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Character varieties, A–polynomials and the AJ conjecture

THANG T Q LÊ

XINGRU ZHANG

We establish some facts about the behavior of the rational-geometric subvariety of
the SL2.C/ or PSL2.C/ character variety of a hyperbolic knot manifold under the
restriction map to the SL2.C/ or PSL2.C/ character variety of the boundary torus,
and use the results to get some properties about the A–polynomials and to prove the
AJ conjecture for a certain class of knots in S3 including in particular any 2–bridge
knot over which the double branched cover of S3 is a lens space of prime order.
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1 Introduction

For a finitely generated group � , let R.�/ denote the SL2.C/–representation variety
of � , X.�/ the SL2.C/–character variety of � , and trW R.�/!X.�/ the map which
sends a representation �2R.�/ to its character �� 2X.�/. When � is the fundamental
group of a connected manifold W , we also write R.W / and X.W / for R.�1.W //
and X.�1.W //, respectively, and call them the SL2.C/–representation variety of W
and the SL2.C/–character variety of W . The counterparts of these notions when the
target group SL2.C/ is replaced by PSL2.C/ are similarly defined and are denoted
by R.�/, X.�/, tr, � , x�� , R.W / and X.W /, respectively. We refer to Culler and
Shalen [9] for basics about SL2.C/–representation and character varieties and to Boyer
and Zhang [3] in the PSL2.C/ case.

In this paper, a variety V is a closed complex affine algebraic set, ie a subset of Cn

which is the zero locus of a set of polynomials in CŒx1; : : : ; xn�. If among the sets of
polynomials which define the same variety V there is one whose elements all have
rational coefficients, we say that V is defined over Q. Similarly, a regular map between
two varieties is said to be defined over Q if the map is given by a tuple of polynomials
with coefficients in Q. Note that R.�/, X.�/, tr, R.�/, X.�/ and tr are all defined
over Q.

In this paper, irreducible varieties will be called C–irreducible varieties. Recall that a
variety is C–irreducible if it is not a union of two proper subvarieties. Any variety V

Published: 26 January 2017 DOI: 10.2140/agt.2017.17.157

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=57M25
http://dx.doi.org/10.2140/agt.2017.17.157


158 Thang T Q Lê and Xingru Zhang

can be presented as an irredundant union of C–irreducible subvarieties; each is called
a C–component of V . Similarly, a variety defined over Q is Q–irreducible if it is
not a union of two proper subvarieties defined over Q. Any variety V defined over Q
can be presented as an irredundant union of Q–irreducible subvarieties, each is called
a Q–component of V . In general a Q–component can be further decomposed into
C–components.

If �1 and �2 are two finitely generated groups and hW �1 ! �2 is a group homo-
morphism, we use h� to denote the induced regular map from R.�2/, X.�2/, R.�2/
or X.�2/ to R.�1/, X.�1/, R.�1/ or X.�1/, respectively. Note that h� is defined
over Q.

Let M be a knot manifold, ie M is a connected compact orientable 3–manifold whose
boundary @M is a torus. Let �� be the regular map from R.M/, X.M/, R.M/

or X.M/ to R.@M/, X.@M/, R.@M/ or X.@M/, respectively, induced from the
inclusion induced homomorphism �W �1.@M/! �1.M/.

We call a character �� (or x�� ) reducible, irreducible, discrete faithful or dihedral if
the corresponding representation � (or �) has that property.

1.1 Rational-geometric subvariety

Suppose M is a hyperbolic knot manifold, ie a knot manifold whose interior has a
complete hyperbolic metric of finite volume. There are precisely two discrete faithful
characters in X.M/ (which follows from Mostow–Prasad rigidity) and there are
precisely 2jH1.M IZ2/j discrete faithful characters in X.M/ (which follows from a
result of Thurston; see Culler and Shalen [9, Proposition 3.1.1]). The rational-geometric
subvariety X rg.M/ (respectively X rg.M/) is the union of Q–components of X.M/

(respectively X.M/), each of which contains a discrete faithful character. The number
of Q–components of X rg.M/ is at most jH1.M IZ2/j, and X rg.M/ is Q–irreducible
(which will be explained in Section 2), but it is not known how many C–components
that X rg.M/ (respectively X rg.M/) can possibly have.

We show:

Theorem 1.1 Let M be a hyperbolic knot manifold. Let X1; : : : ; X l be the C–
components of X rg.M/ and let Y j be the Zariski closure of ��.Xj / in X.@M/

for j D 1; : : : ; l .

(1) Xj is a curve for each j .

(2) The regular map ��W Xj ! Y j is a birational map for each j .
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(3) If the two discrete faithful characters of X.M/ are contained in the same C–
component of X.M/, then the curves Y j for j D 1; : : : ; l are mutually distinct
in X.@M/.

In SL2.C/–setting we have a similar result but we need a restriction on the knot
manifold.

Theorem 1.2 Suppose that M is a hyperbolic knot manifold which is the exterior of a
knot in a homology 3–sphere. Let X1; : : : ; Xk be the C–components of X rg.M/ and
let Yj be the Zariski closure of ��.Xj / in X.@M/ for j D 1; : : : ; k .

(1) Xj is a curve for each j .

(2) The regular map ��W Xj ! Yj is a birational map for each j .

(3) If the two discrete faithful characters of X.M/ are contained in the same C–
component of X.M/, then the curves Yj for j D 1; : : : ; k are mutually distinct
in X.@M/.

Remark 1.3 Although the condition “the two discrete faithful characters of X.M/

are contained in the same C–component of X.M/” is hard to check, there is no known
example of a hyperbolic knot exterior in S3 for which this condition is not satisfied.

We give two applications of Theorem 1.2, one on estimating degrees of A–polynomials
and one on proving the AJ conjecture for a certain class of knots, which is the main
motivation of this paper.

1.2 A–polynomial

When a knot manifold M is the exterior of a knot K in a homology 3–sphere W , we
denote the A–polynomial of K in variables M and L by AK;W .M;L/, as defined
by Cooper, Culler, Gillet, Long and Shalen [7]. When W D S3, we simply write
AK.M;L/ for AK;S3.M;L/. Note that AK;W .M;L/ 2 ZŒM;L� has no repeated
factors and always contains the factor L� 1. Let the nonabelian A–polynomial be
defined by

yAK;W .M;L/ WD
AK;W .M;L/

L� 1
:

We call the maximum power of M (respectively of L) in yAK;W .M;L/ the M–degree
(respectively the L–degree) of yAK;W .M;L/.

When M is a finite-volume hyperbolic 3–manifold, the trace field of M is defined
to be the field generated by the values of a discrete faithful character of M over the
base field Q. It is known that the trace field of M is a number field, ie a finite degree
extension of Q, with extension degree at least two.
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Theorem 1.4 Suppose that M is a hyperbolic knot manifold which is the exterior of a
knot K in a homology 3–sphere W . Let d be the extension degree of the trace field of
M over Q. If the two discrete faithful characters of X.M/ are contained in the same
C–component of X.M/, then both the M–degree and the L–degree of yAK;W .M;L/

are at least d . In particular both the M–degree and the L–degree of yAK;W .M;L/ are
at least 2.

1.3 AJ conjecture

Suppose M is the exterior of a knot in a homology 3–sphere. All the reducible charac-
ters in X.M/ (resp. X.M/) form a unique C–component of X.M/ (resp. X.M/),
which we denote by X red.M/ (resp. X red.M/). We use X irr.M/ (resp. X irr.M/) to
denote the union of the rest of the C–components of X.M/ (resp. X.M/). We caution
that our definition of X irr.M/ (resp. X irr.M/) may not be the exact complement of
X red.M/ (resp. X red.M/) in X.M/ (resp. X.M/) and it may still contain finitely
many reducible characters. All of X red.M/, X irr.M/, X red.M/ and X irr.M/ are
varieties defined over Q.

For a knot K in S3, its recurrence polynomial ˛K.t;M;L/ 2 ZŒt;M;L� is derived
from the colored Jones polynomials of K ; see Garoufalidis [15], Garoufalidis and
Lê [17] and Lê [23]. The AJ conjecture, raised in [15] (see also Frohman, Gelca and
Lofaro [14]) anticipates a striking relation between the colored Jones polynomials of K
and the A–polynomial of K . It states that, for every knot K � S3, ˛K.1;M;L/ is
equal to the A–polynomial AK.M;L/ of K , up to a factor depending on M only. The
following theorem generalizes Lê and Tran [25, Theorem 1] and is the main result of
this paper (see Section 4 for detailed definitions of terms mentioned here and for more
background description).

Theorem 1.5 Let K be a knot in S3 whose exterior M is hyperbolic. Suppose the
following conditions are satisfied:

(1) X irr.M/DX rg.M/ and the two discrete faithful characters of X.M/ are con-
tained in the same C–component of X.M/.

(2) The L–degree of the recurrence polynomial ˛K.t;M;L/ of K is larger than one.

(3) The localized skein module S of M is finitely generated.

Then the AJ conjecture holds for K .

In [25, Theorem 1], it is required that X irr.M/DX rg.M/ and both are C–irreducible,
which is obviously stronger than our condition Theorem 1.5(1). In general, irreducibility
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over C is difficult to check. We also remove the condition, required in [25, Theorem 1],
that the universal SL2–character ring of M be reduced.

It is known that condition Theorem 1.5(2) is satisfied by any nontrivial adequate
knot (in particular any nontrivial alternating knot) in S3 (see [23]) and condition
Theorem 1.5(3) is satisfied by all 2–bridge knots (see [23]) and all pretzel knots of the
form .�2; 3; 2nC 1/ (see [25]). Concerning condition Theorem 1.5(1), we have the
following:

Theorem 1.6 Let K be a 2–bridge knot in S3 with a hyperbolic exterior M .

(1) The two discrete faithful characters of X.M/ are contained in the same C–
component of X.M/.

(2) All four discrete faithful SL2.C/–characters are contained in the same C–
component of X.M/, and X rg.M/ is irreducible over Q.

Therefore we have the following corollary, which generalizes [25, Theorem 2(b)]:

Corollary 1.7 Let K be a 2–bridge knot in S3 with a hyperbolic exterior M . If
X irr.M/DX rg.M/, then the AJ conjecture holds for K .

Note that a 2–bridge knot has hyperbolic exterior if and only if it is not a torus knot, and
for all torus knots the AJ conjecture is known to hold; see Hikami [19] and Tran [37].

Since X rg.M/�X irr.M/ and X rg.M/ is defined over Q, if X irr.M/ is Q–irreducible,
then X rg.M/DX irr.M/. For a 2–bridge knot, the variety X irr.M/ is the zero locus
of the Riley polynomial, which is a polynomial in two variables; see Riley [31]. Hence,
we have the following:

Corollary 1.8 Let K be a 2–bridge knot in S3. If X irr.M/ is Q–irreducible, or if
the Riley polynomial of K is irreducible over Q, then the AJ conjecture holds for K .

Lê and Tran [25, Section A1] proved that the Riley polynomial of the 2–bridge knot
b.p; q/ is Q–irreducible if p is a prime. Here we use the notation of Burde and
Zieschang [6] for 2–bridge knots: b.p; q/ is the 2–bridge knot such that the double
branched covering of S3 along b.p; q/ is the lens space L.p; q/. Note that both p
and q are odd numbers, coprime with each other with 1 � q � p � 2, and b.p; q/

is hyperbolic if and only if q ¤ 1. When q D 1, b.p; 1/ is a torus knot, and the AJ
conjecture for it holds. Thus we have:

Corollary 1.9 The AJ conjecture holds for all 2–bridge knots b.p; q/ with odd
prime p .
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Among all 544 2–bridge knots b.p; q/ with p < 100, 48 of them are hyperbolic and
have Q–reducible Riley polynomial (calculated by Vu Huynh). Here is the list of the
48 knots (their .p; q/–values):

.15; 11/ .21; 13/ .27; 17/ .27; 5/ .33; 23/ .33; 5/ .35; 29/ .39; 25/

.39; 7/ .45; 29/ .45; 19/ .45; 7/ .51; 35/ .55; 21/ .57; 37/ .57; 5/

.63; 55/ .63; 41/ .63; 11/ .63; 5/ .65; 51/ .69; 47/ .69; 19/ .69; 11/

.75; 59/ .75; 49/ .75; 29/ .75; 13/ .77; 43/ .81; 53/ .81; 13/ .81; 7/

.85; 69/ .85; 47/ .85; 9/ .87; 59/ .87; 7/ .87; 5/ .91; 27/ .93; 61/

.93; 11/ .93; 5/ .95; 39/ .95; 9/ .99; 89/ .99; 65/ .99; 29/ .99; 17/

Thus the AJ conjecture holds for all 544 2–bridge knots b.p; q/ with p < 100, except
for the 48 listed above.

K Murasugi (personal communication, 2009, 2016) conjectured that the M–degree
of yAK.M;L/ is at least twice the L–degree of yAK.M;L/ for any nontrivial knot K
in S3. We prove Murasugi’s conjecture for 2–bridge knots in part (1) of the following
theorem. Part (2) will follow from a similar argument together with an application of
Theorem 1.2.

Theorem 1.10 Let K D b.p; q/ be a nontrivial 2–bridge knot.

(1) The M–degree of yAK.M;L/ is at least twice the L–degree of yAK.M;L/.

(2) When K is hyperbolic and p is prime, the L–degree of yAK.M;L/ is exactly
1
2
.p� 1/.

Plan of the paper In Section 2, we prove Theorems 1.1, 1.2 and 1.4. The proof of
Theorem 1.1 applies the theory of volumes of representations developed by Hodgson
[20] Cooper, Culler, Gillet, Long and Shalen [7], Dunfield [11] and Francaviglia
[12], plus the consideration of the Aut.C/–action on varieties. Theorem 1.2 follows
quickly from Theorem 1.1 under the consideration of the H1.M IZ2/–action on X.M/.
Theorem 1.4 follows from Theorem 1.2 together with the fact, observed by Schack
and Zhang [32], that the .Aut.C/�H1.M IZ2//–orbit of a discrete faithful SL2.C/–
character of X.M/, which of course is contained in X rg.M/, contains at least 2d
elements. Section 2 also contains some related results, notably Theorem 2.4, which
is a refinement of Theorem 1.1, and Proposition 2.7, which gives a property of the
A–polynomial that will be applied in the proof of Theorem 1.5 in Section 4 (see
also Remark 2.8). To prove our main result, Theorem 1.5, we need to first prepare
some properties concerning the representation schemes and character schemes of knot
manifolds in Section 3. In Section 4, we illustrate how the approach of Lê and Tran
[25] can be applied to reduce Theorem 1.5 to Proposition 4.1. This proposition will
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then be proved in Section 5, where Theorem 1.2 and results from Section 3 are applied.
Lastly, in Section 6, we prove Theorems 1.6 and 1.10, applying results from Tanguay
[36, Section 5], Boyer and Zhang [2; 4] and Klassen [21] as well as Theorem 1.2.
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2 Proofs of Theorems 1.1, 1.2 and 1.4

2.1 Preliminaries

Let Aut.C/ denote the group of all field automorphisms of the complex field C . Let
� 2 Aut.C/ denote the complex conjugation.

Each element � 2Aut.C/ extends to a unique ring automorphism of CŒx1; : : : ; xn� by
�.xi /D xi for i D 1; : : : ; n. Each element � 2 Aut.C/ acts naturally on the complex
affine space Cn coordinate-wise by

�.a1; : : : ; an/ WD .�.a1/; : : : ; �.an//:

As a ring automorphism, � maps an ideal of CŒx1; : : : ; xn� to an ideal, a primary
ideal to a primary ideal and a prime ideal to a prime ideal. If I � CŒx1; : : : ; xn�
is an ideal defined over Q, ie I is generated by elements in ZŒx1; : : : ; xn�, then
�.I /D I . If V.I /�Cn is the zero locus defined by an ideal I �CŒx1; : : : ; xn�, then
�.V.I //D V.�.I //. We call �.V.I // a Galois conjugate of V.I /. As a map from
Cn to itself, � maps a variety to a variety and an irreducible variety to an irreducible
variety preserving its dimension. Furthermore if V is a variety defined over Q, then
for any C–component V1 of V , the Aut.C/–orbit of V1 is the Q–component of V
containing V1 . In particular, if V is Q–irreducible, then its C–components are the
Aut.C/–orbit of one of them and thus all have the same dimension (see [4, Section 5]).

A variety is 1–equidimensional if every its C–component has dimension 1. A rational
map f W V1! V2 between two 1–equidimensional varieties is said to have degree d if
there is an open dense subset V 02 � V2 such that f �1.V 02/ is dense in V1 and f �1.x/
has exactly d elements for each x 2 V 02 . When V1 and V2 are C–irreducible, this
definition is the same as the well-known definition of a degree d map in algebraic
geometry [33; 34]. It is known that a rational map between two C–irreducible varieties
is birational if and only if it has degree 1.

Algebraic & Geometric Topology, Volume 17 (2017)



164 Thang T Q Lê and Xingru Zhang

2.2 Proof of Theorem 1.1

By Mostow–Prasad rigidity, X.M/ has two discrete faithful characters, which are
related by the � –action. Let x�0 be one of the two discrete faithful characters; then
�.x�0/ is the other one. By [28, Corollary 3.28] (which is also valid in the PSL2.C/–
setting), each of x�0 and �.x�0/ is a smooth point of X.M/. In particular, each of them
is contained in a unique C–component of X.M/, which has dimension 1 (a curve) by
a result of Thurston (see [8, Proposition 1.1.1]).

We may assume that X1 is the C–component of X.M/ which contains x�0 . It follows
obviously that X rg.M/ (whose definition is given in Section 1) is the Aut.C/–orbit
of X1 , and thus is irreducible over Q. Furthermore, each C–component of X rg.M/

is a curve. Hence we have proved Theorem 1.1(1).

By [11, Theorem 3.1], ��W X1! Y 1 is a birational map. For each j D 2; : : : ; l , there
is �j 2 Aut.C/ such that Xj D �j .X1/. Since �� is defined over Q, we have the
following commutative diagram of maps:

X1
�� - Y 1

Xj

�j
?

�� - Y j

�j
?

As �j is a bijection and ��W X1! Y 1 is a degree one map, ��W Xj ! Y j is a degree
one map and thus is a birational map for each j . This proves Theorem 1.1(2).

Now we proceed to prove Theorem 1.1(3). By our assumption, both x�0 and �.x�0/ are
contained in X1 .

Proposition 2.1 For each j D 2; : : : ; l , Y j and Y 1 are two distinct curves.

Proof Suppose otherwise that Y 1 D Y j for some j � 2. We will get a contradiction
from this assumption. The argument goes by applying the theory of volumes of
representations.

We first recall some of the results from [11] concerning volumes of representations.
For any (connected) closed 3–manifold W and any representation � 2 R.W /, the
volume v.�/ of � is defined, and, if in addition � is irreducible, the volume function
v descends to be defined on x�� so that v.x��/D v.�/. What’s important in this theory
is the Gromov–Thurston–Goldman volume rigidity (proved in [11, Theorem 6.1]),
which states that when W is a closed hyperbolic 3–manifold and x� 2 X.W / is an
irreducible character, then jv.x�/j D vol.W / if and only if x� is a discrete faithful
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character. For a hyperbolic knot manifold M , the volume function v is well defined, in
our current notation, for each PSL2.C/–representation � of �1.M/ whose character
x�� lies in X1 [11, Lemma 2.5.2]. Similarly, if x�� 2 X1 is an irreducible character,
then v.x��/D v.�/. So v is defined at all but finitely many points of X1 . Furthermore,
if Y �1 is a normalization of Y 1 and f1W Y 1! Y �1 a birational map, then the volume
function v factors through Y �1 in the sense that there is a function v1W Y �1!R such
that, if x�� 2X1 is an irreducible character and f1 is defined at ��.x��/, then

v.x��/D v1.f1.�
�.x��///:

That is, we have the following commutative diagram of maps (at points where all maps
are defined):

Y �1

R �
v�

v1

X1
�� - Y 1

f1

6

This is [11, Theorem 2.6]. Moreover, if x�� 2X1 is an irreducible character such that
� factors through the fundamental group of a Dehn filling M.
/ of M for some slope

 on @M , then the volume of � with respect to M is equal to the volume of � with
respect to the closed manifold M.
/ [11, Lemma 2.5.4]. We note that, in the above
cited results of [11], the volume v.�/ is the absolute value of the integral over M
(or M.
/) of a certain 3–form associated to � but all these results remain valid when
v.�/ is defined to be the mentioned integral without taking the absolute value. It is this
latter version of the volume function that we are using here and subsequently.

Lemma 2.5.2 of [11] is generalized in [12], and it is shown there that the volume function
v is well-defined at every PSL2.C/–representation of a finite-volume hyperbolic 3–
manifold and, also in [12], the volume rigidity is extended to all hyperbolic link
manifolds, which states that the volume of a representation of a hyperbolic link manifold
attains its maximal value in absolute value precisely when the representation is discrete
faithful and the maximal value in absolute value is the volume of the hyperbolic link
manifold. That means that, in our current case, the volume function v is defined at any
irreducible character of X.M/ without the restriction that the character must lie in a
C–component of X.M/ which contains a discrete faithful character. We should also
note that the definition of the volume of a representation in [12] is consistent with that
defined in [11] in the case of a knot manifold. More specifically, for a knot manifold M
and a representation � 2R.M/, the volume vol.�/ of � is defined through a so-called
pseudodeveloping map for � , which is defined in [11], and the independence of vol.�/
from the choice of the pseudodeveloping map is proved in [11] when �� is contained
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in a C–component of X.M/ which contains a discrete faithful character and proved
in [12] without any restriction. One can then check that the results of [11] which we
recalled in the preceding paragraph can be extended to the following theorem:

Theorem 2.2 (1) If Y �j is a normalization of Y j and fj W Y j ! Y �j is a birational
map, then there is a function vj W Y �j !R which makes the following diagram
of maps commutes (at points where all the maps are defined):

Y �j

R �
v�

vj

Xj
�� - Y j

fj
6

(2) If x� 2 X.M/ is an irreducible character which factors through a Dehn filling
M.
/, ie x� 2 X.M.
//, then the volume of x� with respect to M is the same
volume with respect to M.
/. If, in addition, M.
/ is hyperbolic, then jv.x�/j D
vol.M.
// if and only if x� is a discrete faithful character of M.
/.

(3) jv.x�/j � vol.M/ for any irreducible character x�2X.M/, and the equality holds
precisely at the two discrete faithful characters of M .

Remark 2.3 For the proof of part (1) of the theorem, following that of [11, Theorem
2.6], one needs the property that the curve Xj �X.M/ lifts to a curve in X.M/. But
that follows from the fact that X1 lifts (by Thurston) to a curve in X.M/, say X1 ,
and then �j .X1/ is a lift of Xj D �j .X1/.

We now continue to prove Proposition 2.1. Take a sequence of distinct slopes f
kg in
@M , and let M.
k/ be the closed 3–manifold obtained by Dehn filling M with the
slope 
k . By Thurston’s hyperbolic Dehn filling theorem, we may assume that M.
k/
is hyperbolic and that the core circle of the filling solid torus is a geodesic for each k .
Note that X.M.
k// � X.M/ for each k . Also, for each k , X.M.
k// contains
precisely two discrete faithful characters, which we denote by x�k and �.x�k/. Again
by Thurston’s hyperbolic Dehn filling theorem, we may assume that x�k ! x�0 in
X.M/ with respect to the classical topology of X.M/, up to replacing some of the
x�k by �.x�k/. It follows that x�k is contained in X1 for all sufficiently large k .

Note that v.x�/ D �v.�.x�// for any irreducible character x� 2 X.M/ (see eg [12,
Proposition 4.16]). Without loss of generality we may assume that v.x�0/D vol.M/>0

and so v.�.x�0//D�vol.M/. It follows that v.x�k/D vol.M.
k//>0 and v.�.x�k//D
�vol.M.
k// < 0, at least for all sufficiently large k .
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As x�0 and �.x�0/ are smooth points of X.M/, it follows that �.X1/DX1 and that
�.x�k/ approaches �.x�0/ as k!1 since � is a continuous map. Therefore X1 is
the only C–component of X.M/ which contains x�k and �.x�k/ for all sufficiently
large k .

Since Y 1 D Y j and the map ��W Xj ! Y 1 is an almost onto map, there are two
sequences of points fx�0

k
g and fx�00

k
g in Xj such that ��.x�0

k
/D ��.x�k/ and ��.x�00

k
/D

��.�.x�k// for almost all k . We may also assume that x�0
k

and x�00
k

are irreducible for
almost all k since there are at most finitely many reducible characters in Xj .

Let Y �1 be a normalization of Y 1 and let f1W Y 1! Y �1 be a birational map. As f1
is defined on Y 1 except, possibly, at finitely many points, we may assume that f1 is
well-defined at ��.x�0

k
/D ��.x�k/ and ��.x�00

k
/D ��.�.x�k// for all large k .

Let v1 and vj be the functions on Y �1 provided by Theorem 2.2(1) with respect to the
map f1W Y 1! Y �1 . Note that v1 ı f1 and vj ı f1 are smooth functions away from
finitely many points in Y 1 and have the same differential, up to sign. (See the proof of
[11, Theorem 2.6] for this assertion. Briefly, on .C�/2 there is a real-valued 1–form

! D�1
2
.log jLjd arg.M/� log jMjd arg.L//;

which is defined in [7]. This 1–form is invariant under the involutions � and ��1 on
.C�/2 defined in Section 2.5 and thus descends to a 1–form !0 on X.@M/. For
each j, d.vj ıfj / is equal to the restriction of !0 over an open dense subset of Y j ,
up to sign.) It follows that

vj ıf1 D ı.v1 ıf1/C c

for some ı 2 f1;�1g and some constant c in the complement of finitely many points
in Y 1 . Let U denote this complement. Then we may assume that ��.x�0

k
/D ��.x�k/

and ��.x�00
k
/D ��.�.x�k// are contained in U for all large k .

Hence,

v.x�0k/D vj .f1.�
�.x�0k///D ıv1.f1.�

�.x�k///C c D ıv.x�k/C c

and

v.x�00k/D vj .f1.�
�.x�00k///D ıv1

�
f1.�

�.�.x�k///
�
C c D ıv.�.x�k//C c;

so
v.x�0k/� v.x�

00
k/D ı

�
v.x�k/� v.�.x�k//

�
D ı2v.x�k/D ı2 vol.M.
k//

and thus
jv.x�0k/jC jv.x�

00
k/j � 2 vol.M.
k//
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for sufficiently large k . Because ��.x�0
k
/D ��.x�k/ and ��.x�00

k
/D ��.�.x�k//, both x�0

k

and x�00
k

are characters of X.M.
k//. To see this in detail, let �k , � 0
k
2 R.M/ be

representations with x�k and x�0
k

as characters, respectively. Note that �k is a discrete
faithful representation of �1.M.
k// and so �k.
k/D 1. Let �k be a simple essential
loop in @M such that f
k; �kg forms a basis of �1.@M/. Then �k is isotopic in
M.
k/ to the core circle of the filling solid torus in forming M.
k/ from M . As we
have assumed that the core circle is a geodesic in the hyperbolic 3–manifold M.
k/,
�k.�k/ is a hyperbolic element of PSL2.C/. In particular its trace square is not equal
to 4. Now, since x�0

k
.
k/ D x�k.
k/ and x�0

k
.�k/ D x�k.�k/, we have that � 0

k
.
k/ is

a parabolic element or the identity element and � 0
k
.�k/ is a hyperbolic element of

PSL2.C/. But these two elements commute, so � 0
k
.
k/ has to be the identity element.

Hence x�0
k
2 X.M.
k//. Similarly, one can show that x�00

k
2 X.M.
k//. But neither

x�0
k

nor x�00
k

is a discrete faithful character of X.M.
k// by our construction, so we get
a contradiction with the volume rigidity theorem for closed hyperbolic 3–manifolds.

To finish the proof of Theorem 1.1(3), we just need to show that Y j for j � 2 are
mutually distinct. Suppose that Y j1 D Y j2 for some j1 , j2 � 2. There is � 2 Aut.C/
such that �.Xj1/ D X1 . As � commutes with ��, �.Y j1/ D Y 1 . We also have
�.Y j2/ D �.Y j1/ D Y 1 . So, by Proposition 2.1, �.Xj2/ D X1 as well. Hence,
Xj1 DXj2 , ie j1 D j2 .

2.3 A refinement of Theorem 1.1

Let M be a hyperbolic knot manifold. Suppose X1; : : : ; Xk are all C–components
of X.M/ and Y j is the Zariski closure of ��.Xj / in X.@M/ for i D 1; : : : ; k . It is
known that Y j has dimension either 1 or 0.

In proving Y j ¤ Y 1 in the previous subsection, the fact that Xj is in the Aut.C/–orbit
of X1 is used only to show that Xj lifts to X.M/ (see Remark 2.3). When M is
a hyperbolic knot manifold which is the exterior of a knot in a homology 3–sphere,
every PSL2.C/–representation of �1.M/ lifts to an SL2–representation. Hence, the
proof of Theorem 1.1(3) also proves the following:

Theorem 2.4 Let M be a hyperbolic knot manifold which is the exterior of a knot in
a homology 3–sphere. Let X1; : : : ; Xk be the C–components of the PSL2–character
varieties X.M/ and Y j be the Zariski closure of ��.Xj / for j D 1; : : : ; k . Suppose
the two discrete faithful characters of X.M/ are contained in X1 . Then Y j ¤ Y 1 for
all j � 2.
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2.4 Proof of Theorem 1.2

Let .�; �/ be the standard meridian–longitude basis for �1.@M/ � �1.M/. Let
Z2 D f1;�1g. Since H 1.M;Z2/D Z2 , there is a unique nontrivial group homomor-
phism �W �1.M/! Z2 . One has �.�/D �1 and �.�/D 1. The homomorphism �

induces an involution �� on R.M/ and on X.M/, defined by ��.�/.
/D �.
/ �.
/
for � 2R.M/ and ��.��/D ���.�/ for �� 2X.M/.

Obviously �� is a bijective regular involution on X.M/, and it is defined over Q. The
quotient space of X.M/ by this involution gives rise a regular map ˆ� from X.M/

into X.M/. Let ˆW SL2.C/! PSL2.C/ be the canonical quotient homomorphism.
Then ˆ� is exactly the map induced by ˆ.

On the other hand, since H1.M IZ2/D Z2 , every PSL2.C/–representation � of M
lifts to an SL2.C/–representation � of M in the sense that � D ˆ ı � (see eg [3,
page 756]). Hence ˆ� is an onto map on X.M/.

Similarly, if �1W �1.@M/!Z2Df1;�1g is the homomorphism defined by �1.�/D�1
and �1.�/D 1, it induces an involution ��1 on X.@M/. Let ˆ�1 be the corresponding
quotient map from X.@M/ into X.@M/. Then ˆ�1 is also a regular and surjective map.
We have the following commutative diagrams of regular maps:

(2.4.1)

X.M/
��- X.@M/

X.M/

ˆ�
?

��- X.@M/

ˆ�1?

and the upper �� satisfies the identity

(2.4.2) ��1 ı �
�
D �� ı ��:

In particular, we have

(2.4.3)

X rg.M/
�� - Y

X rg.M/

ˆ�
?

�� - Y

ˆ�1?

where Y is the Zariski closure of ��.X rg.M// and Y the Zariski closure of ��.X rg.M//.
All the varieties in (2.4.3) are 1–equidimensional. Both ˆ� and ˆ�1 are degree 2
maps, while the lower �� has degree 1 by Theorem 1.1. It follows that there is an
open dense subset .X rg/0 of X rg.M/ and an open dense subset Y 0 of Y such that the
restriction ��W .X rg/0! Y 0 is a bijection and, for every x 2 .X rg/0 and y 2 Y 0, both
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.ˆ�/�1.x/ and .ˆ�1/
�1.y/ have exactly two distinct elements. Further, .X rg/0 WD

.ˆ�/�1..X rg/0/ is open dense in X rg.M/ and Y 0 D .ˆ�1/
�1.Y 0/ is open dense in Y .

Suppose x 2 .X rg/0 and y D ��.x/ with fx1; x2g D .ˆ�/�1.x/ and fy1; y2g D
.ˆ�1/

�1.y/. The commutativity of the above diagram means ��.x1/ is one of y1 or y2 ,
say ��.x1/D y1 . Then the identity (2.4.2) implies ��.x2/D y2 . This shows that �� is
a bijection from the open dense subset .X rg/0 of X rg.M/ onto the open dense subset
Y 0 of Y . Hence, ��W X rg.M/! Y is a degree one map. Now Theorem 1.2 follows
from Theorem 1.1.

Remark 2.5 Let M be a hyperbolic knot manifold which is the exterior of a knot
in a homology 3–sphere. We saw in the above proof that ˆ� is surjective on X.M/.
Since .ˆ�/�1.X irr.M//D X irr.M/ and .ˆ�/�1.X rg.M//D X rg.M/, we conclude
that X irr.M/DX rg.M/ if and only if X irr.M/DX rg.M/.

2.5 A–polynomial and its symmetry

We briefly recall the definition of the A–polynomial for a knot K in a homology
3–sphere W , as defined in [7]. Let M be the exterior of K and let f�; �g be the
standard meridian–longitude basis for �1.@M/.

Let C� D C n f0g and � W .C�/2! .C�/2 be the involution defined by �.M;L/D

.M�1;L�1/. We can identify X.@M/ with .C�/2=� as follows. For .M;L/2 .C�/2

let �.M;L/ 2X.@M/ be the character of the representation

�W �1.@M/! SL2.C/; �.�/D

�
M 0

0 M�1

�
; �.�/D

�
L 0

0 L�1

�
:

Then the map .M;L/! �.M;L/ descends to an isomorphism that identifies .C�/2=�
with X.@M/. Let pr� W .C

�/2! .C�/2=� �X.@M/ be the natural projection.

Let ��1 W .C
�/2! .C�/2 be the involution defined by ��1 .M;L/D .�M;L/. Then ��1

commutes with � and descends to an involution of .C�/2=� , which coincides with the
��1 of Section 2.4. Thus, we can identify X.@M/ with ..C�/2=�/=��1 D .C

�/2=h�; ��1 i,
and ˆ�1 with the natural projection .C�/2=�! .C�/2=h�; ��1 i. Here h�; ��1 iŠZ2�Z2
is the group generated by � and ��1 . Let prW .C�/2! .C�/2=h�; ��1 i be the natural
projection.

The involution � naturally induces an algebra involution, also called � , acting on the
algebra CŒM˙1;L˙1�. That is, �.P /.M;L/DP.M�1;L�1/ for P 2CŒM˙;L˙1�.
A polynomial P 2 CŒM;L� is said to be balanced if �.P /D ıMaLbP for certain
ı 2 f�1; 1g and a , b 2 Z. For any subring R�CŒM;L�, we say that P 2CŒM;L�
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is balanced-irreducible in R if P 2R and P is balanced but is not the product of two
nonconstant balanced polynomials in R.

Suppose Z � X.@M/ is a 1–equidimensional variety. The Zariski closure zZ of
pr�1� .Z/ in C2 is a 1–equidimensional variety. The ideal of all polynomials in CŒM;L�

vanishing on zZ is principal, and is generated by a polynomial PZ 2CŒM;L�, defined
up to a nonzero constant factor. The � –invariance of pr�1� .Z/ implies that PZ is
balanced. If Z is C–irreducible, then PZ is balanced-irreducible in CŒM;L�. If Z is
defined over Q, then one can choose PZ 2 ZŒM;L� and it is defined up to sign. If Z
is Q–irreducible, then PZ is balanced-irreducible in ZŒM;L�.

Similarly, if Z �X.@M/ is a 1–equidimensional variety, one defines PZ 2CŒM;L�

as the generator of the ideal of all polynomials in CŒM;L� vanishing on pr�1.Z/. The
h�; ��1 i–invariance of pr�1.Z/ implies that PZ is balanced and belongs to CŒM2;L�.
If Z is C–irreducible, then PZ is balanced-irreducible in CŒM2;L�. If Z is defined
over Q, then one can choose PZ 2 ZŒM2;L� and it is defined up to sign. If Z is
Q–irreducible, then PZ is balanced-irreducible in ZŒM2;L�.

Now let Z be the union of all 1–dimensional C–components of the Zariski closure of
��.X.M// in X.@M/D .C�/2=h�; ��1 i. It is known that Z is defined over Q. The
polynomial PZ 2 ZŒM2;L� is the A–polynomial AK;W .M;L/. If Z is the union
of all 1–dimensional C–components of the Zariski closure of ��.X.M// in X.@M/.
Then Z D .ˆ�/�1.Z/. Thus PZ D PZ is the A–polynomial.

Remark 2.6 To define the A–polynomial AK;W .M;L/, one just needs to consider
the SL2.C/–setting, ie in terms of PZ , as is done in [7]. For our purpose (eg for
convenience in proving Proposition 2.7) we also present the same A–polynomial from
the PSL2.C/ point of view, ie in terms of PZ .

2.6 Proof of Theorem 1.4

Since M is the exterior of a knot K in a homology 3–sphere, its trace field is equal
to its invariant trace field. Let �0 be a discrete faithful character of X.M/. It is
proved in [32] that the Aut.C/–orbit of �0 has d distinct elements, which we denote
by �i for i D 0; 1; : : : ; d � 1, and ��.�i / for i D 0; 1; : : : ; d � 1 is another set of
d distinct elements, which is disjoint from the former set. These 2d characters are
obviously contained in X rg.M/. Furthermore they are irreducible faithful characters
whose values on elements of �1.@M/ are 2 or �2.

For 
 2 �1.M/, let f
 be the regular function on X.M/ defined by f
 .��/ D�
trace.�.
//

�2
� 4. By the discussion above, for each peripheral element 
 2 �1.@M/,

f
 has at least 2d zero points: �i and ��.�i / for i D 0; : : : ; d � 1.
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Now let X1; : : : ; Xl be the C–components of X rg.M/. By [4, Section 5], f
 is
nonconstant on each Xj for every nontrivial element 
 2 �1.@M/ and the degree of
f
 on Xj remains the same for j D 1; : : : ; l . It is shown in [32] that

(2.6.1)
lX

jD1

degree.f
 /jXj � 2d:

Perhaps we need to note that degree.f
 /jXj is equal to the Culler–Shalen norm of

 2 �1.@M/ defined by the curve Xj , and the inequality (2.6.1) is given in [32] in
terms the Culler–Shalen norm.

Let Pj D PYj 2 CŒM;L� (see the definition of PZ in Section 2.5), where Yj is the
Zariski closure of ��.Xj /. Theorem 1.2(2) and [4, Proposition 6.6] together imply
that the M–degree of Pj .M;L/ is equal to 1

2
degree.f�/jXj and the L–degree of

Pj .M;L/ is equal to 1
2

degree.f�/jXj . We note at this point that although the definition
of A–polynomial in [4] is a bit different from that given in [7], when the degree of
the map ��jXj is one the factor Pj .M;L/ contributed by Xj is the same polynomial
either as defined in [7] or as defined in [4]. Since we do have that ��jXj is a degree
one map, [4, Proposition 6.6] applies.

Moreover, it follows from Theorem 1.2(3) that all factors Pj .M;L/ for j D 1; : : : ; l
are mutually distinct. Hence the M–degree and the L–degree of AK;W .M;L/ are
larger than or equal to

Pl
jD1

1
2

degree.f�/jXj and
Pl
jD1

1
2

degree.f�/jXj , respec-
tively, which are bigger than or equal to d by (2.6.1). This completes the proof of
Theorem 1.4.

2.7 A–polynomial and balanced-irreducibility

The following will be used in the proof of Theorem 1.5.

Proposition 2.7 Suppose that M is a hyperbolic knot manifold which is the exterior
of a knot K in a homology 3–sphere W . Assume that the two discrete faithful
characters are in the same C–component of the PSL2.C/–character variety X.M/ and
X irr.M/DX rg.M/. Then the nonabelian A–polynomial yAK;W .M;L/ is nonconstant,
does not contain any M–factor or L–factor, and is balanced-irreducible in ZŒM2;L�.

Here an M–factor (resp. L–factor) means a nonconstant element of ZŒM� (resp. ZŒL�).

Proof Let Y be the Zariski closure of ��.X rg/ in X.@M/. Since X is Q–irreducible,
it follows from Theorem 1.1 that Y is Q–irreducible. Therefore PY is balanced-
irreducible in ZŒM2;L� (see Section 2.5). When X irr.M/DX rg.M/, PY is the whole
yAK;W .M;L/. Hence yAK;W .M;L/ is balanced-irreducible in ZŒM2;L�.
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Let X1; : : : ; Xl be the C–components of X rg.M/. As pointed out in the proof of
Theorem 1.4, for j D 1; : : : ; l both the M–degree and the L–degree of PXj .M;L/

are positive. As PXj is balanced-irreducible, it follows that PXj cannot contain any
M–factor or L–factor. In particular, PXj .M;L/¤ L� 1. Hence X rg.M/ contributes
the factor yAK;W .M;L/D AK;W .M;L/=.L� 1/ which is nonconstant and does not
contain any M–factor or L–factor.

Remark 2.8 The above proof, combined with Theorem 2.4, actually yields the follow-
ing stronger statement: Suppose M is a hyperbolic knot manifold which is the exterior
of a knot K in a homology sphere W such that the two PSL2.C / discrete faithful
characters are contained in the same C–component of X.M/. Then yAK;W .M;L/

is balanced-irreducible in ZŒM2;L� if and only if X rg contains every C–component
of X.M ) whose image under ��W X.M/!X.@M/ is 1–dimensional.

3 Representation schemes and character schemes

3.1 Reduced and essentially reduced schemes

Concerning the proof of Theorem 1.5, we need to consider the scheme counterparts
of the SL2.C/–representation variety and character variety of a group � . Let’s first
prepare some facts about an affine scheme Spec.R/ for a ring R of the form R D

CŒx1; : : : ; xn�=I , where I is a proper ideal of CŒx1; : : : ; xn�. The ideal I admits an
irredundant primary decomposition, ie

I D

m\
jD1

Qj

for some positive integer m such that each Qj is a primary ideal and
p
Qi ¤

p
Qj

for i ¤ j . The radical Pj D
p
Qj is a prime ideal. Recall that Qj is called an isolated

component of I if Pj is minimum in the inclusion relation among P1; : : : ; Pm , and,
if Qj is not isolated, it is called an embedded component of I . The set fP1; : : : ; Pmg
is uniquely determined by I, as well as the set of all isolated components Qj of I .
We may assume that Qj for j D 1; : : : ; k are the isolated components of I .

Let V.I / � Cn be the zero locus of an ideal I � CŒx1; : : : ; xn�, which is a variety.
Note that V.I /DV.

p
I /. The coordinate ring CŒV � of V DV.I / is given by CŒV �D

CŒx1; : : : ; xn�=
p
I , which is also equal to the quotient ring of RDCŒx1; : : : ; xn�=I

divided by its nilradical
p
.0/, ie

CŒV �DR=
p
.0/:
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The variety V D V.I / can be naturally identified with the set of closed points of
the scheme Spec.R/. The zero loci Vj D V.Qj / D V.Pj / for j D 1; : : : ; k are all
irreducible C–components of V . Let Rj DCŒx1; : : : ; xn�=Qj for j D 1; : : : ; k . Then
Spec.Rj /, for each j D 1; : : : ; k , is an irreducible component of Spec.R/, called the
component corresponding to Vj .

Recall that a ring is called reduced if it does not contain any nonzero nilpotent elements.
For the ring R above, it is reduced if and only if I D

p
I . Similarly, the ring Rj is

reduced if and only if Qj D
p
Qj D Pj (or equivalently Rj is an integral domain). If

all Rj for j D 1; : : : ; k are reduced (ie Qj D Pj for all isolated components of I ),
we call the ring R essentially reduced. Correspondingly, we call an affine scheme
Spec.R/ reduced if its defining ring R is reduced, and call it essentially reduced if
each irreducible component Spec.Rj / of Spec.R/ is reduced.

Let m 2 Spec.R/ be a closed point, which we shall also identify with a maximal ideal
of R as well as with a point in V . Let Tm.Spec.R// denote the Zariski tangent space
of the scheme Spec.R/ at the point m and let Rm be the localization of R at the
maximal ideal m. Note that Rm is a local ring and is the stalk of the scheme Spec.R/
at the point m. If the dimension of Tm.Spec.R// is equal to the (Krull) dimension of
the local ring Rm , then m is a smooth point of the scheme Spec.R/ (called a regular
point or a simple point in some textbooks), and the following conclusions follow:
m is contained in a unique irreducible component of Spec.R/, say Spec.Rj /, and
Rm D .Rj /m is an integral domain, which implies that Rj is an integral domain and
thus Rj is reduced and Qj D Pj (see eg [27; 33; 34]). We summarize this discussion
in the following lemma, in a form that is more convenient for us to apply.

Lemma 3.1 Let R D CŒx1; : : : ; xn�=I for a proper ideal I . Let m 2 Spec.R/ be a
closed point and let Vj be an irreducible component of the variety V D V.I / which
contains m. Suppose that dimTm.Spec.R//D dimVj; then m is a smooth point of the
scheme Spec.R/, Vj is the unique irreducible component of V which contains m, and
the isolated component Qj of I which defines Vj is a prime ideal.

Proof Let Qj be the isolated component of I which defines Vj and let Rj D
CŒx1; : : : ; xn�=Qj . Then m 2 Spec.Rj /� Spec.R/. As we always have

dimTm.Spec.R//� dimRm D dim.Rj /m D dimRj D dimRj =
p
.0/D dimVj ;

the assumption dimTm.Spec.R//D dimVj implies dimTm.Spec.R//D dimRm and
thus all the conclusions follow from the discussion preceding the lemma.

Remark 3.2 Recall that every element �2Aut.C/ induces an action on CŒx1; : : : ; xn�.
If in the above lemma the ideal I is defined over Q, then every element � 2 Aut.C/
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will keep I invariant, sending isolated components of I to isolated components, and
sending scheme reduced components Qj (ie Qj D

p
Qj is prime) of I to scheme

reduced components. Hence the Aut.C/–orbit of a scheme reduced isolated component
of I is a set of scheme reduced isolated components of I whose intersection is an
ideal defined over Q.

3.2 Character scheme

Given a finitely presented group � , let A.�/ be the universal SL2.C/–representation
ring of � , which is a finitely generated C–algebra (as given by [26, Proposition 1.2],
replacing GLn there by SL2 and k there by C ). The SL2.C/–representation scheme
R.�/ of � is defined to be the scheme Spec.A.�//, ie R.�/D Spec.A.�//. The set
of closed points of R.�/ can be identified with the SL2.C/–representation variety
R.�/ of � . The coordinate ring CŒR.�/� of R.�/ can be obtained as the quotient of
A.�/ by its nilradical

p
.0/, ie

CŒR.�/�D A.�/=
p
.0/:

Induced by the matrix conjugation, the group SL2.C/ acts naturally on A.�/. Let

B.�/D A.�/SL2.C/

be the subring of invariant elements of A.�/ under this action, which is finitely
generated as a C–algebra (by the Hilbert–Nagata theorem [10]). Then B.�/ is called
the universal SL2.C/ character ring of � and the scheme

X.�/ WD Spec.B.�//

is called the SL2.C/ character scheme of � . The set of closed points of X.�/ can be
identified with the character variety X.�/ of � and the coordinate ring CŒX.�/� of
X.�/ is B.�/ divided by its zero radical, ie

CŒX.�/�DB.�/=
p
.0/:

Let � 2 R.�/ D Spec.A.�// be a closed point. Then �W � ! SL2.C/, identi-
fied as a point in R.�/, is an SL2.C/ representation of � . Similarly, the char-
acter �� 2 X.�/ of � 2 R.�/ shall also be considered as a closed point in the
character scheme X.�/ D Spec.B.�//. Let sl2.C/ be the Lie algebra of SL2.C/,
AdW SL2.C/! Aut.sl2.C// the adjoint representation, and sl2.C/� the � –module
sl2.C/ given by Ad ı �W �! Aut.sl2.C//. Then a fundamental observation made in
[38] states that the space of group 1–cocycles Z1.�; sl2.C/�/ of � with coefficients in
sl2.C/� is naturally isomorphic to the Zariski tangent space T�.R.�// of the scheme
R.�/ at the point � , and, when � is an irreducible representation and is a smooth
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point of R.�/, the group 1–cohomology H 1.�; sl2.C/�/ is isomorphic to the Zariski
tangent space T��.X.�// of the scheme X.�/ at the point �� (see [26, Lemma 2.18]).

For a compact manifold W we use A.W /, B.W /, R.W / and X.W / to denote
A.�1.W //, B.�1.W //, R.�1.W // and X.�1.W //, respectively. When M is a
hyperbolic knot manifold, let Xrg.M/� X.M/D Spec.B.M// be the counterpart of
X rg.M/ � X.M/, that is, Xrg.M/ is the union of the components of X.M/ corre-
sponding to the C–components of X rg.M/.

Proposition 3.3 Let M be a hyperbolic knot manifold. Then Xrg.M/ is essentially
reduced.

Proof Let �� be the character of a discrete faithful representation of �1.M/ and
let X1 be a C–component of X.M/ containing �� . It is known that dimX1 D 1 [8,
Proposition 1.1.1]. It is also known that dimH 1.�1.M/; sl2.C/�/ D 1 (see [28]).
Since � is an irreducible representation, the 1–coboundary B1.�1.M/; sl2.C/�/
is 3–dimensional and thus the dimension of Z1.�1.M/; sl2.C/�/ is 4, which is
equal to the dimension of the C–component R1 of R.M/ which maps onto X1
under the canonical surjective regular map trW R.M/ ! X.M/. That is, we have
dimT�.R.M//D dimZ1.�1.M/; sl2.C/�/D dimR1 , which means, by Lemma 3.1,
that � is a smooth point of the scheme R.M/. In turn we have dimT��.X.M// D

dimH 1.�1.M/; sl2.C/�/D dimX1 , which means, by Lemma 3.1 again, that �� is
a smooth point of the scheme X.M/, that �� is contained in a unique irreducible
component X1 of X.M/, which is the scheme counterpart of the component X1 , and
that X1 is reduced. By Remark 3.2, the Aut.C/–orbit of X1 consists of reduced
components. As Xrg.M/ consists of such orbits, each of its components is reduced.

If M is the exterior of a knot in S3, its set of abelian representations forms a unique
component R0 of R.M/ and dimR0 D 3. In fact R0 is isomorphic, as a variety,
to SL2.C/. The image X0 of R0 in X.M/ under the quotient map tr is a component
of X.M/ and dimX0D 1. The proof of the following proposition is due to Joan Porti:

Proposition 3.4 Let M be the exterior of a knot in a homology 3–sphere and let
X0 be the unique irreducible component of X.M/ corresponding to X0 . Then X0 is
reduced.

Proof The meridian element � generates the first homology of H1.M IZ/DZ. Thus
an abelian representation � of �1.M/ is determined by the matrix �.�/. Now take a
diagonal representation � of �1.M/ and assume that

�.�/D

�
M 0

0 M�1

�
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is such that M ¤ ˙1 and M2 is not a root of the Alexander polynomial of K . As
dimX0 D 1, we just need to show, by Lemma 3.1, that for the diagonal representation
� given above we have dimT��.X.M//D 1.

The proof of [18, Lemma 4.8] shows that H 1.�1.M/; sl2.C/�/DH 1.�1.M/;C0/,
where C0DC

�
1
0

0
�1

�
is a trivial �1.M/–module. Hence dimH 1.�1.M/;sl2.C/�/D1.

For � , the given diagonal representation, B1.�1.M/; sl2.C/�/ is 2–dimensional.
Hence we have dimZ1.�1.M/; sl2.C/�/D 3, which implies that the representation
� is a smooth point of R.M/ since the component R0 D tr�1.X0/ is of dimension 3.

Now, by [35, Theorem 53(3)], we have

dimT��.X.M//D dimT0.H
1.�1.M/; sl2.C/�/==S�/;

where S� is, in our current case, the group of diagonal matrices and it acts on
H 1.�1.M/; sl2.C/�/ in this case trivially (as the cohomology H 1.�1.M/; sl2.C/�/D
H 1.�1.M/;C0/ is realized by cocycles taking values in diagonal matrices). Thus
dimT0.H

1.�1.M/; sl2.C/�/==S�/D dimH 1.�1.M/;C0/D 1.

Combining Propositions 3.3 and 3.4, we have:

Corollary 3.5 Let M be the exterior of a hyperbolic knot in a homology 3–sphere
such that X irr.M/DX rg.M/. Then X.M/ is essentially reduced.

4 Proof of Theorem 1.5: a reduction

In this section we briefly review some background material and give an outline of the
approach taken in [25], from which we can specify the issues that we need to deal
with in order to extend [25, Theorem 1] to our current theorem; that is, we reduce
Theorem 1.5 to Proposition 4.1.

4.1 Recurrence polynomial

For a knot K in S3, let JK;n.t/ 2 ZŒt˙1� be the n–colored Jones polynomial of K
with the zero framing, which is the sl2–quantum invariant of the knot colored by
the n–dimensional representations [30]. We use the normalization such that, for the
unknot U ,

JU;n.t/D
t2n� t�2n

t2� t�2
:

By defining JK;�n.t/ WD �JK;n.t/ and JK;0 D 0, one may treat JK;n.t/ as a discrete
function

JK;�.t/W Z! ZŒt˙1�:
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The quantum torus

T DCŒt˙1�hM˙1;L˙1i=.LM� t2ML/

acts on the set of all functions f W Z!CŒt˙1� by

Mf WD t2nf; .Lf /.t/ WD f .nC 1/:

Now the set
AK WD f˛ 2 T j ˛JK;n.t/D 0g;

is obviously a left ideal of T , called the recurrence ideal of K . By [17], AK is not
the zero ideal for every knot K in S3. The ring T can be extended to a principal left
ideal domain �T by adding inverses of all polynomials in t and M. The extended left
ideal zAK WD �T AK is then generated by a single nonzero polynomial in �T , which can
be chosen to be of the form

˛K.t;M;L/D

mX
iD0

ai .t;M/Li ;

with smallest total degrees in t , M and L and with a0.t;M/; : : : ; am.t;M/2ZŒt;M�

being coprime in ZŒt;M�. The polynomial ˛K.t;M;L/ is uniquely determined up
to a sign and is called the recurrence polynomial of K . When the framing of K
is 0, JK;n.t/ 2 t2n�2ZŒt˙4� (see eg [22], with our t equal to q1=4 there). From
here, it is not difficult to show that ˛K.t;M;L/ has only even powers in t and even
powers in M, ie ai .t;M/ 2 ZŒt2;M2� (see [24, Proposition 5.6]). It follows that
˛K.1;M;L/D ˛K.�1;M;L/.

Now the AJ conjecture asserts that ˛K.˙1;M;L/ is equal to the A–polynomial of K
for every knot K in S3, up to a factor of a polynomial in M; see [15] and also [14;
24; 23; 25].

4.2 Kauffman bracket skein module

For an oriented 3–manifold W , we let S.W / denote the Kauffman bracket skein
module of W over CŒt˙1�, which is the quotient module of the free CŒt˙1�–module
generated by the set of isotopy classes of framed links in W modulo the well-known
Kauffman skein relations; see eg [29; 23; 25]. A fundamental fact is that when S.W /
is specialized at t D �1 (which we denote by s.W /, ie s.W / D S.W /=.t C 1/), it
acquires a ring structure and is naturally isomorphic as a ring to the universal character
ring of �1.W /, ie

s.W /DB.W /:
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So s.W /=
p
.0/ is isomorphic to the coordinate ring of X.W / (see [5; 29]). For the

exterior M of a knot K in S3, we shall simply write S for S.M/ and s for s.M/.

If F is an oriented surface, we define S.F / WD S.F � Œ0; 1�/. Then S.F / has a natural
algebra structure, where the product of two framed links L1 and L2 is obtained by
placing L1 atop L2 . For a torus T 2 , we can identify S.T 2/, as a CŒt˙1�–algebra,
with

T � WD ff 2 T j �.f /D f g;

where � W T !T is the involution defined by �.M/DM�1 and �.L/DL�1 (see [13]).

If M is the exterior of knot K in S3, there is a natural map

(4.2.1) ‚W S.@M/D T � ! S D S.M/

induced by the inclusion @M ,!M . Then P WDker.‚/ is called the quantum peripheral
ideal of K and, by [14; 16], P �AK (see also [25, Corollary 1.2]).

4.3 Dual construction of the A–polynomial

On the other hand, there is a dual construction of the A–polynomial of a knot K
in S3. Let t WD CŒM˙1;L˙1�, which is the function ring of .C�/2 , and let t� WD
ff 2 t j �.f / D f g, which is the function ring of X.@M/. The restriction map
��W X.M/!X.@M/ induces a ring homomorphism between coordinate rings

(4.3.1) � W CŒX.@M/�D t� !CŒX.M/�:

Let p WD ker.�/, which is called the classical peripheral ideal of the knot K . Now
extend t naturally to the principal ideal domain Qt WDC.M/ŒL˙1�, where C.M/ is the
fractional field of CŒM�. Then the extended ideal zp WD Qtp of p in Qt is generated by a
single polynomial, which can be normalized to be of the form

BK.M;L/D

mX
iD0

bi .M/Li ;

with smallest total degree and with b0.M/; : : : ; bm.M/ 2 ZŒM� coprime in ZŒM�.
So BK.M;L/ is uniquely defined up to a sign. The polynomial BK.M;L/ is called
the B –polynomial of K and is equal to the A–polynomial AK.M;L/ divided by its
M–factor (see [25, Corollary 2.3]).

Note that the universal character ring of @M is reduced, so s.@M/ D CŒ@M� D t�.
Specializing (4.2.1) at t D�1, we get

(4.3.2) � W t� ! sD s.M/;

in which the map � is the same one given in (4.3.1).
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4.4 Localized skein module and reduction of Theorem 1.5

Note that the inclusion map @M �M also induces a left S.@M/DT � –module structure
on S D S.M/. Let D WDCŒt˙1;M˙1� and D� WD ff 2D j �.f /D f g, where � is
the involution defined by �.M/DM�1 and D the localization of D at .1C t /, ie

D WD ff=g j f; g 2D; g … .1C t /Dg:

Then we may consider S , as well as T �, as left D� –modules as D� is contained
in T �. Now let

.T
x‚
�!S/ WD .T � ‚

�!S/˝D� D; .t
x�
�! s/ WD .t�

�
�! s/˝CŒM˙1�� C.M/:

We shall consider S as a left D–module and call it the localized skein module of M .
The commutative diagram

T
x‚ - S

t

�
? x� - s

�
?

is obtained in [25, Lemma 3.2], where the vertical maps are the natural projections
M!M=.t C 1/ for MD T and MD S . We claim that the proof of Theorem 1.5
can be reduced to the proof of the following proposition:

Proposition 4.1 Let M be the exterior of a hyperbolic knot in S3. If X rg.M/ D

X irr.M/ (or, equivalently, X rg.M/DX irr.M/) and the two discrete faithful characters
of X.M/ lie in the same component of X.M/, then

(1) the ring s is reduced, and

(2) the map x� is surjective.

Assuming Proposition 4.1, we may finish the proof of Theorem 1.5 as follows. By
Theorem 1.5(1), we have Proposition 4.1. Combining Proposition 4.1 with Theorem
1.5(3), we may apply [25, Corollary 3.6] to obtain

˛K.�1;M;L/jBK.M;L/ 2 ZŒM2;L�:

Theorem 1.5(1) and Proposition 2.7 together imply AK.M;L/D .L�1/ yAK.M;L/D

BK.M;L/ and yAK.M;L/ are balanced-irreducible in ZŒM2;L�. It’s known that
L� 1 is a factor of ˛K.�1;M;L/ [23, Proposition 2.3]. By Theorem 1.5(2) and [25,
Lemma 3.9] we know that the L–degree of ˛K.�1;M;L/ is greater than or equal
to 2. As ˛K.�1;M;L/ is also balanced (see the lemma below) and its coefficients are
all integers, the polynomial y̨K.�1;M;L/ WD ˛K.�1;M;L/=.L�1/ is also balanced,
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belongs to ZŒM2;L� and has L–degree � 1. Since y̨K.�1;M;L/ divides yAK.M;L/,
which is balanced-irreducible in ZŒM2;L�, the two polynomials must be equal (up to
sign). Hence ˛K.�1;M;L/D AK.M;L/ (up to sign).

Lemma 4.2 Let ˛K.t;M;L/ be the normalized recurrence polynomial of a knot K
in S3. Then ˛K.�1;M;L/ is a balanced polynomial.

Proof By [16, Theorem 1.4], the recurrence (left) ideal AK of K is invariant under
the involution � of the quantum torus T defined by �.M/DM�1 and �.L/D L�1.
Hence �.˛K.t;M;L// D ˛K.t;M

�1;L�1/ is contained in AK . Suppose the L–
degree of ˛K.t;M;L/ is m. Then, using the relation LMD t2ML, one can easily
see that there is a monomial t2aMbLm , for some integers a and b with b � 0,
such that t2aMbLm˛K.t;M

�1;L�1/ is contained in ZŒt;M;L� of L–degree m
with relatively prime coefficients with respect to the variable L. It follows that
t2aMbLm˛K.t;M

�1;L�1/ is also a generator of zAK and, by the unique normalized
form of such generator, we have

t2aMbLm˛K.t;M
�1;L�1/D ˛K.t;M;L/

up to sign. Hence MbLm˛K.�1;M
�1;L�1/ D ˛K.�1;M;L/ up to sign, that is,

˛K.�1;M;L/ is balanced.

5 Proof of Proposition 4.1

Under the assumptions of Proposition 4.1, we know, by Corollary 3.5, that the character
scheme X.M/ is essentially reduced, ie the universal character ring B.M/ is essentially
reduced. We may assume that

B.M/DCŒx1; : : : ; xn�=I;

where I is an ideal in CŒx1; : : : ; xn�. We may also assume that the ideal I has an
irredundant primary decomposition

I D

m\
jD0

Qj

such that Q0 , Q1; : : : ;Qk are the isolated components of I and QkC1; : : : ;Qm are
embedded components, with Q0 defining the abelian component X0 of X.M/ and
Q1; : : : ;Qk defining the components X1; : : : ; Xk of X rg.M/, respectively. We have
that Q0 , Q1; : : : ;Qk are prime ideals. As X0 , X1; : : : ; Xk are all 1–dimensional,
the zero locus of each Qj for j D k C 1; : : : ; m is a point, and thus

p
Qj D Pj
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is a maximal ideal, ie for some point .a1; : : : ; an/ in X0 [X1 [ � � � [Xk , we have
Pj D .x1� a1; : : : ; xn� an/.

Let Rn DCŒx1; : : : ; xn�. Then B.M/DRn=I . We may assume that the coordinate
x D x1 in B.M/DCŒx1; : : : ; xn�=I represents the function xW X.M/!C given by
x.��/D trace.�.�//, where � is a meridian of �1.M/. Let S D CŒx� n f0g, which
is a multiplicative subset of CŒx�. If M is a CŒx�–module, let S�1M denote the
localization of M with respect to S . Note that every ideal J in Rn is a CŒx�–module
and so is Rn=J .

Lemma 5.1 For j > k we have

S�1Qj D S
�1Rn:

Proof For j > k , the ideal Pj D .x1 � a1; : : : ; xn � an/ is maximal. Since Qj is
primary and

p
Qj D Pj , we have P dj �Qj for some integer d > 0. It follows that

.x�a1/
d 2Qj . Since .x�a1/d 2S , we have 12S�1Qj . Hence S�1Qj DS�1Rn .

Hence S�1I D
Tm
jD0 S

�1Qj D
Tk
jD0 S

�1Qj . As Qj for j � k is prime, S�1I DTk
jD0 S

�1Qj is a prime decomposition of the ideal S�1I in S�1Rn . Therefore
S�1.Rn=I /D S

�1Rn=S
�1I is a reduced ring. By definition,

S�1.Rn=I /DB.M/˝CŒx�C.x/D s˝CŒx�C.x/D s˝CŒMCM�1�C.MCM�1/:

Taking the tensor product of this with C.M/, we have

.s˝CŒx�C.x//˝C.x/C.M/D s˝CŒM˙1�� C.M/D s;

which is still reduced. This proves Proposition 4.1(1).

From the above proof, we also get

s˝CŒx�C.x/DCŒX.M/�˝CŒx�C.x/

because CŒX.M/�DRn=I
0 with I 0D

Tk
jD0Qj and S�1I D S�1I 0 . The restriction

of the function x on X1 is nonconstant and thus is nonconstant on Xj for each
j D 1; : : : ; k . It is easy to see that x is also nonconstant on X0 . Hence a similar proof
as that of [25, Lemma 3.8] shows that

CŒX.M/�˝CŒx�C.x/D
kY

jD0

CŒXj �˝CŒx�C.x/:

Note that CŒXj �˝CŒx�C.x/ is isomorphic to the field of rational functions on Xj for
each j D 0; 1 : : : ; k (by [25, Lemma 3.7]).
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Recall that ��W X.M/!X.@M/ is the restriction map which induces the ring homomor-
phism � W CŒX.@M/�!CŒX.M/�. Also recall that Yj is the Zariski closure of ��.Xj /
in X.@M/ for j D 0; 1; : : : ; k . As x is nonconstant on each Yj , CŒYj �˝CŒx� C.x/
is isomorphic to the field of rational functions on Yj for each j D 0; 1 : : : ; k . By
Theorem 1.2, ��W Xj ! Yj is a birational map for each j D 1; : : : ; k . When j D 0,
��W X0! Y0 is also a birational map, which is an elementary fact. Hence the map ��

induces an isomorphism

CŒYj �˝CŒx�C.x/!CŒXj �˝CŒx�C.x/

for each j D 0; 1; : : : ; k . As Yj for j D 0; 1; : : : ; k are distinct curves in X.@M/ by
Theorem 1.2, �� induces the isomorphism

kY
jD0

CŒYj �˝CŒx�C.x/!
kY

jD0

CŒXj �˝CŒx�C.x/DCŒX.M/�˝CŒx�C.x/;

which implies that the map

CŒX.@M/�˝CŒx�C.x/!CŒX.M/�˝CŒx�C.x/

induced by �� is surjective since Y0[Y1[ � � � [Yk is a subvariety of X.@M/. Taking
the tensor product of this map with C.M/ over C.x/ and noting that CŒX.@M/�D t�

and CŒX.M/�˝CŒx�C.x/D s˝CŒx�C.x/, we get the map

(5.0.1) t� ˝CŒM˙1�� C.M/! s˝CŒM˙1�� C.M/;

which is still surjective. Now one can check that (5.0.1) is precisely the map

x� W t! s:

Proposition 4.1(2) is proved.

6 Proof of Theorems 1.6 and 1.10

Let M be the exterior of a hyperbolic 2–bridge knot in S3. We call a character
x��2X.M/ (resp. ��2X.M/) dihedral if it is the character of a dihedral representation,
ie a representation whose image is a dihedral group (resp. a binary dihedral group). It
was shown in [36, Section 5.3] (see also [1, Appendix A]) that any dihedral character
of X.M/ (and of X.M/) is a smooth point and thus is contained in a unique C–
component of X.M/ (resp. X.M/). It was also shown in [36, Section 5.3] that every
C–component of X irr.M/ contains a dihedral character.

Since a dihedral character of X irr.M/ is real-valued, it is a fixed point of the � –
action (the complex conjugation action given in Section 2.1). It follows that every
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C–component of X irr.M/ is invariant under the � –action. Hence, in particular, the
two discrete faithful characters of X.M/ are contained in the same C–component
of X.M/. Thus Theorem 1.6(1) is proved.

By [2, Lemma 5.5(3)], any dihedral character in X.M/ is a fixed point of the �–action
(recall its definition in Section 2.4). It follows that every C–component of X irr.M/ is
invariant under the �–action, as well as the � –action, which implies that all the four
discrete faithful characters of X.M/ are contained in the same C–component of X.M/,
say X1 . Therefore X rg.M/ is the Aut.C/–orbit of X1 and thus is Q–irreducible.
This proves Theorem 1.6(2).

Now we proceed to prove Theorem 1.10. Let K D b.p; q/ be a nontrivial 2–bridge
knot and M the knot exterior of K . If K is not hyperbolic, then it is a torus knot and
its A–polynomial is yAK.M;L/D LM2p C 1, and Theorem 1.10 clearly holds. We
will assume now that K D b.p; q/ is hyperbolic.

It was proved in [36] that X irr.M/ is positive-dimensional (which actually holds for
any nontrivial knot) and every C–component X0 in X irr.M/ is 1–dimensional and on
X0 the function f� is nonconstant (due to the fact that every 2–bridge knot is a small
knot and its meridian slope is not a boundary slope). Thus the restriction of X0 to the
boundary torus is 1–dimensional and thus contributes a balanced-irreducible factor
P0.M;L/ of AK.M;L/. We may assume that this factor is not L�1, since yAK.M;L/

does not have this factor. Therefore we may assume that f� is also nonconstant on X0 .
Indeed, as recalled above, X0 contains a dihedral character ��0 and, since any dihedral
representation �0 has to send � to the identity matrix, we have f�.��0/D 0, which
implies that if f� were constant on X0 it would be constantly zero on X0 and X0
would contribute the factor L� 1 to AK.M;L/.

Furthermore, it was shown in [36] that, over X0 ,

(6.0.1) degree.f�2/jX0D2 degree.f�/jX0
Ddegree.f�/jX0C 2 � number of dihedral characters in X0;

due to these facts: every zero point of f� is a zero point of f�2 , each of f� and f�2
blows up at an ideal point of X0 , a point of X0 is a zero point of f�2 but is not a point
of f� if and only if it is a dihedral character, and the zero degree of f�2 at a dihedral
character in X0 is 2. As any dihedral character in X0 is also a zero point of f� of
zero degree 2 (since f� is assumed nonconstant on X0 ) and every zero point of f� is
a zero point of f� , it follows that

(6.0.2) degree.f�/jX0 � degree.f�2/jX0 D 2 degree.f�/jX0 :

It also follows from (6.0.1) that
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(6.0.3) degree.f�/jX0 D 2 � number of dihedral characters in X0 :

On the other hand, the argument of [4, Proposition 6.6] can be adapted to show that

(6.0.4)
degree.f�/jX0 D 2d �L–degree of P0.M;L/;

degree.f�/jX0 D 2d �M–degree of P0.M;L/;

where d is the degree of the boundary map �� restricted on X0 . Combining (6.0.2)
and (6.0.4) we get

M–degree of P0.M;L/ � 2L–degree of P0.M;L/:

As the M–degree (resp. the L–degree) of yAK.M;L/ is the sum of the M–degrees (resp.
the L–degrees) of the balanced irreducible factors of yAK.M;L/, Theorem 1.10(1)
follows.

Now assume that the given hyperbolic 2–bridge knot b.p; q/ has p prime. As recalled
in Section 1, the Riley polynomial of the knot is Q–irreducible, ie X irr.M/ is Q–
irreducible. As the knot is assumed to be hyperbolic, we have X irr.M/ D X rg.M/,
which we assume to have k C–components X1; : : : ; Xk . By Theorems 1.2 and 1.6, the
boundary restriction map �� has degree one on each of X1; : : : ; Xk and the images of
X1; : : : ; Xk under �� are distinct curves in X.@M/, which implies that X1; : : : ; Xk con-
tribute k distinct balanced-irreducible factors P1.M;L/; : : : ; Pk.M;L/ to yAK.M;L/

and
yAK.M;L/D P1.M;L/ � � �Pk.M;L/:

As mentioned in the proof of Theorem 1.4, for each nontrivial element 
 2 �1.@M/,
f
 is nonconstant on each Xj for j D1; : : : ; k . Hence, by (6.0.3) and (6.0.4), replacing
X0 there by Xj for j D 1; : : : ; k , we have

L–degree of yAK.M;L/D

kX
jD1

L–degree of Pj .M;L/

D
1

2

kX
jD1

degree.f�/jXj

D

kX
jD1

number of dihedral characters in Xj

D number of dihedral characters in X.M/:

On the other hand, the number of dihedral characters in X.M/ (for any 2–bridge knot
b.p; q/) is precisely 1

2
.p� 1/ [21, Theorem 10]. Theorem 1.10(2) is proved.
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