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Invariants and structures of the homology
cobordism group of homology cylinders

MINKYOUNG SONG

The homology cobordism group of homology cylinders is a generalization of the
mapping class group and the string link concordance group. We study this group
and its filtrations by subgroups by developing new homomorphisms. First, we define
extended Milnor invariants by combining the ideas of Milnor’s link invariants and
Johnson homomorphisms. They give rise to a descending filtration of the homology
cobordism group of homology cylinders. We show that each successive quotient
of the filtration is free abelian of finite rank. Second, we define Hirzebruch-type
intersection form defect invariants obtained from iterated p–covers for homology
cylinders. Using them, we show that the abelianization of the intersection of our
filtration is of infinite rank. Also we investigate further structures in the homology
cobordism group of homology cylinders which previously known invariants do not
detect.

57M27, 57N10

1 Introduction

The homology cobordism group of homology cylinders is an interesting object of study
which extends the mapping class group and generalizes the concordance group of string
links in homology 3–balls. The aim of this paper is to enhance our understanding of the
structure of the group by developing two new invariants which are homomorphisms. We
obtain the first invariant by combining the ideas of Milnor’s link invariant and Johnson’s
homomorphism, and the second is a Hirzebruch-type intersection form defect from
iterated p–covers. In this paper, manifolds are assumed to be compact and oriented.
Our results hold in both topological and smooth categories.

Let †g;n be a surface of genus g with n boundary components. Roughly speaking, a
homology cylinder over †g;n is a homology cobordism between two copies of †g;n .
A homology cylinder is endowed with two embeddings iC and i� of †g;n called
markings. The notion of homology cylinders was first introduced by Goussarov [15]
and Habiro [19] independently, as important model objects for their theory of finite
type invariants of 3–manifolds which play the role of string links in the theory of finite
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type invariants of links. While the set Cg;n of marking-preserving homeomorphism
types of homology cylinders is a monoid, the set Hg;n of homology cobordism classes
becomes a group under juxtaposition. The group Hg;n was introduced by Garoufalidis
and Levine as an enlargement of the mapping class group Mg;n of †g;n [13; 24].
The group Mg;n injects into Cg;n and also into Hg;n ; see Levine [24, page 247], Cha,
Friedl and Kim [6, Proposition 2.3]. Moreover, when n > 1, Hg;n can be seen as a
generalization of the concordance group of framed string links in homology balls.

In this paper, we assume that n > 0, ie †g;n has nonempty boundary. We usually
omit the subscripts and simply write †, C and H when g; n are understood from the
context. Let I denote the interval Œ0; 1�. For a group G , Gk denotes the k th term of
lower central series given by G1 D G , GkC1 D ŒG;Gk �, and G.k/ denotes the k th

derived subgroup given by G.0/ DG , G.kC1/ D ŒG.k/;G.k/�.

In the literature, the structure of H was studied by constructing invariants. In particular,
invariants which are group homomorphisms are essential in understanding the group
structure. Let F D �1.†/ and H DH1.†/. Garoufalidis and Levine [13; 24] defined
homomorphisms �qW Hg;1!Aut.F=Fq/ and a filtration Hg;1Œq� WDKer.�q/ as exten-
sions of the Johnson homomorphisms and the Johnson filtration of the mapping class
group Mg;1 [20]. We call the maps �q on Hg;1 Garoufalidis–Levine homomorphisms.
(In some literature, those on Hg;1 are referred to also as “Johnson homomorphisms”.)
Briefly speaking, the invariants �q measure the difference between two markings on
F=Fq . Garoufalidis and Levine determined the image of Hg;1Œq� under �q and showed
each successive quotient Hg;1Œq � 1�=Hg;1Œq� is finitely generated free abelian; see
also Remark 3.6 and the paragraph after Theorem 4.3 for precise statements. We
remark that the image of the Johnson subgroup of the mapping class group is unknown.
Morita [26] obtained a homomorphism on Hg;1 by taking the limit of a trace map
composed with �q . He used this to show that the Torelli subgroup Hg;1Œ2� of Hg;1

has infinite rank abelianization, while it is known that the Torelli subgroup of Mg;1

is finitely generated for g � 3. Sakasai [28; 29] defined Magnus representations,
which are crossed homomorphisms on Hg;1 and homomorphisms on the subgroups
Hg;1Œq�. Using them, he proved that Mg;1 is not a normal subgroup of Hg;1 for
g � 3. Cha, Friedl and Kim [6] defined a torsion invariant and used it to show that the
abelianization of Hg;n contains a direct summand isomorphic to .Z=2/1 if b1.†/> 0,
and contains a direct summand isomorphic to Z1 if n > 1. Cochran, Harvey and
Horn [7] considered signature invariants for Hg;1Œ2�, which are the von Neumann–
Cheeger–Gromov L2 –signature defects of bounding 4–manifolds. Their invariants
are quasimorphisms on Hg;1Œq� and send Hg;1Œq� to a dense and infinitely generated
subgroup of R for g � 1. They become homomorphisms on the kernel of Sakasai’s
Magnus representation on Hg;1Œq�.
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In fact, for Hg;1 , �q is related to the Milnor invariant of (string) links as described
briefly below. The concordance group of m–component framed string links in ho-
mology balls is naturally identified, by taking the exterior, with H0;mC1 , Let �q be
the Milnor invariant of length � q on H0;mC1 , and denote its kernel by H0;mC1.q/.
Habegger [19] established a bijection H0;2gC1.2/! Hg;1Œ2�, which is not a homo-
morphism but descends to an isomorphism between H0;2gC1.q� 1/=H0;2gC1.q/ and
Hg;1Œq�1�=Hg;1Œq�. Levine found a monomorphism H0;gC1 ,!Hg;1 which induces a
monomorphism of H0;gC1.q�1/=H0;gC1.q/ into Hg;1Œq�1�=Hg;1Œq� [24]. Habegger
and Levine showed that �q and �q can be identified under these maps, respectively.

1A Extended Milnor invariants

We will define a new invariant z�q on Hg;n for arbitrary .g; n/ with n � 1. This
is a common generalization of the Milnor x�–invariant and the Garoufalidis–Levine
homomorphism which are defined only when g D 0 and nD 1, respectively.

As noted by Habegger and Lin [17], string links have the advantage that their x�–
invariants are well defined without indeterminacy, in contrast to links, because a string
link has well-defined (zero-linking) longitudes, as elements of the fundamental group
of the exterior; see Section 3A for details. In fact, the Milnor invariant of a string link
essentially represents the longitudes as elements of the free nilpotent quotient.

We generalize this to homology cylinders over a surface †D†g;n as follows. Briefly
speaking, we take n�1 fundamental group elements for a homology cylinder as analogs
of the longitudes of a string link, and to extract more information from the fundamental
group, we consider additional 2g elements that arise from symplectic basis curves of
the surface †. Note that 2gC n� 1, the total number of the elements we consider, is
equal to the first Betti number b1.†/. By taking the image of those elements in F=Fq ,
where F D �1.†/, we define an extended Milnor invariant

z�qW Hg;n! .F=Fq/
2gCn�1:

The precise definition is given in Section 3A. It turns out that z�q is equivalent to the
Garoufalidis–Levine homomorphism �q for nD 1, and to the Milnor x�–invariant for
g D 0.

We remark that the 2gC n� 1 elements used above are essential in understanding
the fundamental group of the closure of a homology cylinder (see Section 2 for the
definition), from which we will extract signature defects and more generally Witt class
invariants. These invariants will be discussed in the next subsection.
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We define a filtration by H.q/ WDKer.z�q/. This generalizes the Garoufalidis–Levine’s
filtration HŒq�, in the sense that H.q/DHŒq� for nD 1. We remark that Garoufalidis–
Levine’s definition for nD1 can be applied to the case of n>1 to give a filtration, which
we also denote by HŒq�; our filtration is finer than this, that is, we have H.q/�HŒq�
in general. The map z�q is a crossed homomorphism. It is a homomorphism on both
HŒq� and H.q� 1/. For more details, see Section 3C.

Regarding the structure of the successive quotients of our filtration, we have the
following result.

Theorem 4.3 For each q � 2, the following hold:

(1) z�q induces an injective homomorphism

z�qW H.q� 1/=H.q/ ,! .Fq�1=Fq/
2gCn�1:

Hence H.q� 1/=H.q/ is finitely generated free abelian.

(2) We have

maxfrq.2g/; rq.gC n� 1/g � rankH.q� 1/=H.q/� rq.2gC n� 1/

where Nq.m/D
1
q

P
d jq '.d/.m

q=d /, ' is the Möbius function, and rq.m/D

mNq�1.m/�Nq.m/.

It is known that the injection in (1) is an isomorphism and the equality in (2) holds if
either g D 0 (ie for string links [27]), or nD 1 [13].

Our next result is that a surface embedding gives rise to relationships between homology
cobordism groups of homology cylinders over the surfaces and between their extended
Milnor invariants as follows.

Theorem 1.1 For any embedding {W †g;n!†g0;n0 with n; n0 � 1, { induces a homo-
morphism z{W Hg;n!Hg0;n0 , and a function f W .F=Fq/

2gCn�1! .F 0=F 0q/
2g0Cn0�1

which make the following diagram commute, where FD�1.†g;n/ and F 0D�1.†g0;n0/:

Hg;n Hg0;n0

.F=Fq/
2gCn�1 .F 0=F 0q/

2g0Cn0�1

-z{

?

z�q

?

z�q

-f
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In addition, we present a sufficient condition for f to be 1–1 and a sufficient condition
for z{W Hg;n ! Hg0;n0 to be injective in Theorem 4.1. The former implies that the
extended Milnor invariant of z{.M / 2Hg0;n0 determines that of M 2Hg;n .

Applying the above result to appropriate surface embeddings, we obtain the following.

Corollary 4.2 For any two pairs .g; n/ and .g0; n0/ satisfying g � g0 and gC n �

g0C n0 , there is an injective homomorphism

Hg;n ,!Hg0;n0 ;

which induces injections

Hg;n.q� 1/=Hg;n.q/ ,!Hg0;n0.q� 1/=Hg0;n0.q/

for all q � 2.

Levine’s monomorphism H0;gC1!Hg;n [24] is a special case of this.

In the next subsection, we present our results on the structure of H.1/ WD
T

q H.q/.

1B Hirzebruch-type intersection form defect invariants

Cha [3] defined Hirzebruch-type intersection form defects for closed 3–manifolds.
In order to extract homology cobordism invariants, he considered towers of abelian
p–covers. Let d be a power of a prime p . For a CW complex X , a pair of a tower
of iterated abelian p–covers and a homomorphism of the fundamental group of the
top cover to Zd is called a (Zd –valued) p–structure for X [2]; a precise definition
is given in Section 5. We remark that any connected p–cover can be obtained as
the top cover of a p–structure. For a closed 3–manifold M and a p–structure T
for M such that the top cover is zero in the bordism group �3.BZd /, an invariant
�.M; T / is defined to be the difference between the Witt classes of the Q.�d /–valued
intersection form and the ordinary intersection form of a 4–manifold bounded by
the top cover over Zd , where �d D exp.2�

p
�1=d/. This lives in the Witt group

L0.Q.�d // of nonsingular hermitian forms over Q.�d /. This �.�;�/ is a homology
cobordism invariant in the sense that if M and N are homology cobordant, there is a
1–1 correspondence TM 7! TN between p–structures for M and N , �.M; TM / is
defined if and only if �.N; TN / is, and in that case, �.M; TM /D �.N; TN /.

A map f W X ! Y is called a p–tower map if pullback gives rise to a 1–1 correspon-
dence

f̂ W fp–structures for Y g ! fp–structures for X gI

for a more precise description, see Section 5A. He found a sufficient condition for a
map to be a p–tower map: for a map between CW complexes with finite 2–skeletons,
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if it induces an isomorphism on the algebraic closures of their fundamental groups, then
the map is a p–tower map [3, Proposition 3.9]; more information about the algebraic
closure is given in Section 4C. This applies to string links as follows. A string link
� has canonical meridians, which give a meridian map mW

W
S1!M� where M�

is the surgery manifold of its closure. A string link is called an yF –string link if its
meridian map induces an isomorphism on the algebraic closures of the fundamental
groups. Using the above, for an yF –string link � , he defined a concordance invariant
�T .�/ WD �.M� ; ˆ

�1
m .T // for each p–structure T for

W
S1 . He also proved that �T

is a group homomorphism of the concordance group of yF –string links [2].

We apply Cha’s Hirzebruch-type invariants [3; 2] to homology cylinders. Motivated
by [2], for homology cylinders, we define invariants parametrized by the p–structures
for the base surface. For this purpose, we investigate when the composition yi W † iC

�!

M ! yM , which we call the marking for the closure yM , is a p–tower map. As stated
in the first part of the following theorem, the criterion is exactly the vanishing of our
extended Milnor invariants.

Theorem 1.2 (1) The marking yi W †! yM is a p–tower map if and only if z�q.M /

vanishes for all q . In that case, �T .M / WD �.cM ; .ˆyi/
�1.T // is well defined

for any p–structure T for †.

(2) For any p–structure T for †,

�T W H.1/!L0.Q.�d //

is a group homomorphism.

Furthermore, we give a generalization as follows. We consider certain special p–
structures, which are called p–structures of order q . Roughly, they are p–structures
factoring through the qth lower central series quotient; see Definition 5.2. We prove
that the marking †! yM induces a 1–1 correspondence between p–structures of
order q if and only if z�q.M / vanishes. In this case, we define an invariant �T .M /,
with value in ZŒ 1

d
�˝Z L0.Q.�d //. In other words, we define

�T W H.q/! Z
h

1

d

i
˝Z L0.Q.�d //

for each p–structure T for † of order q . However, it may not be a homomorphism.
We present sufficient conditions on homology cylinders for �T to be additive in
Theorem 5.12.

We study the structure of H.1/ using �T in Section 6. Performing infection by knots,
we construct infinitely many homology cylinders with vanishing extended Milnor
invariants, but distinguished by �T .
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Theorem 1.3 (Theorem 6.5) If b1.†/>1, the abelianization of H.1/ contains Z1 .

We define a boundary homology cylinder and an yF –homology cylinder in Sections 4B
and 4C as analogs of the boundary (string) link and the yF –(string) link, respectively.
The above theorem also holds on the subgroup consisting of boundary homology
cylinders and that consisting of yF –homology cylinders; see Theorem 6.7.

Moreover, our method detects homology cylinders that cannot be detected by other
invariants we discussed before Section 1A as follows.

Theorem 1.4 (Theorem 6.5) Suppose b1.†/ > 1. If nD 1, the intersection of the
kernels of Garoufalidis–Levine’s homomorphisms �q [13], Cha, Friedl and Kim’s
torsion invariant � [6], the extended Milnor invariants z�q , Morita’s homomorphism
z� [26], Sakasai’s Magnus representations rq [29], and Cochran, Harvey and Horn’s
signature invariants �q [7] has infinite rank abelianization. If n> 1, the intersection of
the kernels of �q , � , z�q — in this case, z� , rq , and �q are not defined — has infinite
rank abelianization.

1C Solvable filtration of homology cylinders

In Section 7, we investigate some other cobordisms of homology cylinders. Whitney
towers and gropes play a key role in the study of topology of 4–manifolds and concor-
dance of knots and links. Cochran, Orr and Teichner [9] introduced solvability of knots
and related it to Whitney towers in 4–manifolds. Their filtrations on knots and links
have been much studied as an approximation of sliceness. To study 3–manifolds with
nonempty boundary, Cha defined Whitney tower cobordism and solvable cobordism
of bordered 3–manifolds [5]. Applying his definition to homology cylinders, it is
straightforward to define the notion of .r/–solvable homology cylinders for r 2 1

2
Z�0 .

We show that �T can be used as obstructions to the solvability of homology cylinders.

Theorem 1.5 Let M 2H.q/ and T be a p–structure of height � h for † of order q .
If either

(1) M is .hC 1/–solvable, or

(2) M is .hC 1
2
/–solvable and satisfies one of (C1)–(C5) of Theorem 5.12,

then �T .M / vanishes.

Here the height of a p–structure for X is the height of the tower of iterated p–covers,
a precise definition is given at the beginning of Section 5.

We also refine Theorem 1.3. Let FH.1/
.r/

denote the subgroup consisting of .r/–solvable
homology cylinders in H.1/ for each r 2 1

2
Z�0 .
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Theorem 1.6 When b1.†/ > 1, the abelianization of FH.1/
.h/

=FH.1/
.hC 1

2
/

is of infinite
rank.

We remark that the analogs hold for the solvable filtration of the subgroups of boundary
homology cylinders and that of yF –homology cylinders; see Theorem 7.6.

The paper is organized as follows. In Section 2, we recall basic definitions and
examples of homology cylinders and their homology cobordism groups. In Section 3,
we define extended Milnor invariants on Hg;n . In Section 4, we study the filtration
H.q/ associated to the extended Milnor invariants and subgroups consisting of boundary
homology cylinders and yF –homology cylinders. In Section 5, we define Hirzebruch-
type invariants of homology cylinders and give sufficient conditions for additivity of
the invariants. In Section 6, by investigating the effect of infection, we detect a rich
structure of H which has not been detected previously. Finally in Section 7, we study
nilpotent cobordism and solvable filtrations of homology cylinders using our invariants.

Acknowledgements The author thanks her advisor Jae Choon Cha for his advice
and guidance. This research was partially supported by NRF grants 2013067043 and
2013053914.

2 Homology cylinders and their homology cobordism groups

We recall precise definitions about homology cylinders. Let †D†g;n be a surface of
genus g with n boundary components.

Definition 2.1 A homology cylinder over † consists of a 3–manifold M with two
embeddings iC; i�W † ,! @M , called markings, such that

(1) iCj@† D i�j@† ,

(2) iC[ i�W †[@ .�†/! @M is an orientation-preserving homeomorphism, and

(3) iC; i� induce isomorphisms H�.†IZ/!H�.M IZ/.

We denote a homology cylinder by .M; iC; i�/ or simply by M .

Two homology cylinders .M; iC; i�/ and .N; jC; j�/ over †g;n are said to be isomor-
phic if there exists an orientation-preserving homeomorphism f W M !N satisfying
jC D f ı iC and j� D f ı i� . Denote by Cg;n the set of all isomorphism classes of
homology cylinders over †g;n . We define a product operation on Cg;n by

.M; iC; i�/ � .N; jC; j�/ WD .M [i�ı.jC/�1 N; iC; j�/

Algebraic & Geometric Topology, Volume 16 (2016)
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for .M; iC; i�/; .N; jC; j�/ 2 Cg;n , which endows Cg;n with a monoid structure. The
identity is .†g;n� I=.z; 0/D .z; t/; id� 1; id� 0/, where z 2 @†; t 2 I . For later use,
we denote this trivial homology cylinder by E .

Definition 2.2 Two homology cylinders .M; iC; i�/ and .N; jC; j�/ over †g;n are
said to be homology cobordant if there exists a 4–manifold W such that

(1) @W DM [ .�N /=�, where � identifies iC.x/ with jC.x/ and i�.x/ with
j�.x/ for all x 2†g;n , and

(2) the inclusions M ,!W , N ,!W induce isomorphisms on the integral homol-
ogy.

We denote by Hg;n the set of homology cobordism classes of elements of Cg;n . By
abuse of notation, we also write M for the class of M . The monoid structure on Cg;n

descends to a group structure on Hg;n , with .M; iC; i�/
�1 D .�M; i�; iC/. We call

this group the homology cobordism group of homology cylinders. Actually, there are
two kinds of groups Hsmooth

g;n and Htop
g;n depending on whether the homology cobordism

is smooth or topological, and there exists a canonical epimorphism Hsmooth
g;n �Htop

g;n

whose kernel contains an abelian group of infinite rank [6]. In this paper, however, the
author does not distinguish the two cases since everything holds in both cases.

Both H0;0 and H0;1 are isomorphic to the group of homology cobordism classes
of integral homology 3–spheres. The group H0;2 is isomorphic to the concordance
group of framed knots in homology 3–spheres. For n� 3, H0;n is isomorphic to the
concordance group of framed (n� 1)–component string links in homology 3–balls,
or equivalently, in homology cylinders over D2 D †0;1 . Similarly, Hg;n can be
considered to be the concordance group of framed (n� 1)–component string links in
homology cylinders over †g;1 . The fact that the mapping class group over †g;n is a
subgroup of Hg;n implies Hg;n is non-abelian except .g; n/D .0; 0/; .0; 1/ and .0; 2/.

For any homology cylinder M , there is an associated closed manifold yM obtained
from M by identifying iC.z/ and i�.z/ for each z 2†. We call it the closure of M .
When M is considered as an exterior of a framed string link, yM is just the surgery
manifold of the closure of the string link. Both iC; i� composed with the quotient map
give an embedding yi W †! yM , which we call the marking for yM .

3 Generalization of Milnor invariants and
Garoufalidis–Levine homomorphisms

Let @1; @2; : : : ; @n be the boundary components of †. Choose a basepoint � of †
on @n and fix a generating set fx1; : : : ;xn�1;m1; : : : ;mg; l1; : : : ; lgg for �1.†;�/ as

Algebraic & Geometric Topology, Volume 16 (2016)
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x1
xn�1

l1 lg

m1 mg

Figure 1: A generating set for �1.†g;n/ .

in Figure 1 such that xi is homotopic to the i th boundary component @i and mj , lj
correspond to a meridian and a longitude of the j th handle. Since our n is nonzero,
the group is free on the above 2gC n� 1 generators. Let F D �1.†;�/. For the
generators in Figure 1, the element Œ@n�2�1.†;�/ is represented by

Q
i xi

Q
j Œmj ; lj �.

We will use this later to prove Theorem 4.3.

3A Extended Milnor invariants on Hg;n

First, we define Milnor invariants of homology cylinders similarly to those of string
links. Let .M; iC; i�/ be a homology cylinder over †. The chosen xi is of the form
Œ˛i � ˇi � ˛

�1
i � for a closed path ˇi W I ! I=@I

'
�! @i such that the latter map is a

homeomorphism and a path ˛i from � to ˇi.0/. The orientation of ˇi is determined
by xi . Consider the loop .iC ı˛i/ � .i� ı˛

�1
i / in M . If M were a framed string link

exterior, this loop would be its i th longitude. We define �i to be the class of the loop
.iC ı ˛i/ � .i� ı ˛

�1
i / in �1.M; iC.�//. It is independent of the choice of ˛i , and it

depends only on the choice of xi in �1.†;�/. We will show this at the end of this
subsection. By Stallings’ theorem [31], iC induces an isomorphism

F=Fq D �1.†/=�1.†/q
.iC/�q

Š
�! �1.M /=�1.M /q

for every q 2 N . We define �q.M /i to be the inverse image of �i in F=Fq and
�q.M / to be the (n � 1)–tuple .�q.M /1; : : : ; �q.M /n�1/ 2 .F=Fq/

n�1 . Also,
�.M / can be defined to be ..�q.M /1/q2N ; : : : ; .�q.M /n�1/q2N/ as an element of
.lim
 ��q

F=Fq/
n�1 . For .i˙/�W F ! �1.M / induced by markings i˙ , the element �i

indicates the difference between .iC/�.xi/ and .i�/�.xi/ in �1.M / as follows:

.i�/�.xi/D �
�1
i � .iC/�.xi/ ��i :

Also �q.M /i indicates the difference of two markings on xi in F=Fq :

(1) ..iC/
�1
�q ı .i�/�q/.xi/D �q.M /�1

i �xi ��q.M /i :

Algebraic & Geometric Topology, Volume 16 (2016)
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For the case of g D 0, the invariant �q is equivalent to all the Milnor x�–invariants of
length � q for framed string links.

Now we extend this for the remaining generators mj and lj of F . Denote �0j D
.iC/�.mj / � .i�/�.m

�1
j / and �00j D .iC/�.lj / � .i�/�.l

�1
j /. Let �0q.M /j and �00q.M /j

be the inverse images of �0j and �00j under the above isomorphism .iC/�q , respectively,
for j D 1; : : : ;g . Then clearly

.i�/�.mj /D �
0�1
j � .iC/�.mj / and .i�/�.lj /D �

00�1
j � .iC/�.lj /

in �1.M /, and hence

(2)
..iC/

�1
�q ı .i�/�q/.mj /D �

0
q.M /�1

j �mj ;

..iC/
�1
�q ı .i�/�q/.lj /D �

00
q.M /�1

j � lj in F=Fq:

We denote by z�.M / or simply by z� the (2g C n � 1)–tuple of �i ; �
0
j , and �00j of

�1.M / and by z�q.M / the (2gCn�1)–tuple of �q.M /i ; �
0
q.M /j , and �00q.M /j of

F=Fq . The total z�.M / is defined to be ..z�q.M /1/q2N ; : : : ; .z�q.M /2gCn�1/q2N/

as an element of .lim
 ��q

F=Fq/
2gCn�1 .

We remark that z�.M / plays an important role in studying the fundamental group of yM .
More precisely, �1. yM / can be obtained from �1.M / by killing all z�.M /k . Hence,
z�q.M / vanishes if and only if yi induces an isomorphism F=Fq Š �1. yM /=�1. yM /q .
It is similar to case of (string) links: for a (string) link L, the Milnor invariants of
length� q vanish if and only if a meridian map

W
S1!ML induces an isomorphism

on �1.�/=�1.�/q where ML is the surgery manifold (of the closure). In this sense,
z� is a more appropriate analog of Milnor’s x�–invariants of string links, compared
with �.

Theorem 3.1 For any q , z�q is a homology cobordism invariant. In other words, we
have

z�qW Hg;n! .F=Fq/
2gCn�1:

Proof Suppose W is a homology cobordism between homology cylinders .M; iC; i�/

and .M 0; i 0C; i
0
�/. The diagram below is commutative where the right maps are induced

by natural inclusions. In W , iC.z/ and i 0C.z/ are identified, and i�.z/ and i 0�.z/ are
identified for each z 2†. Hence z�.M /k 2�1.M / and z�.M 0/k 2�1.M

0/ correspond
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to the same element of �1.W /.

�1.M /

F �1.W /

�1.M
0/

QQs
�
��3

.iC/�

Q
QQs.i0

C
/�

��3

Since all the homomorphisms of the diagram induce isomorphisms on �1.�/=�1.�/q ,
z�q.M /D z�q.M

0/ in F=Fq .

Now we investigate the well-definedness of z�q and effect of change of generating sets.

Proposition 3.2 The invariant z�q is independent of the choice of f˛ig and depends
only on (the basepoint � of † and) the (ordered) generating set fxi ;mj ; lj gi<n;j�g of
�1.†;�/.

Proof Let xi equal Œ˛i �ˇi �˛
�1
i �D Œ˛0i �ˇ

0
i �˛
0�1
i � for paths ˇi ; ˇ

0
i W I ! I=@I

'
�! @i

and ˛i ; ˛
0
i from � to ˇi.0/; ˇ

0
i.0/, respectively. We may assume ˇi D ˇ

0
i since �.�/i

is unchanged under connecting a path in @i to ˛i . The loop .˛i �ˇi �˛
�1
i /.˛0i �ˇ

�1
i �˛

0�1
i /

is null homotopic, and Œ Œ˛0�1
i � ˛i �; Œˇi � � D 1 in the free group �1.†; ˇi.0//. Thus

Œ˛0�1
i �˛i �D Œˇi �

k for some k . Therefore ˛i and ˛0i determine the same �.M /i 2�1.M /

for each homology cylinder M.

Proposition 3.3 Let AD fxi ;mj ; lj gi<n;j�g and B D fx0i ;m
0
j ; l
0
j gi<n;j�g be gener-

ating sets of �1.†;�/DWF and �1.†;�
0/DWF 0 , respectively, such that xi and x0i are

homotopic to a boundary component. Suppose z�A
q ; z�

B
q W Hg;n! .F=Fq/

2gCn�1 are
the extended Milnor invariants with respect to A and B , respectively. Then there exists
a bijection f W .F=Fq/

2gCn�1! .F=Fq/
2gCn�1 which makes the following diagram

commute:
Hg;n

.F=Fq/
2gCn�1 .F 0=F 0q/

2gCn�1

�����

z�A
q HHHHj

z�B
q

-
f

Proof Let

z D .z1; : : : ; zn�1I z
0
1; : : : ; z

0
gI z
00
1 ; : : : ; z

00
g/ 2 .F=Fq/

2gCn�1:

We can assume � D �0 by the following claim.
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Claim Suppose � does not equal �0 and let fxi ;mj ; lj g be a generating set of
�1.†;�/. Then there exist a generating set fx0i ;m

0
i ; l
0
j g of �1.†;�

0/ and a bijection
f which make the above diagram commute.

To prove the claim, we consider two cases:
(1) � and �0 are in the same boundary component. Choose a path 
 from �0 to � in

the boundary component, and let fx0i ;m
0
j ; l
0
j g be the generating set of �1.†;�

0/

induced by 
 –conjugation. Then z�q is unchanged, ie f D id.
(2) � and �0 are in different components. We may assume �0 2 @1 . Then x1 D

Œ˛1 �ˇ1 �˛
�1
1
� for some paths ˛1 from � to �0 and ˇ1W I ! I=@I

'
�! @1 with

ˇ1.0/ D �
0 . Let 
 be ˛�1

1
. For the isomorphism �W �1.†;�/! �1.†;�

0/

induced by 
 –conjugation, let x0
1
D �.Œ@n�/, x0i D �.xi/ for i D 2; : : : ; n� 1

and m0j D �.mj /, l 0j D �.lj / for j D 1; : : : ;g . Define a function

f W .F=Fq/
2gCn�1

! .F 0=F 0q/
2gCn�1

by

f .z/D �
�
z1; z2z�1

1 ; : : : ; zn�1z�1
1 I .mj z1m�1

j z0j z�1
1 /j�gI .lj z1l�1

j z00j z�1
1 /j�g

�
;

then it gives the commutative diagram.

Now we prove the proposition with the same basepoint � D �0 and F D F 0 . By
reordering, we may assume that xi is homotopic to .x0i/

˙1 . We can choose paths ˛i

and ˛0i with the same endpoints such that xi D Œ˛i �ˇi �˛
�1
i � and x0i D Œ˛

0
i �ˇ
˙
i �˛

0�1
i �

for ˇi W I! I=@I
'
�! @i . Let 
i D Œ˛i �˛

0�1
i �, 
 0j Dmj m0�1

j and 
 00j D lj l 0�1
j , and let


i D !i.x1; : : : ;xn�1Im1; : : : ;mgI l1; : : : ; lg/;


 0j D !
0
j .x1; : : : ;xn�1Im1; : : : ;mgI l1; : : : ; lg/;


 00j D !
00
j .x1; : : : ;xn�1Im1; : : : ;mgI l1; : : : ; lg/

be the words in xi ;mj ; lj , (i <n; j �g ). Suppose 'W .F=Fq/
2gCn�1! .F=Fq/

2gCn�1

is a function defined by

zi 7! z�1
i xizi ; z0j 7! z0�1

j mj ; z00j 7! z00�1
j lj :

Define f W .F=Fq/
2gCn�1! .F=Fq/

2gCn�1 by

f .z/D
�
.
�1

i zi!i.'.z///i<nI .

0�1

j z0j!
0
j .'.z///j�gI .


00�1
j z00j !

00
j .'.z///j�g

�
:

The verification that the diagram commutes is left to the reader. A similar construction
gives the inverse of f . It follows that f is bijective.

Therefore, z�A
q .M / determines z�B

q .M / and vice versa.
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3B Garoufalidis–Levine homomorphisms on Hg;n

Garoufalidis and Levine defined the homomorphism �qW Hg;1 ! Aut.F=Fq/ to be
.iC/

�1
�q ı .i�/�q where .i˙/�qW F=Fq

Š
�! �1.M /=�1.M /q as before. In the same

way, a homomorphism �qW Hg;n! Aut.F=Fq/ can be defined.

We compare �q and z�q . From (1) and (2) in Section 3A,

�q.�/.xi/D �q�1.�/
�1
i xi�q�1.�/i ;(3)

�q.�/.mj /D �
0
q.�/

�1
j mj and �q.�/.lj /D �

00
q.�/

�1
j lj :

Hence, .�q�1; �
0
q; �
00
q/ determines �q , but the converse does not hold. For example,

�q�1.M /i can be the class of xk
i even though �q.M /D id. In Hg;1 or in Ker.�2/�

Hg;n , the triple .�q�1; �
0
q; �
00
q/ is equivalent to �q , by the following lemma.

Lemma 3.4 For a homology cylinder M , if �2.M /i D 1 and Œxi ; �q�1.M /i � D 1

in F=Fq , then �q�1.M /i D 1.

Proof We will prove that if a 2 F2 and Œxi ; a� 2 Fq then a 2 Fq�1 . Consider the
Magnus expansion of F into the algebra of formal power series in noncommutative
2gC n� 1 variables X1; : : : ;X2gCn�1

MW F ! ZŒŒX1; : : : ;X2gCn�1��

which sends the k th generator of F to 1 C Xk . We order the generators so that
M.xi/D 1CXi . It is well known that M.a/� 1 is a sum of monomials of degree at
least q � 1 if and only if a 2 Fq�1 ; see [25, Section 5]. Let M.a/D 1C

P1
k�s hk

for monomials hk of degree k .

M.Œxi ; a�/D 1C .Xihs � hsXi/C
X

.monomials of degree> sC 1/:

Since Œxi ; a� 2 Fq , deg.Xihs � hsXi/D sC1� q and s � q�1. Thus, a 2 Fq�1 .

On Hg;n , z�q is equivalent to .�q; �q/, namely, the invariant z�q can be thought just
as a combination of �q and �q .

We consider the image of �q . For g � 0 and n� 1, let

Aut2.F=Fq/ WD
n
� 2 Aut.F=Fq/ j �.xi/D x�

�1
i xi x�i for some x�i 2 F=Fq�1;

and there is a lift F=FqC1

z�
�! F=FqC1 such that z�.Œ@n�/D Œ@n�

o
:

Proposition 3.5 Let M be a homology cylinder. Then �q.M / 2 Aut2.F=Fq/.

Proof Since �qC1.M / is a lift of �q.M / on F=FqC1 , the claim follows because
�qC1.M /.Œ@n�/D Œ@n� and from (3).
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Remark 3.6 When nD 1 or g D 0, the image of �q is known:

(1) It was shown that �qW Hg;1! Aut0.F=Fq/ is surjective [13], where

Aut0.F=Fq/ WD
n
� 2 Aut.F=Fq/ j there is a lift F=FqC1

z�
�! F=FqC1

such that z�.Œ@n�/D Œ@n�
o
:

(2) It was also shown that �qW H0;n! Aut1.F=Fq/ is surjective [18], where

Aut1.F=Fq/ WD
n
� 2 Aut.F=Fq/ j �.xi/D x�

�1
i xi x�i for some x�i 2 F=Fq�1

and �.x1 � � �xn�1/D x1 � � �xn�1

o
:

It remains an open question whether �qW Hg;n! Aut2.F=Fq/ is surjective.

3C Crossed homomorphisms

We remind the reader that z�qW Hg;n! .F=Fq/
2gCn�1 is not a homomorphism, al-

though �qW Hg;n ! Aut.F=Fq/ is a homomorphism. However, we have a product
formula as follows.

Proposition 3.7 Let M and N be homology cylinders over †. Then z�q is a crossed
homomorphism on Hg;n in the sense that each coordinate z�q.�/k satisfies

z�q.M �N /k D z�q.M /k � �q.M /.z�q.N /k/

for k D 1; : : : ; 2gC n� 1.

Proof Let {M W M !M �N and {N W N !M �N be the natural inclusions. Then

.M; iC; i�/ � .N; jC; j�/D .M [i�ı.jC/�1 N; {M ı iC; {N ı j�/;

z�.M �N /k D .{M /�.z�.M /k/.{N /�.z�.N /k/:

in �1.M �N /.
M

† M �N

N

?
{M

�
�
��i�

@
@
@RjC

6
{N

The above diagram commutes and all the maps induce isomorphisms on �1.�/=�1.�/q .
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Thus
z�q.M �N /k D .{M ı iC/

�1
�q .
z�.M �N /k/

D .iC/
�1
�q ı .{M /�1

�q ..{M /�.z�.M /k/.{N /�.z�.N /k//

D .iC/
�1
�q .
z�.M /k/..iC/

�1
�q ı .{M /�1

�q ı .{N /�q/.
z�.N /k/

D z�q.M /k..iC/
�1
�q ı .i�/�q ı .jC/

�1
�q /.
z�.N /k/

D z�q.M /k.�q.M / ı .jC/
�1
�q /.
z�.N /k/

D z�q.M /k�q.M /.z�q.N /k/:

In the remaining part of this paper, as an abuse of notation, we also write i˙ and
z�.M /k for {M ı i˙ and .{M /�.z�.M /k/, respectively.

From the above proposition, we obtain some properties of z�q .

Corollary 3.8 (1) For a homology cylinder M, z�q.�M /kD�q.M /�1.z�q.M /�1
k
/.

(2) The kernel of z�q.�/k is a subgroup of H for each k . Moreover, ker z�q is a
normal subgroup of H .

(3) z�q is a homomorphism on Ker.�q/, and z� is a homomorphism on
T

q Ker.�q/.

(4) z�q is a homomorphism on Ker.z�q�1/ or more generally on Ker.�2/\Ker.�q�1/.

Proof (1) easily follows from z�q.M �M
�1/kD1. For (2), let M and N be homology

cylinders over †. First, if z�q.M /k D 1D z�q.N /k , then z�q.M �N
�1/k D 1. Next

we check that if z�q.M /k D 1 for all k , then z�q.N �M �N
�1/k D 1:

z�q.N �M �N
�1/k D z�q.N /k�q.N /.z�q.M /k�q.M /.z�q.N

�1/k//

D z�q.N /k�q.N /.z�q.N
�1/k/ since z�q.M /D 1

D z�q.N /k�q.N /.�q.N /�1.z�q.N /�1
k / by (1)

D z�q.N /k z�q.N /�1
k

D 1:

(3) follows directly from Proposition 3.7.

For (4), we need the following algebraic fact: for a group G , if an automorphism
of G=Gq induces the identity on G=Gq�1 , then its restriction on G2=Gq is also the
identity. We give a proof: from the hypothesis, for such an automorphism � and
g 2 G=Gq , �.g/D ga for some a 2 Gq�1=Gq . Since Gq�1=Gq is in the center of
G=Gq , the automorphism restricted on G2=Gq is the identity. From the algebraic
fact, we obtain the desired conclusion since �q�1.M /D id and z�q.M /k 2F2=Fq for
M 2 Ker.z�q�1/ or Ker.�2/\Ker.�q�1/.
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4 Several subgroups and filtrations of Hg;n

4A Filtrations via extended Milnor invariants

We introduce a filtration of H

� � � �H.qC 1/�H.q/�H.q� 1/� � � � �H.2/�H.1/DH;

where H.q/ is the normal subgroup Ker.z�q/ of H , by Corollary 3.8(2).

Comparing with HŒq� WDKer.�q/, we have H.q/�HŒq�. For nD 1, the two filtrations
are the same.

Levine showed that there is an injective homomorphism from the framed g–string
link concordance group H0;gC1 to Hg;1 and that it induces injections between the
successive quotients of the filtration fH0;gC1.q/g and those of the filtration fHg;1Œq�g

[24]. We generalize this to Hg;n as follows.

Theorem 4.1 Suppose {W †g;n ,! †g0;n0 is an embedding (n; n0 � 1). Then it
induces a homomorphism z{W Hg;n ! Hg0;n0 and a function f W .F=Fq/

2gCn�1 !

.F 0=F 0q/
2g0Cn0�1 which make the following diagram commute:

Hg;n Hg0;n0

.F=Fq/
2gCn�1 .F 0=F 0q/

2g0Cn0�1

-z{

?

z�q

?

z�q

-f

where F D �1.†g;n/ and F 0 D �1.†g0;n0/. Moreover, if each component of †g0;n0 �

†g;n has at least one closed boundary, then f is 1–1, and hence z�q.z{.M // determines
z�q.M / for every M 2Hg;n . If, in addition, at most one component of †g0;n0 �†g;n

has a disconnected intersection with †g;n , then z{W Hg;n!Hg0;n0 is injective.

Proof We simply write † WD†g;n , †0 WD†g0;n0 and H WDHg;n , H0 WDHg0;n0 . By
Proposition 3.3, we may assume that the generating sets of F and F 0 are as follows.
We can assume that each component of @† maps to either the interior of †0 or the
boundary of †0 . Let Sr be a component of †0�†, which is a surface of genus gr

with ar boundaries on Sr \† and nr boundaries on Sr �†.
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Step 1 Choose basepoints � of † and �0 of †0 . To define z�q , we should choose
basepoints on boundaries of the surfaces. There are two cases:

(1) The two basepoints can be chosen as the same point, ie there is a common
boundary of † and †0 . Choose � D �0 on the boundary.

(2) The two basepoints cannot be chosen as the same point, ie there is no common
boundary of † and †0 . Then at least one Sr has a boundary of †0 . Choose �
and �0 in the same Sr . Choose a path 
 from �0 to � in the Sr for later use.

Step 2 Choose a generating set for F . We fix a generating set for F as in Section 3.
Denote the generators corresponding to the boundaries of Sr \† by xr

k
and the other

generators by ys .

Step 3 Choose a generating set for F 0 . First we will choose a generating set of
�1.†

0;�/. Note that xr
k
D Œ˛r

k
�ˇr

k
�.˛r

k
/�1� for a closed path ˇr

k
onto the corresponding

boundary and a path ˛r
k

from � to ˇr
k
.0/. Let {�W F ! �1.†

0;�/ be the map induced
by { . We choose y0s WD i�.ys/. Now we select the other generators of �1.†

0;�/ with
regard to Sr . We consider two cases, shown in Figure 2:

(1) Sr 63 � Choose generators of �1.Sr ; ˛
r .1// corresponding to the nr boundary

components of †0 in Sr and the gr handles of Sr as in Section 3, and conjugate
them by ˛r

1
so that we obtain generators x0ri ;m

0r
j ; l
0r
j of �1.†

0;�/ for i � nr

and j � gr . Let m0r
grCk

WD {�.x
r
k
/ and l 0r

grCk
WD Œ˛r

k
�
 r

k
� .˛r

kC1
/�1� for a path


 r
k

from ˛r
k
.1/ to ˛r

kC1
.1/ in Sr and k D 1; : : : ; ar � 1.

(2) Sr 3 � (and �0 ) Choose generators of �1.Sr ;�/ corresponding to the nr � 1

boundary components of †0 in Sr except the one containing �0 , and those
corresponding to the gr handles of Sr as in Section 3. They give generators
x0ri ;m

0r
j ; l
0r
j of �1.†

0;�/ for i � nr �1 and j � gr . Let m0r
grCk

WD {�.x
r
k
/ and

l 0r
grCk

WD Œ˛r
k
�.
 r

k
/�1� for a path 
 r

k
from � to ˛r

k
.1/ in Sr and kD1; : : : ; ar�1.

We define a set Ar WD fx
0r
i ;m

0r
j ; l
0r
j ;m

0r
grCk

; l 0r
grCk
g. Then .

S
r Ar /[ fy

0
sg is a gen-

erating set for �1.†
0;�/. If � ¤ �0 , replace all the generators by conjugation by 
 to

obtain a generating set for F 0 . Note that we have {#W F
{�
�! �1.†

0;�/
Š
�! F 0 where

the latter is induced by 
 –conjugation.

Now we define f . We use the following indexing convention for coordinates of
elements of .F=Fq/

2gCn�1 , using generators of F . Recall that the generating set
fxr

k
;ysgr;k;s has been ordered to define z�q.�/k using the k th generator. If a2fxr

k
;ysg

is the k th generator, we call the k th coordinate of an element in .F=Fq/
2gCn�1 the

coordinate associated with a.
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Figure 2: Sr and paths to choose generators of F 0 in Step 3.

The map f can be defined coordinatewise as follows. Let z 2 .F=Fq/
2gCn�1 .

First, the coordinates �r
i ; �
0r
j ; �

00r
j of f .z/ associated with x0ri ;m

0r
j ; l
0r
j are determined

by the coordinates zi of z associated with xr
i for all i; j .

Case 1: Sr 62�

�r
i D {#.z1/; �0rj D Œm

0r
j ; {#.z1/

�1�; �0rgrCk D Œm
0r
grCk ; {#.zk/

�1�;

�00rj D Œl
0r
j ; {#.z1/

�1�; �00rgrCk D l 0rgrCk {#.zkC1/
�1.l 0rgrCk/

�1{#.zk/

for i D 1; : : : ; nr , j D 1; : : : ;gr , and k D 1; : : : ; ar � 1.

Case 2: Sr 3 � If ar > 1, then �r
i ; �
0r
j ; �

0r
grCk

; �00rj are the same as case 1, and
�00r

grCk
D {#.zk/ for i D 1; : : : ; nr � 1, j D 1; : : : ;gr , and k D 1; : : : ; ar � 1. If

ar D 1, then all the coordinates associated with x0ri ;m
0r
j ; l
0r
j are 1 for i D 1; : : : ; nr�1,

j D 1; : : : ;gr .

Next, the coordinate �s of f .z/ associated with y0s is determined by the coordinate zs

of z associated with ys :
�s D {#.zs/ for all s:

Note that f is not a homomorphism. From the definition of f , it is 1–1 if nr � 1 for
all r and {# is injective. If every nr is nonzero, then {# is injective. Therefore, if every
nr is positive, then f is 1–1. The verification that the diagram commutes is left to
the reader.

Algebraic & Geometric Topology, Volume 16 (2016)



918 Minkyoung Song

Suppose at most one ar is bigger than 1. To prove z{W H!H0 is injective, we claim
that there is a function z| W H0! H so that z| ız{ D idH . The surface †0 is obtained
from † by attaching 1–handles to a collar neighborhood of Sr \†. This allows us to
extend

†
id�1=2
����!†� I

to an embedding | W †0 ,!†� I . For example, see Figure 3.

†� I

†� 1
2

Figure 3: |.†0/ in †� I .

We define z|.M 0/ as the manifold obtained by cutting †� I open along |.†0/ and
filling in it with M 0 . It is easy to check that z| W H0!H is well defined. We obtain the
injectivity of z{ from z| ız{ D idH .

Whenever f is 1–1, z{ induces injections H.q � 1/=H.q/ ,! H0.q � 1/=H0.q/. By
considering the cases of .g; n/ and .g0; n0/ for which there is an injection Hg;n !

Hg0;n0 , we obtain the following corollary. Note that if †g;n �†g0;n0 , then g � g0 .

Corollary 4.2 For any two pairs .g; n/ and .g0; n0/ satisfying g � g0 and gC n �

g0C n0 , there is an injective homomorphism

Hg;n ,!Hg0;n0 ;

which induces injections

Hg;n.q� 1/=Hg;n.q/ ,!Hg0;n0.q� 1/=Hg0;n0.q/

for all q � 2.

Proof There exists an embedding {W †g;n ,! †g0;n0 such that both f and z{ are
injective: †g0;n0 �†g;n D S1 is connected, and if n > n0 , a1 D n� n0C 1, n1 D 1,
and gr D g0Cn0�g�n; otherwise, a1 D 1, n1 D n0�nC 1, and gr D g0�g . The
conclusion follows from Theorem 4.1
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The following theorem gives more information on the group H.q� 1/=H.q/ directly
via z�q .

Theorem 4.3 (1) z�q induces an injective homomorphism

z�qW H.q� 1/=H.q/ ,! .Fq�1=Fq/
2gCn�1:

Hence H.q� 1/=H.q/ is a finitely generated free abelian group.

(2) We have

maxfrq.2g/; rq.gC n� 1/g � rankH.q� 1/=H.q/� rq.2gC n� 1/;

where Nq.m/D
1
q

P
d jq '.d/.m

q=d /, ' is the Möbius function and rq.m/D

mNq�1.m/�Nq.m/.

Note that
Nq.2gC n� 1/D rank Fq=FqC1

and
rq.2gC n� 1/D .2gC n� 1/ rank Fq�1=Fq � rank Fq=FqC1

D CokerfH3.F=Fq/!H3.F=Fq�1/g:

We remark that the facts

rankHg;1.q� 1/=Hg;1.q/D rq.2g/;

rankH0;n.q� 1/=H0;n.q/D rq.n� 1/

were shown in [13] and [27], respectively.

Proof (1) Since z�qW H.q � 1/ ! .Fq�1=Fq/
2gCn�1 is a homomorphism, for

M;N 2 H.q � 1/, ŒM � D ŒN � in H.q � 1/=H.q/ if and only if z�q.M / D z�q.N /.
The well-definedness and the injectivity of the map follow.

(2) Consider the map

pW .Fq�1=Fq/
2gCn�1

! Fq=FqC1;

.a1; : : : ; an�1; b1; : : : ; bg; c1; : : : ; cg/ 7!

n�1Y
iD1

Œxi ; ai �

gY
jD1

Œlj ; bj � Œbj ; cj � Œcj ;mj �:

This p is a surjective homomorphism, and the kernel has rank rq.2gC n� 1/. For the
upper bound of the rank of H.q�1/=H.q/, we claim that pı z�q is trivial on H.q�1/.
For any homology cylinder M , �q.M / fixes Œ@n� for all q . Using the generating
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set of F in Figure 1, the element Œ@n� D
Q

i xi

Q
j Œmj ; lj � 2 F . For M 2 H.q � 1/,

�qC1.M /.Œ@n�/D Œ@n� is arranged toY
i

Œxi ; �q.M /i �
Y
j

Œlj ; �
0
q.M /j � Œ�

0
q.M /j ; �

00
q.M /j � Œ�

00
q.M /j ;mj �D 1:

Therefore pız�qDpı.�q; �
0
q; �
00
q/ is trivial. The lower bound comes from Corollary 4.2

and the known ranks of Hg;1.q�1/=Hg;1.q/ and H0;n.q�1/=H0;n.q/ [13; 27] stated
above.

We define H0Œq� WD fM 2 HŒq� j �2.M / D 1g. Then it is a subgroup of H by
Corollary 3.8, and H.q/�H0Œq��H.q� 1/ by Lemma 3.4. Thus we can refine the
filtration fH.q/g of H:

� � � �H.q/�H0Œq��H.q� 1/�H0Œq� 1�� � � � �H.2/�H0Œ2��H.1/DH:

Consider two injections �q and .�0q; �
00
q/ from the injection z�q :

�qW
H0Œq�

H.q/
,! .Fq�1=Fq/

n�1;

.�0q; �
00
q/W

H.q� 1/

H0Œq�
,! .Fq�1=Fq/

2g:

The two subquotients of H are also finitely generated free abelian, and there is an
isomorphism

H.q� 1/

H.q/
Š

H.q� 1/

H0Œq�
�

H0Œq�

H.q/
;

which is not canonical.

In the remaining part of this section, we introduce some notions analogous to the
boundary (string) links and the yF –(string) links.

4B Boundary homology cylinders

As a generalization of boundary (string) links, we define boundary homology cylinders.

Definition 4.4 A homology cylinder .M; iC; i�/ over † is said to be a boundary
homology cylinder if there exists a homomorphism �W �1.M /! �1.†/ such that
� ı .iC/� D idD � ı .i�/� and �.�i/D 1 for all i .
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Geometrically, the boundary homology cylinder M can be defined to be a homology
cylinder such that there exists  W M !† making the left diagram below commute.

@M †

M
?

-
i�1
C
[i�1
�

p p p p p
p p�
 

iC.†/ †

M
?

-
i�1
C

p p p p p
p p�
 C

Let .M; iC; i�/ be a homology cylinder. We consider splittings �C and �� of .iC/�
and .i�/� , respectively. Note that �C exists if and only if  C exists in the above right
diagram. The existence of �C does not imply that of �� . Even if both �C and ��
exist, they can be different. Suppose �C exists. Then �q.M / is trivial if and only if
�C is also a splitting of .i�/� due to

T
Fq D 0. However, such a common splitting of

.iC/� and .i�/� does not guarantee that the homology cylinder is a boundary homology
cylinder. Such an example can be found by considering homology cylinders of the
form .†�I=�; id�0; id�1ı'/ with nonvanishing �q , where ' is a composition of
Dehn twists about boundaries. The condition �.�i/D 1 for all i , or equivalently all
�q vanish, is necessary to satisfy the geometric definition of the boundary homology
cylinder. In conclusion, we state the following proposition.

Proposition 4.5 A homology cylinder M is a boundary homology cylinder if and
only if the following hold:

(1) There is a splitting of .iC/� or .i�/� .

(2) z�.M / vanishes.

The subset of boundary homology cylinders are closed under the multiplication and
inverting (ie reversing orientation and swapping two markings) of Cg;n , but a homology
cylinder which is homology cobordant to a boundary homology cylinder may not be
a boundary homology cylinder; for example, [30] provides such a string link. We
define BH to be the subgroup of homology cobordism classes of boundary homology
cylinders.

We remark that the exterior E� of a framed string link � in a homology 3–ball is
a boundary homology cylinder if and only if the link’s closure y� is a boundary link
and the framing of � induces the 0–framing of y� . This holds because �1.Ey� / D

�1.E� /=hhiC.xi/D i�.xi/ii.
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4C yF –homology cylinders

We define yF –homology cylinders as an analog of the yF –(string) links. Here yG means
the algebraic closure of a group G with respect to Z–coefficient or Z.p/–coefficient
in the sense of [1]. The former was called the HE–closure in [23]. For both Z and
Z.p/ , everything in this paper holds.

It is known that for CW complexes X and Y with finite 2–skeletons, if X ! Y

is 2–connected on the integral homology, then it induces an isomorphism on 1�1.�/

[22; 1]. Hence the markings †!M for a homology cylinder M induce isomorphisms
yF
Š
�! 2�1.M / .

Definition 4.6 A homology cylinder M is called an yF –homology cylinder if z�k 2

�1.M / vanishes in 2�1.M / for every k D 1; : : : ; 2gC n� 1.

Note that M is an yF –homology cylinder if and only if yi W †! yM induces an isomor-
phism on 1�1.�/ . This can be shown using properties of the algebraic closure functor;
see the proof of [3, Proposition 6.3]. The yF –homology cylinders form a subgroup of
Hg;n by the following lemma.

Lemma 4.7 (1) The product of two yF –homology cylinders is an yF –homology
cylinder.

(2) If M is an yF –homology cylinder, then �M is also an yF –homology cylinder.

(3) A homology cylinder which is homology cobordant to an yF –homology cylinder
is an yF –homology cylinder.

Proof (1) Let M D .M; iC; i�/ and M 0 D .M 0; i 0C; i
0
�/ be yF –homology cylinders.

By the Seifert–van Kampen theorem, �1.M �M
0/ is the pushout of .iC/� and .i�/� ,

and z�.M �M 0/k is the product of z�.M /k and z�.M 0/k in �1.M �M
0/. All of the

z�.M �M 0/k vanish in 4�1.M �M 0/ by the following commutative diagram.

�1.†/ �1.M /

1�1.†/ 2�1.M /

�1.M
0/ �1.M �M

0/

2�1.M 0/ 4�1.M �M 0 /

?

.i0
C
/�

HHHj

-.i�/�

HHHj

?

-

?

?
H
HHj

-

H
HHj
-
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(2) It is obvious since z�.�M /k D z�.M /�1
k

in �1.M /.

(3) Let .M; iC; i�/ and .M 0; i 0C; i
0
�/ be homology cylinders. Suppose M is an yF –

homology cylinder and W is a homology cobordism between M and M 0 . Consider
the commutative diagram below.

†[@† M

M 0 W

?
i0
C
[i0�

-
iC[i�

?
-

We should check that the elements z�.M 0/k of �1.M
0/ vanish in 2�1.M / . Both

z�.M /k and z�.M 0/k come from the same element of �1.†[@†/ along .iC[ i�/�
and .i 0C[ i 0�/� , so they are mapped to the same element along isomorphisms

2�1.M /
Š
�!2�1.W /

Š
 � 2�1.M 0/

induced by inclusions. Since z�.M /k vanishes in �1. yM / for all k , so does z�.M 0/k .

We denote the subgroup of yF –homology cylinders by yH .

Levine defined a notion of an yF –link using his algebraic closure which involves a
certain normal generation condition [22]. We denote Levine’s algebraic closure by
yGLev to avoid confusion. The definition is as follows: a link L is called an yF –link if
a meridian map into link exterior EL induces an isomorphism on 1�1.�/

Lev and the
preferred longitudes vanish in 2�1.EL/

Lev . In this paper, we use a modified definition
by replacing yGLev by our yG as in [3]. Levine’s yF –link is an yF –link in our sense,
though the converse is open.

For a framed string link � in a homology 3–ball, its exterior E� is an yF –homology
cylinder if and only if its closure y� is an yF –link (in our sense) and the framing of �
induces the 0–framing of y� . It follows by considering

�1.E� /� �1.Ey� /� �1. yE� /D �1.E� /=hh�iii;

where Ey� is the exterior of the link y� .

Remark 4.8 (1) Since a boundary homology cylinder is an yF –homology cylinder,
BH � yH . In general, the inclusion is strict because it is known that there are
yF –string links which are not concordant to any boundary string link [8].

(2) yH � H.1/, but we do not know the converse. This question is a homology
cylinder version of a long-standing conjecture that a link with vanishing x�–
invariants is an yF –link in the sense of Levine.
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(3) For the mapping class group M over †, we note that M\H.1/D 0. This
may be used to find links which are not fibered but homologically fibered as
in [14].

5 Hirzebruch-type invariants

We review some definitions in Cha’s work [3; 2]. Let X be a CW complex. A tower

X.h/! � � � !X.1/!X.0/ DX

of covering maps is called a p–tower of height h for X if each X.tC1/! X.t/ is a
connected cover whose covering transformation group is a finite abelian p–group. For
a power d of p , a Zd –valued p–structure of height h for X is a pair .fX.t/g; �/ of
a p–tower of height h for X and a surjective character �W �1.X.h//� Zd . We omit
the word “Zd –valued” from now on. A p–structure of height h is equivalent to a
p–tower of height hC 1 such that the .hC 1/st cover is a Zd –cover of the hth cover.
For a p–structure of height h for X , we usually denote by X.hC1/ the Zd –cover of
the top cover X.h/ determined by � .

We recall the definition of the Hirzebruch-type intersection form defect invariant
[3, Definition 2.2]. Let T be a p–structure .fM.t/g; �/ of height h for a closed 3–
manifold M . Suppose r.M.h/; �/D 0 in the bordism group �3.BZd / for some r > 0.
Then there is a 4–manifold W bounded by rM.h/ over � . Choose a subring R of Q
containing 1=r . Define

�.M; T /D 1

r
˝ .Œ�Q.�d /.W /�� Œ�Q.W /�/ 2R˝Z L0.Q.�d //;

where Œ�K.W /� is the Witt class of the K–coefficient intersection form of W for a
field K .

Note that since �3.BZd /DH3.Zd /D Zd , some multiple of a closed 3–manifold
over Zd is zero in the bordism group.

Lemma 5.1 [3, Lemma 4.4] For a p–structure .fM.t/g; �/ of height h for a closed
3–manifold M , if H1.M.h// is p–torsion free, then .M.h/; �/ is null bordant over
Zd so that �.M; T / is well defined as an element in L0.Q.�d //.

Proof The character �W �1.M.h//!Zd factors through Z if H1.M.h// is p–torsion
free. Since .M.h/; �/ 2 Imf�3.BZ/ ! �3.BZd /g and �3.BZ/ Š H3.Z/ D 0,
. yM.h/; �/D 0 in �3.BZd /.
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For a homology cylinder M , recall that there is an associated closed 3–manifold yM ,
the closure of M . For each p–structure T for yM , �. yM ; T / is defined. We want to
define invariants parametrized by the p–structures for the base surface † rather than
those for yM , and hope that the invariants are homomorphisms of (subgroups of) the
homology cobordism group H . To do this, we first investigate how to determine a
p–structure for yM from a given p–structure for †.

5A p–structures and p–tower maps

A map f W X ! Y is called a p–tower map if it gives rise to a 1–1 correspondence

f̂ W fp–structures for Y g ! fp–structures for X g

via pullback. For a more precise description, we recall the definition of the pullback
cover. For a covering map pW zY ! Y and a map f W X ! Y , the space zX D f.x; a/ 2
X � zY j f .x/ D p.a/g is called the pullback cover of X by f . The canonical
projection map zX !X is a covering map. We note that the fiber of the pullback cover
is homeomorphic to that of the original cover. For a map X ! Y and a p–tower for
Y , if we take the pullback covers inductively, then we get a tower of p–covers of X ,
but some covers may be disconnected. Hence f̂ is well defined only when all the
pullback covers are connected and the induced character is surjective.

It is known that if X and Y have finite 2–skeletons, and if f is 2–connected or, more
generally, induces an isomorphism on 1�1.�/ , then f is a p–tower map [3, Lemma 3.7,
Proposition 3.9]. Hence, for example, each marking †!M of any homology cylinder
M is a p–tower map.

Definition 5.2 Let X and Y be CW complexes.

(1) A p–structure of height h for X is called a p–structure of order q if �1.X /q �

�1.X.hC1//, viewing �1.X.hC1// as a subgroup of �1.X /, via the injection
induced by the covering projection.

(2) A map X ! Y is called a p–tower map of order q if it induces a 1–1 corre-
spondence

f̂ W fp–structures for Y of order qg ! fp–structures for X of order qg

via pullback.

Note that the defining condition in Definition 5.2(1) is independent of the basepoints
of X and X.hC1/ .

We need an algebraic lemma.
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Lemma 5.3 For a finitely generated group G , suppose there is a subnormal series
G.t/ G � � � GG.1/ GG.0/ D G whose factor groups are abelian p–groups. Then G.t/
contains Gq for some q .

Note that if G.t/ were a normal subgroup of G , then the conclusion would be immediate
as any p–group is nilpotent. We give a proof for the above general case at the end of
this section.

Let X and Y be CW complexes with finitely generated fundamental groups. By the
lemma,

fp–structures for X g D
[
q

fp–structures for X of order qg;

and X ! Y is a p–tower map if and only if it is a p–tower map of order q for all q .

Lemma 5.4 Let X and Y be connected CW complexes whose fundamental groups
are finitely generated. If f W X ! Y induces a surjection on �1.�/=�1.�/q , then f̂

between p–structures of order q is well defined and 1–1.

Proof For the well-definedness, we should check that pullback covers are connected p–
covers. Use induction on t �0. Suppose there exists a unique Y.t/ such that the pullback
cover is X.t/ , and X.t/ is connected. Let Y.tC1/ be determined by �1.Y.t//� �.t/ .
Since the homomorphism factors through �1.Y.t//=�1.Y /q , the composition map
�1.X.t//! �.t/ also factors through �1.X.t//=�1.X /q� �1.Y.t//=�1.Y /q and is
surjective. Hence the pullback cover X.tC1/ is a connected cover of X.t/ whose cover
transformation group is �.t/ . The map �1.X.t//��.t/ which determines X.t/ factors
through �1.X.t//=�1.X /q��1.Y.t//=�1.Y /q . Hence it determines �1.Y.t//!�.t/
uniquely. Therefore Y.tC1/ , whose pullback is X.tC1/ , is unique.

Applying this lemma to the marking yi W †! yM of a homology cylinder M , ˆyi is
always well defined and 1–1. We write ˆM instead of ˆyi : Now, we investigate when
a p–structure T for † determines one for yM , in other words, when T 2 ImˆM . If
it is the case and the top cover of yM is r –torsion in �3.BZd /, we can define

�T .M / WD �. yM ; .ˆM /�1.T // 2 Z
h

1

r

i
˝Z L0.Q.�d //:

From now on, let .f†.t/g; �/ be a p–structure T for †, and F.t/ D �1.†.t//.

Lemma 5.5 Let T be a p–structure of height h for † of order q . For a homology
cylinder M , T is in ImˆM if and only if z�q.M /k is in F.hC1/=Fq for all k .
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Proof For 0� t � h, suppose there is yM.t/ corresponding to †.t/ (and M.t/ ). We
shall prove that yM.tC1/ exists whose pullback cover is †.tC1/ if and only if z�q.M /k
is in F.tC1/=Fq for all k . Since †!M is a p–tower map, we have

F.t/! �1.M.t//� �.t/;

which determines †.tC1/ and M.tC1/ . All z�q.M /k are in F.tC1/=Fq if and only
if all z�.M /k are in �1.M.tC1//, ie all z�.M /k vanish in �.t/ . This means that
�1.M.t//� �.t/ factors through �1. yM.t//, or equivalently, yM.tC1/ exists. The
assumption is true for t D 0, and this completes the proof by induction.

Theorem 5.6 Suppose M is a homology cylinder.

(1) yi W †! yM is a p–tower map of order q if and only if z�q.M / vanishes.

(2) yi W †! yM is a p–tower map if and only if z�.M / vanishes.

Proof (1) By Lemma 5.5, ˆM between p–structures of order q is surjective if and
only if z�q.M /k 2

T
G G=Fq for all k , where G=Fq ranges over all subgroups of

F=Fq such that the index ŒF W G� is a power of p . Thus, it suffices to show thatT
G G=Fq is trivial. From the fact that F=Fq is a residually p–group [16],

T
G G=Fq

is trivial. Statement (2) follows directly from (1).

From the above proof, we give a weakened condition for a map to be a p–tower map.

Theorem 5.7 Let X and Y be connected CW complexes having finitely gener-
ated fundamental groups. Suppose a map f W X ! Y induces a surjection f� on
�1.�/=�1.�/q . If f� is injective, then f is a p–tower map of order q . Moreover, if
�1.X /=�1.X /q is a residually p–group, then the converse is also true.

We remark that this proposition can be applied to meridian maps of (string) links. This
gives the affirmative answer to the question in [3, Remark 6.4]: “if L is a link with
vanishing x�–invariants, then is a meridian map into the surgery manifold of the link a
p–tower map?” Moreover, the converse is also true.

5B Homology cobordism invariants

We study the homology cobordism invariance of �T .

Proposition 5.8 Suppose homology cylinders M and M 0 are homology cobordant.
Then �T .M / is defined as an element in ZŒ1

r
�˝L0.Q.�d // if and only if �T .M 0/

is defined as an element in ZŒ1
r
�˝L0.Q.�d //. In that case, �T .M / D �T .M

0/ in
ZŒ1

r
�˝L0.Q.�d //.
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Theorem 5.6 and Proposition 5.8 provide invariants of homology cobordism group of
homology cylinders. More precisely, we have

�T W H.q/! Z
h

1

d

i
˝Z L0.Q.�d //

for each p–structure T for † of order q .

To prove the proposition, we construct a homology cobordism between yM and yM 0 .

Lemma 5.9 Suppose homology cylinders .M; iC; i�/ and .M; i 0C; i
0
�/ are homology

cobordant. Then there is a homology cobordism yW between yM and yM 0 such that

†
yi
�! yM ! yW and †

yi0
�! yM 0

! yW

are homotopic.

Proof Let W be a homology cobordism between M and M 0 . We construct a 4–
manifold yW from W by identifying tubular neighborhoods of iC.†/ and i�.†/ in
the boundary of W . Then the boundary of yW is yM [ yM 0 . We remind the reader
that E is the trivial homology cylinder for the next. Equivalently, yW is obtained by
attaching E � I to the tubular neighborhood of @M in the boundary of W such that
@E�I = (tubular neighborhood of @M ), @E�0�M and @E�1�M 0 . We need to
check that the inclusion maps yM ,! yW and yM 0 ,! yW are homology equivalences.
By comparing the Mayer–Vietoris sequences of .M;E�0/ and .W;E�I/, we obtain
an isomorphism H�. yM / ! H�. yW / using the five lemma. Hence yM ,! yW is a
homology equivalence, and similarly for yM 0 ,! yW . The homotopy conclusion in the
statement follows from the construction of yW .

Proof of Proposition 5.8 Suppose �T .M / 2 ZŒ1
r
�˝L0.Q.�d // is defined, ie there

is a p–structure S for yM such that ˆM .S/D T and the top cover of yM is r –torsion
in �3.BZd /. Since yM ,! yW and yM 0 ,! yW are 2–connected, they are p–tower
maps and so there is a p–structure S 0 for yM 0 corresponding to S under the inclusion-
induced bijections. From the homotopy conclusion in Lemma 5.9, it follows that
ˆM 0.S 0/D T . Hence �T .M 0/ is also defined. By applying [3, Proposition 3.1], we
obtain �T .M /D �T .M

0/ 2 ZŒ1
r
�˝L0.Q.�d //.

For later use, we recall two key ingredients of the proof of [3, Proposition 3.1]:

(K1) Suppose X �Y are CW complexes with finite n–skeletons. If Hi.X;Y IZ.p//D
0 for i � n, then Hi. zX ; zY IZ.p//D 0 for i � n where zX is a p–cover of X

and zY is the pullback cover of Y by the inclusion Y ,!X [3, Lemma 3.3].
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(K2) If a 4–manifold X satisfies

ImfH2. zX IQ/!H2. zX ; a subspace of @ zX IQ/g D 0

for a Zd –cover zX of X , then the Witt class of the Q.�d /–coefficient intersection
form Œ�Q.�d /.X /� vanishes.

As in the proof of [2, Theorem 2.4], to prove (K2), we use the fact that Q.�d / is flat
over QŒZd �; by the universal coefficient theorem,

H2.X IQ.�d //DH2.X IQŒZd �/˝QŒZd �Q.�d /DH2. zX IQ/˝QŒZd �Q.�d /:

Similarly for a subspace of @ zX . Thus the condition implies

ImfH2.X IQ.�d //!H2.X; @X IQ.�d //g D 0;

and Œ�Q.�d /.X /�D 0:

5C Homomorphism of homology cobordism groups

In this section, we investigate the additivity of �T . For M;N in H.q/ and a p–
structure T for † of order q , we to check whether �T .M /C�T .N /��T .M �N /D 0.
We will construct a cobordism V between yM [ yN and 1M �N such that if M and N

are in H.q/, then the inclusions from yM , yN , and 1M �N into V are p–tower maps
of order q . After then, we will investigate when the difference of the Witt classes of
two intersection forms, twisted and untwisted, of the top cover of V vanishes.

For our purpose, we can use a fairly standard cobordism V as in [2; 7]. The cobordism
V is obtained from . 4.M; iC; i�/ [5.N; jC; j�//� I by identifying product neighbor-
hoods of yi.†/ and yj .†/ in . yM [ yN /�1. Since the identification can be thought of as
attaching †� I � I along the product neighborhoods, V can be obtained by attaching
one 1–handle which connects yM � I to yN � I and .2gC n� 1/ 2–handles along
simple closed curves on yi.†/ #b

yj .†/ in yM # yN corresponding to yi�.z/ � yj�.z�1/ (up
to homotopy) where z ranges over disjoint simple closed curves representing xi , mj

and lj in Figure 1. (# denotes connected sum and #b denotes boundary connected
sum.) Then by construction we have the following property, which we state as a lemma.

Lemma 5.10 For any homology cylinders M and N over †, there is a cobordism
V between yM [ yN and 1M �N such that the following diagram is commutative up to
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homotopy relative to �.

yM

† yN V

1M �N

@
@@R�

���
yi

@
@@RiCDj�

-
yj -

�
���

Note that 1M �N and 1N �M are homeomorphic, and the marking for 1M �N and the
marking for 1N �M induce the same homomorphism

�1.†/! �1.1M �N /Š �1.1N �M /:

Lemma 5.11 If M;N 2 H.q/, then all maps in the above diagram induce isomor-
phisms on �1.�/=�1.�/q . Consequently, all the maps are p–tower maps of order q .

Proof It suffices to prove that the embedding 1M �N ,!V induces an isomorphism on
�1.�/=�1.�/q . Both �1.1M �N / and �1.V / are quotient groups of �1.M /��1.N /:
�1.1M �N / is the quotient by the normal subgroup generated by .i�/�.z/.jC/�.z�1/

for z 2 F and z�.M /kz�.N /k for all k ; �1.V / is the quotient by the normal subgroup
generated by .i�/�.z/.jC/�.z�1/ for z 2 F and z�.M /k , z�.N /k for all k . Hence if
M is in H.q/ then z�.M /k is in .�1.M /��1.N //q . The claim follows.

For corresponding p–towers for yM , yN , 1M �N , and yW , we have

@V.t/ D yM.t/[
yN.t/[�1M �N .t/;

and hence

�T .M /C�T .N /��T .M �N /D Œ�Q.�d /.V /�� Œ�Q.V /�:

The following theorem presents sufficient conditions for the intersection forms on the
right hand side to be Witt trivial. Recall that by Lemma 5.5, if M 2H.q/ and T is a
p–tower for † of order q , then z�q.M /k 2 F.t/=Fq for all t . Also the k th coordinate
z�.M /k of z�.M / lives in lim

 ��s�q
F.t/=Fs . We will consider a map

lim
 ��
s�q

F.t/=Fs! lim
 ��

s

H1.F.t//˝Zps ;

which will be defined in the proof of Theorem 5.12 below.
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Theorem 5.12 Suppose T is a p–structure of height h for † of order q and M is a
homology cylinder in H.q/. Then the following are equivalent:

(C1) H1.†.t/IZ/!H1. yM.t/IZ/ is injective.

(C2) H1.†.t/IZ.p//!H1. yM.t/IZ.p// is injective.

(C3) H1.†.t/IQ/!H1. yM.t/IQ/ is injective.

(C4) All z�.M /k are torsion elements in H1.M.t//.

(C5) All z�.M /k lie in the kernel of lim
 ��s�q

F.t/=Fs! lim
 ��s

H1.F.t//˝Zps :

If M and N are in H.q/ and either M or N satisfies any of (C1)–(C5) for t D hC1,
then

�T .M /C�T .N /D �T .M �N /:

In addition, the homology cylinders satisfying any of (C1)–(C5) form a subgroup
of H.q/.

We remark that in (C2) and (C3), the injectivity of the map implies that it is an
isomorphism. See the proof below.

Proof The implications (C1) ) (C2) ) (C3) follow as Z.p/ is flat over Z and Q
is flat over Z.p/ . From (K1) on page 928,

H1.†.t/IZ.p//
Š
�!H1.M.t/IZ.p//:

Since �1.M.t//! �1. yM.t// is surjective, the homomorphisms in (C2) and (C3) are
always surjective. Since H1.†.t// is torsion free, H1.†.t/IZ/ ! H1.†.t/IQ/ is
injective, and so (C3) implies (C1). Also, since H1.†.t// is torsion free, (C3) and (C4)
are equivalent.

(C4) says that all z�k are 0 in H1.M.t/IZ.p// since H1.M.t/IZ.p// has no p–torsion.
Since

Kerf�1.M.t//!H1.M.t/IZ.p//g D
\

s

Kerf�1.M.t//!H1.M.t/IZps /g;

(C4) is equivalent to

z�k 2 Kerf�1.M.t//!H1.M.t/IZps /g

for all s .
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Because H1.M.t/IZps / is a finite p–group, by Lemma 5.3 the kernel contains
�1.M /qs

for some qs � q . The lift †.t/ !M.t/ of iC induces isomorphisms on
�1.�/=�1.�/qs

and on H1.�IZps /. Thus (C4) is also equivalent to

z�qs
.M / 2 Kerf�1.†.t//=�1.†/qs

!H1.†.t/IZps /g

for all s . Taking inverse limit, (C5) is obtained.

Note that if M satisfies one of (C1) to (C5) for t D hC1, then it is also true for t D h

by considering (C4) with H1.M.hC1//!H1.M.h//. We claim that

ImfH2.V.t/IQ/!H2.V.t/; yM.t/[
yN.t/IQ/g D 0

for t D h; hC 1. If so, by (K2) on page 929, Œ�Q.V /� and Œ�Q.�d /.V /� vanish. Hence
�T .M /C�T .N /��T .M �N /D 0. The cobordism V can be considered as a union
of . yM [ yN /� I and †� I � I whose intersection is .yi.†/[ yj .†//� 1. Applying
the Mayer–Vietoris theorem, we obtain an exact sequence

H2. yM.t/[
yN.t/IQ/!H2.V.t/IQ/!H1.†.t/IQ/!H1. yM.t/[

yN.t/IQ/:

We have the injectivity of the rightmost map for t � hC 1. Then the leftmost map is
surjective, and the claim is shown.

We remark that if one of (C1)–(C5) holds for h, then H1. yM.h// is p–torsion free.
Thus in that case, �T .M / lives in L0.Q.�d //, by Lemma 5.1.

Applying the theorem, we find a sufficient condition for �T to be a homomorphism of
H.q/.

Corollary 5.13 Suppose T is a p–structure of height h for † of order q . If T
satisfies Fq � ŒF.hC1/;F.hC1/�, then

�T W H.q/!L0.Q.�d //

is a homomorphism on H.q/.

Proof From the hypothesis, we have F.hC1/=Fq ! H1.F.hC1//. This induces a
homomorphism

F.hC1/=Fq! lim
 ��

s

H1.F.hC1//˝Zps ;

and
lim
 ��

s

F.hC1/=Fs! lim
 ��

s

H1.F.hC1//˝Zps

factors through it. If M is in H.q/, then all z�q.M /k vanish in F.hC1/=Fq , and M

satisfies (C5) in Theorem 5.12 for hC 1.
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Also, appealing to (C5), we derive a main result as another corollary.

Corollary 5.14 For any p–structure T for †,

�T W H.1/!L0.Q.�d //

is a homomorphism.

Proof of Lemma 5.3 Let N.0/ DG and

N.tC1/ D Ker
�

N.t/!
N.t/

ŒN.t/;N.t/�
DH1.GIZŒG=N.t/�/!H1.GIZpat ŒG=N.t/�/

�
;

where pat D jG.t/=G.tC1/j. That is, N.t/ D P tG , the P –mixed-coefficient commuta-
tor series, where P D .Zpa0 ;Zpa1 ; : : :/; see [4]. We claim

(1) N.t/ CG ,

(2) G=N.t/ is a finite p–group, and

(3) N.t/ �G.t/ .

From (2), G=N.t/ is nilpotent. Therefore, for all t , there is some q such that Gq�N.t/ .
Combining this with (3), we obtain the conclusion.

Let us show the above three claims. (1) can be shown by induction since G acts on
H1.GIZpat ŒG=N.t/�/ by conjugation. Because G is finitely generated and because
H1.GIZpat ŒG=N.t/�/ is a finite p–group, each N.t/=N.tC1/ is a finite p–group and
so is G=N.t/ . We use induction for (3).

N.tC1/ N.t/ H1.GIZpat ŒG=N.t/�/

H1.GIZŒG=N.t/�/

G.tC1/ G.t/ G.t/=G.tC1/

-Kerppppppppppppppppppp?

-
HH

HHH
HHj

ab

?

ppppppppppppppppppp?
��

��
��*

HH
HHHHj

-Ker -

In the above diagram, H1.GIZpat ŒG=N.t/�/DH1.N.t//=p
atH1.N.t// and G.t/=G.tC1/

is abelian and of order pat , and so the rightmost vertical map exists. Hence the leftmost
vertical map also exists and is injective.
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6 Structures in H.1/ and its subgroups

In this section, we construct infinitely many homology cylinders to investigate the
structure of H , especially in H.1/. Our examples are constructed by infection on
the trivial homology cylinder. We start with a description of infection by a knot. For
a 3–manifold M and a simple closed curve ˛ in the interior of M , by removing an
open tubular neighborhood of ˛ from M and by filling it in with the exterior of a
knot K in S3 so that the meridian and the preferred longitude of K are identified
with the preferred longitude and the meridian of ˛ , respectively, we obtain a new
3–manifold N . We say that N is obtained from M by infection along ˛ using K .
This construction appeared in [9; 10].

Let .M; iC; i�/ be a homology cylinder and M 0 be obtained from M by infection
along ˛ using K . It is well known that there is a homology equivalence f W M 0!M ,
which extends the identity map between M 0� (exterior of K ) and M� (tubular
neighborhood of ˛ ); see, for example, [3, Proposition 4.8]. Hence M 0 is a homology
cylinder with markings i 0

˙
W †!M 0 induced by i˙ .

We consider the effect of infection on the invariants of Garoufalidis and Levine [13],
Cha, Friedl and Kim [6], Morita [26], Sakasai [29], Cochran, Harvey and Horn [7]
(see the introduction), the extended Milnor invariants z�q , and the Hirzebruch-type
invariants �T . Let H DH1.†/.

(a) Garoufalidis–Levine homomorphisms [13]

�qW Hg;n! Aut.F=Fq/:

The left commutative diagram induces the right commutative diagram.

† M 0 †

M

-
i0�

@
@
@@R

i�
?

f

�
i0
C

�
�

��	
iC

�1.†/

�1.†/q

�1.M
0/

�1.M 0/q

�1.†/

�1.†/q

�1.M /

�1.M /q

@
@
@R

Š

.i�/�q

-
.i0�/�q

Š

?

f�

�
.i0
C
/�q

Š

�
�
�	

Š

.iC/�q

Since �q.M /D .iC/
�1
�q ı .i�/�q , �q.M

0/D �q.M /.

(b) The Morita homomorphism [26]

z�W Hg;1!

�
ƒ3HQ˚

1M
kD1

S2kC1HQ

�
ÌSp.2g;Q/:
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Here S2kC1H denotes the (2kC1st ) symmetric power of H and HQDH˝Q. This
z� is the composition of the limit of �q with a trace map. Hence z�.M 0/D z�.M / by
(a), and

T1
qD1 Ker.�q/� Ker.z�/.

(c) Sakasai’s Magnus representations [29]

rqW Hg;1! GL.2g;Q.F=Fq// and r W Hg;1! GL.2g; ƒ yF /:

Here Q.F=Fq/ WDZŒF=Fq �.ZŒF=Fq ��f0g/
�1 , yF is the algebraic closure with respect

to Z [1] (which is called the acyclic closure by Sakasai), and ƒ yF is the Cohn localiza-
tion of the augmentation map ZŒ yF �! Z. They are crossed homomorphisms, and the
restrictions to Hg;1Œq� and KerfHg;1! Aut. yF /g are homomorphisms, respectively.
Similar to (a), by taking the first relative homology H1.�;�IQ.F=Fq// on the left
diagram in (a), we see that rq.M

0/D rq.M /. Also by taking the acyclic closure of
the fundamental group, we obtain r.M /D r.M 0/.

(d) Cha, Friedl and Kim’s torsion invariant [6]

� W Hg;n!Q.H /�=˙HAN:

Here Q.H / is the quotient field of ZŒH �,

AD fp�1
� �.p/ j p 2Q.H /�; � 2 Im �2g; N D fq � xq j q 2Q.H /�g;

and barring (ie xq ) is the extension of the involution of the group ring ZŒH �. This
is a homomorphism. The effect of infection is studied in [6, Theorem 4.2]. We
discuss some details for the reader’s convenience. We first consider the effect on
� W Cg;n!Q.H /�=˙H . Let ��

K
be the torsion of the acyclic cellular chain complex

C�.S
3�K;mK IZŒH �/ with a meridian mK of K . Let

�W H1.S
3
�K/ �!H1.M

0/
.i0
C
/�1
�

����!H

be induced by the inclusion S3 �K ,!M 0 . Denote the tubular neighborhood of ˛
by �.˛/. Then we have

�.M 0/
:
D �.M / � �.S3

�K/ � �.�.˛//�1:

Here :
D means the equality in Q.H /�=˙H . From the exact sequence

0! C�.mK IQ.H //! C�.S
3
�KIQ.H //! C�.S

3
�K;mK IQ.H //! 0

with .S3 � K;mK / acyclic, we obtain �.S3 � K/
:
D �.mK / � �

�
K

. The class of
mK in H1.S

3 �K/ maps to the class of ˛ in H1.M
0/, and S1 and S1 �D2 are

simple homotopy equivalent. Thus �.mK /
:
D �.˛/

:
D �.�.˛//. From this, we obtain

�.M 0/
:
D �.M / � �

�
K

.
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Remark 6.1 Since any knot exterior in S3 is a homology cylinder over †0;2 ,

�.S3�K/
:
D �.S3

�K/ 2Q.H1.†0;2//
�=˙H1.†0;2/

by [6, Lemma 3.13], and the inclusion S3�K ,!M 0 induces

�.S3�K/
:
D �.S3

�K/ 2Q.H /�=˙H:

Thus, �.M 0/
:
D �.M 0/ if �.M /

:
D �.M /.

(e) Cochran, Harvey and Horn’s von Neumann �–invariants [7]

�qW Hg;1Œq�!R:

They studied the effect of infection in [7, Proposition 8.11]: when ˛ is in �1. yM /k but
no power of ˛ lies in �1. yM /kC1 ,

�q.M
0/� �q.M /D

�
0 if 2� q � k;R

S1 �K .!/ d! if q > k:

Here �K .!/ is the Levine–Tristram signature of K . The map �q is a quasimorphism
on Hg;1Œq�, and it is a homomorphism on Ker.rq/.

(f) Extended Milnor invariants

z�qW Hg;n! .F=Fq/
2gCn�1:

Their restrictions are homomorphism on HŒq� or H0Œq�1�. Since they are also obtained
from the induced maps on �1.�/=�1.�/q , they are preserved by infection.

Now we consider the Hirzebruch-type invariants

�T W Hg;n.q/! Z
h

1

d

i
˝Z L0.Q.�d //

defined in Section 5. Here T is a p–structure of order q . It is a homomorphism
on the subgroup of homology cylinders satisfying (C1)–(C5) in Theorem 5.12 into
L0.Q.�d //, especially on Hg;n.1/.

In [3, Corollary 4.7], the effect of infection is analyzed for general closed 3–manifolds.
By applying it to homology cylinders, we obtain the following theorem.

Theorem 6.2 (A special case of [3, Corollary 4.7]) Let M be a homology cylinder
in H.q/ and T be a p–structure of height h for †. Let  W �1.M.h//! Zd be the
character induced by T . Let z̨1; z̨2; : : :�M.h/ be the components of the pre-image of
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˛ and rj be the degree of the covering map z̨j ! ˛ . Let A be a Seifert matrix of K .
Then

�T .M
0/D �T .M /C

X
j

�
Œ�rj

.A; �
 .Œz̨j �/

d
/�� Œ�rj

.A; 1/�
�
;

where Œ�r .A; !/� is the Witt class of (the nonsingular part of) the hermitian form
represented by the following r � r block matrix:

�r .A; !/D

26666664
ACAT �A �!�1AT

�AT ACAT �A

�AT ACAT : : :

: : :
: : : �A

�!A �AT ACAT

37777775
r�r

For r D 1 or 2, �r .A; !/ should be understood as�
.1�!/AC .1�!�1/AT

�
and

�
ACAT �A�!�1AT

�AT �!A ACAT

�
:

Let E.˛;K/ be the homology cylinder obtained from the trivial homology cylinder
E by infection using K along ˛ . By Remark 6.1, �.E.˛;K/2/ 2Q.H /�=˙HAN

vanishes for any ˛ and K . For K with
R

S1 �K .!/D 0, �q.E.˛;K// vanishes and
all invariants in (a)–(f) vanish on E.˛;K/2 .

We will choose a simple closed curve ˛ and an infinite sequence fKig of knots such
that E.˛;Ki/

2 are distinguished by �T . For this purpose, we need the following two
lemmas.

Lemma 6.3 [2, Lemma 5.3] When b1.†/ > 1, for any h, there exist a loop 
 in †
and a p–tower f†.t/g of height h for † satisfying the following:

(1) Œ
 � 2 �1.†/
.h/ .

(2) Every lift z
j of 
 in †.h/ is a loop.

(3) There is a map �W �1.†.h//! Z which sends (the class of) each z
j to �1, 0,
or 1 and sends at least one z
j to 1.

Lemma 6.4 [2, Lemma 5.2] For any prime p , there is an infinite sequence fKig of
knots together with a strictly increasing sequence fdig of powers of p satisfying the
following properties:

Algebraic & Geometric Topology, Volume 16 (2016)



938 Minkyoung Song

(1) �Ki
.�di

/ > 0, and if p D 2 then �Ki
.�s

di
/� 0 for any s .

(2) If i > j then �Ki
.�s

dj
/D 0 for any s .

(3)
R

S1 �Ki
.!/ d! D 0.

(4) Ki has vanishing Arf invariant.

We remark that Lemma 6.3(1) and Lemma 6.4(3)–(4), will be used in Section 7. Now
we obtain one of our main results.

Theorem 6.5 Suppose b1.†/ > 1. Then the abelianization of the intersection of the
kernels of the invariants in (a)–(f) is of infinite rank.

Proof Let ˛ be a simple closed curve obtained by pushing iC ı 
 into the interior of
the trivial homology cylinder E , and Ki be knots as in Lemma 6.4.

Let f†.t/g be the p–tower in Lemma 6.3 and �d W �1.†.h//!Zd be the composition
of the map �W �1.†.h// ! Z in Lemma 6.3 with the projection Z ! Zd which
sends 1 2 Z to 1 2 Zd . Note that �1.†.t// and �1.E.t// are isomorphic. For
T D .f†.t/g; �d /, due to Theorem 6.2, we have

�T .E.˛;Ki//D
X

j

�
Œ�1.Ai ; �

�d .Œz
j �/

d
/�� Œ�1.Ai ; 1/�

�
;

where Ai is a Seifert matrix of Ki . Observe that sign�1.Ai ; !/D�Ki
.!/, �Ki

.1/D0,
and �Ki

.!/D �Ki
.!�1/. By the choice of �d from � ,

sign�T .E.˛;Ki//D c � �Ki
.�d /;

where c is the number of lifts z
j sent to ˙1 by �W �1.†.h//! Z. Note that c > 0.

Now we prove that E.˛;Ki/
2 are linearly independent in the abelianization. Suppose

they are linearly dependent. Then
P

i aiE.˛;Ki/
2 D 0 in the abelianization where

not all ai are zero. Let i0 be the smallest integer such that ai0
¤ 0. Let di be the

number in Lemma 6.4, and consider the p–structure T D .f†.t/g; �di0
/. Then

0D sign�T

�X
i

aiE.˛;Ki/
2

�
D 2

X
i

ai sign�T .E.˛;Ki//

D 2
X

i

aic�Ki
.�di0

/

D 2
X
i�i0

aic�Ki
.�di0

/D 2ai0
c�Ki0

.�di0
/¤ 0:

This contradiction implies the linear independence of E.˛;Ki/
2 in the abelianization

of the intersection of those kernels. Therefore abelianization has infinite rank.
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We note that the homology cylinders E.˛;Ki/
2 used in the proof of Theorem 6.5 are

boundary homology cylinders by the following lemma.

Lemma 6.6 A homology cylinder obtained by infection from a boundary homology
cylinder, an yF –homology cylinder, or a homology cylinder with vanishing z�q is a
boundary homology cylinder, an yF –homology cylinder, or a homology cylinder with
vanishing z�q , respectively.

Proof Let M 0 be a homology cylinder obtained from a homology cylinder M by
infection using K along ˛ . There is a map f W M 0!M which extends the identity
between M 0� (exterior of K ) and M� (tubular neighborhood of ˛ ). Especially, f
extends the identity between boundaries. The induced map f� on the fundamental
groups sends z�.M 0/k to z�.M /k for each k . Since f induces isomorphisms on 1�1.�/

and �1.�/=�1.�/q , z�.M /k vanishes in 2�1.M / or �1.M /=�1.M /q if and only if
z�.M 0/k vanishes in 2�1.M 0/ or �1.M

0/=�1.M
0/q . If there is a splitting �C of .iC/� ,

then �C ı f� is a splitting of .i 0C/� . Appealing to Proposition 4.5, we complete the
proof.

Thus, the same proof of Theorem 6.5 shows the following.

Theorem 6.7 If b1.†/ > 1, then the abelianizations of the subgroups BH , bH and
H.1/ contain a subgroup isomorphic to Z1 .

Remark 6.8 Since the homology cylinders E.˛;Ki/
2 mutually commute, they gen-

erate an abelian group in H.1/. Therefore we obtain that there is an infinite rank free
abelian subgroup, say A, of BH which injects into the abelianization of any subgroup
of H.1/ containing A, whenever b1.†/ > 1.

7 Nilpotent cobordism and solvable cobordism

In this section, we consider other types of cobordisms of homology cylinders, related
to gropes and Whitney towers. Let M and N be homology cylinders over †.

Definition 7.1 A 4–manifold W which is bounded by 2M � �N and satisfies H1.M /Š

H1.W /ŠH1.N / under inclusion-induced maps is called a (relative) H1 –cobordism
between M and N .
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For an H1 –cobordism W between M and N , H2.W;M /ŠH2.W /ŠH2.W;N /.
Hence, W is an H1 –cobordism with H2.W / D 0 if and only if W is a homology
cobordism.

As an approximation of homology cobordism, first we define nilpotent cobordism of
homology cylinders motivated by [11; 12]. For the definition of closed grope of class q ,
we refer to [12, Section 2].

Definition 7.2 An H1 –cobordism W between M and N is called a class q nilpotent
cobordism if there are maps of closed gropes of class q into W , whose base surfaces
represent homology classes generating H2.W;N /. If there exists such W , we say that
M is class q nilpotently cobordant to N .

There is a relation between nilpotent cobordism and z�–invariants.

Theorem 7.3 If M is class q nilpotently cobordant to N , then z�q.M /D z�q.N /.

Proof By Dwyer’s theorem [11, Theorem 1.1], the markings of M and N induce
isomorphisms F=Fq Š �1.W /=�1.W /q . We consider the commutative diagram
below.

�1.M /=�1.M /q

F=Fq �1.W /=�1.W /q

�1.N /=�1.N /q

HHH
HHHHj
-

.iC/�qD .jC/�q

Š

��
�
��

��*
Š

H
HHH

HHHj
Š

��
��

��
�*

Since z�.M /k and z�.N /k are sent to the same element in �1.W / for each k , we
obtain z�q.M /D z�q.N /.

Next, let us consider solvable cobordism of homology cylinders. For a precise definition
of solvable cobordism; see [5, Definition 2.8], where it is defined between bordered
3–manifolds. Since a homology cylinder is a special case of bordered 3–manifolds,
the definition is applied directly to homology cylinders. A solvable cobordism is also
an H1 –cobordism approximating homology cobordism. Note that M is .r/–solvably
cobordant to N if and only if 4M � .�N / is .r/–solvable as a closed 3–manifold
for r 2 1

2
Z�0 ; see [10, Definition 2.1]. We say that M is .r/–solvable if M is

.r/–solvably cobordant to E , or equivalently, if yM is .r/–solvable.

Algebraic & Geometric Topology, Volume 16 (2016)



The homology cobordism group of homology cylinders 941

Theorem 7.4 Suppose M is in H.q/ and T is a p–structure of height � h for † of
order q . If either

(1) M is .hC 1/–solvable, or

(2) M is .hC 1
2
/–solvable and (C1)–(C5) of Theorem 5.12 hold for hC 1,

then �T .M / vanishes.

Proof If M satisfies (C2) in Theorem 5.12 for hC 1, then

H1.†.t/IZ.p//ŠH1. yM.t/IZ.p// for t � hC 1,

and so H1. yM.t// is p–torsion free and rank H1.†.t/IQ/D rank H1. yM.t/IQ/ for all
t � hC 1. The desired conclusion follows immediately from [3, Theorem 8.2] and [2,
Theorem 3.2].

By exactly the same argument as in [10, Proposition 3.1], we have a similar result on
homology cylinders infected along a simple closed curve in some derived series.

Lemma 7.5 Let M be an .h/–solvable homology cylinder. Suppose ˛ is a simple
closed curve with Œ˛�2 .�1.M //.h/ and K is a knot in S3 with vanishing Arf invariant.
Then M.˛;K/ obtained by infection from M along ˛ using K is .h/–solvable.

We consider the .r/–solvable filtration of H . Denote by FG
.r/

the set of all homology
cobordism classes of .r/–solvable homology cylinders in a subgroup G of H . It can
be seen that FG

.r/
is a normal subgroup of G for any subgroup G of H . We remark

that this may be compared with Kitayama’s groups of refined cobordism classes of
homology cylinders whose markings induce isomorphisms on solvable quotients [21].

Theorem 7.6 (1) For a p–structure T of height h for †, �T gives rise to a
homomorphism

�T W F
H.1/
.h/

=FH.1/
.hC 1

2
/
!L0.Q.�d //:

(2) The abelianization of FH.1/
.h/

=FH.1/
.hC 1

2
/

has infinite rank.

Both .1/ and .2/ also hold for FBH
.h/
=FBH

.hC 1
2
/

and F yH
.h/
=F yH

.hC 1
2
/
.

Proof (1) follows from Theorem 7.4 and Corollary 5.14. By Lemma 7.5, E.˛;Ki/
2

in the proof of Theorem 6.5 is .h/–solvable, and is in FH.1/
.h/

. With the homomorphism
in (1), the same argument as in the proof of Theorem 6.5 proves (2). The last sentence
follows from the fact that all E.˛;Ki/

2 are boundary homology cylinders, and also
yF –homology cylinders by Lemma 6.6.
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