�

: : :

�

: : : �

2 2

q k

2

2 2

kq2�q�n�1‚ …„ ƒ
q�1‚ …„ ƒ

This graph is positive definite.

If k D 2 this graph does not embed, by Lemma 6.7; in fact, since q � 3, the above
graph contains a 2–chain whose length is at least 4. As usual the vectors belonging to
this 2–chain may be written as

e1C e2; : : : ; eqC eqC1; : : : ; ekq2�n�1C ekq2�n;

where eqC eqC1 corresponds to the central vertex of the graph. Note that we can only
use one more basis vector to write down the image of the vectors with weights q and k .
Let us denote these vectors by v1 and v2 . Let us also put N D kq2� q�n.

If k D 3 we must have v2 �ei D 0 for each i �N . It follows that v2D ˛eNC1 , which
is impossible because v2 � v2 D k D 3 is not a square.

If k D 5 either we may apply the same argument as above or the length of the 2–chain
is 4. In this last case we quickly obtain nD 41, which is not a square.

Similarly, if k D 6 we have two possibilities according to whether the length of the
2–chain is 4 or 5. If this length is 4 then q D 3 and nD 49. These values correspond
to the triple .17; 3I 49/. By [12, page 77, family (a2)] the corresponding surgered
manifold bounds a QHB4 . If the length of the 2–chain is 5 then either q D 3 and
n D 48 or q D 4 and n D 94; both cases can be excluded since n is not a square.
We keep arguing in the same way. For a fixed value of k (which is not a square) we
consider the possible lengths of 2–chain. Each length gives several possible pairs
for .q; n/. We list the values obtained in this way below. Let l be the length of the
2–chain.
� If q D 3 then 56� nD 62� l � 58.
� If q D 4 then 105� nD 111� l � 106.
� If q D 5 then nD 174� l D 168;
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All these cases can be excluded because n is not a square.

If k D 8 we proceed exactly in the same way. In this case there are some candidate
triples, but they can all be excluded by looking at the vector v1 whose weight is q .
We omit the details. Now suppose that k 2 f4; 9g. In both cases we can exclude the
expression v2 D

p
kei for some i �N C 1 (because v1 � v2 D 1). Therefore we may

proceed as we did for the other values of k .

Suppose k D 4. The vector v2 must hit some basis vector which appears in the
expression of the 2–chain, but then it must hit all of them. Since the 2–chain has
length at least 4 this is impossible (because v2 � v2 D 4).

Suppose now that k D 9. Just like above we conclude that the length of the 2–chain
is at most 8, this means that 4� 9q2�n� 1� 8. Moreover there is a portion of the
2–chain whose length is q� 1 which implies that 3� q � 7. These two inequalities
are enough to spell out all possible pairs .q; n/:

� If q D 3 then 75� nD 80� l � 79.

� If q D 4 then 139� nD 143� l � 142.

� If q D 5 then 221� nD 224� l � 223.

� If q D 6 then 321� nD 323� l � 322.

� If q D 7 then nD 340� l D 339.

In no case is n a square, and this concludes this subcase.

Third subcase (n 2 fkq2�q� 1; kq2�q; kq2�qC 1g) If nD pq D kq2�q we
have

�S3n.Tkq�1;q/D L.kq� 1; q/ #L.q; kq� 1/D L.kq� 1; q/ #L.q; q� 1/:

It follows from [16] that if this manifold bounds a QHB4 then q D 4. In particular
both summands in the above expression must bound a QHB4 . The first summand is
L.4k� 1; 4/. It does not bound because 4k� 1 is not square. If nD kq2� q˙ 1 we
have

�S3n.Tkq�1;q/D L.kq
2
� q˙ 1; q2/:

We start with L.kq2� qC 1; q2/. Using Lemma 6.8 we obtain

kq2� qC 1

q2
D k�

1

q2=.q� 1/
D Œk; qC 2; 2Œq�2���:

It follows that I..kq2 � qC 1/=q2/D k � 2. If L.kq2 � qC 1; q/ bounds a QHB4

then �3� I..kq2� qC 1/=q2/� 1, which implies 2� k � 3. The linear plumbing
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graph of �L.kq2� qC 1; q2/ can be depicted as:

� � � : : : �

k qC 2 2 2

q�2‚ …„ ƒ
If kD 2 and q > 3, by Lemma 6.7 this graph does not embed. If kD 2 and qD 3, the
corresponding surgered manifold is L.16; 9/, which, by [15] bounds a QHB4 . The
corresponding triple for this surgery is .5; 3I 16/. Now we may assume that k D 3.
It can be checked directly that in this case the graph embeds if and only if q D 3;
this is easily seen by looking at the embedding of the 2–chain and the vertex whose
weight is 3. This plumbing graph corresponds to L.25; 9/, which bounds by [15]; the
corresponding triple is .8; 3I 25/.

Now we look at L.kq2� q� 1; q2/. Using Lemma 6.8 we obtain

kq2� q� 1

q2
D k�

1

q2=.qC 1/
D Œk; q; 2Œq���:

It follows that I..kq2� q� 1/=q2/D k� 6, but since �3� I..kq2� q� 1/=q2/� 1
we have 3� k� 7. The linear plumbing graph of �L.kq2�qC1; q2/ can be depicted
as:

� � � : : : �

k q 2 2

q‚ …„ ƒ
As usual, the 2–chain can be written as

.e1C e2; e2C e3; : : : ; eqC eqC1/:

Call v the vector whose weight is q . It is easy to see that v � ei D 0 if 2� i � qC 1
and therefore we may write v D e1C

p
q� 1eqC2 . Call w the vector whose weight

is k . We can write

w D 
eqC2Cˇ

qC1X
iD1

.�1/iei :

Since w �w D k and w � v D 1, we have .qC 1/ˇ2C 
2 D k and ˇC 

p
q� 1D 1,

from which we obtain

.qC 1/ˇ2C
.1�ˇ/2

q� 1
D k:

Since k � 7 we see that q � 6 and since q�1 is a square we get qD 5. From this one
quickly obtains the triples .29; 5I 144/ and .34; 5I 169/. These triples correspond to
the lens spaces �L.144; 25/ and �L.169; 25/ which by [15] bound rational balls.

Algebraic & Geometric Topology, Volume 17 (2017)



Dehn surgeries and rational homology balls 525

References
[1] P Aceto, Rational homology cobordisms of plumbed 3–manifolds, preprint (2015)

arXiv

[2] J Fernández de Bobadilla, I Luengo, A Melle Hernández, A Némethi, Classifica-
tion of rational unicuspidal projective curves whose singularities have one Puiseux
pair, from “Real and complex singularities” (J-P Brasselet, M A Soares Ruas, editors),
Birkhäuser, Basel (2007) 31–45 MR

[3] J Bodnár, D Celoria, M Golla, Cuspidal curves and Heegaard Floer homology, Proc.
Lond. Math. Soc. 112 (2016) 512–548 MR

[4] M Borodzik, C Livingston, Heegaard Floer homology and rational cuspidal curves,
Forum Math. Sigma 2 (2014) art. ID e28 MR

[5] A J Casson, J L Harer, Some homology lens spaces which bound rational homology
balls, Pacific J. Math. 96 (1981) 23–36 MR

[6] S K Donaldson, An application of gauge theory to four-dimensional topology, J. Dif-
ferential Geom. 18 (1983) 279–315 MR

[7] R Fintushel, R J Stern, A �–invariant one homology 3–sphere that bounds an ori-
entable rational ball, from “Four-manifold theory” (C Gordon, R Kirby, editors),
Contemp. Math. 35, Amer. Math. Soc., Providence, RI (1984) 265–268 MR

[8] J E Greene, A note on applications of the d –invariant and Donaldson’s theorem,
preprint (2015) arXiv

[9] J Hom, Z Wu, Four-ball genus bounds and a refinement of the Ozváth–Szabó tau
invariant, J. Symplectic Geom. 14 (2016) 305–323 MR

[10] S Jabuka, S Robins, X Wang, When are two Dedekind sums equal?, Int. J. Number
Theory 7 (2011) 2197–2202 MR

[11] S Jabuka, S Robins, X Wang, Heegaard Floer correction terms and Dedekind–
Rademacher sums, Int. Math. Res. Not. 2013 (2013) 170–183 MR

[12] A G Lecuona, On the slice-ribbon conjecture for Montesinos knots, PhD thesis, Uni-
versità di Pisa (2010)

[13] A G Lecuona, On the slice-ribbon conjecture for Montesinos knots, Trans. Amer. Math.
Soc. 364 (2012) 233–285 MR

[14] W B R Lickorish, A representation of orientable combinatorial 3–manifolds, Ann. of
Math. 76 (1962) 531–540 MR

[15] P Lisca, Lens spaces, rational balls and the ribbon conjecture, Geom. Topol. 11 (2007)
429–472 MR

[16] P Lisca, Sums of lens spaces bounding rational balls, Algebr. Geom. Topol. 7 (2007)
2141–2164 MR

Algebraic & Geometric Topology, Volume 17 (2017)

http://msp.org/idx/arx/1502.03863
http://dx.doi.org/10.1007/978-3-7643-7776-2_4
http://dx.doi.org/10.1007/978-3-7643-7776-2_4
http://dx.doi.org/10.1007/978-3-7643-7776-2_4
http://msp.org/idx/mr/2280130
http://dx.doi.org/10.1112/plms/pdv074
http://msp.org/idx/mr/3474482
http://dx.doi.org/10.1017/fms.2014.28
http://msp.org/idx/mr/3347955
http://dx.doi.org/10.2140/pjm.1981.96.23
http://dx.doi.org/10.2140/pjm.1981.96.23
http://msp.org/idx/mr/634760
http://projecteuclid.org/euclid.jdg/1214437665
http://msp.org/idx/mr/710056
http://dx.doi.org/10.1090/conm/035/780582
http://dx.doi.org/10.1090/conm/035/780582
http://msp.org/idx/mr/780582
http://msp.org/idx/arx/1512.08244
http://dx.doi.org/10.4310/JSG.2016.v14.n1.a12
http://dx.doi.org/10.4310/JSG.2016.v14.n1.a12
http://msp.org/idx/mr/3523259
http://dx.doi.org/10.1142/S1793042111005088
http://msp.org/idx/mr/2873148
http://dx.doi.org/10.1093/imrn/rnr260
http://dx.doi.org/10.1093/imrn/rnr260
http://msp.org/idx/mr/3041698
http://dx.doi.org/10.1090/S0002-9947-2011-05385-7
http://msp.org/idx/mr/2833583
http://dx.doi.org/10.2307/1970373
http://msp.org/idx/mr/0151948
http://dx.doi.org/10.2140/gt.2007.11.429
http://msp.org/idx/mr/2302495
http://dx.doi.org/10.2140/agt.2007.7.2141
http://msp.org/idx/mr/2366190


526 Paolo Aceto and Marco Golla

[17] C Manolescu, P Ozsváth, On the Khovanov and knot Floer homologies of quasi-
alternating links, from “Proceedings of Gökova Geometry–Topology Conference 2007”
(S Akbulut, T Önder, R J Stern, editors), GGT (2008) 60–81 MR

[18] Y Mathieu, Closed 3–manifolds unchanged by Dehn surgery, J. Knot Theory Ramifi-
cations 1 (1992) 279–296 MR

[19] J Milnor, Spin structures on manifolds, Enseignement Math. 9 (1963) 198–203 MR

[20] W D Neumann, A calculus for plumbing applied to the topology of complex surface
singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (1981)
299–344 MR

[21] W D Neumann, F Raymond, Seifert manifolds, plumbing, �–invariant and orienta-
tion reversing maps, from “Algebraic and geometric topology” (K C Millett, editor),
Lecture Notes in Math. 664, Springer, Berlin (1978) 163–196 MR

[22] Y Ni, Z Wu, Cosmetic surgeries on knots in S3 , J. Reine Angew. Math. 706 (2015)
1–17 MR

[23] B Owens, S Strle, Dehn surgeries and negative-definite four-manifolds, Selecta Math.
18 (2012) 839–854 MR

[24] P Ozsváth, Z Szabó, Absolutely graded Floer homologies and intersection forms for
four-manifolds with boundary, Adv. Math. 173 (2003) 179–261 MR

[25] P Ozsváth, Z Szabó, Heegaard Floer homology and alternating knots, Geom. Topol. 7
(2003) 225–254 MR

[26] P Ozsváth, Z Szabó, On the Floer homology of plumbed three-manifolds, Geom. Topol.
7 (2003) 185–224 MR

[27] P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-
manifolds, Ann. of Math. 159 (2004) 1027–1158 MR

[28] H Park, D Shin, A I Stipsicz, Normal complex surface singularities with rational
homology disk smoothings, preprint (2013) arXiv

[29] J Rasmussen, Lens space surgeries and a conjecture of Goda and Teragaito, Geom.
Topol. 8 (2004) 1013–1031 MR

[30] V A Rohlin, New results in the theory of four-dimensional manifolds, Doklady Akad.
Nauk SSSR 84 (1952) 221–224 MR In Russian

[31] C T C Wall, Singular points of plane curves, London Mathematical Society Student
Texts 63, Cambridge University Press (2004) MR

[32] A H Wallace, Modifications and cobounding manifolds, Canad. J. Math. 12 (1960)
503–528 MR

Algebraic & Geometric Topology, Volume 17 (2017)

http://msp.org/idx/mr/2509750
http://dx.doi.org/10.1142/S0218216592000161
http://msp.org/idx/mr/1180402
http://dx.doi.org/10.5169/seals-38784
http://msp.org/idx/mr/0157388
http://dx.doi.org/10.2307/1999331
http://dx.doi.org/10.2307/1999331
http://msp.org/idx/mr/632532
http://dx.doi.org/10.1007/BFb0061699
http://dx.doi.org/10.1007/BFb0061699
http://msp.org/idx/mr/518415
http://dx.doi.org/10.1515/crelle-2013-0067
http://msp.org/idx/mr/3393360
http://dx.doi.org/10.1007/s00029-012-0086-2
http://msp.org/idx/mr/3000471
http://dx.doi.org/10.1016/S0001-8708(02)00030-0
http://dx.doi.org/10.1016/S0001-8708(02)00030-0
http://msp.org/idx/mr/1957829
http://dx.doi.org/10.2140/gt.2003.7.225
http://msp.org/idx/mr/1988285
http://dx.doi.org/10.2140/gt.2003.7.185
http://msp.org/idx/mr/1988284
http://dx.doi.org/10.4007/annals.2004.159.1027
http://dx.doi.org/10.4007/annals.2004.159.1027
http://msp.org/idx/mr/2113019
http://msp.org/idx/arx/1311.1929
http://dx.doi.org/10.2140/gt.2004.8.1013
http://msp.org/idx/mr/2087076
http://msp.org/idx/mr/0052101
http://dx.doi.org/10.1017/CBO9780511617560
http://msp.org/idx/mr/2107253
http://dx.doi.org/10.4153/CJM-1960-045-7
http://msp.org/idx/mr/0125588


Dehn surgeries and rational homology balls 527

Alfréd Rényi Institute of Mathematics
13–15 Reáltanoda u, Budapest, 1053, Hungary

Department of Mathematics, Uppsala University
Box 480, SE-751 06 Uppsala, Sweden

aceto.paolo@renyi.mta.hu, marco.golla@math.uu.se

http://www.renyi.hu/~paoloace/, http://www2.math.uu.se/~margo137/

Received: 14 April 2016 Revised: 8 June 2016

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

mailto:aceto.paolo@renyi.mta.hu
mailto:marco.golla@math.uu.se
http://www.renyi.hu/~paoloace/
http://www2.math.uu.se/~margo137/
http://msp.org
http://msp.org



	1. Introduction
	2. Plumbed manifolds and rational homology cobordisms
	2.1. Plumbings
	2.2. Intersection forms and spin-c structures

	3. Correction terms in Heegaard Floer homology
	4. Generalities on rational surgeries
	4.1. Correction terms of lens spaces
	4.2. Correction terms of rational surgeries

	5. Integral surgeries
	5.1. Alternating knots
	5.2. Torus knots
	5.3. Asymptotic classification

	6. Integral surgeries on torus knots
	6.1. Preliminaries
	6.2. Main results

	References

