The number of strings on essential tangle decompositions of a knot can be unbounded

JoÃo MiguEl Nogueira

We construct an infinite collection of knots with the property that any knot in this family has n-string essential tangle decompositions for arbitrarily high n.

57M25, 57N10

1 Introduction

An n-string tangle (B, \mathcal{T}) is a ball B together with collection of n disjoint arcs \mathcal{T} properly embedded in B, for $n \in \mathbb{N}$. We say that (B, \mathcal{T}) is essential if n is 1 and its arc is knotted, ${ }^{1}$ or if n is bigger than 1 and there is no properly embedded disk in B disjoint from \mathcal{T} and separating the components of \mathcal{T} in B. Otherwise, we say that the tangle is inessential. (See Figure 1 for examples.)

Figure 1: Examples of essential tangles (left and middle), and an inessential tangle (right)

Let K be a knot in S^{3} and S a 2 -sphere in general position with K. Each ball bounded by S in S^{3} intersects K in the same number n of arcs. So these balls together with the arcs of intersection with K are n-string tangles. In this case, we say that S defines a n-string tangle decomposition of K, and if both tangles are essential we say that the tangle decomposition of K defined by S is essential. A knot is composite if and only if it has a 1 -string essential tangle decomposition; otherwise

[^0]the knot is prime. Note also that S defines an essential tangle decomposition for K if and only if the intersection of S with the exterior of $K, E(K),{ }^{2}$ is an essential surface in $E(K)$; see Definition 3.

A tangle decomposition of a knot is natural and has been relevant for knot theory and its applications. The concept of a "tangle" was first used in the work of Conway [3], where he defines and classifies (2-string) rational tangles and uses it as an instrument to list knots. The concept of an essential tangle was first used in [8], where Kirby and Lickorish prove that any knot is concordant to a prime knot. They actually define prime tangle, that is an essential tangle with no local knots. ${ }^{3}$ Another example is the work of Lickorish in [9], where he proves, for instance, that if a knot has a 2 -string prime tangle decomposition, then the knot is prime. Tangles are also used in applied mathematics to study the DNA topology. The paper [2] by Buck surveys the subject concisely and also explains how tangles are useful to the study of the topological properties of DNA, an application pioneered by Ernst and Sumners in [5].

This paper addresses the question of if the number of strings on essential tangle decompositions of a fixed knot is bounded. There are results showing some evidence for this to be true. For instance, knots with no closed essential surfaces (see Culler, Gordon, Luecke and Shalen [4]), tunnel number one knots (see Gordon and Reid [6]) and free genus-one knots (see Matsuda and Ozawa [10]) have no essential tangle decompositions. There also are knots with a unique essential tangle decomposition; see Ozama [12]. Furthermore, in Proposition 2.1 of [11], Mizuma and Tsutsumi proved that, for a given knot, the number of strings in essential tangle decompositions, without parallel strings, ${ }^{4}$ is bounded. The proof of this result allows a more general statement. That is, the number of strings that are not parallel to other strings in an essential tangle decomposition of a fixed knot is bounded. So, from this flow of results and intuition on essential tangle decompositions, the following theorem and its corollary are surprising.

Theorem 1 There is an infinite collection of prime knots such that, for all $n \geq 2$, each knot has a n-string essential tangle decomposition.

Corollary 2 There is an infinite collection of knots such that, for all $n \geq 1$, each knot has a n-string essential tangle decomposition.

[^1]Essential surfaces are very important in the study of 3-manifold topology. And as observed above, to each n-string essential tangle decomposition of a knot corresponds a meridional essential surface in the exterior of the knot, with $2 n$ boundary components. Therefore, from the results in this paper, there are knots with meridional planar essential surfaces in their exteriors with all possible numbers of boundary components. Furthermore, from Lemma 1.2 in Bleiler [1], the double cover of S^{3} along these knots contains genus- g closed incompressible surfaces, meeting the fixed point set of the covering action in $2(g+1)$ points, and separating the double cover in irreducible and ∂-irreducible components, for all $g \geq 1$.
The reference used for standard definitions and results of knot theory is Rolfsen's book [13], and throughout this paper we work in the piecewise-linear category.
In Section 2, we show the existence of handlebody-knots (see Definition 4) with incompressible planar surfaces in their exteriors with b boundary components for all $b \geq 2$. In Section 3, we use these handlebody-knots to prove Theorem 1 and its corollary. The main techniques used are standard in 3-manifold topology. Throughout the paper, the number of connected components of a topological space X is denoted by $|X|$.

2 Meridional incompressible planar surfaces in handlebody-knots complements

To prove Theorem 1, we use the correspondence between n-string essential tangle decompositions of a knot and meridional planar essential surfaces in the knot exterior. We start by defining these surfaces.

Definition 3 A planar surface is a surface obtained from a 2 -sphere by removing the interior of a finite number of disks.

Let H be a handlebody embedded in S^{3}.
A surface P properly embedded in $E(H)=S^{3}-$ int H is meridional if each boundary component of P bounds a disk in H.
An embedded disk D in $E(H)$ is a compressing disk for P if $D \cap P=\partial D$ and ∂D does not bound a disk in P. We say that P is incompressible if there is no compressing disk for P in $E(H)$.
An embedded disk D in $E(H)$ is a boundary compressing disk for P if $\partial D \cap P=\alpha$, with α a connected arc not cutting a disk from P, and $\partial D-\alpha=\beta$ a connected arc in ∂H. We say that P is boundary incompressible if there is no boundary compressing disk for P in $E(H)$.

The surface P is essential if it is incompressible and boundary incompressible.

In this section, we present handlebody-knots whose exteriors contain meridional incompressible planar surfaces with n boundary components for any $n \geq 2$. This embedding will later be used in the proof of Theorem 1. We consider next the definition of handlebody-knot.

Definition 4 A handlebody-knot of genus g in S^{3} is an embedded handlebody of genus g in S^{3}. A spine γ of a handlebody-knot Γ is an embedded graph in S^{3} with Γ as a regular neighborhood.

Let Γ be the genus-two handlebody-knot 4_{1} from the list of [7], with spine γ, as in Figure 2. Consider also a collection of distinct knots C_{i}, for $i \in \mathbb{N}$, and C some other nontrivial knot. We work with γ as if defined by two vertices, two loops e_{1} and e_{2} (one for each vertex), and an edge e between the two vertices.

Figure 2: The spine γ of the handlebody-knot Γ, with labels of the two loops e_{1} and e_{2}, and of the edge e

Consider two disjoint closed arcs a_{1} and a_{2} in e, as in Figure 3 (left). In this figure we also have represented an embedded 2-sphere S_{2} in S^{3} that intersects γ in e at two points, p_{1} and p_{2}, and separates the arcs a_{1} and a_{2}. Denote the ball bounded by S_{2} containing a single component of e by $B_{2,1}$ and the other by $B_{2,2}$. Denote by l_{1} and l_{2} the components of $B_{2,2} \cap \gamma$ that contain e_{1} and e_{2}, respectively, and note that l_{j} intersects S_{2} at p_{j}, for $j=1,2$.

We perform an unusual connected sum operation between γ and the knots C and C_{i} along the arcs a_{1} and a_{2}. That is, we take a ball in S^{3} intersecting γ in a_{1}, and a ball in S^{3} intersecting C_{i} at a single unknotted arc. A connected sum operation is obtained by removing both balls and gluing their boundaries through a homeomorphism in a way that the boundary points of a_{1} are mapped to the boundary points of the chosen arc in C_{i}. A similar operation is obtained from the arc a_{2} and C. From these operations

Figure 3: The arcs a_{1} and a_{2} in γ and the sphere S_{2} (left); the spines γ_{i} of the handlebody-knots Γ_{i} and the annulus A_{1} (right). Note that C_{i} and C label the pattern of the respective knots.
we get the handlebody-knots as represented schematically in Figure 3 (right), which we denote by Γ_{i} with a respective spine γ_{i}. For each handlebody-knot Γ_{i} we consider the swallow-follow torus X_{i} defined by the connected sum of C with C_{i}. A minimal JSJ-decomposition for the complement of Γ_{i} is defined by the torus X_{i}, cutting from $E\left(\Gamma_{i}\right)$ the exterior of $C_{i} \# C$, and a JSJ-decomposition of $E\left(C_{i} \# C\right)$. Also, the torus X_{i} cuts from $E\left(\Gamma_{i}\right)$ the only component obtained from the JSJ-decomposition containing the boundary of $E\left(\Gamma_{i}\right)$. Hence, from the unicity of minimal JSJ-decomposition of compact 3-manifolds, for any other minimal JSJ-decomposition of $E\left(\Gamma_{i}\right)$, the torus cutting the component with the boundary of $E\left(\Gamma_{i}\right)$ is isotopic to X_{i}. Consequently, if Γ_{i} is ambient isotopic to Γ_{j} for $i \neq j$, the torus X_{i} is isotopic to X_{j}, which means that $E\left(C_{i} \# C\right)$ is ambient isotopic to $E\left(C_{j} \# C\right)$. This is a contradiction with the torus $C_{i} \# C$ and $C_{j} \# C$ being distinct. Then, the handlebody-knots Γ_{i} are not ambient isotopic.

Both loops e_{1} and e_{2} cobound an embedded annulus in $B_{2,2}$, parallel to the component of e in $B_{2,2}$ each encircles, with interior disjoint from γ_{i} and intersecting S_{2} in the other boundary component. Consider such an annulus with a boundary component in e_{1}, denoted A_{1}, as it is illustrated in Figure 3 (right). We proceed with an isotopy of γ_{i} along A_{1}, taking l_{1} passing through S_{2}, and we obtain γ_{i} as in Figure 4 (left). We refer to this isotopy as an annulus isotopy of γ_{i}. After this isotopy we denote S_{2} by S_{3}, considering its relative position with Γ_{i}, and the respective balls it bounds by $B_{3,1}$ and $B_{3,2}$. We assume that l_{1} intersects S_{3} at p_{1}. Note that all intersections

Figure 4: The spine γ_{i} after one (left), and two (right), annulus isotopies, and the spheres S_{3} and S_{4}
of γ_{i} and S_{3} are in the arc of e between p_{1} and p_{2}. Again, we consider an embedded annulus A_{2} in $B_{3,1}$, cobounded by e_{1} and its intersection with S_{3}, parallel to the component of $e \cap B_{3,1}$ disjoint from e_{1} and in the direction of the local knot C_{i}, following its pattern. By an annulus isotopy of γ_{i} along A_{2} taking l_{1} passing through S_{3}, we obtain γ_{i} as in Figure 4 (right). After this isotopy, we denote S_{3} by S_{4}, considering its relative position with Γ_{i}, and the respective balls it bounds by $B_{4,1}$ and $B_{4,2}$. The ball $B_{4,1}$ intersects γ_{i} in two parallel arcs, and we still assume that $l_{1} \cap S_{4}$ is p_{1}. Note again that all intersections of γ_{i} and S_{4} are in the arc of e between p_{1} and p_{2}.
For a canonical position, we isotope e_{1} along the component of $e \cap B_{4,2}$, disjoint from e_{1} and e_{2}, encircling l_{2}; see Figure 5 (left). We can now continue the previous process. Consider again an annulus A_{3} in $B_{4,2}$, cobounded by e_{1} and its intersection with S_{4}, parallel to the components of $e \cap B_{4,2}$ other than l_{1}, and in the opposite direction of the local knot C. By an annulus isotopy of γ_{i} along A_{3}, taking l_{1} passing through S_{4}, we obtain γ_{i} as in Figure 5 (right). After this isotopy, we denote S_{4} by S_{5}, considering its relative position with Γ_{i}, and we denote the balls it bounds by $B_{5,1}$ and $B_{5,2}$. Again, l_{1} intersects S_{5} at p_{1}, and all intersections of S_{5} with γ_{i} are in the arc of e between p_{1} and p_{2}. For the next step, proceed with an annulus isotopy along an annulus A_{4} in $B_{5,1}$ cobounded by e_{1}, parallel to the components of $e \cap B_{5,1}$ disjoint from e_{1}, in the direction of the local knot C_{i}, following its pattern.

After $2(k-1)$ (for $k=1,2, \ldots$) annulus isotopies as the ones explained above, we get γ_{i} as in Figure 6 (left). From S_{2}, we obtain $S_{2 k}$ and the balls it bounds, $B_{2 k, 1}$ and $B_{2 k, 2}$. The ball $B_{2 k, 1}$ intersects γ_{i} in k parallel arcs with the pattern of C_{i}, and

Figure 5: The spine γ_{i} of Figure 4 (left) in a canonical position (left), and γ_{i} after another annulus isotopy (right)
the ball $B_{2 k, 2}$ intersects γ_{i} in $k-2$ parallel arcs with the pattern of C, another arc with the pattern of C encircled by l_{2}, and l_{1} that encircles all these other components. After $2 k-1$ (for $k=1,2, \ldots$) annulus isotopies, we obtain γ_{i} as in Figure 6 (right). From S_{2}, we obtain $S_{2 k+1}$ and the balls it bounds, $B_{2 k+1,1}$ and $B_{2 k+1,2}$. The ball $B_{2 k+1,1}$ intersects γ_{i} in k parallel arcs with the pattern of C_{i} and l_{1} encircling these arcs, and the ball $B_{2 k+1,2}$ intersects γ_{i} in $k-1$ parallel arcs with the pattern of C, together with another arc with the pattern of C and l_{2} which encircles this arc.

Figure 6: The spine γ_{i} after an even number (left), and an odd number (right), of annulus isotopies, and the corresponding spheres $S_{2 k}$ and $S_{2 k+1}, k \in \mathbb{N}$

Note after each isotopy we assume that l_{j} intersects S_{n}, for $n=2,3, \ldots$, in p_{j} and that all points of $S_{n} \cap \gamma_{i}$ are in the arc between p_{1} and p_{2} in e.

We denote $S^{3}-\operatorname{int} \Gamma_{i}$ by $E\left(\Gamma_{i}\right)$, and $S^{3}-\gamma_{i}$ by $E\left(\gamma_{i}\right)$. Let Q_{n}, for $n=2,3, \ldots$, be the intersection of S_{n} with $E\left(\Gamma_{i}\right)$ in S^{3}.

Lemma 5 The surface Q_{n} is incompressible in $E\left(\Gamma_{i}\right)$.
Proof As Γ_{i} is a regular neighborhood of γ_{i}, if Q_{n} is compressible in $E\left(\Gamma_{i}\right)$, then S_{n} is compressible in $E\left(\gamma_{i}\right)$. Hence it suffices to prove that S_{n} is incompressible in $E\left(\gamma_{i}\right)$.

Case 1 Suppose n is even. Then S_{n} is as in Figure 6 (left).
(i) In this case, the ball $B_{n, 1}$ intersects γ_{i} in a collection of $k=n / 2$ parallel knotted arcs. Then ($B_{n, 1}, B_{n, 1} \cap \gamma_{i}$) is an essential tangle. In fact, suppose there is a compressing disk D for S_{n} in $B_{n, 1}-\left(B_{n, 1} \cap \gamma_{i}\right)$. Then D separates the arcs $B_{n, 1} \cap \gamma_{i}$ into two collections. Let s_{1} and s_{2} be two arcs in $B_{n, 1}$ which are separated by D. As s_{1} and s_{2} are parallel, there is a disk E with boundary $s_{1} \cup s_{2}$ and two arcs, α_{1} and α_{2}, in S_{n}, each with one end in s_{1} and the other in s_{2}. Consider D and E in general position and suppose that $|D \cap E|$ is minimal. If D intersects E in simple closed curves or in arcs with both ends in α_{1} or both in α_{2}, we can reduce $|D \cap E|$ by an innermost arc type of argument, which is a contradiction. Therefore, all arcs of $D \cap E$ have one end in α_{1} and the other end in α_{2}. Hence both s_{1} and s_{2} are parallel to outermost arcs of $D \cap E$ in D, which implies that s_{1} and s_{2} are parallel to S_{n}. This is a contradiction because the arcs s_{1} and s_{2} are knotted by construction.
(ii) If $n \leq 4$, then the ball $B_{n, 2}$ intersects γ_{i} in l_{1} and l_{2}, and when $n=4$, also in an arc encircled by both l_{1} and l_{2}. In this case, if there is a compressing disk for S_{n} in $B_{n, 2}-\left(B_{n, 2} \cap \gamma_{i}\right)$ it separates a component l_{1} or l_{2} from the other components. This implies that e_{1} or e_{2} bound a disk in the complement of γ_{i}, which is a contradiction with Γ_{i} being a knotted handlebody-knot. Otherwise, suppose that $n>4$. Thus $B_{n, 2}$ intersects γ_{i} in ($n / 2$) - 2 parallel arcs with the pattern of C, another arc with the pattern of C encircled by l_{2}, and the component l_{1} that encircles the arc encircled by l_{1} and the $(n / 2)-2$ parallel arcs. With exception to l_{1} and l_{2}, all other arcs are parallel as properly embedded arcs in $B_{n, 2}$. Thus if a compressing disk for S_{n} in $B_{n, 2}-\left(B_{n, 2} \cap \gamma_{i}\right)$ separates these arcs, following an argument as in Case 1(i) we have a contradiction with these arcs being knotted. Therefore, a compressing disk for S_{n} in $B_{n, 2}-\left(B_{n, 2} \cap \gamma_{i}\right)$ separates a single component l_{1} or l_{2} from all the other components, or it separates both components l_{1} and l_{2} from the other parallel arcs. As e_{1} bounds a disk disjoint from l_{2}, in both cases e_{1} bounds a disk in the complement of γ_{i}, which is a contradiction with Γ_{i} being a knotted handlebody-knot.

Case 2 Suppose now that n is odd. Then S_{n} is as in Figure 6 (right).
(i) The ball $B_{n, 1}$ intersects γ_{i} in a collection of $(n-1) / 2$ parallel arcs and l_{1} which encircles these arcs. If there is a compressing disk D of S_{n} in $B_{n, 1}-\left(B_{n, 1} \cap \gamma_{i}\right)$ separating the parallel arcs, following an argument as in Case 1(i) we have a contradiction with these arcs being knotted. If D separates the component l_{1} from the other components, following an argument as in Case 1(ii) we have a contradiction with Γ_{i} being a knotted handlebody-knot.
(ii) If $n=3$, the ball $B_{n, 2}$ intersects γ_{i} in an arc with pattern C and l_{2} which encircles the arc. If there is a compressing disk for S_{n} in $B_{n, 2}-\left(B_{n, 2} \cap \gamma_{i}\right)$ in this case, then it separates the component l_{2} from the arc with pattern C. From the same argument used in Case 1(ii), we have a contradiction with Γ_{i} being a knotted handlebody-knot. If $n>3$, then the ball $B_{n, 2}$ intersects γ_{i} in $(n-1) / 2$ parallel arcs and l_{2} which encircles one of the previous arcs. Without considering l_{2}, if a compressing disk for S_{n} in $B_{n, 2}-\left(B_{n, 2} \cap \gamma_{i}\right)$ separates the parallel arcs, then following an argument as in Case 1(i) we have a contradiction with the arcs being knotted. If S_{n} has a compressing disk in $B_{n, 2}-\left(B_{n, 2} \cap \gamma_{i}\right)$, then this disk isolates the component l_{2} from the other components, and following the argument as in Case 1(ii) we have a contradiction with Γ_{i} being a knotted handlebody-knot.

The surface Q_{n} is boundary compressible in $E\left(\Gamma_{i}\right)$ as there are boundary compressing disks over the regular neighborhoods of l_{1} and l_{2}. However, our construction of the handlebody-knots Γ_{i} could have been made in such a way that the surfaces Q_{n} are incompressible and boundary incompressible in their complements. For that purpose, we could do a connected sum of γ_{i} with two knots along two arcs in e_{1} and e_{2}. After this operation, there won't be boundary compressing disks of Q_{n} over the regular neighborhoods of l_{1} and l_{2} in $E\left(\Gamma_{i}\right)$. And as these are the only possible boundary compressing disks, because all other components $\gamma_{i}-\gamma_{i} \cap S_{n}$ correspond to knotted arcs in their respective balls, after these connected sums the surfaces Q_{n} would also be boundary incompressible in the complement of the handlebody-knots. But for the purpose of this paper, we will use the handlebody-knots Γ_{i}.

3 Knots with essential tangle decompositions with an arbitrarily high number of strings

In this section, we use the handlebody-knots Γ_{i} to construct infinitely many examples of knots with essential tangle decompositions for all numbers of strings.
Let N_{1} and N_{2} be torus knots in the boundary of the solid tori T_{1} and T_{2} (that we assume to be in different copies of S^{3}). Consider a regular neighborhood B_{i} of an arc
of N_{i} intersecting T_{i} at a ball, for $i=1,2$. We isotope B_{i} and $B_{i} \cap N_{i}$ away from the interior of T_{i} such that B_{i} intersects T_{i} at a disk, for $i=1,2$. We proceed with a connected sum of N_{1} and N_{2} by removing the interior of B_{1} and attaching the exterior of B_{2} in such a way that the disks $B_{1} \cap T_{1}$ and $B_{2} \cap T_{2}$ are identified. Hence the knot $N_{1} \# N_{2}$, denoted by K, is in the boundary of a genus-two handlebody H, obtained by gluing T_{1} and T_{2} along a disk in their boundaries. We denote the identification disk of T_{1} and T_{2} in H by D. In Figure 7, we have the example of this connected sum with two trefoils, that we will use as reference for the remainder of the paper.

Figure 7: The handlebody H with the connected sum of two trefoil knots
Consider disks D_{1} and D_{2} parallel to D in H, such that the cylinder $C_{1,2}$ cut by $D_{1} \cup D_{2}$ from H intersects K in two parallel arcs, each with one end in D_{1} and the other in D_{2}. We also keep denoting by T_{1} and T_{2} the solid tori cut from H by D_{1} and D_{2}, respectively; see Figure 8 . Let s be a spine of H that intersects $C_{1,2}$ in a single arc. We denote by d_{i} the point $D_{i} \cap s$, and by t_{i} the intersection of s with T_{i}, for $i=1,2$.

Figure 8: The handlebody H and the spine s with the connected sum of two trefoil knots

We now embed the knot K in Γ_{i} as follows. Consider an embedding h_{i} of H in S^{3} taking H homeomorphically to Γ_{i}, such that $h_{i}(s)=\gamma_{i}, h_{i}\left(d_{j}\right)=p_{j}, h_{i}\left(t_{j}\right)=l_{j}$ and also that $h_{i}\left(T_{j}\right)=L_{j}$, for $j=1,2$.

Proof of Theorem 1 Denote by K_{i} the knots $h_{i}(K), i \in \mathbb{N}$, for a fixed knot K. To prove that the handlebody-knots Γ_{i} are distinct, let X_{i} be the torus cutting from
$E\left(K_{i}\right)$ the exterior of $C_{i} \# C$. The component cut by X_{i} from $E\left(K_{i}\right)$ containing the boundary torus is the same for every knot K_{i}. Hence, from the unicity of minimal JSJ-decomposition of compact 3-manifolds, if two knots K_{i} and K_{j} are ambient isotopic, the tori X_{i} and X_{j} are also ambient isotopic, contradicting $C_{i} \# C$ and $C_{j} \# C$ being distinct. Thus the knots K_{i} define a collection of distinct knots.

To prove the statement of the theorem, we will show that the spheres S_{n}, for $n \geq 2$, define n-string essential tangle decomposition for the knots K_{i}, and that these knots are prime.

We start by proving that S_{n} defines an n-string essential tangle decomposition of K_{i}. Let $E\left(K_{i}\right)$ be the exterior of K_{i} in S^{3}; that is, $E\left(K_{i}\right)=S^{3}-\operatorname{int} N\left(K_{i}\right)$. Let P_{n} be the intersection of S_{n} with $E\left(K_{i}\right)$ for a fixed n. To prove that S_{n} defines an essential tangle decomposition for K_{i}, we need to prove that P_{n} is essential in $E\left(K_{i}\right)$, ie that P_{n} is incompressible and boundary incompressible.

First, we observe that P_{n} is boundary incompressible. In fact, as the strings of $K \cap B_{n, i}$ in $B_{n, i}$ are knotted for $i=1,2$, there is no boundary compressing disk for P_{n} in $E\left(K_{i}\right)$.

Now we prove that P_{n} is incompressible in $E\left(K_{i}\right)$. Let Δ_{j}, for $j=1, \ldots, n$, be the disks of intersection between Γ_{i} and S_{n} with $\Delta_{1}=L_{1} \cap S_{n}$ and $\Delta_{n}=L_{2} \cap S_{n}$. Denote by $C_{j, j+1}$ the cylinder cut by $\Delta_{j} \cup \Delta_{j+1}$ from Γ_{i}. Denote also by $\partial^{*} C_{j, j+1}$ the annulus $C_{j, j+1} \cap \partial \Gamma_{i}$; that is, $\partial^{*} C_{j, j+1}=\partial C_{j, j+1}-\left(\Delta_{j} \cup \Delta_{j+1}\right)$. Note that $C_{j, j+1} \cap K$ is a collection of two arcs parallel to $\partial^{*} C_{j, j+1}$, each with one end in Δ_{j} and the other in Δ_{j+1}. We also let $\partial^{*} L_{1}$ and $\partial^{*} L_{2}$ denote $\partial L_{1}-\Delta_{1}$ and $\partial L_{2}-\Delta_{n}$. Furthermore, we denote by s_{j} the string component of the tangle decomposition of K_{i} defined by S_{n}, in L_{j}, for $j=1,2$. Note that s_{j} is parallel to $\partial^{*} L_{j}$. We isotope s_{j} into $\partial^{*} L_{j}$ and denote the annulus $\partial^{*} L_{j} \cap E\left(K_{i}\right)$ by Λ_{j}.

Suppose that P_{n} is compressible in $E\left(K_{i}\right)$ with D a compressing disk, properly embedded in $B_{n, 1}$ or $B_{n, 2}$, in general position with Γ_{i}. If D is disjoint from Γ_{i}, we have a contradiction with Lemma 5. In this way, we assume that D intersects Γ_{i} and that $\left|D \cap \partial \Gamma_{i}\right|$ is minimal over all isotopy classes of compressing disks of P_{n} in $E\left(K_{i}\right)$.

In particular, assume that D intersects an annulus $\partial^{*} C_{j, j+1}$. If $D \cap \bigcup_{j=1}^{n-1} \partial^{*} C_{j, j+1}$ contains a simple closed curve or an arc with both ends in the same disk of $\Gamma_{i} \cap S_{n}$, by considering an outermost one between such curves and arcs in $\partial^{*} C_{j, j+1}$, and by cutting and pasting along the disk it bounds or cobounds, we get a contradiction with the minimality of $\left|D \cap \partial \Gamma_{i}\right|$. Thus $D \cap \bigcup_{j=1}^{n-1} \partial^{*} C_{j, j+1}$ is a collection of arcs with ends in distinct disks of $\Gamma_{i} \cap S_{n}$. Consider an outermost arc of $D \cap \bigcup_{j=1}^{n-1} \partial^{*} C_{j, j+1}$ in D, say a, and without loss of generality, suppose it belongs to $\partial^{*} C_{j, j+1}$. The arc a
is parallel to a string of the tangle defined by S_{n} that is in $C_{j, j+1}$, which contradicts the fact that all strings of the tangle decomposition of K_{i} defined by S_{n} are knotted. Consequently, we can assume that $D \cap \bigcup_{j=1}^{n-1} \partial^{*} C_{j, j+1}$ is empty.
Then we are assuming that D intersects $\partial \Gamma_{i}$ at $\partial^{*} L_{1}$ or $\partial^{*} L_{2}$, or more precisely, at Λ_{1} or Λ_{2}. We denote by a_{j} and a_{j}^{\prime} the arcs of $\partial \Lambda_{j}$ parallel to s_{j} in $\partial^{*} L_{j}$, and by b_{j} and b_{j}^{\prime} the arcs cut by ∂a_{j} and ∂a_{j}^{\prime}, respectively, in the boundary of $\partial^{*} L_{j}$. The boundary components of Λ_{j} are $a_{j} \cup b_{j}$ and $a_{j}^{\prime} \cup b_{j}^{\prime}$. Note that, as $D \cap s_{j}$ is empty, the disk D is disjoint from a_{j} and a_{j}^{\prime}. Note also that $a_{j} \cup b_{j}$ is a torus knot in the torus $\partial^{*} L_{j} \cup\left(S_{n}-L_{j} \cap S_{n}\right)$, denoted T_{j}^{\prime}. If D intersects Λ_{j} in inessential simple closed curves or arcs with both ends in b_{j} or both ends in b_{j}^{\prime}, then by cutting and pasting along a disk cut by such curve or arc, we have a contradiction with the minimality of $\left|D \cap \partial \Gamma_{i}\right|$. If D intersects Λ_{j} in an essential simple closed curve, then $a_{j} \cup b_{j}$ is parallel to a simple closed curve in D, which contradicts $a_{j} \cup b_{j}$ being knotted. Consequently, D intersects Λ_{j} in a collection of arcs, each with one end in b_{j} and the other in b_{j}^{\prime}. Let O be an outermost disk in D cut by the arcs of $D \cap \Lambda_{j}$. Then O is a disk in a solid torus bounded by T_{j}^{\prime} and intersects the torus knot $a_{j} \cup b_{j}$ in T_{j}^{\prime} at a single point. As we are working in S^{3}, either O is parallel to T_{j}^{\prime} or it is a meridian to a solid torus bounded by T_{j}. In either case, O intersects any torus knot in T_{j}^{\prime} at least in two points, which contradicts O intersecting $a_{j} \cup b_{j}$ once.
Therefore, we have that P_{n} is essential in the complement of K_{i}, which ends the proof that S_{n} defines an n-string essential tangle decomposition of K_{i}.
Now we prove that the knots K_{i} are prime. From Theorem 1 of [1], if a knot has a 2-string prime tangle decomposition, that is, if the tangles are essential and with no local knots, then the knot is prime. We have that the knot K_{i} has a 2 -string essential tangle decomposition defined by S_{2}. So to prove that it is prime, we just need to show that the tangle decomposition defined by S_{2} has no local knots. The ball $B_{2,1}$ intersects K_{i} in two parallel arcs. Hence if there is a 2 -sphere intersecting only one of the arcs at a single component, this component has to be unknotted. The ball $B_{2,2}$ intersects γ_{i} in l_{1} and l_{2}; thus it intersects K_{i} at two strings each with the pattern of a torus knot. Note that even though the pattern of the knot C is in l_{2}, it does not affect the topological type of the string in L_{2}. Suppose the tangle in $B_{2,2}$ contains a local knot. That is, there is a ball Q intersecting only one of the strings, and at a knotted arc. As the torus knots are prime, this knotted arc contains the whole pattern of the string; that is, the intersections of Q and $B_{2,2}$ with this string are topologically the same. Therefore, as the strings in $B_{2,2}$ are parallel to the boundary of L_{1} and L_{2}, and Q intersects only one of them, we have that Q contains either e_{1} or e_{2}, or we can isotope e_{1} and e_{2} in such a way that Q contains either e_{1} or e_{2}. But then, either e_{1} or e_{2} bound a disk in the complement of γ_{i} and, as in Case 1(ii) from the proof of Lemma 5, we have
a contradiction with Γ_{i} being a knotted handlebody-knot. Consequently, the tangle decomposition defined by S_{2} contains no local knots, and the knots K_{i} are prime.

Corollary 2 is now an immediate consequence.

Proof of Corollary 2 In Theorem 1, we proved that the spheres S_{n}, for $n \geq 2$, define an n-string essential tangle decomposition for the knots K_{i}. Hence, considering the knots K_{i} connected sum with some other knot, we have infinitely many knots with n-string essential tangle decompositions for all $n \in \mathbb{N}$, as in the statement of this corollary.

Acknowledgements The author thanks to Cameron Gordon for comments along the development of this paper and the referee for the detailed review and suggestions on the exposition and proofs of the paper.

This work was partially supported by the Centro de Matemática da Universidade de Coimbra (CMUC), funded by the European Regional Development Fund through the program COMPETE and by the Portuguese Government through the FCT - Fundação para a Ciência e a Tecnologia under the project PEst-C/MAT/UI0324/2011.

References

[1] S A Bleiler, Knots prime on many strings, Trans. Amer. Math. Soc. 282 (1984) 385-401 MR
[2] D Buck, DNA topology, from "Applications of knot theory" (D Buck, E Flapan, editors), Proc. Sympos. Appl. Math. 66, Amer. Math. Soc., Providence, RI (2009) 47-79 MR
[3] J H Conway, An enumeration of knots and links, and some of their algebraic properties, from "Computational Problems in Abstract Algebra" (J Leech, editor), Pergamon, Oxford (1970) 329-358 MR
[4] M Culler, C M Gordon, J Luecke, P B Shalen, Dehn surgery on knots, Ann. of Math. 125 (1987) 237-300 MR
[5] C Ernst, D W Sumners, A calculus for rational tangles: applications to DNA recombination, Math. Proc. Cambridge Philos. Soc. 108 (1990) 489-515 MR
[6] CM Gordon, A W Reid, Tangle decompositions of tunnel number one knots and links, J. Knot Theory Ramifications 4 (1995) 389-409 MR
[7] A Ishii, K Kishimoto, H Moriuchi, M Suzuki, A table of genus two handlebody-knots up to six crossings, J. Knot Theory Ramifications 21 (2012) 1250035-1-9 MR
[8] R C Kirby, W B R Lickorish, Prime knots and concordance, Math. Proc. Cambridge Philos. Soc. 86 (1979) 437-441 MR
[9] W B R Lickorish, Prime knots and tangles, Trans. Amer. Math. Soc. 267 (1981) 321332 MR
[10] H Matsuda, M Ozawa, Free genus one knots do not admit essential tangle decompositions, J. Knot Theory Ramifications 7 (1998) 945-953 MR
[11] Y Mizuma, Y Tsutsumi, Crosscap number, ribbon number and essential tangle decompositions of knots, Osaka J. Math. 45 (2008) 391-401 MR
[12] M Ozawa, On uniqueness of essential tangle decompositions of knots with free tangle decompositions, from "Proceedings of applied mathematics workshop, 8" (G T Jin, K H Ko, editors), Korea Adv. Inst. Sci. Tech., Taejŏn (1998) 227-232
[13] D Rolfsen, Knots and links, Mathematics Lecture Series 7, Publish or Perish, Berkeley, CA (1976) MR

CMUC Department of Mathematics, University of Coimbra
Apartado 3008, EC Santa Cruz, 3001-501 Coimbra, Portugal
nogueira@mat.uc.pt

Received: 16 April 2014 Revised: 28 July 2015

[^0]: ${ }^{1}$ An arc of \mathcal{T} is unknotted if it cobounds a disk embedded in B together with an arc in ∂B; otherwise, it is said to be knotted.

[^1]: ${ }^{2}$ We denote by $E(K)$ the exterior of a knot K, that is, $S^{3}-\operatorname{int} N(K)$, where $N(K)$ is a regular neighborhood of K.
 ${ }^{3}$ A tangle (B, \mathcal{T}) has no local knots if any 2 -sphere intersecting \mathcal{T} transversely in two points bounds a ball in B meeting \mathcal{T} in an unknotted arc.
 ${ }^{4}$ Two strings of a tangle in a ball B are parallel if there is an embedded disk in B cobounded by these strings and two arcs in ∂B.

